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Abstract

The more successful methods for unconstrained global optimization of an

arbitrary multimodal objective function are of a stochastic nature and

involve a combination of sampling and local search techniques. In this

class, the recently developed Multi Level Single Linkage method combines

attractive theoretical properties with excellent computational properties.

We describe this method below, and discuss its computational behaviour and

its extension to constrained global optimization.



1. INTRODUCTION 

Thellobal optimization problem is to find the global optimum (say, the

global minimum) x* of a real valued twice continuously differentiable

objective function f: Rn R. For computational reasons one usually assumes

that a set S R which is convex, compact and contains the global minimum

as an interior point, is specified in advance. Nevertheless, the problem to

find

y* = min{f(x)} (1.1)

xeS

remains essentially one of unconstrained optimization.

Only a few solution methods for this problem have been developed so far,

certainly in comparison with the multitude of nonlinear programming methods

that aim for an arbitrary local minimum. For a survey of global

optimization methods we refer to Dixon and Szego [10], Dixon and Szego

[11], Rinnooy Kan and Timmer [23] and Timmer [27]. It appears not to be

possible to design methods which offer an absolute guarantee of success for

arbitrary f. Therefore, most methods are of a stochastic nature and provide

an asymptotic guarantee in a stochastic sense. For instance, if the

function is evaluated in points which are drawn from a uniform distribution

over S, then it can be shown that the smallest function value found

converges to the global minimum value y* with probability 1 (i.e. almost 

surely) (cf. Rubenstein [26]).

In Section 2, we describe a folklore method in this category, known as

Multistart, paying particular attention to an appropriate stopping rule for

this method. The Multi Level Single Linkage method eliminates the inherent

inefficiencies of Multistart while retaining its theoretical properties; it

is briefly described in Section 3. In Section 4, we review its

computational performance. Finally, in Section 5 we discuss at some length

our initial attempts to extend Multi Level Single Linkage to constrained 

global optimization.

2. MULTISTART

Most successful methods for global optimization involve local search
es from

some or all of the sample points. This presupposes the availability 
of some

local search procedure P which starting from an arbitrary point x 
E S,



produces a local minimum x*. Depending on what may be assumed avout f, a

large number of such procedures is available from the nonlinear programming

literature. We assume that P is strictly descent (Timmer [271), such that

if P is started from any point x E S and converges to a local minimum x*,

there exists a path from x to x* along which the function values are

nonincreasing. We also assume that this path is completely contained in S.

Finally we assume that the number of stationary points of f, i.e. points

where the gradient of f is zero, is finite.

The simplest way to make use of the local search procedure P occurs in a

folklore method known as Multistart. Here, P is applied to every point in a

sample, drawn from a uniform distribution over S, and the local minimum

with the lowest function value found in this way is the candidate value for

y*•

An interesting analysis of Multistart was initiated in Zielinski [31

and extended in Boender and Zielinski [2], Boender and Rinnooy Kan [3], and

Boender [5]. It is based on a Bayesian estimate of the number of local 

minima W and of the relative size of each region of attraction

0 = m(R(x*))/m(S), k = 1, ..., W, where m(.) denotes Lebesque measure and

a region of attraction R(x*) is defined to be the set of all points in S

starting from which P will arrive at x*.

In [5] a so-called non-informative prior distribution is specified for

the unknowns W, 01, ..., Ow. Given the outcome of an application of

Multistart, Bayes' rule is then used to compute the posterior distribution,

which incorporates both the prior beliefs and the sample information.

After lengthly calculations, surprisingly simple expressions emerge for

the posterior distribution and posterior expectation of several interesting

parameters (Boender [5]). For instance, if w different local minima have

been found as the result of M local searches started in uniformly

distributed points, then the posterior expectation of the number of local

minima is

w(M-1)
M-w--2

(2.1)

This Bayesian analysis is quite an attractive one, the more so since it can

be easily extended to yield optimal Bayesian stoppir rules (Boender and

Rinnooy Kan [4]).



3. MULTI LEVEL SINGLE LINKAGE

In spite of the scope that Multistart offers for analysis, the procedure is

lacking in efficiency. The main reason is that it will inevitably cause

each local minimum to be found several times. To avoid all these time

consuming local searches, P should be applied no more than once, or better

still exactly once, in every region of attraction. For this purpose, the

Multi Level Single Linkage method has been developed. Unlike the Single

Linkage method described in Boender et al. [1], Multi Level Single Linkage

focuses on the function values of the sample points to obtain an extremely

simple but powerful method.

In the Multi Level Single Linkage method the local search procedure P is

applied to every sample point except if there is another sample point or a

previously detected local minimum within some critical distance which has a

smaller function value.

Actually, the method is implemented in an iterative fashion, where

points are sampled in groups of fixed size, say N. In each iteration the

above rule is applied to the points of the expanded sample to determine

from which sample points P should be started.

In spite of its simplicity, the theoretical properties of Multi Level

Single Linkage are quite strong (Timmer [27]). If, for some a > 0, the

critical distance in iteration k is chosen to be

—1 
2 

log kNil/nkr( + Lpin( s a
kN (3.1)

then any local minimum x* will be found by Multi Level Single Linkage

within a finite number of iterations with probability 1. At the same time

we can prove that, if a > 4, the total number of local searches ever

started by .Multi Level Single Linkage is finite with probability 1 even if

the sampling continues forever. In [27] it is indicated that these results

are in some sense the strongest possible ones. (Actually, the above results

were obtained for a slightly different version of Multi Level Single

Linkage, modified to ensure that P is never applied in a point which is

very close to the boundary of S or to a stationary point detected

previously.)

Since Multi Level Single Linkage and Multistart result in the same set

of minima with a probability that tends to 1 with increasing sample size,

we can simply use the stopping rules which were designed for Multistart



(Boender and Rinnooy Kan [4]).

One might believe that it is unlikely that the global minimum will be

found by applying P to a sample point with a relatively high function

value. It is then possible to reduce the sample by removing a certain

fraction, say 1-y, of the sample points with the highest function values

and to apply Multi Level Single Linkage to the reduced sample points only.

Such a reduction of the sample does not significantly affect the

theoretical properties of Multi Level Single Linkage. In [27] it is

observed that in case of a reduction of the sample to ykN sample points in

iteration k, the critical distance should still equal (3.1), but that i

(2.1) M should equal ykN and not kN.

Because of the extreme simplicity of the Multi Level Single Linkage

method it can be implemented very efficiently. Of course, it is not

advisable to start the calculations necessary for applying the method from

scratch in every iteration. Since the sample of iteration k-1 is a subset

of the sample of iteration k, and since it is known in what way the

critical distance varies with k, it turns out to be possible to develop an

efficient dynamic implementation of the method (Timmer [27]). In this

dynamic implementation, the information which is necessary to determine the

starting points of the local search procedure in iteration k is determined

by updating the corresponding information from iteration k-1. It turns out

to be possible to implement Multi Level Single Linkage in such a way that

the running time needed up to iteration k is only 0(k) in expectation.

Hence, the calculations needed to update the information in iteration k do

not vary with the size of the complete sample, but only with the number of

newly sampled points.

A fuller description of the results described in this section, including

proofs, can be found in [24, 25, 27].

4. COMPUTATIONAL RESULTS

To examine the computational behaviour of Multi Level Single Linkage it has

been coded in Fortran IV and run on the DEC 2060 computer of the Computer

Institute Woudestein.

We tested Multi Level Single Linkage on the standard set of test

functions (Dixon and Szega [12]), which is commonly used in global

optimization. These test functions are listed in Table 1.



Table 1

TEST FUNCTIONS

GP Goldstein and Price

BR Branin (RCOS)

H3 Hartman 3

H6 Hartman 6

S5 Shekel 5

S7 Shekel 7

S10 Shekel 10

In this section Multi.Level Single Linkage will be compared with a few

leading contenders whose computational behaviour is described in Dixon an

Szegti [11]. In this reference methods are compared on the basis of two

criteria: the number of function evaluations and the running time required

to solve each of the seven test problems. To eliminate the influence of the

different computer systems used, the running time required is measured in

units of standard time, where one unit corresponds to the running time

needed for 1000 evaluations of the S5 test function in the point (4,4,4,4).

Since both the number of function evaluations and the units of standard

time required are sensitive to the peculiarities of the sample at hand, the

results reported for Multi Level Single Linkage represent the average

outcome of four independent runs. We applied Multi Level Single Linkage to

20% of the sample points (y = 0.2) and choose a to be equal to 4. After an

initial sample of size 100, we increased the sample and applied Multi Level

Single Linkage iteratively until the expected number of minima (2.1)

exceeded the number of different minima found by less than 0.5. We did not

implement the method as efficiently as possible since this is not really

necessary if the sample size is moderate. Since all test functions are

twice differentiable, we could use the VAlOAD variable metric routine from

the Harwell Subroutine Library as a local search procedure.

In Table 2 and Table 3 we summarize the computational results of Multi

Level Single Linkage and compare them to those obtained for a few leading

contenders as reported in Dixon and Szego [12].
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Table 2

NUMBER OF FUNCTION EVALUATIONS

FUNCTION

METHOD GP BR 113 116 S5 S7 S10

Gomulka [12] - - - - 5500 5020 4860

Bremmerman [7,12] 300 160 420L 515 375L 405L 336L

Price [21] 2500 1800 2400 7600 3800 4900 4400

Torn [28,29] 2499 1558 2584 3447 3649 3606 3874

De Biase and Frontini [9] 378 597 732 807 620 788 1160

Multi Level Single Linkage 148 206 197 487 404 432* 564

L: the method did not find the global minimum.

*: the global minimum was not found in one of the four runs.

Table 3

NUMBER OF UNITS STANDARD TIME

FUNCTION

METHOD GP BR H3 116 S5 S7 S10

Gomulka [12] - - - - 9 8.5 9.5

Bremmerman [7,12] 0.7 0.5 2L 3 1.5L 1.5L 2L

Price [21] 3 4 8 46 14 20 20

Tarn [28,29] 4 4 8 16 10 13 15

De Biase and Frontini [9] 15 14 16 21 23 20 30

Multi Level Single Linkage 0.15 0.25 0.5 2 1 1* 2

L: the method did not find the global minimum.

*: the global minimum was not found in one of the four runs.

5. CONSTRAINED GLOBAL OPTIMIZATION

In this section we shall consider the constrained global optimization

problem which is to find the global minimum x* of an objective function f

given a set of equality and inequality constraints. We assume that a set S

which contains all feasible solutions (including the global one) as

interior points is specified in advance. Hence, we consider the problem to

find



= min f(x)
xES

s.t. h (x) = 0 E M =

i c M, = fria ,...,m21.

where h. :R
n 

R is twice continuously differentiable (i E M U M
2 
).

1 1 

Given a point x E S it is convenient to define the following index sets

I(x) = {iEM1
I h (x) * J(x) = {jEM2I hi(x) > 0

T(x) = {icMi l hi(x) = 0}, 7(x) = {jEM2 1 hi(x) = 0}.

(5.4

(5.5)

We define a constraint to be violated in x if it is not satified in x, i.e.

if its index is in the set I(x) or J(x). A constraint is said to be active

in x if it is violated or if its index belongs to the set I(x) or J(x). The

index set of the active constraints in x is denoted by M(x) and we have

M(x) =Mi u J(x) u -I(x). The gradients of f(x) and hi(x) (i E M1U M2) in a

point x will be denoted by Vf(x) and Vh(x) respectively. V2f(x) and
2
Vh(x) (i EM uM

2
) will indicate the matrix of second order derivatives1 

of f respectively hi in x. To be able to derive necessary and sufficient

conditions for a point to be a local minimum of (5.1)-(5.3), we need a so-

called constraint qualification: we assume that the gradients of the active

constraints, i.e. the vectors Vh (x) (i E M(x)) are linearly independent 

for every x c S. Under such a constraint qualification, the Kuhn-Tucker

conditions are necessary for a point x* to be a local minimum of (5.1)-

(5.3). The second order sufficient conditions for local optimality specify

that, in addition to satisfying the Kuhn-Tucker conditions, the multiplier

(i)vector X* R 
m2 

(with components X* ) has to satisfy

T(v2f(x*) E x!i)v2hi(x*))

iEM
1
uM
2

for every nonzero vector z E RtL satisfying zTVhi(x* = 0 if

U {jE-S(x*) X*(i) > 0} and zTVhi(x*) < 0 if i E {jEti(X*)

z > 0 (5.6)

(i)x = 01.
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Only very few methods have been developed to solve the constrained

global optimization problem. In [18] it is shown that the Tunneling Method

can be generalized to solve problem (5.1)-(5.3). However, this approach has

the same disadvantages as it has in the unconstrained case in that no

guarantee of success can be provided. Some attention has been given to

certain subclasses of problem (5.1)-(5.3). For instance, the case that f is

concave and the constraints are convex has been described in [17, 22]. I

[19] it is assumed that f is concave and that the constraints are linear.

Of course, these kinds of assumptions change the structure of the problem

considerably.

What happens if we try to generalize the successful method described in

Section 3 to solve the constrained problem? If it would be possible to use

feasible points only, i.e. points in S satisfying (5.2) and (5.3), then

such a generalization would be straightforward. More precisely, if we draw

the sample points from a uniform distribution over the feasible region and

use an interior point minimization technique [13] as local search

procedure, then we would not have to adapt our clustering procedures at

all. However, it is not known how to draw points from a uniform

distribution over the feasible region. Of course, one can draw the points

from a uniform distribution over S and ignore the points that are not

feasible. But if there are equality constraints we will never draw a

feasible point, and even if M1 is empty, such a procedure would be very

inefficient for large n. Actually, even if M1 is empty and all constraints

are linear, then there is still no efficient way known to obtain points

that are distributed according to a uniform distribution over the feasible

region (cf. [5] for a method of generating points which are asymptotically

uniform). Finally, an interior point minimization technique is not very'

efficient and cannot be used if there are equality constraints. We conclude

that this approach does not seem very promising.

It follows that we cannot avoid infeasible points in our calculations.

Recall that in the method described in Section 3, the function value of the

sample points plays a crucial role: in Multi Level Single Linkage, we do

not apply the local search procedure to a sample point x if another sample

point is within the critical distance of x and has a smaller function value

than f(x). Furthermore, one of the reasons that Multi Level Single Linkage

has strong theoretical properties is that the local search procedure is

descent with respect to f. If we are doomed to treat infeasible points, how



should we then compare the function values of a feasible and an infeasible

point? If the infeasible point has a smaller f-value this does not mean

that we should not start a local search from a feasible point close to it,

since the constrained local search may very well generate a sequence with

increasing f-values. We conclude that we must measure the relative

attractiveness of the sample points in a different way.

For this purpose we will use a penalty function. Such a penalty function

measures the f-value in a point together with the extent to which it is

feasible, so as to give a single value for the attractiveness of the point.

Of course, it would be very helpful if we could use a penalty function ip

which has the property that there is 'a 1-1 correspondence between the local

minima of ip and the local minima of (5.1)-(5.3). We will call a penalty

function with the above 1-1 property a doubly exact penalty function. Note

that a doubly exact penalty function has stronger properties than the well

known exact penalty functions [15] which are used in local constrained

optimization and only have the property that all constrained local minima

are also minima of the penalty function.

A doubly exact penalty function can be derived from the familiar 2, -

penalty function (Zangwill [30], Pietrzykowski [20])

I(x,a) = f(x) + I
iEM

1

(i)'hi( )1 + I a max0,h4(x
iEM

2

(5.7)

In [20] it has been proved that for every local minimum x* of (5.1)-

(5.3), there exists an a
o 

E R 
m
2 
such that for all a > a x* is a local-- co

minimum of (5.7) as well. More precisely (Charalambous [8]), if x* is a

local minimum of (5.1)-(5.3) which satisfies the second order sufficient

(i)conditions with Lagrange multipliers X* (i E Mi U M2) and if
(i) I (I)a > IX* I, for all i E M1 u M2, then x* is a local minimum of I(x,a).

It is also possible to choose a in such a way that each minimum of

igx,a) is a minimum of (5.1)-(5.3). For this purpose we introduce the

following notation.

The matrix whose i-th row consists of the gradient Vhi(x) (i=1,2,...,m2)

will be denoted by A(x). 7:(x) is equal to A(x) except for the fact that all

rows that correspond to constraints which are inactive in x are deleted.

Hence, the i-th row of A(x) corresponds to the gradient of the i-th active

constraints in x. If all constraints are active in x, we define a

vector X(x) E R 
2

by
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X(x) = - (A(x)A(x)T)-1 A(x)Vf(x). (5.8)

-1Note that (A(x)A(x)
T 
) is well defined since we assumed the gradients of

the active constraints in every x to be linearly independent. If certain

constraints are not active in x, then let i(j) be the j-th active

constraint in x. For every active constraint in x, we now take A(x)
— -1 --to be equal to the j-th element of (A(x)A(x)

T 
) A(x)Vf(x). Elements of

A(x) corresponding to constraints that are inactive in x are taken to be

equal to 0.

The function X(x) : R
n 

R
m
2 

defined in this way is bounded. To see

this, let Mt be an arbitrary subset of Mi u M2 and let St be the largest

subset of S such that for all points x in S', M' is the index set of the

active constraints in x. Furthermore, let C(x) be the matrix containing the

gradients of the active constraints in S', i.e. Z-(x) = -A-.(x) for all

x E S'. Finally, let "gt be the closure of S'. It is easy to check that the

constraints that are active in St are also active in St. Since the active

constraints are assumed to be independent, it follows that
(- - TN-1
C(x)C(x) exists for all x -§t. (Note that -d(x) is not equal to

-A(x) if x E -g t S'.) Hence, Co(x)-a(x)T)-1 -6(x)Vf(x) is a continuous function

of x over the compact set St and therefore it attains a maximum over this
- -1 -set. It follows that the supremum of (-6(x)C(x)

T 
) C(x)Vf(x) over St is

also bounded. Finally, since there are only a finite number of subsets Mt

of Mi u M2, and since A(x) equals -6(x) in every corresponding set St, it
- -1 -follows that sup 

xES 
(A(x)A(x)

T 
) A(x)Vf(x) is bounded so that a

2
m

vector a E R exists which satisfies

i)
> sup IX )(x)I

xeS
1€ U 14

2
). • (5.9)

Given the above observation, we are now in a position to prove that, if a

is chosen to satisfy (5.9) and if x* E S is a local minimum of i(x,a), then

x* is a local minimum of (5.1)-(5.3). We can also prove that, if a

satisfies (5.9) and if x* is a local minimum of (5.1)-(5.3) which satisfies

the second order sufficient conditions of (5.6), then x* is a local minimum

of gx,a). The proofs for these results will appear elsewhere.

Thus, if a satisfies (5.9), then we almost know that lp is a doubly exact

penalty function. We only need the provision that a local minimum x* of
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(5.1)-(5.3) satisfies the second order sufficient conditions 5.6) to show

that it is also a minimum of tp. This provision is not unusual in the theory

of exact penalty functions (Fletcher [14], Charalambous [8]), and actually

we do not believe that it is strictly necessary.

One might argue that the requirement (5.9) prevents tp(x,a) from being

practically useful, since (5.9) itself defines a global optimization

problem. However, this turns out to be not a serious drawback in our

context; the latter global problem does not need to be solved explicitly.

Moreover, we believe that a requirement like (5.9) is unavoidable in a

doubly exact penalty function. We can view a as a parameter which contains

global information about the problem, so that the value of lp in a point x

does not only depend on the specification of the constrained problem in x

alone. Let us say that a penalty function is parameter-free if its value in

any point x only depends on the properties of the constrained problem in x.

We conjecture that for every continuous penalty function whose value in an

arbitrary point x depends only on f(x), hi(x) (i E M1U M2) and the values

of a finite number of derivatives of f and hi in x, there exist smooth

(e.g. continuous differentiable) functions f and hi (i E MiU M2) such that

there is no 1-1 correspondence between the minima of the penalty function

and the minima of (5.1)-(5.3). The truth of this conjecture would imply

that there is no parameter free doubly exact penalty function.

Through the theoretical results described above, we have laid the

foundation for a stochastic method for constrained global optimization that

is similar in spirit to the Multi Level Single Linkage method. The

(nontrivial) details of this method do appear in [27], but we do not

discuss them here. For one thing, they are beyond the scope of this

contribution; for another thing, it is conceivable that there are more

appropriate theoretical frameworks in which such an extension could be

carried out. Even more than unconstrained global optimization, constrained

global optimization represents a virgin territory that is well worth

exploring in more detail.
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