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Abstract

By far the most efficient methods for global optimization are based on

starting a local optimization routine from an appropriate subset of uniformly

distributed starting points. As the number of local optima is frequently

unknown in advance, it is a crucial problem when to stop the sequence of

sampling and searching. By viewing a set of observed minima as a sample from a

generalized multinomial distribution whose cells correspond to the local

optima of the objective function, we obtain the posterior distribution of the

number of local optima and of the relative size of their regions of

attraction. This information is used to construct sequential Bayesian stopping

rules which find the optimal trade off between reliability and computational

effort.

1. Introduction.

So far, only a few solution methods have been developed for the unconstrained

global oTtimization „problem, which is to find the global optimum x* (say, the

global minimum) of a real valued multimodal objective function f over a

compact set S which contains x* as an interior point [Dixon & Szeg5 1975,

1978]. As confirmed in recent computational experiments [Rinnooy Kan & Timmer

1984; Timmer 1984], the currently most efficient way to solve this problem is

through methods that perform a local search from each point in an appropriate

subset of a random sample drawn from the uniform distribution over S. If the

true number of local minima of f is unknown, such methods can of course never

provide an absolute guarantee that the globally optimal value has been found:

all that can be assured is that the probability of this event rapidly
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approaches 1 as the sample size goes to infinity. Thus, there typically exists

a need for stopping rules to determine the sample size which corresponds to

the optimal trade off between reliability and computational effort.

In most computational experiments reported in the literature this crucial

feature is dealt with in ad hoc fashion, which is strongly inspired by the

properties of the test functions that happen to' be involved. In practice, one

often simply performs a prespecified number of local searches. Here, we shall

describe a rigorous Bayesian framework for the development of optimal stopping

rules. In the Bayesian approach, the user is asked to express his beliefs

about some unknown relevant parameters of f in the form of a prior,

distribution. Experimental information gathered on f is then used to convert

these initial beliefs into a posterior distribution through Bayes' Theorem.

This posterior distribution reflects the way in which the initial beliefs are

affected by the outcomes of the experiments. A decision whether or not to

continue the search can then be taken which is optimal with respect to a loss

function based on a termination loss if sampling is stopped before all local

minima have been found and an execution loss which expresses the cost of

sampling and of performing new local searches. Given the initial beliefs, such

a decision incorporates all information derived from the experiments to weigh

expected costs and benefits against each other in an optimal fashion.

The construction of our stopping rules is based on a statistical analysis of

the Multistart method. In this approach a local search is applied to each 

point in the uniform sample. A crucial observation about Multistart is that

its outcome, in the form of a set of local minima, can be viewed as a sample

from a multinomial distribution whose cells correspond to the local minima of

f. However, since the details of this correspondence are unknown in advance,

the multinomial formula turns out to be inappropriate for statistical

inference about the local minima structure of f. A first solution to this

problem is described in [Zielinkski 1981] where the probability distribution

is derived of the different number of local minima W which will be found in n

local searches. Conditioned on a set of observed minima, this result is

applied to determine the optimal Bayesian estimator of the true number of

local minima with respect to a loss function which imputes a fixed cost if an

incorrect decision is made. Also, the optimal estimator of the total relative

size of the regions of attraction of the observed minima is derived under a'
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quadratic• loss function. However, the loss functions considered do not involve

the cost of sampling and of performing local searches. Hence these results are

insufficient to construct stopping rules which provide the optimal trade-off

between reliability and computational effort.

In Section 2 of this paper we will first describe how Zielinski's results can

be extended through the use of the generalized multinomial distribution. In

addition to dealing with the different number of local minima W, this approach

also allows us to determine the probability that an application of Multistart

to a sample of size n leads to the i-th local minimum being found Ni times (i

= i,...,W; E Ni = n). The generalized multinomial distribution is then used

to compute relevant posterior results concerning the minima of f which extend

the work in [Zielinski 1981]. In Section 3, these posterior results are

applied to construct optimal sequential Bayesian stopping rules with respect

to loss functions which not only impute a cost if sampling is stopped too

early, but which also take the cost of extending the sample into account. Our

experimental results on the standard set of test functions from [Dixon & Szego

1978] are contained in Section 4. In Section 5, we will show that our results

can be extended to deal with the important case where the local minima are

generated by computationally superior clustering variants of Multistart that

aim to perform only one local search with respect to each local minimum of f.

2. Statistical analysis of Multistart.

In the Multistart method, a local search procedure L is started from each

point in a sample that has been generated from the uniform distribution over

the feasible region S. We recall that the region of attraction Rx* of a local

minimum x, given L, is defined as the subset of points in S starting from

which L will arrive at x* [Dixon & Szeg8 1975, 1978]. Let k be the number of

local minima of the objective function f, and let us denote the relative

volume of the i-th region of attraction by oi (1= 1,...,k). If these values

would be known, then we have several obvious stopping rules for the sample at

our disposal. We may terminate Multistart, for example, if the number of

different local minima •observed is equal to k, or if the total relative volume

of the observed regions of attraction exceeds some prespecified value.
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In practice, k,01,...,0k are always unknown. The local minima sampled,

however, clearly provide information about the values of these parameters. The

crucial observation that enables us to learn about these values is that, since

the starting points of Multistart are uniformly distributed over S, the i-th

local minimum at each trial has a fixed probability of being found that is

equal to the relative volume ei of its region of attraction (i =

This implies that, given a number of local searches n, the observed minima can

be viewed as a sample from a multinomial distribution whose cells correspond

to the minima of f: the number of cells is equal to the unknown number k of

minima and the cell probabilities are equal to the unknown relative volumes

01,...,0k. Hence, if the random variables Ni with realizations ni

(i = 1,...,k) are defined as the number of times that the i-th local minimum

is found in n local searches, then the probability of the event

{(N
'

N
k

(ni,...,nk)} is given by

(1) p(n
'
n
k
) -  

n! 
k n
II 0.-.

i=1
11 n.!

i=1 1

In a statistical approach one would like to obtain information about

k,e1,...,ek by substituting observed sample values ni,...,nk into (1). This

would yield the likelihood function of k,01,...,0k, with respect to which one

could compute estimates of these unknowns, such as, for example, the maximum

likelihood estimates which correspond to values for k,01,...,Ok that maximize

the probability that the observed sample values will occur. Here, however, we

encounter a serious difficulty. Since the existence of a local minimum cannot

be postulated until it has been observed, it is impossible to decide to which

local minimum a Oi corresponds. For example, if in 8 local searches one

minimum is found 5 times, another one twice, and a third minimum once, it is

impossible to distinguish between the events {(N1, N2, N3) = (5, 2, 1)},

{(N1, N2, N3) = (1, 2, 5)}, {(N1, N2, N3, N4, N5, N6) = (0, 5, 0, 1, 2, 0)}

etc. Hence, (1) is inappropriate for the computation of the probability of

such an outcome.

The solution to this problem is to define mutually exclusive and exhaustive

aggregates of the individual events ni,...,nk by disregarding the order and

omitting the nits that are equal to 0. Thus, for example, the aggregate event

corresponding to the outcome mentioned above is the (multi)set



5

{N1, N2, N3} = {1, 2, 5}. If we define the random variable W, with realization

w, as the number of different observed minima in n local searches, the

probability of these aggregate events turns out to be given by the generalized

multinomial distribution [Boender & Rinnooy Kan 1983a; Boender 1984], i.e.

(2)
n.1  n! 

II 0 
1
,Ep({n ,011110,n

w
}

n w 
g•II h.! II n.! 

,...,gw)ESOw i=1 1

j=1 J 1=1 1

where h is the number of ni's that are equal to j, and Sk[w] is the set of
all permutations of w different elements from {1,...,k} (E

w 
1
n. = n; ni > 0

i= 
for i = 1,...,w).

However, if we now try to use (2) to obtain the maximum likelihood estimate of

the number of local minima k, a second difficulty appears: we find this

estimate to be equal to co for all possible outcomes {ni,...,nw}. Hence, this

approach does not provide a proper setting for the problem. We therefore adopt

the Bayesian approach in which the unknowns k,01,...,8k are assumed to be

themselves random variables K,01,...,OK with realizations k,01,...,8k, for

which a prior distribution can be specified. Given the outcome fni,...,nwl of

a number of local searches, we then use Bayes' Theorem to compute the

posterior distribution of K,01,...,OK, which incorporates both our prior

beliefs and the sample information.

For the number of local minima K we shall first assume each integer of [1,00)
to be a priori equiprobable. Given K = k, we assume the relative sizes of the
regions of attraction 0...O to follow a uniform distribution on the (k-1)-

dimensional unit simplex Ik_i = o = 1, k),

E 8 - 1}. Hence, our joint prior probability density function is given byi=1

(3) p(k,01,..., ) cc (k-1)!,

where cc denotes proportionality. Other choices for a prior distribution can be

accommodated as well (see Section 5).
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Theorem 1 [Boender & Rinnooy Kan 1983a].

Given the uniform prior (3) and a Multistart outcome {ni,...,nw}, the

posterior density function of the number of local minima K, and the relative

volumes of the regions of attraction Op... Ok for n > w+2 is given by

=

(4) =  (n-1)!(n-2)!(k-1)! w n
i

11 8 .
1,...,gw)eS [w] gi

w!(w-1)!(n-w-2)! ni! i=1(g
i=1

Sketch of proof.

Substitution of the generalized multinomial formula 2 and the assumed prior

(3) in Bayes' Theorem yields

=

}) p(k,01,...,0k)

CO

f P({1112-•.,nw}) P(m,q)
m=w I

m-1

• • • 1pm) II &pi
i=1

w n
i(k-1)! E II 8

(g1,...,gw)ESOw 1
• g
=1 i

(5) .  .co w n. m
E f -0!

m=1,7 m-1

We observe that

(6)
n+m-1)! 

w n
i

lp
g.i=1 

n.! 
1

1
i=1

II 
1

ti) 11
,...,gw)ESm[w] i=1 gi i=1

is an m-dimensional Dirichlet density function with parameters

1,...,1 so that (5) simplifies to
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7

(k-1)! w n.
1-   E II 6w .

(m-1)!m!  (gi,...,gw)cSk[w] 1=1 gig'
1 

i=1 m 
(m-w)!(n+m-1)!=w

The proof is completed by using the equality

(8)
CO

m=w
m-

w!(w-1)!(n-w-2)!
!(n+m-1)! (n-1)!(n-2)!

(n > w + 2).

The following corollaries are consequences of Theorem 1. The result (15) has

previously been published in [Zielinski 1981]; (10), (11), (13) and (15)

appeared in [Boender & Rinnooy Kan 1983a]. The other results are published

here for the first time; their proofs can be found in Appendix A. The

corollaries involve the random variable Q, with realization to, which is

defined as the total relative volume of the observed regions of attraction.

The posterior density of this quantity yields useful information if, for

example, one is not interested in local minima with an extremely small region

of attraction. Also, since the complement of SI is equal to the probability

that an additional local search will render a new local minimum, it will play

a crucial role in our subsequent construction of optimal stopping rules for a

sequential sample of local minima.

Corollary 1.1. Posterior density of the number of local minima and of the

total volume of the regions of attraction of the observed minima:

(9) p(k,wilni,...,n
w
1)

n-l-i
i1 n-l+i 

if k=w, w=1,= 

(k-1)!k!(n-1)!(n-2)!
(n+w-1)!(k-w-1)!(k-w)!(n -w -2)!

otherwise (n > w + 2).

con+w-1
(1-w)

k-w-1

Corollary 1.2 jMarginal Epterior probability distribution of the number o

local minima its ex ected value E mode M and variance a2:

(10) p(kilni,...,nwl) =
(k-1)!k!(n-1)!(n-2)!

n+k-1)1(k-w)!w!(w-1)!(n-w-2)!
(n>w+2)
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(11) E(Kiln 
...' 

n 1) - w(n-1)
l' w n-w-2

(12) M(KlIni,...,nwl) - w(n-1)
n-w

(13) 
2

a (Kilni,...,n 1) 
_ w(w+1)(n-1)(n-2)

w
(n-w-2)2(n-w-3)

(n>w+3)

(n>w+1)

(n>w+4).

Corollary 1.3 Posterior expected value of the relative volume of a region of

attraction of a minimum which has been found n. times:

(n .+1) ( n+w)
(14) E(0 iln.,...,nwl) -  3 

n(n-1)n j
(n>w+2)

Corollary 1.4 Posterior expected value and variance of the total volume of the

observed regions of attraction:

(15) E(c?1Ini,...,nwl) -  

(16) a
2 

=

(n-w-1)(n+w)
n(n -1)

2(n+w)(n-w-;1)w(w+1)

(n-1)
2
n
2
(n+1)

(n>w+2)

(n>w+2)

Several remarks about the above results are appropriate at this point. First

of all, we observe that the posterior probability that all local minima

(including the global minimum) have been discovered, is given by

1
((n-l-i)/(n-l+i)) (cf. (9)). Secondly, we note that the corollaries (with

i= 
the exception of (14)) do not involve the values of the ni, but only the

sample size n and the number of different local minima discovered w. Thirdly,

since the prior for K is improper, the posterior results are only defined for

n > w + i (i = 1, 2, 3 or 4); this creates no problem in practical

applications. Finally, we recall that the posterior expected values can be

shown to be optimal Bayesian estimators under a quadratic loss function.

By way of illustration, the posterior probability density of k,01,...,0 has

been computed for the case that k = 3, given the Multistart outcomes

{N1, N2, N3} = {3, 3, 3} (Figure la) and 1N1, N2, N3} = {7, 1, 1} (Figure lb).

Note that since we do not know to which ei an ni corresponds, 
these figures

are symmetrical around the centre of gravity of 12. In Figures lc and id we

depict the posterior probability that all local minima have been discovered,

and the posterior expectation of the total volume of the observed regions of

attraction. Both are given as a function of n and w, where n and w range from

1 to 25.
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3. Stopping rules.

We recall from Section 2 that if in n local searches w different local minima

have been discovered, the Bayesian estimate of the unknown number of local

minima is equal to

(17)
n-1
n-w-2.

For most (n,w) pairs (17) will yield a real valued estimate, although the true

number of local minima is evidently an integer. It is easily verified that the

optimal integer Bayesian estimate under a quadratic loss function is a round-

off of the real valued estimate. Therefore an appealing simple stopping

criterion is to terminate if

(18)
n-1 

< w,n-w-2

i.e. to stop if the optimal integer Bayesian estimate of the unknown number of

minima is equal to the number of distinct local minima observed.

If the stopping criterion (18) is satisfied the estimated number of unobserved

minima is equal to 0. This may cause the algorithm to run for an extremely

long time if the objective function has many minima with very small regions of

attraction. If one is not willing to continue the search for all minima in

these situations, an appropriate stopping criterion may be to terminate the

algorithm if the total relative volume of the observed regions of attraction

exceeds a prescribed value t (0 < t < 1), i.e.: stop if

(19)
(n-w-1)(n+w) 

n(n -1) 2t.

It is preferable, however, to seek sequential stopping rules which also take

into account the cost of sampling. To do so, we have to impute a termination 

loss which attaches costs to the deviation of an estimated unknown quantity

from its true value, as well as an execution loss corresponding to the cost of

further experiments. We can then try to construct the rule that minimizes

expected posterior loss [De Groot 1970].

We will consider 4 loss structures: for each, the execution loss is assumed to
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be proportional to the number of additional sample points.

1. The termination loss is equal to a fixed constant if sampling is stopped

before all minima have been discovered and 0 otherwise [Boender & Zielinski
1982- Boender & Rinnooy Kan 1983a]:

(20)
if K > W

if K = W

Given ,...,n} the posterior loss is equal to f. (9))

(21) E(L
w

1(1 - il  )+ n.-1+i

2. The termination loss is proportional to the number of unobserved minima:

(22) L
2 
= c

2 
(K - W) + n,

The posterior loss is equal to cf. (11))

w(w+1) (23) E(L Ilni,...,n
w
1) = c

2 n-14_2 
+ n.

3. The termination loss is proportional to the fraction of unobserved minima:

(24) (K - W) n.

From (8) and (10), the posterior loss can be seen to be equal to

(25) E(L311111,...,nwl) = c
3 n-1 

+ n.

4. The termination loss is roportional to the total relative volume of the

unobserved regions of attraction:

(26) = c4(1 - + n.

From (15), the posterior loss is equal to

(27) E(L Ilni,...,nwl) = c4 /1=)1) + n.
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Since the posterior losses, given a sample outcome {ni,...,nw}, turn out to

depend only on the number of local searches n, and the number of observed

local minima w, we will in this section use the notation (n,w) to describe the

outcome {ni,...,nw} from now on.

We note that for the first loss structure (20) the termination loss can only

decrease if ultimately all local minima are found, whereas for the second loss

function (22) the termination loss is reduced by a fixed constant each time an

additional local minimum is observed. The third loss function (24) attempts to

involve the global minimum in the analysis directly: if the true number of

local minima is equal to k and w different minima have been observed, then,

loosely speaking and in absence of further information about f, the chance

that the global minimum is not among the observed ones equals (k - w)/k. The

fourth loss structure (26), which is based on the total relative volume of the

unobserved regions of attraction, reflects the case in which one is less

interested in finding local minima with extremely small regions of attraction.

Given a sample of size n, the posterior loss after n' > n observations is a

random variable E(L 1(n',W)). Our purpose, then, is to find for each loss

function the stopping rule that minimizes the expected value of the sequence

of posterior losses IE(L 1(ni,W)1
°3'n+1 

. Given a current pair (n,w) only two
n= 

relevant outcomes can occur as the result of an additional local search:

either a yet unobserved local minimum is found ((n,w) (n+1,w+1)), or not

((n,w) (n+1,w)). The posterior probability that the next search will not

result in the discovery of an unobserved minimum is equal to the. posterior

expected volume of the observed regions of attraction (cf. (15)). Hence the

sequence of posterior losses satisfies the recurrence relation:

(28) E(E(L..1(n+1,W))1(n,w)) =

= E(Cd(n,w))E(Li 1(n+1,w))• + (1 - E(01(n,w))E(Li (n+1,w+1))

_ (n-w-1)(n+w) 
E(L.1(n+1,w)) + wri((:,421)) E(Lpn+1,w+1)).

n(n -1)

Thus, given the current pair (n,w), we can compute the conditional expected
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value of the posterior loss of n+1 observations according to (28). Therefore,

an appealing one-step stopping rule is to terminate if this conditional

expected posterior loss of n+1 observations E(E(L,l(n+1,W))1(n,w)) is greater

than the current posterior loss E(L 1(n w)). Observe that this decision is

based on the assumption that the search is immediately stopped once the next

observation would have been performed. In contrast, optimal stopping rules are •

obtained by comparing the current posterior loss with the expected posterior

loss of another observation under the assumption that the best strategy is 

adopted thereafter [De Groot 1970]. For such an approach to be feasible we

have to find a value n such that for all pairs (n,w) with n > n the sequencej
of posterior losses is a submartingale, i.e. the expected posterior loss for

all (n,w) pairs with n > n, never decreases if another observation isj
performed. We then know for all pairs (n,w) with n = n that the optimal

decision is to stop, and we can compute the corresponding posterior losses

according to the formulae (21), (23), (25) or (27) for E(L.I(n,w)). Given this
3

result, we can start working backwards form n = n.. Since we know that for allj

(n,w) pairs with n = n, the optimal decision is to stop, we have that for the
4

(n,w) pairs with n = n 1 the above one-step rule is the optimal one. Thus

comparing the expected posterior loss of n+1 observations (28), and the

current posterior loss (21), (23), (25) or (27), we can determine for each

pair (n,w) with n = n, - 1 if the optimal decision is to continue or not. Then
4

we proceed to stage n 2. Again we use (28) to compute the expected

posterior loss of continuation. Now, however, if the optimal decision in
(n+1,0 or (n+1,w+1) is to continue once more, we substitute the previously

computed corresponding expected posterior loss of continuation in (28). By

working backwards in this way to the first stage we can compute for each (n,w)

pair if the optimal decision is to continue, or not. Note, given cj, that a

single table will summarize the optimal stopping •policy for all possible

objective functions.

Theorem 2 contains the relevant results for the four loss structures under

consideration. The proofs are contained in Appendix B.

Theorem

Submartingale results (n > w + 2)
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(29)

(30)

E(E(1,11(n+1,W))1 )) > E(1,1 1(n,w)) for n > nl 
= c

i
+ 1 - /(4c1+1)

E(E(L21(n+1,W))1(n,w)) = E(L2I(n,w)) - c2(1-E(c21(n,w))) + 1

C3

(31) E(E(L31(n+1,W))1(n,w)) > E(L3I(n,w)) for n > n3 
=

4

C4

(32) E(E(L41(n+1,W))1( 12w)) > E(L4I(n,w)) for n > n4 
= 

3.

Theorem 2 indicates that for the first, third and fourth loss function a

value n exists such that the sequence of local searches should be stopped if

n > n . Thus, for these loss functions we can compute optimal stopping rules

by backwards recursion. In Figure 2 the results are depicted for cj = 1000. If

the current (n,w) pair is within the appropriate convex region the optimal

decision is to continue: as soon as the boundary of the region is reached no

more local searches should be performed.

The theorem shows further that for the second loss function no such value n2

exists, so that for this loss function it is impossible to determine an

optimal sequential stopping rule. However, the theorem does imply that the

expected posterior loss after one additional local search is lower than the

current posterior loss if the posterior probability that the next local search

will render a yet unidentified local minimum is greater than 1/c2 (cf. (15)).

Hence a proper one-step stopping rule is to continue the search as long as

this probability is greater that 1/c2, and to stop otherwise. We depicted this

rule in Figure 2 for the case c2 = 1000: as soon as the dotted line is crossed

the search should be terminated.
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4. Test results.

In this section, rules 1 to 4 are applied to the standard set of test

functions for global optimization [Dixon & Szega 19781. The number of local

minima of these test functions are listed in Table 1. In our experiments we

used the original Multistart algorithm, although the analysis carries over to

more superior clustering variants (cf. Section 5). In Figure 3 we have

depicted for each test function the number of local minima which were

discovered during the search. Also we indicated at which sample size the rules

1, 2, 3 and 4 prescribed termination. Finally, at each point during the search

Figure 3 shows the current optimal estimate of the number of local minima, as

well as the optimal estimate of the total relative size of the observed

regions of attraction (for reasons of comparability the latter estimate is

multiplied by the true number of local minima).

Table 1.

Test functions [Dixon & Szega 1978].

Name

A Goldstein & Price 4

B Branin 3

C Hartman 3 3

D Hartman 6 2

E Shekel 5 5

F Shekel 7 7

G Shekel 10 10
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Stopping rule 1. The execution loss is •proportional to the number of sample

points n, and the termination loss is equal to 0 iff all minima are

discovered, and equal* to 0 otherwise:

1000 if W
• L

1
• = n +

0 if K = W.

Stopping rule 2. The termination loss is proportional to the number of

•unobserved minima:

L
2 
= 100 *(K-W) p7

Stopping rule 3. The termination loss is proportional to the fraction

of unobserved minima:

-L
3 
= 1000* (

KW. 
-- n.

Stopping rule 4. The termination loss is proportional to the total

relative volume of the unobserved regions of attraction:

L
4 
= 1000 * (1- + n.
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Figure 3 shows that for each test function the sample size approximately has

to be doubled to find a new local minimum. The table also shows that the

Bayesian estimates behave as one would hope: the expected value of K converges

to the true number of local minima around the time at which all local minima

are found, and the expected value of Q becomes very close to 1 at that point.

The convergence appears less rapid for the simpler test problems Branin and

Hartman 3 & 6. In interpreting this phenomenon it should be kept in mind that

for the simpler test problems the initial prior for K on [1, 00) may be less

appropriate. However (as is always the case in applied Bayesian analysis) the

effect of that initial prior drops off, so that for problems where the total

number of experiments is not quite miniscule (as would typically be the case

in larger practical problems), the behaviour of the Bayesian estimates is as

satisfactory as could be achieved from any reasonable prior.

Figure 3 shows interesting differences between the four stopping rules. As

expected, rule 1, concentrating on finding all minima, requires the most local

searches. Rule 4, which is based on the volume of the observed regions of

attraction stops first, and rule 3, whose underlying loss structure depends on

the fraction of unobserved minima, is intermediate between these two for all

test functions. The one-step rule 2, which is based on a fixed loss reduction

if a new minimum is obtained and which prescribes to stop if the probability

of this event is too small, turns out to be surprisingly similar to rule 3.

However, Figure 2 indicates that for objective functions with many local

minima fundamentally different decisions will be taken, since thed rules 1, 3

and 4 ultimately will tell the user to stop, whereas the one-step rule, which

does not take sampling cost considerations into account, may continue the

search forever. On the whole, the stopping rules are successful in coping with

the difficulties for which some of the larger dimensional test problems are

renowned. An exception occurs on the Shekel-10 function, where rule 1 is the

only rule which allows the search to continue long enough to find the local

minimum. The price that we pay for this reliability is that the procedure then

continues twice as long as necessary.

The choice of an appropriate rule in practice may require some careful thought

about the true objectives of the problem solver and about the costs involved.

We regard that as an advantage rather than a disadvantage of this approach.

Any stopping rule chosen reflects implicit estimates of the costs and benefits

involved; it is much better to make these as explicit as possible.
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5. Concluding remarks.

We conclude our 'paper with some remarks on the assumptions underlying our

stopping rules and on their domain of applicability.

First of all, the rules that we have developed are based on the uniform prior

distribution for the number of local minima k, and the volumes of the regions

of attraction 01".•,Ok. There is a vast statistical literature to support

this choice. of the uniform prior for cases where the user knows little or

nothing.: However, if the user has specific prior information about the values

of k,01,...,Ok the uniform prior is inappropriate. We can then resort to

posterior results derived for other priors [Berbee et al. 1985; Boender &

Rinnooy Kan 1983b; Boender 1984]. They require a somewhat larger computational

effort and seem less useful in the context of global optimization.

Our second remark concerns the probability distribution of the points from

which the local search routine is started. The Multistart method invariably

chooses its next starting point from the uniform distribution over S. However,

the previous sections reveal that our stopping rules do not crucially depend

on this assumption: any other distribution can be accommodated as •well. Of

course, the probability Oi of a region of attraction is then equal to its new

measure.

Thirdly, in spite of the reliability of Multistart, the method is lacking in

efficiency. The inefficiency of Multistart stems from the fact that each local

minimum, particularly the ones with a large region of attraction, will

generally be found several times. For reasons of efficiency the local search

procedure should be performed no more than once in each region of attraction.

Computationally successful •adaptations of Multistart in that direction are

provided by clustering methods [Becker & Lago 1970; Torn 1978; Boender et al.

1982; Timmer 1984]. These methods also generate points in S according to the

uniform distribution. Now, however, only a prespecified fraction q containing

the points with the lowest function values are retained in the sample. Let fq

be the largest function value in the reduced sample, and define Rq c S as the

set of all points in S whose function value does not exceed fq. Rq will

consist of a number of disjoint components that together contain all the

points from the reduced sample: the reduced sample points that are contained
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in one component of Rq form a cluster. Ideally, the clusters should be in 1-1

correspondence with the regions of attraction whose intersection with R is

nonempty. Then one local search from the best point in each cluster will

suffice to find the set of local minima with function value smaller than f ,

which obviously includes the global minimum.

In the global optimization algorithms Single Linkage en Mode Analysis [Timmer

1984] clusters are efficiently identified by exploiting the fact that the

points in the reduced sample are uniformly distributed over Rq. For these

methods the above ideal situation is virtually achieved: it can be proved that

the probability that a local search is started in the region of attraction of

a local minimum already observed decreases to 0 with increasing sample size n.

Furthermore, for sufficiently large n the probability that no local search is

started in a component of R containing at least one point from the reduced

sample tends to 0 as well.

Fortunately our stopping rules immediately carry over to these computationally

superior clustering variants of Multistart. Our second remark implies that

they can be properly applied provided that the number of trials is taken equal

to the number of points qn in the reduced sample, the number of local minima

is taken equal to the number of local minima whose function value is not

greater than fq and the probabilities Oi are taken to be equal to the relative

volume of the intersections of the regions of attraction with Rq. In applying

these rules, we only have to assume that each local minimum T,7ith function

value smaller than f whose region of attraction does contain at least one

point from the reduced sample is actually found, i.e. that the methods

identify the same local minima that would be found by performing a local

search from each of the qn points in the reduced sample. As we already pointed

out, the Multistart variants guarantee for n sufficiently large that a local

search is started from each component of R containing at least one point from

the reduced sample. A component, however, may contain several local minima, so

that the methods may fail to locate a local minimum although its region of

attraction contains points from the reduced sample. This deficiency obviously

does affect the performance of our stopping rules. It is dealt with, by methods

called Multi Level Single Linkage and Multi Level Mode Analysis [Timmer 1984]

that make explicit use of the function values of the sample points to

distinguish between regions of attraction that are contained in one component.
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For these methods it can be proved that both the probability that a local

search procedure is started unnecessarily and the probability that a local

search is not started although a yet undiscovered minimum would be found

approach 0 with increasing sample size. Hence, our stopping rules can be

applied without any problems to these methods as well. The computational

superiority of these Multi Level methods is documented in [Timmer 1984;

Rinnooy Kan & Timmer 1985].

Finally., it is obvious from our experiments that there is no single rule that

could ever be called the best one. The advantage of our approach is that it

allows the User to translate his own preferences with respect to the trade-off

between reliability and computational effort in a precise fashion, and given

this translation, to arrive at an optimal and yet computationally simple

procedure to terminate the search for local minima.
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APPENDIX A

Proof of the Corollaries of Theorem 1.

The proof of (9) is based on the property of the Dirichlet distribution that

if 01,...,Ok follow a Dirichlei distribution with parameters al,...,ak •and
1

r1,...,rt are integers, then Ei.10i,..., Ei.r Oi are also Dirichlet
r
1

distributed with parameters E a. ... E
k 

a. (cf. e.g. [Wilks 1962]).
i=1 1 

Thus, if 01,...,Ok are Dirichlet distributed i'Aiith density function

(33)
(n+k-1)! Hw 

ni

n 

k 
00

. H.
1=1 g 1=w+1

1 
g.'

H.=1 
.!

where (gi,...,gk) is an arbitrary permutation of the set {1,...,kl, then the

density of w = Ew 0 is equal to

(34)
(n+w-1)!(k-w-1)! 

w
n+w-1

(1-w)
k-w-1

(n+k-1)!

Application of this result to the posterior density

p(k,00...,0k I Ini,...,nwl) (4) yields

n-1)!(n-2)!(k-1)! 
(35) p(k,w)Ilni,...,n

w
1)

w!(w-1)!(n-w-2)!

1 
(n+k-1)!

_ (n-1)!(n-2)!(k-1)!

] (n+w-1)!(k-w-1)!
(n+k-1)! n+w-1

(1-0
k-w-1

to 

1  k! (n+k-1)! n+w-1 k-w-1
w!(w-1)!(n -w-2)! (n+k-1)! (k-w)! (n+w-1)!(k-w-1)! 

w (1 -to)

which is equal to (9) in Corollary 1.1.

The marginal posterior density of k (10) then follows from 9 by integrating

out to, using the formula of the Dirichlet density. Next

(36)

00

E(KlIn
'
n
w
1) = E mp(miln ,...,n 1)

m=w 1

(n-1)!(n-2)!
w!(w-1)!(n-w-2)!

Furthermore we have for n > w + 3

00 m!m!
E
m=w (n+w-1)!(m-w)!.



(37) m=w(n+m-1)!(m-w)!
m!m!

= E0
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(m+w)! (m+w)!(n-2)!

(rit-f-w)!  r
m=0 m!(n-2)! JO

w!  'l tw
n-2)!

w!  r1 tw
(n-2)! J

w!w!(n-w-3)!

(m+w+n-1)!

1 -t)
n-2

dt

(m+w)! m
t dt

m=0 m!w!

- -
I -t 

nw 
3dt

which proves 11). To prove (12) we consider

p(k+111n1,...,nwl)
(k+l)k 

p(kifni,...,nwl)

It can be shown that the unique root of h(k) = 1 is k* = n(w-1)/(n-w), h(k) >

1 for k < k , and h(k) < 1 for k> k
*
, so that the marginal posterior of k

attains its maximum at k
* 
+ I, from which (12) follows.

Next

(38) h(k) =

(39) a
2 

Ilni,...,nwl)

We note that

= E •••, ))2 gmlInv.••m=w 
-E(K1 In

1
, n

w

°3 2 r
= I m p(mlin

I" 
n
w
1) - (E(KlIn

'm=w 

(40) 1 m p(mll
m=w

(n-1)!(n-2)!

w!(w-1)!(n-w-2)!

(n-1)!(n-2)!
wl(w-1)!(n-w-2)!

oo (m+1)!m! - m!m!
m=w (n+w-1)!(m-w)!

00 (m+1)!m!
m=w (n+w-1)!(m-w)!

))
2
 •

Em 2  (m-1)!m! 
m=w (n+w-1)!(m-w)!

E0(1 In1'w
1)
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Furthermore it follows from 8 that

(m+1)!m! m!(m-1)! (41) E
m=w (n+m-1)!(m-w)! Em=w+1 ((n-1)+m-1)!(m-(w+1))!*

_ (w+1)!w!(n-w-4)!
(n-2)!(n-3)!

Hence, substituting (41) in (40), (11) in (40), and (40) and (11) in (39) we

find (13), which concludes the proof of Corollary 1.2.

To prove (14) we observe that it follows from the general posterior density of

K,01,...,OK (4) that

(42) E(o Ifn w1) =
w!(w-1)!(n-w-2)! 

11w
i=1 

n
i
!

(n-1)!(n-2)!

n
i mx E -1 ! . e H dem=w 0 HfIm g. 1=1 gi i=1 i(gi,...,gw)ESm[w] j

= E
m=w

w!(w-1)!(n-w-2)! H
1

. n.1=

(n-1)!(n-2)!(m-1)!

(n-1)!(n-2)!(n.+1)
  Eww!(w-1)!(n-w-2)! m=w (m-w)!(n+m)!

(m-1)!m!

(n.+1)(n-w-1)

n(n -1)

1(n.+ w

(n+m)!

With respect to Corollary 1.4 we use the fact that the expected value of a sum

of random variables is equal to the sum of the expected values. Application of

this result to the expected values (14) immediately yields (15).

Finally

(43) Oln1,...
r= E02/ l{ni,...,n - } (E(Oln

1"

w
= E(E

w
i=1

j



= 
1

E E
e2
n.11111"."j= 

(E(nlIn , • • ,

Analogously to (42) we have that

(n-1)!(n-2)! n.+1)(n.+2)
J J  Ec° 

(m-1)!m!
m=w(m-w)!(n+m-1)!(44) 

2
On.1{

and

(45)

, • • •
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1) + iw iw E
i=1 j=1

jAi
°. . I Ini • •

j

w!(w-1)!(n-w-2)!

(n.+1)(n.+2)(n-w-1)(n-w)
J J

-1)n2(n+1)

en.en.11n1,—. wl)
1

(n-1)!(n-2)!(n+1)(n.+1) (1) !m! 

w!(w-1)!(n-w-2)! m=w m-w)!(n+m+1)!

1(n.+ )(n.+1)(n-w-1)(n-w)

(n-On2(n+1)

Substitution of (15), (44) and (45) in (43) yields the desired result (16).
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APPENDIX B.

Proof of Theorem 2.

The proof of (29) is given in [Boender & Zielinski 1982; Boender & Rinnooy Kan

1893a].

The proof of (30) is obtained by substituting (23) in (28).

For the proof of (31) we substitute (25) in (28). Then

(46) E(E(L31(n+1,W))1(n,w)) > E(L31(n,w)) - c3 141.(11(77-1 ) + 1

((n-1)/2)
2 
- (n-1)2/2 

> E(L I , )) + c3 + 1

n
2
(n-1)

C3
> E(L3I(n,w)) --4- 

-- 1
4n '

from which (31) follows.

Substitution of (27) in (28) yields

(47) E(E(L41(n+1,W))1( ,w)) > E(L41( )) - 2c w(w+1)(n-w-1) +1

n
2(n-1)(n+3)

E(L4I(n,w)) + 2c4 (11'4)2(w+1-n)  +1
n (n-1)(n+1)

(2n/3)2(2n/3 - n) 
> E(L4I(n,w) - 2c4 + 1

n
2
(n-1)(n+1)

E(L
4
1(n,w)) -  

4.

3(n-1) "

which proves (32).
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