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l. Introduction

This paper is concerned with the problem of testing two linear

statistical models, i.e.,

(1.1) Hy: y = XB+u vs. Hj:ty= 2y + u,

where y is a nrdimensional vector of observations, X is a nxk matrix of
constants- of rank k, Z is a nx% matrix of constants of rank %, B € Rk
and v € rRY are unknown parameter vectors and u is an unobservable
n-dimensional random vector which is assumed to be generated by the

following multivariate normal distribution
(1.2) u ~ n(0, o21),

where ¢ > 0 is an unknown parameter.

Under the assumption (1.2) it is seen from (1l.1) that
: 2
(1.3) y ~ n(u, o°I),

where p = E(y) = X8 or Zy.
This shows that (l.1) can be formulated as the following problem of
testing linear hypotheses: Given that the observable random vector y is

generated by a n(y, 021) distribution we want to test
(1.4) _HO’ p=XB vs. Hy: u = Zy # X8,

In general, the problem of finding good tests has been attacked in a

variety of ways.

Two major approaches can be described as follows:

(I) Restricted classes of tests.

Since (except in rare cases) there does not exist a test which is
uniformly best, narrow classes of procedures has been proposed using
criteria such as

a) level . of éignificance

b) invariance or symmetry

c) unbiasedness.




Researches have then sought procedures which improve (in terms of the

power of the test) all others within the restricted class.

(II) Minimax and Bayes procedures.

After specifying a loss function fdr the problem, the tests are compared
on the basis of théir fisk functions. Since there does not exist a test
with uniformly minimum risk, we compare the procedures by global
criteria such as

d) the maximum of the risk function

e) the weighted average of the risk function.

Then we choose the test which minimizes the maximum risk (Minimax) or

the ‘average risk (Bayes), respectively.

For our problem of testing linear hypotheses approach (I) is only
succesfull in the case of nested linear models. That is, when the linear
hypotheses are nested, there exists a uniformly most powerful (UMP) test
in the restricted class of invariant tests with level a (conditions a)
en b)). This test coincides with the classical F test for the nested
problem. Moreover, if ll—k! = 1 this test turns out to be UMP unbiased

" (condition ¢)) and equivalent to the well-known t test for this special
nested case. v
On the other hand, when the linear hypotheses are nonnested the épproach
(I) does not yield a UMP test. In particular, it is shown by Bouman [2]
that in the nonnested case invariance considerations do not reduce the
problem sufficiently far for the existence of a UMP invariant level o
test.

Since we are mainly concerned with the nonnested case and since approach
(I) is not succesfull for this problem, it is reasonable to apply
approach (II) to the problem of testing linear hypotheses.

This approach requires the specification of a‘loss function. Usually, a
simple loss function is chosen by specifying 24 > 0 as the loss _
associated with the wrong decision of rejecting H; when this hypothesis
is true (1 = 0, 1) and by assuming that the loss of a correct decision
is zero.

With this loss structure it can be shown that every unbiased test with

size a = 21/(20 + 21) is a minimax test for our problem.




In particular, this implies that the (trivial) test which rejects HO
with probability o = zl/(zo + 2;), regardless of the observations, is a
minimax test. It should be noted that the latter test is a purely
randomized test which can be performed through an auxiliary random
experiment. In other words, the minimax approach does not lead to a
satisfacﬁdfi solution for our problem.

Let us next consider the Bayesian approach. As is shown by Zellner [12]
and Gaver and Geisel [5] (see also Judge et.al. [7]), with the above

loss structure and suitable prior distributions (weight functions) for

the parameters it is possible to derive the Bayes test, i.e., the test

which minimizes the expected (average) risk, for the problem of testing
linear hypotheses (nested as well as nonnested). It should be emphasized
that this aﬁproach requires a completely specified loss function and
completely specified prior distributions. That is, in order to apply
this principle it is necessary to assume not only that the loss function
is known and that the parameters are random variables but also that the
loss function has a very simple form and that the prior distributions
are completely known.

Since these assumptions are usually not warranted in applications of the
type we consider, in this study we choose a different approach in order
to find a test for our problem. This approach, which can be thought of
as a combination of the approaches (I) and (II), does not require a loss
function nor completely specified priors (or weight functions). To be
more specific, instead of expected (average) risk we concentrate on the
expected (average) power function of a test and moreover we assume that
the_parameters possess certain incompletely specified prior
distributions (i.e., distributions containing unknown parameters).
Within this framework we try to find the test which maximizes the
expected power under Hl’ in the class of tests whose expected power
under H; does not exceed o (a preassigned level).

However, since we work with incompletely specified prior distributions,
the expected power function will depend on the unknown prior parameters
and there does not exist a test which maximizes the expected power
uniformly, i.e., for all values of the prior parameters. Since the
problem -of tesfing linear hypotheses remains invariant under a certain
group of‘transformations, a possible way out is to restrict further
attention to the invariant tests and then to try to solve the above

problem within this restricted class.




The outline of this study is as follows.

In Section 2 we derive the Bayes test for our problem under the
assumption of a completely specified loss function and completely known
prior distributions. We also show that the Bayesian approach can be
considered as a possible way of reducing the original problem to a more
simple form.

In Section 3 we introduce certain imcompletely specified prior
distributions and derive the corresponding reduced problem.

Section 4 is concerned with the problem of finding the UMP invariént

test for the reduced hypotheses.
The probability distribution of the test statistic is derived in Section

5.

Although we are primarily interested in the problem of testing nonnested
linear hypotheses, our approach is applicable to the nested as well as
the nonnested case, and in Section 6 we reconsider the nested case.

In Section 7 we show that the test possesses the above stated optimum
property. A summary of the results and a description of the required
computations are given in Section 8. Finally, in the appendiceé some

special results are proved.




- 2. The Bayesian approach to testing linear hypotheses

As we saw in the foregoing section the problem of testing linear

hypotheses can be formulated as the problem of testing
(2.1) fﬂb;”u = XB vs. Hy: u= 2y # XB

on the basis of the observable random vector y with probability
distribution

(2.2) y ~ n(u, o21),

where B é Rk, Y € rRY and o > 0 are unknown parameters and X and Z are
given nonstochastic (regressor) matrices.

The matrix X is of the order nxk with'rank k and Z is of the order nxg
with rankil, where k <{n and ¢ < n.

Before cbnsidering the Bayesian approach we shall rewrite the above
problem in a slightly different form.

In general, let M (A) denote the 11near~(vectof-)subspace (of R®) spanned
by the colUmpvectors of the nxm matrix A. Using this notation, the above
problem can be reformulated as follows:

On the basis of the observable random vector y with a probability
distribution as given in (2.2) we want to test

(2.3) Hot u e M(X) vs. Hy:u e M(Z\M(X).

Note that o > 0 is an unknown nuisance parameter.

In the Bayesian approach to this problem the parameters presented by u

and o are considered as unobservable random variables with a known

probability distribution, which reflects our prior knowledge (ideas).

The distribution (2.2) is now considered as the conditional distribution

of y given y and ¢. That is, if £(ylu, o) denotes the conditional

probability density function (p.d.f.) of y given yu and‘o, we have:

-1
2

o Texp{- —li (y=w)"(y-u)}.

(2.4) £(ylu, o) = (2m)
: 20




Often it is convenient to represent the prior information in such a way
that the required computations can be easily performed and that the
functional form of the posterior distribution (the probability
distribution of the parameters given the sample y) is the same as that
for the prior distribution. Such a prior is called naturél conjugate‘and
it treats prior information as if it were a previous sample of the same
process.

In our case the natural conjugate family is formed by the so-called
normal-inverted gamma—-2 distributions. The joint prior distribution of p
and o is defined by specifying the marginal distribution of ¢ and thé
conditional distribution of p given o.

For the marginal distribution of o we choose the inverted gamma-2
distribution (see Raiffa and Schlaifer [11], p. 228), which is defined
through the following p.d.f.:

v

2 (vwz)v/Zofv—le 202 s> 0
bl

r(%) 2

0 elsewhere,

where the parameters v > 0 and w > 0 are supposed to be given.

The first two moments of the distribution are:

r(=L
E(o) = w /;;__E_E_l , v 1

r(3)

Var(o) = w” =% = [E(0)1%, v > 2.

When v+, the limiting distribution is degenerate with all probability
mass concentrated in the point o = w. . ‘

Next we consider the specification of the conditional distribution of u
given o. Here we have to distinguish between‘HO and Hl’ Under_HO:we know
that y € M(X) and if we treat uy as an outcome of a random vector, it is
necessary to requite that the total mass of the distribution of given

o belongs to M(X) and not to any linear subset of dimension less than k.




A necessary and sufficient condition for this being the case is that
E(u]o) =
Cov(ulo) = XQX',

where n ¢ Rk and Q is a symmetric positive—definite matrix of the order
kxk and where it is assumed that the moments exist.

The vector n and the matrix Q may depend on ¢. In view of this a natural
candidate for the conditional prior distribution of pu-given o (under HO)
is the following singular normal distribution

- (2.7) Hy: ulo ~ n(Xn, UZXQX'),

where n ¢ Rk is a given vector and Q is a given symmetric, positive-
definite kxk matrix.

Under H;, similar considerations lead to the prior
(2.8) .Hi: u[o ~ n(Zg, oZZAZ'),

where £ ¢ RY is a given vector and A is a given symmetric, positive-
definite 2x% matrix.

It should be emphasized that the singular normal distribution has no
density function (with respect to Lebesque measure in R™). This
distribution is defined in terms of its characteristic function. That
is, if P is the probability measure of a n(8, T) distribution, P is
uniquely determined by specifying

J e ®ap(x) = explit'e - je'Te},

R%
where t ¢ R® and where i denotes the imaginary unit. Although this
definition also works in the case of a nonsingular normal distribution,
the latter distribution is usually defined directly in terms of the
well-known density function.
The product of the distributions in (2.7) and (2.8) with the
distribution as specified by (2.5) yields the joint prior distributions
of (u, o) under Hj and H;, respectively.




Note that these prior distributions are completely specified, i.e., they
do not contain unknown parameters.

If we think of the unknown parameters as (unknown) outcomes of random
variables possessing a (known) prior distribution,’the sample y can be
considered as the result of a two-stage process. Under Hy for instance,
first (u, o) is selected according to the joint prior distribution given
by the product of the distributions specified in (2.5) and (2.7). Then,
given the outcome (u, o), the sample y is selected according to the
distribution specified by the p.d.f. f(y|u, o) as given in (2.4).
Combining these two stages, we can think of y as an outcome form the
marginal distribution of 'y under Hye. (This distribution is often galled
the predictive distribution under Hye)

The marginal distribution of y under HO can be computed from the joint
distribution of y and (u, o) under Hj, where the latter distribution can °
be found by taking the product of the prior distribution of (p, o) under
HO and the conditional distribution of y given (u, o).

Since the joint distribution of y and (p, o) does not have a density
function, the p.d.f. of the marginal distribution of y under Hy cannot
be derived in the usual way through integration on p and o.

However, by making use of the fact that every probability distribution
has a unique characteristic function, we shall derive the conditional
p.d.f. of y given o (under HO). The latter p.d.f. together with (2.5)
then yields the p.d.f. of the marginal distribution of y under HO'

Let i be the imaginary unit and t be a vector in R", then the
characteristic function of the distribution of y given o is defined by
E(eit'y[o).

According to the double-expectation theorem we have:

(2.9)  Eeit'Y]o) = B(E(eIEY |4, o)),

where the inner expectation is taken with respect to the conditional
distribution of y given (p, o) and the outer expectation with respect to
the conditional distribution of y given o under H,. e

From (2.4) it follows that

(2.10) E(eit'y[u, o) = exp{it'y - %ozt't}.




Substitution of (2.10) into (2.9) yields

(2.11)  E(elt'Y|o) = E(exp{it'y - }o%t't})

1201 fen
= o720t tE(elt ulo).

As we sa& in (2.7), under Hy, the conditional distribution of p given o

is ‘n(Xn, o2XaX'), which implies that
(2.12) ‘E(eit'“|o) = exp{it'Xn - }olt'XQX't}.
Substitution of (2.12) into (2.11) gives
(2.13)  E(elt'Y|0) = exp{-toZt't} exp{it'Xn - }olt'xex't}
= exp{it'y, - %ozt'V t}
0 0"
where
(2.14) .EO
and
(2.15) Vo = I+ XX'.
It is not difficult to verify that Vo is symmetric and positive

definite.

The result (2.13) shows that the distribution of y given o (under HO) is
a nonsingular n(uo, o V ) distribution. Hence, the p.d.f. ko(y) of the
marginal (predictive) distribution of y under H; can be found from

(2.16) k() = [ 2m) det (V)] t expi- ——-(y = 53y - H} h(o)do,
0o

where h(o) is defined in (2.5).
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Substitution of ¢ = z %2 and integration on z yields

F( ) v w

n

2 () /det(vy)

- nt+v

W+ 2,

2.17) ko) =

where
= el -y, 2
(2.18)  Qp(y) = (v = u 'V (y = up)/w™.

The density in (2.17) is the p.d.f. of a multivariate t distribution,
see Raiffa and Schlaifer [11], pp. 256-259. In general, when the

n—-dimensional random vector x has the p.d.f.

X

s

(2.19)  £(x) = — (r + (x=6)'V L (x-0))

2 rcg) Vdet(V)

we say that x has a multivariate (n—dimensional) t distribution With r
degrees of freedom and parameters 6 and V, where r > 0, 0 € R® and V is
a symmetric, positive~definite nxn matrix. We use the notation

X ~ tr(e, V). The first two moments of x are

E(x) =06, r>1
(2.20)

=L
Cov(x) —5 V> T > 2.
If r+o, the limiting distribution of x is n(0, V).
It follows from (2.17) and (2.18) that the marginal distribution- of y
under Hy is a multivariate t distribution with v degrees of freedom and

parameters Ho.and wZVO, i.e.,

(2.2)  Hy:y ~ e (Gigs w7V,

In a similar way, under H; we can think of the sample y as an outcome

from the marginal (predictive) distribution under H; with the folloWing
p.d.f‘ ‘




Y
2

7)) e "2
(2.22)  k(y) = (v +Q,(y)) s

-n n+v

m r(%) /dec(V))

where
(2.23) Q¥ = (v - 5 )"V iy - 5 )/u
. 1Yy 1’1 1
‘Here we have
and
(2.25) vy = I+ zAZ'.
Again the marginal distribution of y is multivariate t, that is
- 2

Since EO’ Y El’ Vl’ v and w are given, it is seen from (2.17) and
(2.22) that the marginal distributions of y under Hy and H; are
completely specified.
In other words, by considering p and o as random variables with known
prior distributions under Hy and H;, the problem is reduced to that of
testing the following simple hypotheses:
(2.27)  Hy: v~ t (iy, wV,) against H!': y ~ t_(i,, w?V,).

v'0 0 1 vl 1
When the p.d.f. k;(y) is interpreted as the conditional p.d.f. of y
given H; and if Pj is a prior probability assigned to H;, i = 0, 1
(po + P = 1), we can derive the Bayes test for our problem.
Let £; > 0 be the loss associated with the wrong decision of rejecting
H; when this hypotheses 1s true (i = 0, 1) and let the loss of a correct
decision be zero, then the expected risk or Bayes risk r(¢) of a test

(critical function) ¢ is equal to:




(2.28)  r(9) = 2gpgEQ(E(¢(¥) 1, 0)) + £1p1E1(E(L = ¢(y) [u, o)),
where E; is the expectation taken with respect to the prior distribution

of (u, o) under Hy, i = 0, 1.

From the double—expectation theorem it follows that

(2.29) r(¢) = 2,poECo(y)5 HY) + 2,p E(L = ¢(y); H))

where y' = (yl Yo oo yn) and where ko(y) and kl(y) are as defined in
(2.17) and (2.22), respectively.
Hence, the Bayes test, i.e., the test ¢ which minimizes r(¢) has the

form
(2-30) o(y) =1 if Qopoko(Y) = zlplkl(Y) <0
0 otherwise.

That is, the Bayes test rejects H0(¢(y) = 1) if

k (s)  pyty
(2.31) m)—-z—
oY) P1%y
and accepts Hy(¢(y) = 0) otherwise.
It easily follows from (2.17) and (2.22) that the Bayes test rejects Hy
when

1 2
v Ql(y) det(VO) v plll n+v

TN < det(Vl)] 2

(2.32)

Further it is not difficult to verify that the test (2.32) is also the
Bayes test for the reduced problem (2.27), provided that the same prior
probabilities and losses are assigned to the latter problem. |
Moreover, it follows from the lemma of Neyman and Pearson that this test
is most powerful (of its own size) for testing (2.27). _ |

If one finds it difficult to specify p; and 2;, i =0, 1, it is élso

possible to compute the most powerful test of size o (where a is a




preassigned significance level) for problem (2.27). Again it easily

follows from the Neyman-Pearson lemma that this test has critical region

v + Qi(y)
v + Qo(y)

(2.33) <c,

where the critical value of ¢ has to be computed from

v+ Q(y)

P D > ! = °
v Qo(y) < cj HO) o

Although the distribution of y under H!

0 is known, the critical value c

is very difficult to compute.

An advantage of the Bayesian approach is that, through complete
specification of the prior distributions, the original problem is
reduced to a simple problem of testing two simple hypotheses. On the
other hand, however, it can be expected that this method is sensitive
(at least for relatively small samples) for the specific choice of the
priors or the parameters of the prior distributions.

If we consider the Bayesian approach as a possible way of reducing a
problem, it seems reasonable to choose incompletely specified prior
distributions (i.e., distributions which contain unknown parameters). In
this manner we do not obtain a problem of testing two simple hypotheses,
but it turns out that for a suitable choice of the prior distributions
the reduced problem can be solved by applying invariance considerations
to it. The resulting test is uniformly most powerful (UMP) among the
invariant tests and can also be obtained by means of the generalized
likelihood-ratio (GLR) criterion, as we shall see in the next sections.
For a slightly different derivation of the Bayes test (2.32) and a
discussion of the Bayesian approach to testing linear models we refer to

Gaver and Geisel [5] and Zellner [12].




3. Incompletely specified prior distributions

In this section we shall consider incompletely specified prior
distributions for the parameters y and o, i.e., prior distributions

which contain unknown parameters.

To be more specific, we again assume that p and ¢ are random variables
with prior distributions belonging to the class of normal-inverted
gamma—-2 distributions, but we no longer assume that the paraﬁeters of
these prior distributions are completely known.

We recall that the original problem can be formulated as:

(3.1) Given that the observable random vector y has a n(yu, 021)

. distribution, we want to test
Hy: n e M(X) wvs. Hitpoe M(Z)\M(X),

where o > 0 is unknown.

As before, we consider the n(y, 021) distribution as the conditional
distribution of y given (u, o) and we treat o as an (unknown) outcome of

a random variable with the following p.d.f.:

vw

_ 2 (vwz)v/Z vl 200
v 2 ?
re;). ‘

0 elsewhere,

where v > 0 and w > O.

Moreover, given o, we think of p as an (unknown) outcome of a random.

vector with the following distributions under Hy and Hy, respectively:

Hy: u|o ~ n(Xn, o?xeX")
Hy: ulo ~ n(zg, o2zAZ"),

where n € Rk, E € Rz, Q is a symmetric, positive-definite kxk matrix and

A is a symmetric, positive-definite 2x% matrix.




In Section 2, we saw that treating p and o as random variables with

prior distributions as stated in (3.2) and (3.3) is equivalent to saying
- 2 - 2

that y is a_sample from either a tv(uo, w VO) or a tv(ul, w Vl)

distribution. That is, by treating p and o as random variables the

original problem is '"reduced" to the problem of testing

. - 2 - 2
t. ~ '. ~
(3.4) HO' y tv(uo, w Vo) vS. Hl' y tv(ul, w Vl)’

whgre

= 1 + ZAZ'.

When no further restrictions are placed on v, wy, Ny, £, Q and A, we
cannot say that problem (3.4) is a reduction of the original problem
(3.1) and problem (3.4) turns out to be too complicated for a solution.
On the other uhand, as we saw in Section 2, by completely specifying the
prior parameters v, w, n, £, Q and A the reduced problem (3.4) becomes a
problem of testing two simple hypotheses. However, in this case we are
risking the possibility that our guesses of the prior parameters are
wrong and that the resulting most powerful test (see (2.33)) is bad.

We are looking for a situation somewhere in between these two extreme
cases. The original problem (3.1) itself can be seen as a limiting case
of such a siﬁuation. This follows from the fact that for v+w, Q+0 and
A0 we havé.tv(ﬁo, szO) > n(ﬂo, mZI) and tv(ﬁl, mZVl) > n(ﬁly w’T).
Hence, if v+, Q+0 and A+0, and if we consider n ¢ Rk, g>e IRR and w > 0

as unknown, the reduced problem (3.4) becomes:

(3.6) Hb: y ~ n(Xn, wZI) VSe. Hi: y ~ n(Zg, mZI),

which is equivalent to problem (3.1).




In order to find suitable restrictions to be placed on the prior
parameters, we first observe that the original problem (3.1) is

invariant under the transformations
(3.7) X+ XA and Z » ZB,

for all nonsingular kxk matrices A and %x% matrices B. This is easily
seen from the fact that M(XA) = M(X) and M(ZB) = M(Z) for any
nonsingular A and B.

The transformations (3.7) can be interpreted as changes of the
coordinate system in which the explanatory variables are expressed.
Since the original problem (3.1) is independent of the particular
coordinate system chosen, it is natural to require that the reduced
problem (3.4) satisfies the same property. That is, we require that the
tv(ﬁo, wZYb) and the tv(;l’ wZVl) distribution remain unchanged after
the transformations (3.7).

As is seen from (3.6) this can be achieved in a simple way by sﬁecifying

n, ¥, & and A as follows:
x'0) " xrqq

(x'x)~1
= 2'2)71z1q,

(z'z)L,

where qp € R1 and qy € R® are specified independently of X and Z. With

this choice of the prior parameters, EO’ El’ Vo and V, become
e
X(X'X) X q,

17y~ 1
2(2'2) 7 4

I+ X(x'x)"1xr

I+ z(z'z) 1z
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which clearly are invariant under (3.7).

In the second place we consider the choice of ;0 and El’ or
equivalently, q) and q;. Since the original hypotheses Hy and H, provide
no information concerning qp and q; and since Hb and Hi in (3.4) take
the place of Hj and H; for the purpose of testing problem (3.1),
knowledge_about qp and q; should provide as little help for this task as
possible. We might expect that the problem of testing H! against H!'

0 1

becomes more difficult when Hb is "close" to Hi. For this reason we try

to specify 99 and q in such a way that Hb is as close as possible to
)
Hll » '
What we need is a measure of "distance" between a distribution under Hb

and a distribution under Hi. That is, we are looking for a nonnegative
number d which measures the distance between a t (uo, sz ) and a

t (ul, wZV ) distribution, where uO’ ul, Vo and Vl are as spec1f1ed in
(3.9).

We first consider the general case. Let Po and Py be probability
distributions in R"™ and suppose that these distributions have density
functions (with respect to Lebesque measure) fo(x) and fl(x),
respectively (x ¢ R"),

Let the function, u(z; A) be defined as

A

(3.10) u(z; A) = E——%—l, z>0, A #0,

where by definition

(3.11) u(z; 0) = lim p(z; A) = 1n z.

' A>0
Then the generalized Kullback-Leibler "distance" from Py to Py is
defined as:

f (X)

(3.12) d, = Ej[u (f (x)’ 2], A >0,

A

where X ¢ R® is a stochastic vector and where the expectation E0 is
taken with respect to Pge

It may be shown that for any A > O the number d, is always defined

though possible infinite. Moreover we have for any A € [0,):
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(i) dy >0
(ii) dy = 0 if and only if Py = Pj.

Note that for A = 0 we get

£,(X)

d. = Eo[lnffzziy)],

0

which is the well-known Kullback-Leibler number, see Kullback [9] and
Bickel and Doksum [1], p. 226.

In the case of measuring the ''distance" between two n~dimensional t
distributions with the same number of degrees of freedom v, a convenient
choice of )\ turns out to be A = ;%;. For this choice of A the required
computations are easily performed and moreover for any n and any v > 0
the number dA takes on a finite value. ,

As is shown in Appendix D, when Py = tv(ﬂo, mZVO), Pl = tv(ﬁl, wZVl),
where Hgs Mi» VO_and V1 are as given in (3.9), and fO and fl are the
corresponding p.d.f.'s, the '"distance" d = d 9 from Py to Py is equal

to: nt+v

1

nt+v nt+v

(3.13) = HdetVTH] Vv + e + L GlEig v TG - B
, |

When we consider d as a function of qq and q (through ;O and G,, see (3.9))

it is easily seen that d has the minimal value
1

nt+v ntv

(3.14) 4= —Hdet(VOV_l'l)] [v + tr(VOV-l-l)] -

 for all points qp and q; which satisfy ;0 = El'

Hence if we restrict attention to the points 99 and q with the property that
GO = El’ the hypothesis Hé appears to be "closest" to Hi.

Since we know from (3.9) that EO = X(X'X)_lX'q0 e M(X) and

El = Z(Z'Z)-lz'ql.e M(Z), the restriction ;0 = il implies that

(3.15) =n e M(X) n M(Z).




The linear subspace M(X) n M(Z) plays an important réle in the testing
problem. the-that_in the original problem (3.1) the points (p, o) with

u € M(X) n M(Z) and o > 0, which belong to HO, are limit points of H;. That
is, these points form the boundary between the hypotheses HO and Hl'

If we suppose that M(X) n M(Z) has dimension p, it is not difficult to verify
that (see‘Bbﬁman [21)

(3.16) 0<p<r < min(k, 2),

where r = rénk(X'Z).

In general, hypotheses Hy and Hl are said to be nested if and only if every
point in HO is a limit point of Hl or vice versa. Otherwise the hypotheses are
called nonnested. We speak of strictly separate hypotheses if HO and H; have:
no common limit points. This means that the hypotheses in problem (3.1) are
nested if and only if M(X) < M(Z) or M(Z) < M(X), which is equivalent to

p = dim(M(X) n M(Z)) = min(k,%). Further it follows that our problem is
nonnested if and only if p < min(k,%).

Since the point u = 0 always belongs to M(X) n M(Z) the hypotheses in problem
(3.1) are never strictly separate (the points (0, o) with ¢ > 0 are always
common limit points of Hy and Hl).

The above considerations show that if EO = ul is the only restriction placed

on the prior means, the common prior mean u belongs to the boundary between
M(X) and M(Z) but is otherwise unknown.

In other words, if p > 0 we have

(3.17) U= C§,

where § ¢ RP is supposed to be unknown and where C is a nxp matrix, the
columns of which form an arbitrary basis for the p—-dimensional linear subspace

M(X) n M(Z). When p = 0 we have M(X) n M(Z) = {0}, which implies that
(3.18) u = 0.
If no further restrictions are placed on the prior parameters v > 0 and w > O,

the above specification of n, £, € and A yields the following prior

distributions of py and o:




The prior distribution of ¢ has p.d.f.

2
v

2
(3.19) h(o) = V/Z -V-le 20 , >0

(-0

= 0 elsewhere,

where v > 0 and w are unknown parameters. When p > 0, the conditional

distributions of p given ¢ are

Hy: ulo ~ n(Cs, o2x(x'x)~1x")
(3.20)
Hy: p[o ~ n(C§, OZZ(Z'Z)_IZ'),

where § ¢ RP is unknown.

In the case p = 0 we have

Hy: u|o ~ n(0, OZX(X'X)—IX‘)
(3.21)
Hyj: ulo ~ n(0, o?z(z'z)"1z")

Note that the prior distribution of y and ¢ are incompletely specified.
As we saw above, by treating p and o as random variables with the stated prior

distributions the original testing problem is reduced to

2 2
(3.22) Hé' y ~ tv(CG, w VO) VSe Hi’ y ~ tv(Cé, w Vl)

for the case p > 0, where v > 0, w > 0 and § ¢ RP are unknown parameters.

When p = 0 we get

2 2
(3.23) Hé: y ~ tv(O, w VO) vS. Hi: y ~ tv(O, w Vl)

with v > 0 and w > 0 unknown.

The matrices VO and Vl are given by
= I+ x(x'x)"Ix

=1+ 2(2'2)" 1z,




The columns of the nxp matrix C form a basis for the linear subspace

M(X) n M(Z). It will be clear that C can always be constructed from the given
matrices X and Z.

The problems (3.22) and (3.23) are invariant under the transformations (3.7).
This follows from the fact that M(XA) n M(ZB) = M(X) n M(Z). When p = 0 we
obtain M(XA) n M(ZB) = {0}. In the case p > O the construction of a basis for
M(XA) n M(ZB) from the matrices XA and ZB yields the nxp matrix Ci which
satisfies C; = CD for some nonsingular pxp matrix D. Hence after a
transformation of the type (3.7) the vector C§ is represented by Cx6x with
84 =D"!6 € RP. Together with the fact that V, and V, in (3.24) remain
unchanged under (3.7), this shows the stated invariance property.

The hypotheses Hé and Hi in (3.22) and (3.23) are composite and, as is
typically the case in such a situation, no UMP test exists for the reduced
problem. However, if we restrict attention to the invariant tests a UMP test
can be found within this restricted class as will be shown in the next
sections. '

Now it remains to show how the matrix C can be found from the given matrices
and Z (in the case p > 0). As is shown in Bouman [2] the dimension of

M(X) n M(Z) is equal to p if and only if the matrix (x'x)‘lx'z(z'z)'lz'x (or
equivalently, (Z'Z)'IZ'X(X'X)-IX'Z) has an eigenvalue 1 with multiplicity p.
Suppose that the value of p is given, then in most applications the matrices
and Z have precisely p columnvectors in common.

These common vectors can be taken as the matrix C, which shows that in most
cases it is very easy to find the matrix C.

It occasionally happens that X and Z have less than P coiumns in common. In

this case we can always find a nxp submatrix X;4 of X and a nx(k-p) submatrix

Xox of X such that:

rank([X;y: X5%1) = k and rank([Xyx: 2]) = kt+2-p.
Then there exist matrices G, and G, with Go # 0 such that
(3.25) Xix = Xp4Gy + ZGy .

Hence if we can find Gl we can take

(3.26) C = Xl* - XZ*G]..




The matrix Gl is obtained from
(3.27) G = (F'F)'IF'XI*,

G

where G = |-

l} and F = [XZ*E Z].

Obviously, the above procedure also works in the case where X and Z have
precisely p columns in common. | ‘
Finally we shallrconsider the number d from (3.14) which measures thé
"closeness" of Hb to Hi in (3.22) and (3.23). When the original hypotheses Hy
and H, are nested we might expect a small value of d, i.e., we might expect
that Hé is close to Hi. On the other hand, when Hy and H; are nonnested we
might expect a large value of d.

We shall now show that this is precisely what happens. From (3.14) and (3.24)
it is seen that d depends on X and Z through Vo and V; and in order to
investigate this dependence we first compute det(VO), det(Vl) and VII.
It can easily be verified that

det(VO) =

(3.28)  det(V)) 2%

%Z(Z'Z)—lz'.

Substitution of (3.28) into (3.14) yields
2=k

(3.29)  T=2"VEY - L+ -1 -

2 4 2

ntv
2 bl

where t is defined as

(3.30)  t = tr[x(x'®)"Ixrz(z'z)"1z'].

The number t can be considered as a measure of the degree of '"nonnestedness"

of the original hypotheses Hy and_Hl.

For given values of k and % we always have

(3.31)  0< t < min(k, 2).




Further it can be shown that Hy and H; are nested, i.e., M(X) < M(Z) or
M(Z) < M(X), if and only if t = min(k, 2). Also, Hy and H; are nonnested if

and only if t < min(k, £). It follows from (3.29) that d attains a minimum

value (for given k and %) when Hy and H; are nested. The more Hy and H; are
nonnested, i.e., the smaller the value of t, the larger the value of d.

For given k and ¢ it is seen that d attains a maximum value for t = 0, which
corresponds to the most extreme nonnested case M(X) J_M(Z), i.e., X'Z = 0.
-The trivial nested case M(X) = M(Z) which occurs if and only if t=k=¢ yields

d = 0, that is, in this case we have H' = H'. Note that M(X) =M(Z) if and

. 0 1
only if V04= V1 and that the converse of the above statement is also true,

i.e., d = 0 implies that M(X) = M(Z).




4, A UMP invariant test for the reduced problem

This section is concerned with the problem of finding a solution for the
reduced testing problem as defined in the foregoing sectiom.
That is, if p = dim[M(X) nM(Z)] > 0, we consider the problem of testing

. .2
(4.1) Hé: y ~ tv(CG, szO) VS. Hi: y ~ tv(CG, w Vl)

and if p = 0 we consider

(4.2) HY: y o~ t (0, u'Vy) vs. HU: y o~ (0, u'V)),
where C, VO and V, are given matrices. C is of the order nxp with rank p,
=1+ X(X'X)_lX' and Vl =1+ Z(Z'Z)—IZ'. On the other hand, v > 0, w > 0
and § € RP are unknown parameters.
As 1s typically the case in a situation of testing two composite hypotheses,
no UMP test exists for the problems (4.1) and (4.2).
Then the usual procedure is to restrict attention to a certain subclass of
tests and solve the problem of finding the UMP test within this restricted
class. When a problem remains invariant under a certain group of
transformations of the sample space onto itself, it is natural to restrict
attention to tests which exhibit the same property. That is, we only consider
tests (functions of y) that are invariant with respect to these
transforﬁatibns.
The transformations can be interpreted as changes of the coordinate system in
which the data (y) are expressed. When a problem is independent of the
particular cdbrdinate system chosen, it is reasonable to restrict attention to
tests which satisfy the same property, since otherwise the acceptance or
rejection of the hypothesis under consideration would depend on the choice of
the coordinates, which is quite arbitrary and has no bearing on the probiem.
Within the class of invariant tests we try to find a UMP test, which (if it
exists) is galled the UMP invariant test.
A discussion of this type of reduction on symmetry grounds or invariance can
be found in Lehmann [10], Chapﬁer 6.
In order to show that the problems (4.1) and (4.2) remain invariant under a
certain group of transformations we first reformulate these problems in a

different way.




Let F be the family of even n—dimensional p.d.f.'s, that is, f € F satisfies

£(x) > 0, x ¢ R"

(4.3) [ e ] £R)Ax) ..l dx =1

—c0 —00

£(-x) = £(x), x ¢ R".
Let fiv € F be defined by

ﬂ) VV/ 2

r( >

(4.4) fiv(x) =

nn/zrc%) /det (V)

where v > 0 and 1 = 0, 1.
It follows that the p.d.f. of a t (C§, wzvi) distribution can be written as

—nf (x-CG

v o ), i =0, 1.

(4.5)
Hence problem (4.1) can be reformulated as:
. -n., y=C$
Given that the sample y has the p.d.f. w £( - ), £ € F, we want to test
', = . =
HO. f fOv VSe Hl' f flv’
In a similar way problem (4.2) can be written as:
Given that the sample y has the p.d.f. m—nf(%), f ¢ F, we want to test
', = 1. =
HO. £ fOV vSs. Hl' £ flv'
It should be emphasized that the parameters v > 0, w > 0 and § € RP are
unknown.
Next we will show that problem (4.1) remains invariant under the group of

transformation given by
(4.6) Gy: g(y) = ay + Ca,

for all a ¢ Rl, a# 0 and all o € RP,
Let g € G; and consider z = g(y) = ay + Ca. The inverse transformation is
y = g—l(z) = (z=Ca)/a and if y has the p.d.f. o “£((y-C8)/w) it is easily

that the p.d.f. of z becomes
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z - C(a6+a)) -
alw

la] PR - c8)/w) = (Jalw) EC

- z-Cs,,
Wy f( W, ))

where wy = |a| w> 0 and §, = as + a ¢ RP,

This shows that after the transformation z = g(y) the problem becomes:
’ : z—C§
: - %
Given that the sample z has the p.d.f. m*nf( " ), £ € F, we want to test
o e
T, = ) ?. = P .
HO. £ fov vS. Hl' £ flv’ where v > 0’,w* > 0 and 84 € R¥ are unknown
Since the problem in terms of z is exactly the same as that in terms of y, it
follows that the transformations (4.6) leave problem (4.1) invariant.
In a similar way it is seen that problem (4.2) remains invariant under the

group of ;ransformations
(4.8) Gyt g(y) = ay, a € Rl, a# 0.

Note that G, is a subgroup of Gl.*
In the case of problém (4.1), through invariance considerations, we restrict

attention to tests (critical functions) ¢(y) which are invariant with respect

to the group (4.6), i.e.,

(4.9) $(ay+Ca) = ¢(y),

1

for all aeR s a# 0 and all a ¢ RP,

For problem (4.2) we only consider tests which satisfy ¢(ay) = ¢(y), for all

- ae Rl, a# 0.

We shall first derive a UMP invariant test for problem (4.1), that is, a test
which is UMP among the invariant tests (4.9).

Suppose that v is fixed at an arbitrary level, then a UMP invariant -test for
‘problem (4.1) exists, as is shown in Appendix A. This UMP invariant test turns
out to be independent of v andris therefore also UMP invariant for the more
general problem with v unknown.

In order to derive the UMP invariant test we need some preliminary results.

* It i1s not difficult to see that the original testing problem as
defined in (3.1) of Section 3 also remains invariant under Gl or Gy.




Let the columns of the nxp matrix R, be an orthonormal basis for the

p-dimensional linear subspace M(C) and let the columns of the n x (n-p) matrix

R, be an orthonormal basis for the orthogonal complement M(C) of M(C).
For x ¢ R™ P we define the function 2y(x), 1 = 0, 1, as

P

-00

(4.10) g,(x) = {w eeo | £, 0(Riz + Ryx)dz, ... dz,

where z' = (zl Zy e zp) and where fiv is as given in (4.4).

Further let w, = Réy and wé = (Wy Wy «ee w2(n—p))‘
As is shown in Appendix A, see (A.17), the UMP invariant test for problem
(4.1) with fixed v rejects (¢(y) = 1) if

APl (0 ydn
1y 2
P > c.
n

") (n-p)

Wz)dn

By making use of the property that the marginal distributions of a
multivariate t distribution are again multivariate t, the substitution of
(4.4) into (4.10) yields:

I,(n--lzgiv)vv/z . _ n-

(v+x'VI1x) 2

(4.12) zi(x) = o p

x 2 r@y det(d)

where Vi = RJV.R, (i =0, 1).

If we define

_—1
= !
Ay = WV wy /W

2

2(n-p)? 1=0,1

and make the transformation




the integrals in (4.11) become

n

- w,)dn =
w2(n—p) 2

(4o14) f‘nn'p_lzi(
0

: - n-p
F(E:Ei!) A. 2
2 i
n-p

2 r(%)/ det ()

r(Ega)
n=p

3
™ 2 v det(vi)

Subsitution of (4.14) into (4.11) yields the following rejection region of the
- UMP invariant test

lw
2

< cue

wiv,
(4o15) 21

=-1

L}
20 %2
Note that this rejection region does not depend on v. Therefore, in order to

prove that the UMP invariant test (4.15) does not depend on v, it is

sufficient to show that the probability distribution under H' of the test

0
statistic
el |
. wlV."w
(4.16) 5=-212

1 ]
AN

does not depend on v.

As a matter of fact we will show that the distribution of the above test
statistic does not depend on v, w and § under Hb as well as Hi.

Let the random vector T be defined by T' = (T} Ty eee Tpopy)s Where

’ i = 1, 2, LY n—p—l,

then S can be written as a function of T,

=1
TIV. T

(417) s = L X

TiV, Ty




where T! = (T, T, ees T 1.

* 1 72 n-p-1
With the aid of the result (A.15) of Appendix A and (4.14), it is not
difficult to see that the p.d.f. ki(tl, Loy eeey tn—p—l) of T under H!,

i=20, 1, is equal to

2

o -

k (), ty, eeey tnrp—l) =

op

v det(vi)

i=0, 1, where t; = (t1 t2 '

Since the distribution of T (see (4.18)) does not depend on v, w and § under
Hé and Hi, it follows that S and therefore also the UMP ‘invariant test (4.15)
does n?% depend on v, w and § under H6 and Hi. This shows that the ;est (4.15)
is UMP/invariant for problem (4.1) with v > 0 unknown. .

In a similar way it can be shown that the test wifh critical region

Y'Vzly .
(4.19) S = — <c,

y'Vo'y
is 'UMP invariant for problem (4.2) (the case p = 0).
The critical value cyx in (4.15) and (4.19) has to be chosen in such a way that
the size of the test becomes equal to a preassigned significance level a.
Throughout the aBove derivation it was assumed that n-p > 1 (for p > 0 as well
as p = 0). When n—p < 1 the UMP invariant test has critical fuaction ¢(y) = a.
This is a purely randomized test which rejects with probability o regardless

of the observations.

In applications it is not necessary to compute R2 and w, = Réy in order to

find the test statistic S. With the aid of the relations

= Rt
Wy = Ry

§ ' | | -
(ii) RIRI + R2R2

. =1 -1 -1 -1 -1 =1 ,.-1 ‘
ii = 1 = R? - R! 1 1 . =
(iii) v, (sziRZ) RIV.'R, = RIV, RI(RIVi Rl) RIV, R, 1 =0, 1

(which can be derived from (R'ViR)—1 = R'VIIR, where R = [RIE RZ])




I
]Rl—
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(iv) (v,

R NP S
ViR (RIV]R)DTRIVY

- we get the following expression for wévzlwz

(4.20) Wi lw

) = y'[V; vy g ((RIVY Ix ) R' ]y, i=0, L.

2

Since Ry = CA for some nonsingular pxp matrix A, we have
(4.21) R (R’V R ) R' = C(C'V C) C','i =0, 1,

substitution of which into (4.20) yields

gl = vyt o ' ' TR
(4.22) wyV tw, =y [vi v lece v loy=lewy ]y, i=0,1.
The right-hand side of (4.22) can be expressed in terms of the maximum
likelihood estimator of the parameter vector § under H!, i.e., under the
assumption that y ~ tv(CG, @Zvi), i ='0, l. In order to see this, let

Si be the maximum likelihood estimator of § under Hi, then we have

K3 I |

= ' ' =
(4.23) Gi (c Vi C) C V.y, 1 =0, L.

If we define the residual vector ui as

-~

(4.24) ui =y - Cﬁi, i=20,1
it follows from (4.22) that

(4.25) w'Vle = u'V 1.

2°i "2 i1 Y 1=0, 1.

Hence ﬁhe UMP invariant test for problem (4.1) rejects when

: -1

. ' V u
(4.26) .;L_Lf_l < e,

u'V_"u

0 00

The above results also show that the test (4.26) can be obtained by
applying the'GLR criterion to problem (4.1). Similarly, the test (4.19)
turns out to be the GLR test for problem (4.2).




Until now we did not use the fact that the matrices C, V0 and Vl have a
special structure.

Upon using
M(C) = M(X) n M(Z)

(4.27) V= 1+ X(x'x) " 1xe

v, = I+ 2z'2)" 2,

the tests (4.19) and (4.26) can be considerably simplified.

From (4.27) it is easily seen that
I - 4x(xx) "
=1- %z(z‘z)"lz';
are defined by
I - x(x'x)"Ixr
I- z(z'z)‘lz'?
it follows from (4.28) that
= H(1+ M)
= (I + M,).

Further it is seen from M(C) < M(X) and M(C) < M(Z) that MyC = M,C = 0,
which together with (4.30) implies that ‘

(4.31)  vi'c=14c, i=0, L.

The maximum likelihood estimators Gi become

(4.32) &, = (c'otery, 1=0, 1,




see (4.23), which shows that Gi is equal to the ordinary least—squares

estimator of § after the regréssion from y on C.
Therefore, if the corresponding least—-squares residual vector is denoted
by Ups i.e.,

~

(4.33) uo =y - C§ = MCy

where

5 = (C'C)'lc'y
(4.34)
M, =1 - ccere) ter,

it follows from (4.24) that

‘A PN

(4.35) | u, = u, = Mcy, i=0, 1.

By making use of (4.30) and (4.35) it is seen that the test statistic

from (4.26) can be written as

Y'MC(I + M, M.y

(4036) = 0 °
y MC(I + MX)MCy

~

Let uy and u, be the least-squares residual vectors after regression

from y on X and Z, respectively, i.e.,

uX y - XB Mxy

~

u, =y - zy My,

~

where 8 = (va)‘lxey and y = (Z'Z)-lz'y. Then it follows from (4.36)
that S takes the form

u'u_ + u'u
(4.38) s =-CC 2722

A A A A 9
] ]
uCuC + uXuX

where use has been made of Mé = MC’ McMyMo = My, McMyMo = M,

A A A A A A

y'Mey = u('quC’ Y'Mxy = u)'(uX and y'MZy = u'ZuZ.




That is, the UMP invariant test for problem (4.1) has the rejection

region

ata |+ ula
(4.39) s = EEo. .
u(':uC + u)'{uX

In the same way it can be shown that the UMP invariant test (4.19) for

problem (4.2) rejects when
y'y + ulu
(4.40) = —Z2f¢.,.
L L
y'y + uxuX
It is not difficult to verify from (4.39) and (4.40) that with
probability 1 we have 4+ < S < 2.

The above results show that the test statistic S can be very eésily
computed from y, C, X and Z. Now it remains to find the critical value

Cx+ This problem shall be discussed in the next section.




5. The distribution of the test statistic

In this section we shall derive the probability distribution of the test

statistic under the hypothesis Hé. That is, we shall derive the

distribution function of S as given in (4.38) of Section 4 under the
assumption that y ~ tv(CG, mZVO) (the case p > 0) and the distribution
function @f S as given in (4.40) of Section 4 under the assumption that
y ~ tv(O, wZVO) (the case p = 0). We shall consider the former case in
detail, the case p = 0 can be treated in a similar way.

In order to derive the probability distribution of S under Hé it is

convenient to use the equivalent form of S as given in (4.16), i.e.,

g
1 ]
RS
- 2L
ROANRD)

(5.1) '8

where Vi = RéViRz, i =20, 1 and w, = Réy, the columns of the n x (n-p)

matrix R2 being an orthonormal basis for the linear subspace M(C) .

Since under Hb we have y ~ tV(CG, mZVO) it easily follows that

-
(5.2) Wy~ tv(O, w VO).
Y2

Hence if u ===, we have

u'VIlu _
m, u ~ tv(O, VO)'

Now we shall show that S has the same distribution as the ratio
X'Vzlx/x'valx, where the random vector x has a n(0, VO) distribution.
Let gg(u) be the p.d.f. of u ~ t,(0, VO)’ then it is not difficult to

verify that

(5.4) | go(u) = | ko(ulz) h(z)dz,
0

where ky(u|z) is the conditional p.d.f. of u given Z = z and h(z) is the
marginal p.d;f. of the random variable Z, ko(u]z) and h(z) being equal

to




n-

2 z—(n-p)[det(GO)]_% exp{-'—lE u'vglu}

ko(ulz) = (2%)
2z

v

2
(%)V/Z SVl 22 L z2>0

=2

v
TGE)

0 elsewhere.

That is, the conditional distribution of u given Z = z is a n(O0, ZZVO)
distribution and the marginal distribution of Z is a inverted gamma-2
distribution with parameters v and 1.

Let the (n-p)-dimensional random vector x be defined by
u
(5.6) X =E,

then it follows that the conditional distribution of x given Z = z is a
n(O0, VO) distribution. Since the latter distribution does not depénd on
z, it is seen that x and Z are stochastically independent and that the
unconditional (marginal) distribution of x is a n(O0, VO) distribution.
Substitution of (5.6), i.e., u = Zx, into (5.3) yields

- —
1 1]

X V1 X ~ X V1 X
—_—] -1 2
\] ]

X V0 X X V0 X

(ZX)'VII(ZX) 72

S =

'(2x)'V61(2x) - z2

where x ~ n(0, VO) and this proves the stated property. This result also

shows that the distribution of S under Hé does not depend on the unknown

parameters v, w and §, a fact which was already observed in Section 4.

The fact that the test statistic can be written as
= ——— with x ~ n(0, VO)’
enables us to find the distribution of S under Hé, i.e.,

(5.8) FO(S) = P(S £ s; Hé).




Let Tys T .}., ™ be the M different eigenvalues of the matrix VIIVO

and let My, My, eee, mM-be the corresponding multiplicities. It is not

difficult to see that T is real and Tj >0for j=1, 2, «eo, M.
‘ M
We also have & mj = n-pe. As is shown in Appendix B (see (B.15)) the
j=1
distribution function FO(s) can be written as (provided that M > 1):

) _ 1 1 % sin e(u;s)
(5.9) FO(S) =5 é'—ﬁ_7(G?§7—du’

where

M 2.2 IZ
(5.10) y(uzs) = I (1 + ('c-j-s) u’)
j=1" :

and
m, '
(5.11)  e(uzs) = I 3l arctg((r -s)u).
. j=1 J
The value of the integrand in (5.9) at u = 0 is defined by

sin e(u;s)

u y(u3s) |u=

ut0 yius
(5.12)

=1
2

t.m, - 3(n-p)s.
j=1 J 1]
Next consider the case p = 0, that is, we want to derive the
distribution function of the test statistic S as given in (4.40) under

. 2
', ~

the hypothesis HO. y tv(O,lm VO).
If we express S in the equivalent form (4.19), i.e.,

(5.13)

it can be shown in a similar way that Fo(s) = P(S < s; Hé) takes the

form (5.9), where now Tys Ty, sees Ty are the M different eigenvalues of

the matrix Vllv0 wi;h corresponding multiplicities My, My, eees Mye In
this case we have I m, = n and (5.12) becomes:
j=1




sin e(u;s) _ _ 1
(5.14) —E—;Tazéy— u=0 4 i ijj ins.

The above results show that Fo(s) can be computed for any s through
numerical integration of (5.9). We refer to Appendix B for more details

on this numerical integration.

Here we are more interested in finding the critical value c of the UMP

invariant test with critical region

(5.15) S < c.

That is, we want to find c such that in the case p > 0

(5.16) sup P(S < c; Hé) = a,
(sz:G)
where a is a preassigned significance level.

When p = 0, we have to compute ¢ such that

(5.17) sup P(S < c; Hb) = 0.

(vyw)
However, as we have seen above the probability distribution of S does
not depend on the unknown parameters and it follows that the critical

value ¢ can be found by solving the equation Fy(e) = a or

(5.18) _é.... l f M%_C_)du = e
"o

u y(ujc)

The solution of (5.18) not only requires numerical integration but also
an iteration procedure. This would not be an objection if the value of ¢
could be determined once and for all, that is, if the distribution of §
under Hé does not depend on the particular testing problem (the»matrices
X and Z), but only on n, k and ¢. In the latter situation we can
tabulate the critical values of c and use these tables for any‘p:oblem
of testing linear hypotheses. However, as we shall see below, on}y in a
few special cases tabulation is possible and in general the distribution
of S under H! depends on the particular matrices X and Z under

0
consideration through the eigenvalues Tys> Tgs e++, Ty and multiplicities

My, My, eee, Mye




In view of this it seems more attractive to report the p—value of the
test (also éalled the observed size), instead of computing the critical
value c.
Since the p-value of our test is defined by FO(S),where S is the test
statistic, 'we have

in e(u;S)

' 1 1®
(5.19) _FO(S) 5-;£Wu,

which shows that the computation of the p-value only requires numerical

integration and no iteration prbcedure. The procedures of first
computing ¢ (for given a) and then rejecting Hé if S < ¢ is equivalent
to computing the p-value FO(S) and rejecting Hé if FO(S) < a.

In other words, we can think of FO(S) as a standardized test statistic
and the critical region beFomes FO(S) < a, since under Hé the random
variable FO(S) has an uniform distribution on the interval (0, 1).

The use of FO(S) also means that we are very flexible in our choice of
a.

If we are interested in the power of the UMP invariant test, we first
have to compute the critical value c, since the power is defined as

P(S < c; Hi). The probability distribution of S under Hi égain does not
depend on the unknown parameters (v, w and § in the case p > 0 and v, w
in the case p = 0) and, as indicated in Appendix B, in a way similar to
the case Hé we can derive the distribution function of S under H'. This

1
results into the following expression for the power of the test

sin e*(u;%)
———du,

3




The value of the integrand in (5.20) at u = 0 now becomes

sin g, (u;s)

U, (w38) | o

for p > 0.
When we want to compute the p-value FO(S), the critical value c or the

power P(S < c; Hi), we always need the eigenvalues t;, T9, <+« , Ty and

corresponding multiplicities My, My, ees, My of the matrix VI VO in the

case p > 0 or of the matrix VIIVO in the case p = 0.
—]=

In order to compute the eigenvalues of Vl VO in the case p > 0 it is not
=—l= _ ' -1_,
necessary to compute the matrix V1 V0 = (RZVIRZ) RZVORZ’ where the

columns of R, are an orthonormal basis for M(C) .

"IV

We shall show that the eigenvalues of V1 o are equal to the nonzero

eigenvalues of the nxn matrix

-1 1

(5.23) P = [Vl

TR SRS BN B |
VyccvTo) eV T 1v,.

The matrix VIIVO can be written as

Tl o ' t = R? 1
V1 VO = (R2V1R2) RZVORZ RZARZRZVORZ’

-yl _ 1 I B B |
where A Vl V1 Rl(Rlvl Rl) Rlvl
an orthonormal basis for M(C) (see formula (iii) of Section 4).

i ! = T — ! = =
Since R2R2 I RlRl and AR1 0 it follows that AR2R2 A and this

and where the columns of R1 form

yields

(5.24) V.1

1

S oo
V0 R2AVOR2.

Let A be an eigenvalue of VIIVO with corresponding eigenvector x, then

Vl Vox = AX, A > 0 and therefore

—]=

. , _
(5.25) RZAVORZX AXe

. . . ] = ] =
This gives R2R2AV0R2x Asz and since R2R2A A it is seen that




(5.26)  AVgy = Ay,

where y = RyXe _
From (5.26) it follows that A > 0 is an eigenvalue of AVO with

eigenvectorgy.
Now we always have R, = CB for some nonsingular pxp matrix B and this
shows that

1 1

RS BT BT BUS B
A=V -vicev o e,

Hence AVO = P and we have

(5.275 Py = AYye.

That is, if XA is an eigenvalue of V—l

1 VO it follows that A is an

eigenvalue of P.

Conversely, if A is an nonzero eigenvalue of P it can be shown in a
similar way that A is an eigenvalue of VIIVO and this proves the above
statement.,

If we define the matrix P for the case p = 0 as

(5.28) = vl
it follows form the above discussion that the probability distribution
of the test statistic S under Hé and Hi (for p > 0 as well as p = 0) is
given by (5.9) and (5.20), respectively, where Tys Tgs eee, Ty are the
nonzero eigenvalues of the matrix P and Mpy Moy eee, My the
corresponding‘multiplicities.

In order to apply the UMP invariant test to a certain problem we
therefore need the nonzero eigenvalues of the nxn matrix P. These
eigenvalues can be numerically computed for any given C, Vo and Vis but
this can be a rather time-consuming process. At this point it should be
emphasized that in the above discussion nowhere did we use the fact that
for our problem the matrices c, Vo and V, have a special structure,

i.e.,




= M(X) n M(Z)
Vg =1+ x(x' %)~ 1x!
v, = I+ zz2'z)" 2,
When we no longer consider the problem

2 2
1. o ', ~
(5.30) _HO. y tv(Cs, w VO) VS, Hl' y tv(Cd, w Vl)

as a reduction of the original problem of testing two linear hypotheses,
that is, if we consider the problem (5.30) for any given matrices C, Vj,
Vi (where C is of the order nxp with rank p and V, and V, are symmetric
and positive definite), it was shown in Section 4 that the UMP invariant
test (with respect to the transformation y + ay + Ca) for this general

problem has rejection region

~ —lﬁ
]
Sy
i <c,
]
49v0 Yo

= - = \} ]
where u; =y CGi and 61 (C Vi C) 'C Vi
Moreover, as we saw above, the distribution function of S under Hb is

1y, i=20, 1.

given by (5.9) and this function depends on C, Vo and V; through the
nonzero eigenvalues of the matrix P as defined in (5.23), for any given
c, V0 and Vl'

In the above discussion it was assumed that p > 0, of course similar
remarks can be made for the case p = 0.

As is shown in Section 4, by making use of the fact that in our problem
the matrices C, Vo and Vi have the special form as given in (5.29),the
computation of the general test statistic in (5.31) can be considerably
simplified (see formula (4.38)). Now we shall see that the same holds
true for the computation of the eigenvalues of the matrix P.

Substitution of (5.29) into (5.23) yields for the case p > 0:

(5.32) P =1+ XX"X)"1x' - 1z(z'2)" 1z - tz(z'2) " lzvx@x'x)"Ix' - ccereyler.




If the columns 6f the nxk matrix X form an orthonormal basis for M(X),
the columns of the nx{ matrix Z form an orthonormal basis for M(Z) and
the columns of the nxp matrix C form an orthonormal basis for M(C), the

expression (5.32) can be written as

(5033) P = I+ —Xi' - '%2-2-' - %22';(‘)(' - EE'.

When p = 0. we get in a similar way

(5.34) P =1+ XX' - 372' - $72'%X".

Now it is shown in Appendix C that the eigenvalues of the nxn matrix P
as given in (5.33) or (5.34) can be deduced from the eigenvalues of the
kxk matrix X'ZZ'X (or equivalently, the eigenvalues of the ¢xf matrix
Z'XX'Z).

The eigenvalues of X'ZZ'X always lie between O and 1.

If p = dim(M(X) n M(Z)) and r = rank(X'Z), it is not difficult to verify
that X'ZZ'X has an eigenvalue 0 with multiplicity k-r and an eigenvalue
1 with multiplicity p and vice versa. In other words, the values of p
and r can élways be concluded from the eigenvalues of X'ZZ'X. See Bouman
[2}, pp. 26-29 and 94-96.

Suppose that X'ZZ'X had R different eigenvalues, say, P1s Pgs sees PR’
with 0 < Pj <1l,j=1, 2, «e., R and let L1y Toy eeey Tp be the

corresponding multiplicities.
R

Note that r = p + I Ty and that the matrix Z'XX'Z has precisely the
j=1 ,
same eigenvalues and multiplicities as i'iﬁ'i, except for the eigenvalue

0, which has a multiplicity g-r.

As 1s shown in Appendix C, the matrix P has the following eigenvalues,
where

1 1 .
(5035) aj =Z(5"pj) -Z}/(l"pj)(g_pj)’ J = l, 2, ceey R,

and where we assume that 0 < p < r < min(k, 2).




Table 1. Eigenvalues > 0 of the matrix P.

Eigenvalue T4 ‘ Multiplicity my

It should be noted that M is the number of different eigenvalues > 0 of
P, ¥ < @y <1l, j=1, 2, «eey, R and that P has an eigenvalue 0 with

multiplicity p. oo
In Appendix B it was shown that the test statistic S can be written as

[ S

wn
I
o =2~ =

e




where N> Ngs eeey Ny are random variables with P(ni >0 = 1.

This shows that min(ri) < SK max(ri) and it is seen from Table 1 that
i i
we always have + < S < 2, a fact which was already concluded at the end

of Section 4.

The above results show that the eigenvalues of the nxn matrix P can be
found from the eigenvalues of the kxk matrix X'ZZ'X. In order to find
these latter eigenvalues it is not necessary to compute the matrices

X and Z. Thié follows from the fact that the matrices X'ZZ'X and

(x'x)'lx'Z(Z'z)‘lz'x have the same nonzero eigenvalues (see Bouman {[2],
p. 19).

Hence, the eigenvalues of P can be found from the eigenvalues of the kxk
matrix (X'X)—IX'Z(Z'Z)_lZ'X or, equivalently, from the eigenvalues of
the £x¢ matrix (z'z)"lz'x(x'x)"1x'z.

The number M, being the number of different eigenvalues > 0 of P, does
not always take on the value 2R+3. As a matter of fact for given R the
maximum value of M is equal to 2R+3 and this value is only attained in
the case 0 < p < r < min(k, 2).

For instance, when r = ¢ < k the eigenvalues T = 4 vanishes and M =
2R+2, Similarly, if r = k < ¢ the eigenvalue Tor+3 = 2 vanishes and

again M = 2R+2. Moreover, if r = k = £ both T = 4 and Topt3 = 2 vanish
and we have i = 2R+1,

Another case occurs if 0<p r < min(k, 2).

Since p = r if and only if R = 0, if follows that

Ty = Q5 eeey Tpyy = ag and TR43 = aEl, eees Topio = aIl vanish and we

have M = 3.

-Let us next consider the case of nested linear hypotheses. As we saw in
Section 3 the problem of testing linear hypotheses can be divided into
two categories:

(1) The case of nested linear hypotheses, i.e., M(X) < M(Z) or
M(Z) < M(X).
(i1) The case of nonnested linear hypotheses.
The case (i) occurs if and only if p = min(k, &) and can be subdivided
into:
(a) The trivial case M(X) = M(Z), i.e., p =k = L.
(b) The nontrivial case M(X) < M(Z) and M(X) # M(Z), 1.€., p =
(c) The nontrivial case M(Z) < M(X) and M(X) # M(Z), i.e., p =




For these three cases we get the following eigenvalues > 0 and

multiplicities of P (after renumbering the t; and my):

(a) In this case p =r = k = ¢ and therefore ¢-r = 0, R = 0, k-r = 0 and
M = 1l. We have 1, = 1 and m = n-k = n-{ = n-p. v

(b) Now p = r = k < £ and it is seen that k-=-r = 0, R =0 and M = 2. We

» M 2=k and m, = n-%.

get Tl = 'l', Tz =\l
(c) In this case p = r = ¢ < k and therefore 2-r = 0, R =0 and M = 2.
1

Now we have 7, = 1, 19 = 2, m = n-k and m, = k-2.
The trivial case (a) yields a reduced problem with Hb = Hi. It follows
that S = 1 and that the UMP invariant test with size a rejects with
probability o regardless of the observations. More interesting are the
nontrivial nested cases (b) and (c). It follows that in these cases the
distribution of S only depends on X and Z through k and %.
Therefore, in these cases it is possible to tabulate the critical value
c for different values of a and 2-k, n-% or k—-¢, n-k, respectively.
However, as will be shown in the next section, tabulation is not
necessary since in the cases (b) and (c) we can use the tables of the F
distribution in order to find the value of c.
On the other hand, if we are testing nonnested linear hypotheses,
tabulation of c¢c is no longer possible since the distribution of S
depends on the particular X and Z matrices.
Finally, we shall consider a large sample approximation to the
distribution of the test statistic S. From the results of this section
and Appendix B it follows that uﬁder Hb we have

n=p

oy i

(5.36) ‘S =T,

z Ei

i=1

where % < AMLA Lo £ >‘n-p < 2 are the nonzero eigenvalues of the

- matrix P and £;, £9, «e., gn_p are mutually independent random variables
with £; ~ x*(1), 1 =1, 2, «u., Dps
We know that there are M different A\ 's, feee, 341 <19 < een <y 2

with multiplicities my, mgp, ..., my, 3as shown in Table 1. Note thaﬁ
M , _
b my = n~-p and P(Tl_i s < TM) = 1. We only consider the case M > 1,
i=1

since in the trivial case M = 1 we always have P(S = 1) = 1.




If Fp(s) ='P(S:$_s; Hé), it is seen from (5.36) that

(5.37)  Fo(s) = B(Qg £ 0),

where

. n-p g

Hence, for any s thé distribution function Fo(s) can be found from the
distribution function of the random variable Qg+

As is shown in Appendix E, if s # 1, we have

!

Q. - (n-p)(a_ - s)
(5.39) S o > n(0, 1)

famp) 2, - )% + b ]

in distribution when n+w,

Here a  and b, are defined by

From (5.37) and (5.39) it follows that for s # 1 and large n, we
approximately have

/E:S (s - an)
(5.41)  Fy(s) ~ N( )R

/&[(s - an)2 + bn]

X _%CZ
where N(x) = [ e dt.
= {21
Note that a, and b, can easily be calculated from Table 1.
The result (5.41) shows that for large n the p-value FO(S) as given in

(5.19) can be approximated by




Vn-p (S - an)

(5.42) Fo(S) = N(

2
Y2[(s - an) + bn]

The large sample approximation (5.41) also enables us to approximate the
level a critical value c of the test, i.e., the value of c which
satisfies Fo(c) = Q.

When 0 < o < %, it is shown in Appendix E that, for large n, the

critical value c can be approximated by

(5.43) mc,=a - an(a)bn s

where

2:2
(5.44)  q (@) = —2—,

n-p - 2ta

t, being the (100a)th percentile of the n(0, 1) distribution.
Since we know in advance that c > Ty» the approximation c, in (5.43)

makes no sense if CA_S_TI.
In Appendix E it is sﬁown that a necessary and sufficient condition for

cp > 1) is given by
(5.45) a > N(d)),

where

Yo-p (1, - a_)
(5.46) 1w
/2[(1‘l - an)2 + bn]

Note that d; < O.

Except for the case T = 1, it can be shown that d1 + =o if n»e, and
therefore, N(dl) + 0 if n»w, Hence, except for the case T, = 1, the
condition (5.45) is no restriction on the level o for large n.

The case 11 = 1 occurs if and only if ‘(Z) c (X) and (2Z) # (X), i.e.,
the nested case (c) with p = ¢ < k. -

In the latter case we have M = 2, Ty =1, 19 =2, m = n~k and m, = k=42,




This giﬁes:

- k=2
=1+ 'y

k-2 - (k"’l 2
n-% ‘n-2’ ?

which yields dl = - /?E:ET7§'+’-M if nirow,

Therefore, in the nested case (c), the condition a > N(dl)

= N(=/(k=2)/2) may be a reétriction on the choice of a, even when n is
large. However, in this nested case there is no need to approximate c,

since we can find the exact value of ¢ with the aid of the F distribution.

In order to compute the values of a, and b, it is often more easy to use
the formulae

tr(P)

2 2
tr(P°) - a,

(ntk - $2-p - 3tr(AB))

1
A

2

b > (n+3k —-%&—p —-%tr(AB) + tr[(AB)Z]) = anr

n

where A = (X'X)"!X'Z and B = (z'z)"lz'x.

Once the value of c¢ is computed or approximated, it can be shown in a
similar way (see Appendix E) that, for ¢ # 1 and large n, the power of
the test P(S < cj; Hi) as given in (5.20) can be approximated by

/a5 (a = D)

P(S < c; H}) = N(

* 1.2 *
‘/2[(:,1n - L2y




6. A reconsideration of the nested case

In this section we reconsider the nontrivial nested cases:

(1) M(X) < M(Z) and M(X) # M(Z)

(11) M(Z) < M(X) and M(X) # M(Z).

As is wellAkndwn, in the case of nested linear hypotheses we can use the
classical F test. »

It will be shown in this section that in case (i) the general
(Bayesian-) approach, which we have developed in the féregoing sections,
exactly feproduces the above mentioned F test. However, in case (ii) the
situation is different and it turns out that the two approaches lead to
different tests.

Moreover; it will be shown that a number of special (nested) casés can
easily be incorporated into our general approach.

As said before, when the linear hypotheses are nested we can apply the

classical F test to the (original) problem of testing

Hy: v e M(X) against Hy: n e M(Zi\M(X).

Since in case (ii) we get M(Z)\M(X) = f, the hypotheses for this case
are reformulated as

Hy: n e M(X)\M(Z) against Hi: w e m(z).

The F test can be obtained by applying the GLR principle to the original
problem. Moreover, it is well known (see Lehmann [10], Chapter 7, pp.
265-272) that the F test is UMP invariant with respect to a certain
group of transformations G. This group differs from the group Gl
considered in (4.6) of Section 4. As a matter of fact G contains G, as a
subgroup. It should be emphasized that in case of testing nonnested
linear hypotheses no F test is obtained by applying the GLR principle or
invariance considerations to the original problem.

Before applying our approach to the nested cases (1) and (ii) we shall
briefly discuss the F tests.

In case (i) the F test has the following rejection region




~

=y - X8, uz =y - Zy with B = (X'X)-lx'y and vy = (Z'Z)-lz'y.

-

where uy

Writing

YOy -y

[ . -l ?
y MZy , 2~k

(6.2) F
where My = I - X(X'X)7IX' and M, = T - z(2'2)7!2", it is easily verified
that under Hy: y ~ n(XB, 021) we have:

From (6.3) it follows that the F test with level a rejects when

where f;_  is the (100(1l=a))th percentile of the F(2-k, n—%)
distribution.
Under H; we have y ~ n(Zy, 021) and it is seen that

(6.5)  F ~ F(2-k, n-2, 68;), 8; > 0,

where 6; = Y'Z'MXZY/UZ, Y € Rz, o> 0.
With the aid of (6.5) we can compute the power of the test
P(F > f,_,; H)) for different values of y and o.

Next consider case (ii). Now the F test has rejection region

In this case F can be written as

' -
y (MZ MX)y n-k
y'MXy * k-2

(6.7) F =




Under Hy:'y ~ n(X8, 021) we get

F ~ F(k"l, n-k, 62), 62 > 0,

where 6, = B'X'M,XB/0%, B ¢ RS, o> 0 (X8 ¢ M(2)).
Let G(x, 62); 6, > 0 be the distribution function of a F(k-g,
distribution, then

sup G(x, 62) = G(x, 0) for all x.
62>0

*
Now we have to choose ¢ in such a way that

. .
sup P(F c HO) = a.

(8,0)
Since P(F < ¢, Hy) = G(c*, 8,), 6, > 0, it follows that

. * * *
.sup P(F c 3 HO) = sup G(c , 62) = G(c , 0).
(B,U) 62>0

That is, ¢* must satisfy G(c*, 0) = a.
Now G(x,0) is the distribution function of a F(k-%, n-k) distribution

and it is seen that the rejection region of the F test in case (ii)

becomes

(6.8)

where f& is the (100a)th percentile of the F(k-%, n—k) distribution.
Under Hy: y ~ n(2v, 021) we have

(6.9)’ F ~ F(k-%£, n-k),
and therefore:the power of the test is equal to

P(F < £15 H)) = G(£!, 0) = a for all v ¢ R* and o > O.




Let us next apply the method proposéd in the foregoing sections to the
nested cases (i) and (ii).

That is, we assume that p and o are (unobservable) random variables
possessing the following incompletely specified ﬁrior distributions:
The marginal prior distribution of ¢ is an inverted gamma-2 distribution .
with unknown parameters v > 0 and w > O. Under Hy the conditional bfior
distribution of p given ¢ is a n(CS, ozx(x'x)'lx') distribution and
under H; a n(Cs§, 02Z(Z'Z)_IZ') distribution, where the columns of the
nxp matrix C form a basis for the p-dimensional linear subspace

M(X) n M(Z) and where & ¢ RP is unknown.

We shall first consider case (i). Then we have M(X)  M(Z) and

M(X) # M(Z), i.e., p = k < 2. This implies that C = X and the

conditional priors of u given o become

. Hy: u|o ~ n(X§, OZX(X'X)-IX')
(6.10)
Hy: ulo ~ n(Xs, oZZ(Z'Z)_IZ'),

where § € Rk is unknown.

This results into the following reduced problem

2 2
(6.11) Hb: y ~ tv(XG, w VO) VS. Hi: y ~ tv(Xé, w Vl)’

where as before Vo = I+ X(X'X)7'X' and V) = I+ AV A AR
From Section 4, see (4.39), we know that the UMP invariant test for

problem (6.11) rejects if

1 L
_ uxuX + uZuZ

(6.12) S < c.

‘It is not difficult to verify that

6.13)  s=i+ i+ LD

where F is as defined in (6.1).




The inverse transformation of (6.13) is

F = 1-5  n—-4
. S-T °* 2=k’

and it follows that the critical region S < ¢ is equivalent to F > <.
This shows that the UMP invariant test for problem (6.11) has rejection

region

In order to find the critical value c* we derive the distribution of
. 2
v. ~
under HO' y cv(XG, ) 0).

We first write F in the equivalent form

_ y'(MX - MZ)y n-4%

y'MZy ® -k’

(6.15) F

Let u = (y=X§)/w, then u ~ t,(0, Vo).
Substitution of y = wu + X§ into (6.15) yields

=<u'(MX - MZ)u n-4%

(6.16) F T - T

with u ~ tv(O, VO),

where use has been made of MyX = M;X = 0.
By using .the argument applied to the test statistic S in Sectiom 5, it

is seen that the random variable F in (6.16) can be rewritten as

l( "'M
(6.17) F. = Wy T MY neg

T e T W
w Mzw 2~k

here w ~ n(0, VO)’

which also shows that the distribution of F under Hé does not depend on

v, w and §.

The numerator as well as the denominator in (6.17) are quadratic forms

in normally distributed random variables.

In general we havL:

(a) If x ~ n(y, V), then x"Ax ~ xz(m, 8), with m = rank(A) and 6 = p'Au
if and only if AV is idempotent.

(b) If x ~ n(u, V), then x'Ax and x'Bx are stochastically independent if
and only if AVB = O.




Since (My = M,)Vy = (My = M,)(I + X(x'x)7IK") = My - M, and (My - M,)% =
- M it follows from (a) that

(6.18)  w'(My = My)w ~ x2(2-k),

where also use has been made of rank (MX - MZ) = tr(MX - MZ) = tr(Mx) -
tr(MZ) = n=k - (n=2) = 2-k.
In a similar way it is seen from M,Vy = My(I + x(x'x)'lx') = My,

= MZ and rank(MZ) = tr(MZ) = n-% that

(6.19)  w'Myw ~ x*(n-2).

Moreover, (MX - M))VoM; = (MX - MM, = My, - My = 0 and it follows from
(b) that w (MX - Mz)w and w'MZw are stochastically independent.

This independence together with (6.18) and (6.19) implies that under Hb:

(6.20) F ~ F(2-k, n-2).

The results (6.14) and (6.20) show that the UMP invariant test with
level o for testing the reduced problem (6.11) has critical region

where f;_  is the (100(1=-0)) th percentile of the F(2-k, n—2)
distribution.

The test (6.21) is exactly the same as the classical F test (6.4).
other words, in the case of testing nested linear hypotheses with
M(X) < M(Z) and M(X) # M(Z) our approach reproduces the classical.F
test.

It should be noted that the random variable

n-2
-k

Yz
has a F(2-k, n-%2) distribution under Hy: y ~ n(XB, 021) as well as under

2
. ~
do. y tv(XG, ) Vo).




This is nd longer the case under H; and Hi. The distribution of F under
Hyz y ~ n(Zy, 021) is given in (6.5).'0n the other hand, in a way
similar to the derivation of the distribution of F under Hb it can be
shown that under Hi: y ~ tV(XG, wzvl) we have:

(6.22)  F ~ F(2-k, n—2).

Hence, the power of the test (6.21) under Hi becomes

(6.23)  B(F> £,_ 5 m) = 1-FGE,_),

where F(x) is the distribution function of a F(2-k, n-%) distribution.
It is easily verified that P(F > fl—a; Hi) > a for 0 < a< 1.

In the second place we consider the nested case (ii), that is,
M(Z) < M(X) and M(X) # M(Z). Now we have p = ¢ < k and C = Z. This
yields the following prior distribution of p and o:

Hb: ulo ~ n(z8, o?X(X'x)"1x")
(6.24) ‘
Hy: ulo ~ n(28, o?z(z'z)"1z').

The reduced problem becomes :

' 2 2
[ ~ v, ~
- (6425) .HO' y tV(ZG, w VO) VS. Hl‘ y tV(Zﬁ, w Vl)’
where v, w and § are unknown and V0 and V1 are as before. In this case
the UMP invariant test for problem (6.25) has critical region

2

(6.26) S = = — < c.
1] L
2%z T Uk

Let F be as defined in (6.6), then we have

A'A
Z
+

2
k=2 -1
1+ (1 + K F)

and the inverse transformation of (6.27) is




_2(s-1) n-k

F==35 "%

It follows that the region S < c is equivalent to F < .

Hence, the UMP invariant test for problem (6.25) has rejection region

The critical value c* can be found from the distribution of F under

H': y ~ t_(Z6, mZV ). By using similar arguments as before it can be
v 0 _

0
shown that under Hb we have

(6.29) F ~ F(k-¢, n-k).

* * %
Then it is seen from a = P(F < c 3 Hé) = P(3F < 3c ; Hé) that 4c = f&,
which implies c* = Zf&, where as before f& is the (100a)th percentile of

the F(k-2, n~k) distribution. , .
These results show that the UMP invariant test with level o for testing

the reduced problem (6.25) has rejection region

The test (6.30) differs from the classical F test for the nested case
(11) as given in (6.8). That is, our approach does not reproduce the
classical F test in the nested case with M(Z) < M(X) and M(X) # M(Z).
Note that in case (ii) the random variable

does not have the same distribution under Hy and Hé. On the other hand,

in this case it can be shown that F has the same distribution under

His y~ n(Zvy, 021) and Hi: y ~ tv(ZG, mzvi), i.e.,




(6.31) F ~ F(k=2, n-k) under Hi.
From (6.31) it follows that the power of the test (6.30) under

Hi becomes equal to

(6.32) :P(F <2 f&; Hi) = G(Zf&),

where G(x) is the distribution function of a F(k-%, n-k) distribution.
Again it is'easily verified that P(F < f&; Hi) >afor 0<a< 1.

The nested cases (i) and (ii) are not the only cases where a

F distributibn can be used. It turns out that besides the nested cases
also in a few nonnested cases the test S < ¢ is equivalent to W > c*,
where under Hb,the statistic W has a F distribution. In order to see

this we write the test statistic S in the form (see Appendix B)

where M is the number of different eigenvalues Tys Tgs eeey Ty With

multiplicities My, My, see, My as given in Table 1 of the forégoing
section. ‘

Under Hb the random variables Nys Ngs eeey My are mutually independent
with T]i ~ Xz(mi), i-= 1, 2, ceey M.
Suppose that M = 2 with Ty < 19, then

T,Nn, + T,N
(6.34) s=—L1 22

Nty
Let W be defined by
(6.35) W

then under H! we have

(6.36) F(my, my).




Writing S in terms of W we get

Y

T1 m

which has the inverse transformation
S - Tl m1

(6.38) W

It follows that the region S < ¢ is equivalent to W > ¢* and that the
UMP invariant level o test for the reduced problem in the case M = 2 has
critical region

T2

= S - Tl

(6.39) W

*
where fl-a is the (100(l=a))th percentile of the F(ml, m2) distribution.

The most important cases with M = 2 are again the nested cases (i) and
(ii). First consider case (i), then we have T = 4+ and 9 =1, m = 2=k
and m, = n-%. The test (6.39) becomes

_1-s n-4%

It is easily verified that (see (6.13))

and it follows that the test (6.40) is equal to the classical F test as
derived in (6.21) and (6.4). .
In the second place consider the nested case (ii). Now we have 1, = 1,

T9 = 2, m = n-k and m, = k-¢. The test (6.39) becomes




From (6.27) it is seen that W = =, where

uzdy T Wiy
uyly

Hence (6.41) is equivalent to

F =

2
*

(6.42) F <

= 2!,

1-o

where 3F =-% ~ F(k-2, n~k) under Hb.
This is precisely the test (6.30) derived above for the nested case
(ii).

All other cases with M = 2, i.e., cases where the F test (6.39) can be
used, are nonnested.

From Table 1 of Section 5 it follows that in all these cases we have

n = k+2-p and either k > r, £ > r, R=0ork =2=1r, R= 1.

Finally we shall consider the cases where k = 0 or 2 =0and k =n or

% = n. The analysis in the foregoing sections was carried out under the
assumption that 0 < k < n and 0 < 2 < n. Therefore the cases where k or
2 take on a boundary value do not follow at once from the general case.
However, as we shall see below, these boundary cases can easily be
incorporated into the general case.

First consider the situation where k = 0 and 0 < £ < n (the case
0<k<n éhd 2 = 0 can be derived in a similar way). When k = 0 we have
M(X) = {0} and the original problem has the form

(6.43)  Hy:w =0 vs. Hy: u e m(2)\{0},

2

where y ~ n(u, o°I).

Since we have p = k = 0 < 2 it follows that (6.43) is a subcase. of the
nested case (i).

If we specify the conditional prior distributions of p given o as
follows




Hy: u|lo ~ n(0, 0)
(6.44)

H,: ulo ~ n(o0, czz(z'z)'lz'),

it is easily seen that the reduced problem becomes

(6.45)  Hl:y ~t (0, w'I) vs. H}: y ~ £ (0, WV ),
where as before V; = I + Z(Z'Z)-IZ' and v and w are unknown.

Note that the conditional prior distribution of p given o under Hj is a
degenerate distribution with all probability mass concentrated at the
single point p = O.

From the result (4;19) of Section 4 (with VO = I) it follows that the
UMP invariant test for problem (6.45) rejects when

-1
y'Vy

=——<c
y'y

(6.46)

Since VIl - %z(z'z)'lz', the test statistic S can be written as

|} Alh
y'y +.“zuz

(6.47) T

As would be expected the result (6.47) can be obtained from the general
case (4.40) through the substitution of ;;;X = y'y when M(X) = {0}.
The probability distribution of S under Hb can be found by using the
method described in Section 5. In this case we have M = 2, T < %,
Ty = 1, m = 2 and my = n-%. 7

Since we have to do with a case of nested models it follows from the
results of the first part of this section that the test S < c is

equivalent to the classical F test for problem (6.43), i.e.,

] - AIA
y'y = uu,

(6.48) F =

where f,_ . is the (100(1-a))th percentile of the F(£, n—%) distribution.




Usually (6.48) is written in the equivalent form

A'lh ~ -
=‘l,§=§l -’ where vy = (2'Z) 1Z'y,

(6.49) °F =

uwlu 1
ZZ

which is precisely the classical F test for the problem of testing
Hy: v = 0 against Hj: vy # 0 in the linear model y =‘ZY + u with
u -~ n(O,_QZI). 0f course, this latter problem is equivalent to problem
(6.43).
From the above discussion we conclude thaﬁ the case k = 0 (or similarly
2 = 0) can be incorporated without any difficulty into our general
approach,
A very interesting particular case occurs if besides k = 0 we have ¢ = 1
and Z = 1, where 1' = (11 ... 1).
In this particular situation the original problem (6.43) becomes
equivalent to the problem of testing

(6.50) Hy: 6 = 0 against Hyj: 820

on the basis of a random sample y' = (Y; Yy ... Y ) from a n(9, 02)

distribution.

The reduced problem has the form

(6.51) Hb: y ~ tv(O, mZI) against Hi: y ~ tv(O, mz(I + 1(1'1)-11')).

The UMP invariant test for problem (6.51) rejects when (see (6.47))

where Y =

Since (6.52) is equivalent to

ny>

(6053) F =
1 =2
LS
n-1 i=1 i




where fl—a is the (100(1-a))th percentile of the F(l, n-1) disttibution,

“which in turn is equivalent to
(6.54) |T] > t1-la»

where

/e

n—-1

and tl—%a is the (100(1-%a))th percentile of the t(n-1) distribution, it
follows that our general approach reproduces the classical t test for
problem (6.50).

In the second place consider the case where 0<k<nand 2 =n (again
the case k =n and 0 { 2 < n can be handled in'a similar way). When

2 = n we have M(Z) = R™ and the original problem can be written as
(6.55) Hy: u e M(X) wvs. 'le n e RMX).

Since p = k < £ = n it follows that (6.55) is a subcase of (i). The
conditional prior distributions of p given o are specified by

Hy: ulo ~ n(xs, o2x(x'x)"1x")
(6.56)
Hy: ulo ~ n(Xs, 021),

where use has been made of z(z'z)~lz' = 1.
Note that in this case the conditional distribution of y given ¢ under

H; is a nonsingular normal distribution. The reduced problem becomes

(6.57)  Hl: 'y~ (x, wZVO) ve. HI: y ~ t_(Xs, w2(21)),

where Vo =~I + x(x'x)‘lx' and where v, w and § are unknown. From (4.26)
it is seen that the UMP invariant test for problem (6.57) rejects when
} uta |

(6.58) S = r——éT;— < c,

]
Yo¥o Yo




-~

where ui y - C(clvzlc)"lcyv"ly’ i=0, 1 with C = X and Vl = 2I.

~ ~

Since u uy = Mxy we get

T L.
UK

As would'be»ekpected this result can be obtained form the general case

A A A A

- »"~ = v ' =
- (4.38) through the substitution of ugue = ugug and usu, = 0 when
M(X) < M(z) = R%,
With the aid of the results of Appendix A it is seen that the UMP
invariant level o test for problem (6.57) rejects with probability a

regardless. of the observations.

a. - ula
Note that in this case the F statistic uX X. = Z 2

A A . 1
since uéuz = 0 and n-% = 0. Uzlz

The above results show that the observations are of no use in testing a

is not defined

n-=4%
° 2=k

problem of the type (6.55). This is not surprising since in this case
the alternative hypothesis H;, is left almost entirely unspecified.

In the foregoing derivation it was assumed that k > 0, when k = 0 a
similar result is obtained.

From Section 5 it is seen that in the case ¢ = n we have M =1, T = 3
and m; = 2=k = n-k, which shows that P(S = }) = 1, as would be expected
and it follows that the boundary case £ = n can easily be incorporated

into our general approach.




7. An optimum property of the test

In the fofegoing sections we have derived a test for the problem of
testing linear hypotheses which has the property of being UMP invariant
for the so-called reduced problem.

In this séé;ion we shall show that this test is also optimal in a
certain sense for the original problem. We no longer consider the
parameters p and o as random and we interprete the prior distributions
as weight functions which express the importance the experimenter
attaches to the‘various values of the parameters.

Thrbughoutvthis section we use the following notation:

6= (uy 0, 0 = [(u, )| u € U(X), o> 0},

0p = {(uy o) u e MZ\M(X), o> 0}, 6 =09y Y 0,

£(x;0) = (21) o “exp{- ;—17 (x=u)'(x~w)},
ag

where x ¢ R® and 6 ¢ ©.

Then the‘problem of testing two linear hypotheses can be formulated as:

(7.2) Given that the sample y ~ f(x; 6), 6 € 0, we want to test
HO: 0 € 90 VSe. Hl: 6 € @10 '

Now 6 is treated as an unknown parameter and not‘as a random vector,
which means that we consider f£(x; 6) as the unconditional p.d.f. of y.
Suppose that we assign a weight function W to the various subsets of the
parameterspace 0.

We first assume that this weight function is completely specified and
expresseszthe importance attached to the various subsets of O.

The mathematical expression for a weight function is a probability
measure defined on a suitable class of subsets of O (a nonnegative set
function with W(0) = 1).

In a testing problem of the form (7.2) usually the weight function W is
specified in steps. That is, we first specify the weight functions Wy
and W, on Oy and ©;, respectively and then assign (positive) weights w,




and W) to Hy and Hy, where Wy = 1- Wge The weight function Wy is a
completely specified probability measure defined on a suitable class of
subsets of 05, i = 0, 1. Note that W;(6;) = 1 for 1 = 0, 1.

Now the weight function W on 0 is defined by

that is, a (measurable) subset A of 0 has weight W(A) = WOWO(A) + WIWI(A)’
It is easily verified that W is a completely specified probability
measure.

Note that W(0) = wo towy = 1 and W(ei) = Wy, i = 0, 1. For subsets of Ai

of Oi we have:
(7.4) W(Ai) = wiwi(Ai)’ i=20, 1.

Problem (7.2) can be considered as a statistical decision problem with
two possible decisions: dj = "accept Hy" and d; = "reject Hy". Let D be
a stochastic variable with possible outcomes d; and d;, then a test ¢(y)
(critical function) is defined as the conditional probability that D

takes on the value d1 givep that the sample outcome is y, i.e.,
(7.5) ¢(y) = B(D = d;|y), v ¢ R

The power function w(8, ¢) of thg test ¢ is

(7.6)  n(0, $) = B(D = d) =

(o]

[ e [ P(D= dlly) £(y; o)y, ... dy_ =

00

-0

I lw o(y) £(y; G)Jyl oo dya, 8 ¢ 0,

where y' = (yl y2 e yn)o

We also have

(7.7) 1= (8, ¢) = B(D = dp).




Further we specify the following loss function 2(0, d) 20, d =dy, dy,

@ € © for the above decision problem:

(7.8) 2(8, d) = 0 if d = dg, 6 € @
0if d =dy, 8 ¢ 0
f.oifd=d1,9€eo
11 if d = do, 6 € 61,

where 24 > 0 (i =0, 1) is a given number.
The risk (expected loss) of a test ¢ is given by

(7.9) R(6, ¢) = E(2(8, D)) = 2(6, dyp) P(D = dg)

+ 2(8, d;) B(D = d;), 6 € oO.
From (7.8) it follows that

(7.10) R(8, ¢) = LgP(D =d;), 6 ¢ %
= 2P(D = dy), 6 € 9;

and by making use of (7.6) and (7.7) we get

(7.11)  R(®, ¢) = 24m(8, ¢), 8 € @,
= 21 - llﬂ(e, ¢), 6 € 61.

Usually n(6, ¢), 8 € 0p 1is called the probability of a type I error and
(8, ¢), 6 € ©; is called the power of the test.

As 1is well known there does not exist a test ¢* which minimizes the risk
R(6, ¢) for all 8 € © and all ¢, i.e., a test ¢* with R(e, ¢*) < R(6, ¢)
for all r € 0 and all ¢. In view of this a natural procedure is.to
consider the (weighted) average risk of a test ¢ with respect to weight
function W as given in (7.3), i.e.,

(7.12)  r(¢) = [ R(8, ¢)dW(e),
€]

and minimizing this average risk among all tests.

That is, we try to find a test ¢* with r(¢*) £ r(¢) for all .




With the aid of (7.3) and (7.11) we have

(7.13) r(¢) = | R(8, ¢)dW(8) =

R(B, ¢)dW(8) + [ R(8, $)dW(8) =

0 9

A é R(B, ¢)AW(0) + w, [ R(s, $)dw, (6) =

0 9

Wolo é (0, $)dW () + Wik T Yy é (8, $)dW,(6)

0 1

=Wty Wl mo(4) = w2, T(9),
where the average probability of a type I error ?0(¢) and the average

power ?1(¢) are defined as

To(4) = é (6, ¢)dW,(6)

0
(7.14)

T (®) = (e, $)aw (e).

9

Let the function ki be defined by

(7.15) k;(x) = [ f(x; e)dwi(e), i=o0, 1,

9y

where f(x; 0) is as given above.
Then ki(x) (1 = 0, 1) satisfies the requirements of a p.d.f. and we get:

(7.16)  7wy(6) = [ m(e, $)dWy(6) =
60 :

©o

[ eee [ $(ECy; 0)dy, ... dy_dW,(6)

-0 -0

o

oo {m o(y) é £(y; 0)dW,(0)dy, oo dy_ =
0

cee [ 0Ky, e dy,

-0




where use has been made of (7.6).

Similarly, we have

(T T @) = [ e [ o0 DAy e by

00

Upon éubstituting (7.16) and (7.17) into (7.13) we obtain

(7.18) r(¢) = wlll + {m cee {w ¢(y)[wolok0(y) - wlllkl(y)]dyl cee dyn.

It easily follows that the test ¢1 with miminum average risk becomes:

(7.19) ¢’;(y> =1 if Woloko @) = w2k (7)

o if " ”

o *
In other words, the test ¢1 rejects HO(¢1(y) =

k) () 5 Yoto

(7.20) ko(y) 7~ wyey”

Usually the test ¢t in (7.19) is called the Bayes test for problem (7.2)
and it is seen that this test depends on the weight function W
(specified by Wgs Wi, Wg and W;) and on the loss function 2(6, d).

Now we take the weight functions Wy and W) equal to the probability
measures corresponding to the prior distributions of 6 under Hy and H,,
respectively, as given in (2.5), (2.7) and (2.8) of Section 2 and

moreover, we take the weights Wo and w; as considered in Section 2. Then

it is easily seen that ki(x) becomes

v

n+v -5 -n nt+v
r(—z—)v - (v+Q (X))- z
Y/ 2r(/aeEv,y i

(7.21) ki(x) =

= =WV - TP, 1= 0, 1




= I+ XQX'
= 1 + ZAZ!

Since the parameters v, w, n, &, Q and A are given it follows that the

weight function W = wgoWy + wW; is completely specified. Substitution of
*

(7.21) and wy = pgj, 1 =0, 1 into (7.20) shows that the test 1 which-

minimizes the average risk r(¢) = f R(6, ¢)dW(6) has rejection region
0 C

1 2
v+ Q(y)  det(Vy) —= plzl)n-i-v

VE QO ¢ etV N

(7.24) = ¢,

which is precisely the Bayes test (2.32) derived in Section 2 under the
assumption that 6 is a random vector.

From the mathematical point of view it does not matter whether we
consider 6 as nonrandom and W as a weight function or 6 as random and W
as a prior probability measure. The solution is the same only the
interpretation differs. _

A difficulty with the above procedure is that a complete specification
of the weight function W and the loss function 2(6, d) is required.

If one is not able to (or willing to) specify a weight function and a
loss function, it is natural to concentrate on the power function

m(6, ¢).

Again there does not exist a test ¢* which minimizes the probability of
a type I error for all 0 ¢ 01 and all ¢ and at the same time maximizes
the power of the test for all_e € 0; and all ¢. Then the usual procedure
is to restrict attention to tests which satisfy w(6, ¢) { o for all 6 ¢
0ps 1.e., the probability of a type I error does not exceed the
preassigned significance level o, and to attempt to maximize the power
m(6, ¢) for all 8 ¢ ©; subject to the above condition. When such an
optimal test exists it is called uniformly most powerful (UMP) of level

Qe




For our problem (7.2) no UMP test exists and it is customary to narrow
the class of tests still further and to try to find the UMP test within
this smaller class. Well-known criteria for narrowing the class of level
o tests are unbiasedness and invariance. However, except for the case of
nested models, reduction through unbiasedness or invariance
considerations does not lead to a solution for problem (7.2).

A possible way -out is to concentrate on the average probability of type
I error ;0(¢) and the average power of the test %1(¢) as given in
(7.14). In this approach no loss function is specified and the weight
function W is only partially specified, that is, the weight functions Wy
and Wl are completely specified but the weights L) and'wl are considered
as unknown.

‘Now we try to find a test ¢* which maximizes the average power Fl(¢)
among all tests with an average probability of a type I error ?0(¢) not
exceeding the level o. In other words we try to find a test ¢* which

satisfies

~ *
."0(¢ ) S Qe
(7.25)
T, > F (8D, for all ¢ with ¥ (4) < a

If such a test ¢* exists it will be called a test with best average
power for problem (7.2). From (7.16) and (7.17) it follows that problem
(7.25) is equivalent to: Find the test ¢* which satisfies

o

[ eee ] S ORGOIAY, wen dy_ <

(00 00

(o]

o * 0 ©
[ eee ] 0Ok Ay) ee dy_ > [ een [ 43K ()Y ee dy s

-0 ~-—c0 -0 -00

for all ¢ with [ ... [ ¢(y)k0(y)dy1 ces dyn_s a, where the average

-00 -0

densities ky(x) (i = 0, 1) are as given in (7.15). Since the latter
problem is precisely the problem of finding the most powerful level a
test for

(7.27) Hb: y ~ ko(x) VS. Hi: y ~ kl(x),




where ko and kl are completely specified, it follows from the lemma of
Neyman and Pearson that, apart from trivial cases, the solution for
problem (7.26) becomes

% k. (y)
(7.28) ¢2(y) = 1 if k—o—(-ﬁ >c

0if " <,
where ¢ has to be determined from
k,(y)

e -{w ¢2(Y)k0()')dyl L) dyn = P( k_o_(y)_ > (S HO) = Qe

=00

Hence, the test with best average power for the original problem (7.2)

*
is given by (7.28) and the average power of ¢2~can be found from

~ kT ® % _ kl(y) -
n1(¢2) = {m cee {m ¢2(y)kl(y)dy1 cee dyn = p( Ea?§7 > ¢ Hl).

If we again take the weight functions Wy and W, equal to the probability
measures induced by the prior distributions of 6 under Hj and Hy,
respectively, as given in (2.5), (2.7) and (2.8) of Section 2, it is
easily verified from (7.21) and (7.28) that test ¢; with best average
power for the problem of testing two linear hypotheses (7.2) rejects
when (¢;(y) = 1): |

v + Ql(y)

(7.29) m;@-

< c,

where ¢ has to be chosen such that

v+ Q;(y)

v ,m

< c3 Hb) = a,

and where Qi(y), i =0, 1 is defined in (7.22) and (7.23). The test
(7.29) is exactly equal to the test (2.33) of Section 2, which was’
derived under the assumption that 6 is a random vector.

Although the above procedure does not require the specification of a -
loss function 2(6, d) and prior weights w, and Wi it remains a
difficulty that we need completely specified weight functions Wp and Wy.
For instance, in order to apply the test (7.29) we have to choose the
real numbers v > 0, w > 0, the vectors n ¢ Rk, E € R and the matrices @

and A.




It would be an improvement if we could find a test which maximizes the
average pdwer for a whole class of weight functions. We shall show below
that under certain conditions such a test indeed exists.

Let {Wow; Y € ¥} and {Wlw; Y € ¥} be families of weight functionms
defined on suitable classes of subsets of ©p and 0;, respectively. The
vector ¥ which labels the weight functions belongs to a given space Y.
That is, Wiw (1=0, 1 is a weight function for every y e V.

If ¢ is a test for the problem (7.2) and if m(6, ¢) denotes the power
function of this test, i.e.,

(7.30) (06, ¢) = f cee f o (Y E(y; e)dy1 cee dyn, 8 € 0,

—00 -co
it follows that the average probability of a type I error and the
average power of the test depend on the vector y which labels the weight

functions, that is,

Tolvs ) = [ - m(8, $)aW, (0)
%

Ty 9) =] w(e, e)aw, (0)

0

where § ¢ V.

Now we are looking for a test ¢* which maximizes the average power

;l(w, ¢) for all ¢y e ¥ among all tests with an average probability of a
type I error ;0(¢, $) not exceeding o. That is, we try to find a test ¢*
which satisfies

~ *
'"0(‘1): ¢)Sa’ ¢€‘¥n

?l(w, ¢*) Z_%l(w, ¢), for all ¥ ¢ ¥ and all ¢

with ?O(w, $) <a, ¥ e V.

If such as optimal test ¢* exists, it will be called a test with
uniformly best average power for problem (7.2).

Upon substituting (7.30) into (7.31) we get




(7.33) T (¥, ¢) = e [ 0(ECy; 0)dy) ... dy AW, (0)

=00

cee [m o(y) é £(y; 0)dW; (8)dy) ...dy
i

oo [ 4k (y; WIdy) eeedy , =0, 1,

=00 =00

where the functions ki(x; ) are defined by

(7.34) k, (x5 9) = [ £(x; e)dwiw(e), i=0,1,

0

i

with x € R" and ¢ € ¥.
It should be noted that the function ki(x; P) (1 = 0, 1) satisfies the
requirements of a p.d.f. for every y e Y. With the aid of (7.33) it is
easily verified that problem (7.32) is equivalent to the problem of
finding a test ¢* satisfying

e

2k
[ eee [ 6 (Dk(y; WAy eeedy <oy ¥ o€ ¥

-=00

o

cee { ¢*(y)kl(y: Wy, eeedy > [ ..,-{ ¢<y>k1(y;_¢>dyl ces dy,

-0

]

0

for all y ¢ ¥ and all ¢ with [ ... | ¢(y)ko(y; w)dy1 eee dy < 0,

- 00 -0

v e Y.

Since (7.35) is precisely the problem of finding the UMP level a test
for '

(7.36) Byt y ~ ky(x; ) vs. Hj:y ~ k(x5 9),

where ¢ € ¥ is considered as an unknown parametervector,bit follows.that

(subject to its existence) the test with uniformly best average power

for problem (7.2) is equal to the UMP level a test for problem (7.36).




Unfortunately, - however, no such test exists for problem (7.36).

Since problem (7.2) is invariant under the group of transformations
(7.37) G: g(y) = ay + Co for all a ¢ Rl, a+0and o € RP,

where the columns of the nxp matrix C span the p—~dimensional linear
subspace M(X) n M(Z) (we only consider the case p > 0, the case p = 0
can be treated in a similar way), it is natural to restrict attention to

the invariant tests, i.e., tests ¢ which sétisfy
(7.38) ¢(8(y)) = ¢(y) for all g e G.

Then, among the invariant tests we try to find the test with uniformly
best average power.

In other words, we try to solve problem (7.32) or, equivalently, problem
(7.36) subject to the extra restriction (7.38).

The transformation g € G induce a group of transformations G in the
parameter space O given by:

(7.39) G: g(8) = (ap + Ca, lalo) for all a e Rl,

a# 0 and o ¢ RP, where 6 = (u, 0) € 0.

Moreover, the group G induces a group G of transformations g in the
space ¥ of points y which label the weight functions.

If the weight functions Wiw are chosen in such a way that the families

{Wiw; Y € ¥}, 1 =0, 1, remain invariant under the group of

transformations E, it follows that problem (7.36) remains invariant

under the transformation g e G.

Since problem (7.32) subject to the restriction of invariance is
equivalent to the problem of finding the UMP level a invariant test for
(7.36), it is seen that under the above conditions the test with
uniformly best average power among the invariant tests for problem (7.2)
is equal to the UMP invariant level o test for problem (7.36), provided
that the latter test exists.

To be more specific, let ¢ = (v, w, 6) and ¥ = {(v, w, 5)|v >0, w> 0,
§ € RP} and take the weight functions Woy and Wy, equal to the
probability measures corresponding to the prior distributions of 8 under

Hy and H;, respectively, as given in (3.19) and (3.20) of Section 3.




With this choice of Wiw it is easily seen that the functions ki(x; v)

becomes equal to:

ntv -n ntv
r(=) v 1 -1 )
(7.40) ki(x; P) = [v +-—7 (x—CG)'Vi (x-C6)] ,

Y 2r(§) /IEV) ®

1 =0, 1, where Vg = I+ X(X'®)7!X' and V| = I + 2(2'2)7'z".
The function ki(x; Py) is the density of a multivariate t distribution
and this shows that problem (7.36) can be written as:

2 2
1. ~ t. ~
(7.41) HO. y tv(CS, ) Vo) vS. Hl' y tv(CG, w Vl)’
with ¢ = (v, w, §) € Y unknown.

Moreover, the group G of transformations g induced by the group G in the

space Y becomes:
(7.42) G: g(¥) = (v, |a|w, a8 + @),

for all a € R*', a # 0 and & ¢ RP, where ¢y = (v, w, 8) € VY.

It easily follows that problem (7.41) remains invariant under the group
G and the above argument shows that the test ¢§ with uniformly best
average power among the invariant tests for problem (7.2) is equal to
the UMP invariant level o test for problem (7.41). The latter test can
be obtained from the results of Appendix A and Section 4 and it is seen
that the test ¢§ with uniformly best average power among the invariant

tests becomes:

% u'u, + u u
(7.43) ¢3(y) 1 if S =.=§79___JEJ§

1 |
Ul T %Ux

" Z c,

<c

-~ - -

where Ups Uy and u, are the vectors of residuals after least—sqdares

regression of y on C, X and Z, respectively, and where the critical
value ¢ has to be determined from P(S < c; Hé) = O
This test was derived in Section 4, see (4.39), under the assumption

that 8 = (pu, o) is a random vector.




The average probability of a type I error 7 (w, ¢3) and the average
power T (w, ¢3) of the test (7.43) turn out to be 1ndependent of y e ¥,

i.e.,

(-]

f~ ® %

=00

P(S < c; H!

O) = o for all ¢ € v,

©o

=[ .. { ¢§(y)kl(y; WAy, ... dy_

~=00

P(S < c; Hi) = constant for all y e Y.

A final Judgement of the tests ¢1, ¢2 and ¢3 as given in (7.24), (7 29)
and (7.43) can be made by computing the true probability of a type I
error and the true power of these tests, i.e., by computing the value of

the power functions

o

(To48) w0, 0 = [ e | SLDEs 0y, wur dy 5 1= 1, 2, 3

=00 -=00

for some relevant points 6 ¢ 0y and 6 « 01, respectively, where f(y; 6)
is the p.d.f. of a n(y, 021) distribution.
In the above discussion three different approaches were considered in

order to find a test for the problem of testing two linear hypotheses
(problem (7.2)).

These approaches result into:

(i) A test with minimum average risk (¢1)
(11) A test with best average power (¢2).

(i1i) A test with uniformly best average power among the invariant
tests (¢3)

Although it is possible to use other weight functions than those
considered above, the resulting procedures loose much of their
simplicity when a different type of weight functions is chosen. Finally,
we note that when 0 1is considered as a random vector and Wy or W1¢’
i =0, 1 as a prior pProbability distribution, only the interpretation




differs but the results remain the same. That is, in this case we obtain
* *
a test ¢1 with minimum expected risk, a test ¢2 with best expected power

*
and a test ¢3 with uniformly best expected power among the invariant

tests, respectively.




8. Summary of the results and conclusions

In this section we shall summarize the results from the foregoing
sections and meanwhile we shall draw some conclusions. Moreover, we
shall give a .description of the required computations in order to use
the test in practice.

The data set in a problem of testing linear hypotheses consists of

(y, X, Z); where the sample y 1s considered as an empirical outcome of
some nrdiﬁeﬁsional random vector, X is a given nonstochastic nxk matrix
with rank k and Z is a given nonstochastic nx{ matrix with rank 2. Often
X and Z are referred to as the regressor matrices.

Given the above data éet, the problem of testing linear hypotheses

(under the normality assumption) has the following form
(8.1) Hy: y ~ n(X8B, 021) vs. Hy: y ~ n(Zy, 021),

where B eka, Y € R* and 0 > 0 are unknown parameters and where under H;
the points y with Zy = X8, B ¢ Rk are excluded.

Let p = dim(M(X) n M(Z)), suppose that p > 0 and let C be a nxp matrix,
the columns of which span M(X) n M(Z). As we saw above, if we treat the
parameters (u, o) = (X8, o) or (Zy, o) as an (unobservable) outcome from
a certain incompletely specified prior distribution and if we consider
the distributions in (8.1) as conditional on (u, o), the sample y can be
thoﬁght of as originating from a multivariate t distribution with v
degrees of freedom (denoted by the symbol ty)e

In other words, under the above assumptions, problem (8.1) is equivalent

to the reduced problem of testing

2
(8.2) Hé: y ~ tv(CG, ) VO) vSs. Hi: y ~ tv(CG, szl),

where v > 0, w > 0 and § RP are unknown and Vg =1+ X(X'X)-lx',
vy = I+ z(z'z)"lzr,
Similarly, in the case p 0 the reduced problem becomes

e oy o 2 oy o 2
(8.3) HO. y tv(O, w VO) vS. Hl' y tv(O, w Vl)°

Since (8.2) or (8.3) is equivalent to (8.1), it is natural to reject Hy

if and only if Hé is rejected.




That is, we derive the best test for (8.2) or (8.3) and use this test
for problem (8.1).

With the best test we mean the UMP invariant level o test for (8.2) or
(8.3), where a is some preassigned significance level.

It follows that in the case p > 0 we reject Hy if

PN A A

u'u . + u'lu
(8.4) s==0—7ELcc

1 ]
uCuC + uXuX

where Ucs Uy and u, are the residual vectors after least—squares
regression of y on C, X and Z, respectively, and where the critical

value ¢ has to be chosen in such a way that

(8.5) P(S < c3 Hb) =
It should be noted that the probability distribution of S under Hb does

not depend on v, w and S§. In the case p = 0 we reject Hy if

y'y + u,u
S =-——————:E:§ < c.
1 1
y'y + uXuX

Again ¢ is chosen in accordance with (8.5).

Since the computation of the distribution function Fo(s) of S under Hé
requires numerical integration, it is more easy to use the p-value FO(S)
of the test instead of the level a critical value c.

In terms of FO(S) we get the following decision rule, which is

equivalent to S < c:

(8.7) Reject Hj, if FO(S) < a,

where S is as defined in (8.4) when p > 0, or (8.6) if p =0 and where

oo

1 sin e(u; S)
(8.8) FO(S) i - F (‘g mdu.

For large n we can use the approximation




/imp (S - a)

(8.9) Fo(8) ~ N(

/2[(S - an)2 +b_]
ﬁhere N(x) =

The functionsjy(u; s), €(u; s) in (8.8) and a,, b, in (8.9) are known.
They depend on the matrices X and Z through the nonzero eigenvalues and

corresponding multiplicities of the nxn matrix P defined by

P=1+ X(X'0)"Ix - 3z(z'2)" 1z - b2z z) " lzvxextx) T ixe
- ccreyler, 1 p> 0

P=1I+xXX'X"1x - z(z'2)7 1z - 2z )" lzrxexrx) " lxe,
if p = 0.

It should be emphasized that the eigenvalues of P can be found without
first computing P.

As 1s shown in Appendix C and summarized in Table 1 of Section 5 the
eigenvalues of P can be found from the eigenvalues of the kxk matrix
(X'X)-IX'Z(Z'Z)-IZ'X or, equivalently, from the eigenvalues of the 2xg
matrix (2'z)71z'x(x'x)"1x'z.

In the special case of testing (8.1) when M(X) c M(Z) and M(X) # M(Z),
the test (8.7) turns out to be equivalent to the classical F test with
level o applied to this situation. In other words, our general approach
reproduces the F test in the case of testing nested linear hypotheses.

An interesting subcase of the above situation occurs if we want to test:

(8.11) Hy: y ~ n(0, 021) vs.e Hpj:ty ~ n(Zy, 021).

The data set for this problem becomes (y, Z) (the matrix X vanishes) and
if we set ug =y in (8.6), i.e., if we take

y'y + ;'G
_ Z 7
(8'12) S = Zy'y >




again the test (8.7) can be applied and turns out to be equivalent to
the F test for problem (8.11).

Our general approach can also be applied to a number of trivial cases
which occur if p =k =2, n-p< 1, k = n or £ = n, respectively. In
these cases we always get S = ¢ with ¢ =3, 1, 2 and P(S =¢) =1, or S
is not defined which happens innthe case n = p. In all these situations
the "best" test procedure is to reject Hy with probability o regardlesé
of the observations. That is, in the trivial cases the sample y is of no
use in testing (8.1).

As was shown in Section 7, the above test uniformly maximizes the
average (expected) power among all invariant tests whose average
(expected) probability of a type I error does not exceed a.

In order to apply the test in practice a number of computations have to
be carried out. We shall now describe how these required computatiohé
can be made from the given data set (y, X, Z).

We first assumé that k > 0 and 2 > 0.

(i)  Compute A = (X'X)"1X'Z and B = (z'2)"lz'x.
If k < %, compute AB and the eigenvalues of this matrix. When
2 < k, compute BA and the eigenvalues of BA. In the case £ -= k it
does not matter which of AB or BA is computed.
Suppose that AB (or BA) has an eigenvalue 1 with multiplicity
p> 0 and R > O different eigenvalues p;, Py, eee» PR with.
0 < Pj <1 and multiplicities r;, ry, «.., Iy, where rj‘> n,

Then it follows that dim(¥(X) n M(Z)) = p and r = rank(X'Z) =
R
p+t I r..
=1 7
If p > 0, the matrices X and Z usually have precisely p common
columnvectors. Then the matrix C is defined as the nxp matrix

formed by these common vectors.

It may occasionally happen that the number of common columnvectors

is smaller than p. In that case the matrix C can be computed as

outlined in Section 3, see (3.26). .
Compute B = (X'X)-lx'y, Y = (Z'Z)-lZ'y, Uy =y = XB, u, =y = Zy

and if p > 0 also compute § = (C'C)_IC'y and Uo =¥ - Cs.
From (iii) we compute the test statistic:

a'a .+ uta
S = :QTQ___:Z:Z ifp>0
] ]
uCuC + uxuX




] t
S = Elli;t-:zzé if p = 0.
y'y +u X X

In the trivial cases p=k = ¢, n-p =1, k = n or ¢ = n we always
get S = ¢, where ¢ = 4, 1 or 2 and P(S = ¢) = 1. The "best"
proéedhre is to reject HO with probability a through an auxiliary
random experiment.
In the nontrivial cases, since we know n, k, % and from (i), p, R,
P> 92’:"" PR> rl,'rz, ceey Ip and r, we compute the eigenvalues
Tys Tgs eeey Ty and multiplicities My, My, eee, My as indicated in
Table 1 of Section 5.
Compute the p-value of the test

O %-%é%%%?&%m
through numerical integration.

The functions y(u; s) and e(u; s) are given by

Ei
yCu; LENCENCAE s)2u®)?

e(u; ‘ ] arctg((rj - s)u),

where

sin e(u;s) _
u y(u; s) [u=0 =1 T30y T (n-p)s.

(vii) Reject Hy if FO(S) < o

When k = 0 and ¢ > O, instead of (1) we get p = k = 0, R = 0 and r = 0.

Step (iii) becomes: Compute y = (2'2)" Z'y , u, =y and u, =y - Zy. The

X
remaining computations are unchanged. Similarly, if k > 0 and L =0,
step (i) becomes p g = 0 R=0 and r = 0, while under (iii) we
compute B = (X'X)" X'y, uy =y - XB and u, = y. Again the other

computations remain unchanged.




For large n the p-value FO(S) in (vi) can be approximated by

/n_—ﬁ (s - an)
Fo(8) ~ N( )s
2[(s - an)2 +b_]

2
where N(x) = A e te dt and where a, and bn are given by

o v 27

1 1
— m.7T. = ——— +k - L - -3+tr(AB
ap D myTy T (b - b= p —her(an)

J

M
L

A
n-p . 4

1 3 5 1 2
nTp (n+3k =2 - p - itr(AB) + Ztr[(AB) D aj
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Appendix A

Uniformly most powerful invariant tests for a certain class of problems

In this appendix we shall derive a uniformly most powerful (UMP)
invariant test for a certain class of testing problems.

The problems can be formulated as follows. .

Let F be the class of even probability density functions on R". That is,
any probability density function (p.d.f.) f € F satisfies:

(1)  £(x) 20, x = (%] Xy «00 X)) € B
(1i) :f :f £(x)dx) ... dx = 1
(111) £(-x) = £(x), x ¢ R"

Some well-known examples are:

- £(x) = (21) 2ldet(v)] Fexp{~tx'v lx3,

where V is a symmetric, positive definite nxn matrix (a multivariate

normal distribution).

Yy
e 2

- £(x) = — (v + x'V )

" 1) /I

where V is a symmetric, positive definite nxn matrix and v >0
(a multivariate t distribution).

n
- f(x) = 2-nexp{- z |x1|}.
‘ i=1

Let y = (y1 Yo eee yn)' € R® be a vector of (observable) random
variables with p.d.f. '

o e (L=59y,
ag




where § ¢ RP, ¢ > 0, f € F and where C is a given nonstochastic nxp

matrix with rank p.
In the case p = 0, the p.d.f. of y takes the form

c—nfc%), >0, feF.

Suppose that fo, f1 € F are given functions and that we want to test the

hypotheses
(A.1) Hy: £ = £, against Hj: f = £

on the basis of the observation y.

Since (fo, f;) may be any pair of functions from F, we have a whole
class of problems of the type (A.l). In problem (A.l) the parameters

§ € RP and o > 0 are considered as unknown, which means that the
hypotheses Hy and H; are composite. As is typically the case in such
situations, no UMP test exists. The usual approach is to restrict
attention to a certain subclass of tests and then to try to find the UMP
test within this restricted class. When a problem exhibits certain
symmetry or invariance properties, it seems natural to restrict
attention to those tests which satisfy the same invariance properties.
Within this restricted class of invariant tests it is often possible to
derive a UMP test.

It can easily be verified that problem (A.l) remains invariant under the

following group G' of transformations g':

(A.2) G': g'(y) = ay + Ca

for all a e‘Rl, a# 0 and all a ¢ RP,

When p = 0, we have: g'(y) = ay for all a € Eg, a # 0.

The class of invariant tests then consists of all tests (critical
functions) ¢ which satisfy

(A.3) $(g'(y)) = ¢(y) for. all g' e G'.

In this appendix we shall show that the test




-88-

T —(n+l). ,y-Cs
cee f g fl( 'c" ')dal

0o =00

oo [ g (=845

00 =00

L d& do
p

>c

1 °e dspdo

vy if

0 if

is UMP invériant for testing problem (A.l).

If p = 0, we get:

Problems of the type (A.l) are considered in Lehmann [10], Ch. 6, par.
6.3, pp. 218, 219 and 248, 249 (Ex. 5).

In order to derive the UMP invariant test it is often more easy to
transform'the original problem, through a suitable (1-1) transformation
w = h(y), into an equivalent problem with a more simple structure.

After applying invariance considerations to this new problem the
resulting UMP invariant test can then be expressed in terms of y through

the substitution of w = h(y). In our case we consider the linear
transformation

(A.6) w = R'y,
where the orthogonal nxn matrix R is defined as follows




where the columns of the nxp matrix R; form an orthonormal basis for the
p-dimensional linear subspace M(C) spanned by the columns of C.

Consequently, the columns of the nx(n-p) matrix R, are an orthonormal

basis for M(C) .
Since y = Rw is the inverse transformation and |det(R)| 1, the p.d.f.

of w becomes:

o—nf(Rw - CG) _

- N U—nf(R(w - R'CG)).

g

By construction we have RéC = 0 and this gives

' 1
RlCG RlCG

R'CG = ce o

'
R2C5

Hence, after the reparameterization 6 = RiCG and by making use of

w' = (wi wé), where w, = Riy, i=1, 2, we get the following p.d.f.

h(w; 6, o ) of w:

- w,=0 w
(A.8)  h(w; 8, 0) = o E(R (=) + Ry (=2)),

6 cRP, >0 and f ¢ F.

After the transformation w = R'y the problem becomes:

On the basis of the vector of observations w with p.d.f.
we want to test HO: f = f0 vs. Hy: f = fl'

In this problem 6 ¢ RP and o > 0 are unknown nuisance parameters.
The above problem is invariant with respect to the group of

transformation G generated by the following 2 subgroups:

wl + b p
Gy gl(w) o for all b € R".

2

1

Gy: g2(w) =cw, c € Ry c # 0.

This can be seen as follows. In the first place consider Gl'

Let z = gl(w) for b € RP. Then the inverse transformation becomes




w = gzl(z) =

which shows that the p.d.f.

h(g] (2); 8, 0) =

with e* =0+ beRPand ¢ > 0.

Hence, the problem remains unchanged after the transformations

z = g (), 8] € 6.

In the second place, consider G,. If z = gz(w) for ¢ # 0, the inverse

transformation is
-1 z
w = gz (Z) =z,

and the absolute value of the Jacobian equals |c|7™.

The p.d.f. of z becomes

-n -1 -n z1/c-e 22
el h(g, (2); 0, o) = (le]o) f(Rl(——E———) + RZGEE))

_ (| -n z; - cb 22 _ o %
= CIU) ,f(Rl(—'-Ero—) + RZ(W)) =h(z; 6, 0 ).

where 6* = ¢ 8 ¢ RP and o = le]o > 0.
Here use has been made of f(-x) = f(x). The above argument shows that

the transformations z = 8o(w), gy € G, leave the problem unchanged.

Out of all tests ¢(w) we now restrict attention to the invariant tests,
i.e., tests which satisfy

(A.9) $(g(w)) = ¢(w) for all g ¢ G,

where G is the group generated by G1 and GZ'




Since a function is invariant with respect to G if and only if it is a
function of a maximal invariant (see Lehmann [10], Ch. 6, pp. 215-218),
the totality of invariant tests can be characterized by a maximal

invariant statistic with respect to G.
A statistic t(w) is maximal invariant with respect to G if and only if

(1) t(g(w)) = t(w) for all g € G
(ii) t(w*) = t(w) implies that w, = g(w) for some g € G.

As is shown by Lehmann [10], Ch. 6, p. 218, Theorem 2, a maximal
invariant can be derived in steps corresponding to the subgroups G; and
Gy of G.
In our case it is easily verified that the function tl(w) = wy 1is
maximal invariant with respect to G;. In the space of w, the group G,

*

*
induces the following group G2 of transformations 8y°
G i gh(w,) = cw, for all l o cxo0
9% 8y(Wy) = cw, or a ceR, c .

If the elements of the (n-p)=-vector Wy are denoted by Vi’ i=1, 2, «ee,
n-p, it is again easily verified that the function

£ (w,.) = (L _V_Z_ ZE:P:_l)
2 2 V ’ V ’ ..., V
n-p n-p n-p

*
is maximal invariant with respect to GZ’ where it is assumed that

n-p > l. When n-p < 1, there are no maximal invariants and the only
invariant functions are the constant functions.

Since this stepwise procedure yields a maximal invariant with respect to
G, it follows that

(A.10) T = e(w) = (T), Ty eees T

is a maximal invariant statistic with respect to G.




As we saw above a test ¢(w) is invariant under G if and only if it is a
function of T. This means that the class of invariant tests is precisely
equal to the class of tests based on T as defined in (A.10) (i.e., we
only consider tests or critical functions ¥(T)).

In other words, invariance considerations reduce the sample w to a

- maximal invariant statistic T (a reduction form R® to Rn-p—l).

Now, as is ﬁypically the case, invariance considerations not only reduce
the sample space but also the parameter space. In general, a group of
transformation in the sample space induces a group of transformations in
the parameter space and it can be shown that the probability
distribution of a maximal invariant statistic only depends on the
parameters through a corresponding maximal invariant function in the
parameter space (see Lehmann [10], Ch. 6, p. 220, Theorem 3).

The parameter space in our problem consists of all points (6, o, f) with
6 ¢ Rl, 0> 0and £ e {fy, ;).

It is not difficult to see that the group G of transformations g induces
a group G of transformations g in the parameter space which is generated

by the following subgroups (corresponding to G, and Gy, respectively):
G,: 8,(8, o, £) = (6+b, o, £) for all b ¢ R’

_52: Ez(e, o, £) = (c6, |c|o, £) for all c ¢ Rl, c # 0.

‘Again it is easily verified that the function

(Adl)  v(B, o, £) = £

is maximal invariant with respect to the induced group G.

This shows that the probability distribution of the maximal invariant
statistic T only depends on f and no longer on 6 and o. In other words,
invariance reduces the sample space to the space of T and the parameter
space to {fo, fl}' That is, the original problem is reduced by
invariance to a problem of testing two simple hypotheses on the basis of
the observation T,

If the p.d.f. of T is denoted by ky(ty, tys eees tn—p-l) when f = f,
i=20, 1, it follows that ky (1 =0, 1) is completely specified and that
invariance reduces the original problem to:
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HO: T ~ ko(tl, tz, LR Y tn_p_l)

against
Hyps T~ kg(ty, €y eeey thpg)e

By the well-known lemma of Neyman and Peafson the most powerful (MP)

test for the latter problem rejects when

kl(Tl’ Tys eeey T 1)

(A.12)
ko(T(s Tpy eees T_ D)

n-p-
and it follows that this test (which does not depend on 8 and ¢g) is UMP
invariant for the original problem. It remains to show that the critical
region (A.12) of the UMP invariant test can be written in the form
(A.4). To this extend we first derive the p.d.f. of the random vector

wy = (V4 V) ... Vn_p)' for arbitrary f ¢ F.

Let the function 2(x) be defined as

<]

- -
(A.13) 2(x) = {m eee {wf(Rlz + R2x)dz1 cee dzp,

where x = (Xl Xy e xn_p)' and z = (z1 Zy eee zp)'.

Then it is easily seen that 2(x) is a p.d.f. and 2(-x) = 2(x). By
integrating on the elements of w; and using the transformation

z = (w) = 6)/o it follows from (A.8) that the p.d.f. of w, becomes:

W, v, Vv -
(A14)  ByGwys 0) = o PRy o 0PI L 20 0y

where w, = (Vl Vo ees vn_p)'.
Note that the p.d.f. of w, no longer depends on 6. Next we shall derive
the p.d.f. of T by using the transformation

i

ti = v Y i= l, 2, sy n"'p—l
n=p

t =V .

n-p n-=p

The inverse transformation is




Vi = tit

n-p?

Va-p = tn-ps
with absolute value of the Jacobian |tn_p|n—p—1. Then it follows from
(A.14) that the p.d.f. of Ty, Ty, eees, T

has the form:

Tn—p’ where T _ =V

n_p_l’ P n—p’

n-p—-1 —-(n-p) tltn—p t2tn—p tn—p—ltn—gr tn:E
o 2‘( o ’ g - 3 ooy ot ’ o )

£yl .
After integration on the variable tn—p’ making use of the substitution
n = tnrplc and the fact that 2(-x) = 2(x), we obtain the p.d.f. of the
maximal invariant statistic T for arbitrary f e¢F:
‘ n-p-1

(A.lS) k(tl, tz, coey tn_p_l) n l(ntl, coey ntn—p—l’ n)dnc
Note that this p.d.f. only depends on f (through %) and not on 86 and o.
If 45 (1 =0, 1) is defined by (A.13) with f replaced by £, (1 =0, 1),
it is seen from (A.12) that the UMP invariant test takes the form

n-p—-1
n zl(nTl’ eeey nTn_p_l) n)dn

n-p-1
n Lo(nT 5 eee, nTn_p_l, n)dn

y if
0 if

By using T = t(w) (see (A.10)) and defining ¢(w) = ¢(t(w)), it follows
that ¢(w) is the UMP invariant test in terms of Wy, le€e,:

o —8g|o—38




where wé = (V1 V2 cee Vn—p)°

When n-p < 1, the test ¢(w) = o is UMP invariant (a purely randomized
test which rejects with probability o regardless of the observations).
The above analysis is carried out under the assumption p > 0. If p = O,
we can always take R = I, that is w = y. In that case we have G = Gy and
Ly = fi (i =0, 1), and it follows that the UMP invariant test is of the
form (A.16) or (A.17) with p replaced by 0, provided that n > 1. In the
case n = 1, again the test ¢(w) = a is UMP invariant. Finally we shéll
write the test (A.17) in terms of the original observations y. Since

w = R'y, it follows that the test ¢*(y) = ¢(R'y) is the UMP invariant
test in terms of y. In order to express ¢*(y) in terms of the p.d.f.'s
fO and f;, we proceed as follows.

From (A.13) and fi(-x) = fi(x) it is seen that

-p-1
e (g -

n-p-1 n
n fi(Rlz + m szz)dzl coe dzpdn.

Consider the new integration variables § ¢ RP and ¢ > 0 which are

related to z and n through

=4 (ot
z = o ( R1

[V
0 = —D7p

g

Cs + wl)
(A.18)

Since by construction C = RlA for some nonsingular pxp matrix A, it
follows that the Jacobian of (A.18) is equal to

|det(a)| [v,_,| o~C(PF2),

] = = = H
By making using of RlRlC C and lel + R2w2 Rw y we ggt

(A.19) nn'p’lzi(v—"—
. 0 n-p

wz)dn =

-p 7 = -Cé
PP e [ oD (8845

0 - -

|det(a)| | «ee 48 do,

Vip 1
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Substitution of (A.19) into (A.17) yields

T —=(ntl). y=C&
- oo e '-rm (o} fl( o )d&l oo e d(Sde’

*
¢ (y) —~ P " > c
- + —
eece I ag o fo(l(‘)_-'—)ds oo dﬁpdc

00 =00

1

- The proof of (A.4) is completed by observing that there exists a 1-1
correspondence between the group G in w-space and the group G' in
y-space as defined in (A.2). This fact can easily be verified with the
aid of the 1-1 transformation w = R'y with inverse y = Rw. In the case
p =0 it can be shown in a similar way that the test (A.5) is UMP
invariant.

When n—p_ﬁ 1, the test ¢*(y) = a is UMP invariant. In order to obtain
the UMP invariant test with level a, we have to choose y and the
critical value c in such a way that the size of the test is equal to a
preassigned significance level a. Usually we can take y = 0.

In applications it 1s sometimes more easy to use the form (A.17) instead
of (A.4) or (A.5).

An interesting application of the above procedure to the problem of

testing for serial corre;ation in least-squares regression is given by
Durbin and Watson [4].




Appendix B

The probability distribution of the test statistic

In this appendix we shall derive the probability distribution of the
statistic ’

(B'l) _1 9
x'VO X

where Vo and V, are given symmetric, positive-definite nxn matrices and

where

(B.2) x ~ n(0, Vo).

Since Vg is symmetric and positive definite, there exists a nonsingular
= ]
nxn matrix I'j such that VO POFO.

Let z be defined by z =‘P0 X, then we have
and

(B.4)

Let Ay > 0, 1 =1, 2, «ss, n be the eigenvalues of r'v'lr » A the

0’10
diagonal matrix with main-diagonal elements Ai and H the corresponding
orthogonal matrix of eigenvectors, then S can be rewritten as follows:
= EAE

(B.5) 5 = &g

where £ = H'z ~ n(0, I).
Hence, if §' = (gl €y eee E,), we have

oMz
>
[y
y
[y

[N
ot

=
o3
—

oy
e N




where g%, g%, eosy gi are mﬁtually stochastically independent and

g5~ xX(1) for 4 =1, 2, +uu, 0.

As 1is typically the case, not all eigenvalues A; are different. Suppose
that PéVIlro has M different eigenvalues T4 with multiplicities m '
M
j=1, 2, «eey M, where I m. = n.
=1
If we define
j-1
5 2

h|
gi, j=1, 2, ceey M and m =0’

n. = 0

J

i=m, .+1

m, ,+m
j-1

it is seen from (B.6) that

where n;, ngy, ee., ny are mutually stochasfically independent and
o 2
In order to find the distribution function

(B.8) F(s) = P(5 < s)
of S, we introduce the auxiliarly random variable
(B.9) Q(s) = (t. = s)n..

j=1 J J

Since the event

is equivalent to




.=s)n. <0
o (TJ )nJ <0,

it follows from (B.8) and (B.9) that
(B.10)  F(s) = P(Qs) £ 0).

The characteristic function ¢(t; s) = E(eitQ(s)) (where i denotes the
imaginary unit) of Q(s) can easily be found from (B.9) by making use of
the fact that the nj's are mutually independent and ny o~ xz(mj).

We get:

m,
S - ?l
(B.11) o(t; s) = (1 - 2i(t, = s)t) .
=1 j
J
For random variables of the type Q(s) the inversion formula for
characteristic functions can be written in the following form, provided
that M > 1:

(8.12)  B(Q(s) <% =5 -3 [ ¢ [6(t; o) |sinfarg(e(t; 8)) - tx}dt,

where x € Rl and |¢(t; s)] and arg(¢(t; s)) denote the modulus and
argument of the complex-valued function ¢(t; s), respectively.

From (B.1l1l) it can be deduced that:

(B.13)  [4(t; )| = (1+ 41, - 8)%t2)
=1 J

and

m.
(B.14) arg(¢(t; s)) = -51 arctg[2(1j - s)t].
j=1

The above results yield the following expression for F(s):

(B.15) F(s) =.% __% sin e(u; s), .

u y(u;s) i

where




5-
(B.16)  y(u; s) = (1 + (ry - ) Zuy®
j=1

and

m.
(B.17) e(u; s) = =1 arctg[(t, - s)ul.
=1 2 J

The value of the integrand in (B.15) at u = 0 is defined by

(B.1g) Sinelu &) gy, sin ely; 8)

u y(u; s) |u=0 wo U y(u; s)

=% (r.—s)m.=—é— r.m.-%ns.
j=1 J J j=1 JJ

Note that u y(u; s) is a monotone increasing function of u.

The formula (B.15) shows that we have determined F(s) up to an integral.
That is, for any value of s we can compute F(s) through numerical
integration. This method of computing F(s) is known as Imhof's method
and there exists several computer programs for the numerical integration
of (B.15), see for instance Imhof [6] and Koerts and Abrahamse [8].

The process of calculating (or approximating) F(s) consists of two

parts.

(i) The improper integral [ 5%2?%§%i§§2du is approximated by the proper
0 3

sin e(u; s) ..

U
integral | @ 7(u; 8) U.

0

H sin e(u; s) ’ .

(ii) The integral [ —E—;?GTLET—du is approximated by using (the compound)
0 ’ ‘

Simpson's rule.

The errors arising from (i) and (ii) can be made arbitrarily small.
As far as the truncation error from (i) is concerned this can be seen

from the fact that for arbitrary A we have:

< sin e(u; s)
S 3
G ol <A




When s = t; for some i, we get U =

Hence, F(s) can be approximated to any desired degree of accuracy.
In the above derivation the eigénvalues T

J
multiplicities m. are supposed to be given.

and corresponding

For the computation of the eigenvalues of the matrix T Vllro it is not
I 0= Poré. This follows
from the fact that the matrices I'OV1 ro and V1 VO have the same
eigenvalues, as can easily be verified. x'lex

Finally consider the probability distribution of § = ———%T— under the
assumption that x ~ n(0, Vl)' x'VO x

necessary to find a matrix To which satisfies V

If Fi(s) = P(S £ s) when x ~ n(0, Vi), a similar analysis shows that:

Y (u; 8)

gy (u; s) =

Here use has been made of P(S {s) =1 - P(éi%) and the fact that if

5 is an eigenValue of VIIV0 with multiplicity m,, then-%— is an
-1 j
elgenvalue of (V VO) VOvV1 with multiplicity mje

In the above case we have

sin e,(u; s) m

d_
1Y

1
u v, (u; 8) [u=0 2 3
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AEEendix C

The eigenvalues of P

In this appendix X and Z denote given matrices. X is a nxk matrix with
rank k and X'X = Iy Z is a nx¢ matrix with rank ¢ and 2'Z = Ir).
Throughout this appendix, the linear. subspace R® spanned by the column-
vectors dfha nxm matrix A is denoted by M(A).

Let p = dim(M(X) n M(Z)) and‘let the columnvectors of the nxp matrix C
be an orthonormal basis for M(X) n M(Z), provided that p.> 0. Then the

nxn matrix P is defined as

(c.1) P =TIyt XX' - 427' - $2Z2'XX' - CC'.
When p = b,_i.e., M(X) n M(Z) = {0}, we define P as
(C.2)  .? = Iy + X' - Yzz' - }Z2Z2'XX'.

Now we shall show that the eigenvalues (and corresponding multipli-
cities) of P can be deduced from the eigenvalues of the kxk matrix
X'ZZ'X (or equivalently, from the eigenvalues of the #x2 matrix Z'XX'Z).
To this extend we first considér the eigenvalues of the matrices X'ZZ'X

and Z'XX'Z. It is not difficult to verify that:

(1) IfFA is an eigenvalue of X'ZZ'X then 0 < A < 1. The same result
holds for Z'XX'Z.

(i1) X'2Z'X and Z'XX'Z have the same nonzero eigenvalues.

(iii) If p = dim (M(X) n M(Z)) > 0, then X'ZZ'X (and Z'XX'Z) has an
eigenvalue 1 with multiplicity p and vice versa.

Let Pj be an eigenvalue of X'ZZ'X (and Z'XX'Z) with 0 < Pj <1 and

multiplicity rj, j = l, 2, ceey R.
R
When r is defined by r = p + & rj, it can be shown that

(see Bouman [2]): 3=1

(iv) rank(X'Z) = rank(Z'X) =r
(v) X'ZZ'X has an eigenvalue O with multiplicity k-r

Z'XX'Z has an eigenvalue O with multiplicity f-r
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(vi) dim(M(X) n M(Z) ) = k-r, dimM(X) n M(Z)) = 2-r and

dim(M(X) n M(2) ) = ntp-k—-2, where M(A) denotes the orthogonal
complement (with respect to R®) of M(A).

Further we define the linear subspace V by

(C.3) V= (M(X) 0 M(Z)) 8 (M(X) nM(Z))

1 1
® ((X) nM(2)) ® (M(X) nM(2)),

where the symbol ® denotes the direct sum of two linear subspaces.

It follows that

dim(V) = n=2(r-p)
(C.4)
R
dim(V ) = 2(r=p) =2 I r..
. J
j=1
Let hj be an eigenvector of X'ZZ'X corresponding to the eigenvalue'pj,

i.e.,
(C.5) X'ZZ'th = pjhj, j = 1, 2, ecey R'

Note that for each j there are rj linear independent vectors nj.

If we define vy and a3 by

wj = th
(C.6)
1

1
Q4 = 3 + ajZZ Wys a4 € R,

it is easily verified that

(C.7) qj € V, for any aj € Rl
and

C'qj =0
(C.8) XX'qj = (1 + pjaj)wj

22'qy = (1 + a;)zz'w,,

J



for any ajfe'Rl.
From the above results we can determine the eigenvalues of the matrix P.

First suppose that p > 0, then we get:

a) Let q € M(X) n M(Z), then

Pq = q + XX'q - $22'q - $2Z2'XX'q - CC'q =

q+q=-43-4q-q=0
It folloﬁs that 0 is an eigenvalue of P with multiplicity p.
b) Let q ¢ M(X) n M(Z) , then
P§:= q+ XX'q - $22'q - $22'XX'q - CC'q =
q+q-0-0-0=2q
That is, 2 is an eigenvalue of P with multiplicity k-r.
c) Let q € M(X) n M(Z), then
Pq =q + XX'q - $Z2'q - }Z72'XX'q - CC'q =
q+0=-4%q-0-0=1iq
Thereforé, } is an eigenvalue of P with multiplicity g-r.
d) Let q € M(X) n M(Z) , then
Pq = q + XX'q - }22'q - $22'XX"'q - CC'q =
q+0-0-0-0=gq

It follows that 1 is an eigenvalue of P with multiplicity nt+p-k-2.




e) Let qj be as defined in (C.6),.then qj € V and we shall show that
there exist values of aj such that qj is an eigenvector of P.
Moreover, we shall determine»the corresponding eigenvalue Aj.

In order to obtain the desired result we solve the equation
qu = quj for aj and Aj. First we compute the left-hand side of this
equation. From (C.8) we get:

qu

= q. 1g. = 47271q. = 1l77%%xx%'q. - CC'q.
qJ + XX qJ 722 qJ 722" XX q:l cC qJ

- 3 ' - 3 3 . ' .
qj + (1 + pjaj)wj (1 + aJ)ZZ wj 1+ pJaJ)ZZ LF

= (2 + pjaj)wj + (1 - pj)aj - 2)ZZ'Wj.

The right—-hand side quj becomes:

3 . = . 3 . . ' .
JqJ AJWJ + AJaJZZ wJ

Y
This gives:

(2 + pia.dw

. bl . . - ' . = . .+)\. .ZZ' .o
3250Y3 + 3((1 OJ)aJ 2)ZZ w5 AW a V5

J ] 3]

Hence, we are looking for values of aj and Aj which satisfy

2+ pja5 = Ay
(C.9)

%((l - pj)aj - 2) = ljaj.
Solving (C.9) for aj we get:
1 — . .« - = 7. . .
3((1 = py)ay = 2) (2 + pJaJ)’a >
which yields:

2
Cc.10 20.a° + (3 +p)a. + 2= 0.
( ) Pjaj ( pJ)aJ

The roots of this equation are




-(3 + pi) - /(1 - pj)(9 - pj)
4pj

- =3+ 0,) + /(T =909 - 0))

223 o,
23 Py

Substitution of (C.ll) into AJ 2 + pJaJ gives

A :1 L . , ,
Ls-py - —sym =]
Alj 7 (5 pj) 7 ( | DJ)( pJ)

1 1
Ay, =5 (5 =-p.) +5-/(1 =009 -0p.).
2§ =% ( pJ) 7 V( pJ)( pJ)
Note that A1j>\2j =1 and 1et ‘%‘ < )\lj < 1.

It follows that Alj is an eigenvalue of P with multiplicity r; and

i + aljZZ‘Wj'for ij=1, 2, «ee, Ro
Similarly, AZj is an eigenvalue of P with multiplicity ry and

corresponding eigenvectors qu =w
corresponding eigenvector qy = vy + azjzz'wj, i=1, 2, «.., R.
Note that the sum of the multiplicities is equal to:

" p+ (k-r) + (2-r) + (ntp-k-2) + 2 r. = n.
=1
In the secbnd place, consider the case p = 0, then P is as defined in
(C.2). It is easily verified that P has an eigenvalue 2 with
multiplicity (k-r), an eigenvalue % with multiplicity g-r, an eigenvalue
with multipllcity nk-2, an eigenvalue AIJ with multipllcity r. 3

=1, 2, ¢ee, R and an eigenvalue A2j with multiplicity rJ,

i =1, 2, eeey, R, where Alj and A2j are as given in (C.12) and where
R . .

= I T..
j=1

The above results make it clear that the eigenvalues and multiplicities
of the nxn matrix P can easily be determined from the eigenvalues
(1 and p :) and multiplicities (p and r. ) of the kxk matrix X'ZZ'X
(or equivalently, the 2x¢ matrix Z'XX'Z), where it should be emphasized
that»in the applications k and % are often considerably smaller than n.




Appendix D

The distance between two t distributions

In this appéndix we shall compute the distance from a tV(O, I)
distribution to a t (e V) distribution.
.Let £ (x) be the p.d.f. of a t (0 I) distribution and fl(x) the p.d.f.
"of a t (9 V) distribution, i.e.,

(5
n“/Zr(g) VErrTan)

(0.2) £ (x) = (v + (x=0) "V 1 (x-6))

where x ¢ R, v> 0, n=1, 2, 3, +v., 6 € R* and V is a symmetric,
positive-definite matrix of the order nxn.

As a measure of distance we consider

2
To e

where X is a n-dimensional random vector and E; denotes the expectation
taken with respect to the p.d.f. fo.

We first compute the ratio fo(x)/fl(x) From (D.l1) and (D.2) we get

£ (%) -1 oty
-0 —~9)? -
7ioo - Lder(n (e Co0)y 2

(D.4)

v+ x'x

It follows from (D.3) that

1
— oo " -1 ~
d = Hw)ldeeMI™ [ L., f @ELEOW _Ge0ye (4x

00 - - 00




The ratio fo(x)/(v + x'x) takes the form

v
r(n+v)v _ n+;+2

n/2 P(z)

(v + x'x)

and this can be rewrittten in the following way

A
_ ovi2

ntv, 2
(D.6) fo(x) ] C——-)V < 2
¢ v + x'x n/2 r ) w2

[(v+2) + 22
(7

where f,(x) is the p.d.f. of a tv+2(0’ v+2

I) distribution, i.e.,
v+2 _
v
)(v+2) CG?E
Trn/2

r(n-i-w-Z

[(v+2) + x'x ]
Fijﬂ (

Substitution of (D.6) into (D.5) yields

%[det:(V)]m'vf ...f (v + (x=0)"V" L(x-0))F, (x)dx) ... dx_ -

—00 -co

1
= Hdet(MI™Y B (v + (x-0)'V (x-0))- 2P,

where E§ denotes the expectation with respect to the p.d.f. f4 as given
in (D.7).

We have

(D.9) Be(v + (%-0)'V"1(x-0)) = v + E ((Xx-0)'V"1(x-0))
v + tr(VIE [(X-0)(x-6)'])
v+ tr(VIEL(XX') = E.(X)8' = 8(E.(X))' + 60']).

Since it follows from (D.7) that




E,(X) = 0, w2 > 1

233-!— I, w2 > 2,

E,(XX') = w2

we get

(De11)  Exl(v + (%=0)'v"1(x-8)) = v + tr(v'1) + grvlg,
for all v > 0 and n = 1, 2, 3, «e. .

.Substitution‘of (D.ll) into (Df8) gives

1

(0.12)  d = [dee(MI™V v + ex(vY) + o'v le) - =Y,
v>0, n=1, 2, 3, ce0
Note that in the special case V=1 we get d = % 6'0.

Suppose that we want to compute the distance d from a tv(eo, VO)
distribution to a tv(el, Vl) distribution, where d is as defined in
(D.3) with £;(x) the p.d.f. of a £,(8;, V;) distribution, 1 = 0, 1.

Consider the random vector X and the transformation
(0.13)  z =r.Y(x -6

0 07?2
where Iy is a nonsingular nxn matrix which satisfies

(Dol4) F' = V..

ToTo = Vo

Then it is easily seen that Z ~ tv(O, I) if X ~ tv(eO’ VO) and
Z~t, (8, V) if X ~ tv(el, Vl)’ where

. -1
6 = FO (91 - 90)
(D.15)

R N |
V=gV T

It follows that d can be found from (D.12) through the substitution of
(D.15).




1

det(V) = det(I‘_lV (r')'l) = det(V—IV ) = ————
010 01 -1
det(VOVl )

-1y _ P S vomly -1
tx(Vv ) tr(I‘OV1 FO) tr(I‘OI'OVl ) tr(VOV1 )

1 -1 = - 1 1 -1 ] _1 -1 - = - ) _1 -
6'v "0 (91 90) (FO) FOVl FOFO (91 90) (91 90) Vl (91 30),

we get

L
ntv

(D.17)  d = %[det(VOV-ll)] (v + tr(VOVII) + (91'90)"’11(91'90)) - oy

-1,
Note that in the special case V0 = V1 = V, we have d = %(61-60)'V* (61-60).




Appendix E

A large sample approximation to the probability

distribution of the test statistic

In this appendix we shall derive a large sample approkimation to the
distribution of -the test statistic S.
Froﬁ the results of Section 5 and Appendix B it follows that under H!

0
the test -statistic S can be written as

. n~p

LD oagE,
=1
(E.1) s =i
L £
i=1 1

where % < Al <Ay eee £ An—p < 2 are the nonzero eigenvalues of the

matrix P as defined in (5. 32) of Section 5, and where gl, Egs eees En—p
are mutually independent random variables with gy ~ X (1), i=1, 2,

eeey N™D.

There are m different Ai's denoted by } < Tp € 19 < eee 1y £ 2 with

corresponding multiplicities My, My, eee, My, as shown in Table 1 of
M :

Section 5, where I mj = n-p. Note that we always have P('r1 £ S_S_TM) = 1.
j=1

We only consider the case M > 1, since for the trivial case M = 1 we get

P(S = 1;) = 1. |

Moreover we know that one of the Tj'S is equal to 1, say Ty = 1, with

corresponding multiplicity m.s = mtp-k—-f. This implies that

j*
m

*
I + 1 if nro
n-p

and also

nro, j # Jge

Hb), then we get

. M8y
Hp) = P(—E_Ei_i s) = P(Z(A;-8)Eg < 0).




This yields
(E.2)  Fy(s) = P(Qz < 0),

where
n-p
(E.3) = I (X,-s)E,.
S 1=1 i i

We first prove the following result:

Q. = (n-p)(a_-s)
s o Y00, 1) 1f s # 1 and no,

/z@-p)[(an—s)z +b]

where ¥ denotes convergence in distribution and where anband b, are

defined by

Proof: We first observe that a, » 1 and b + 0 if n»o, This easily
follows from Tyx = 1 and ¥ < T4 £ 2 for all n.
Also note that 7 < a, < Ty and b, >0 since M > 1. Let s # 1 and define

(Ai—s)gi. Then Xl, XZ, eoey Xn

-p are mutually independent random

variables and

wy = E(Xi) = Ai-s

2

9

= Var(xi) = Z(Ai-s
We also have

B(| Xm0 ]%) = B(|Oyme)E; = (0g=s) [ = [ag=s[3E(|g-1[)
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Since E(|51‘1|3).ﬁ.28 and |xi—sf35;(2 + |s|)3, it follows that

(ii) E(jxi-ui|3) £28(2 + ISI)3 < e

Moreover, we get

n~-p n-p q—b.
I q I (A;=s) = ¢ A, - (n-p)s
q=1 T oy 1 1=1] * '

RS mTs - (n-p)s = (n-p)(an—S)

[ P =P 2
LA =21 At (n=-p)s”]
i=1

2 M 2
2[ 2 m,t =28 % m,t, + (n-p)s”]

- 2 _ 2
2(n p)[bn + a_ 2san + s57]

2(n-p)[(a-s)* + b 1.

This gives:

n—=p

z
i=1 ¢ {n=p)[28(2 + s> _ 1 V22 + s>

(?;P °i)3/2 - (“;P 5213/2 Vn—p [(an-s)z + bn]3[2
_ ol :

i=1 1

3
EC]X=uy )

Since s # 1 it follows from a, + 1 and bn + 0 that

Lt /22 + |s])3
n+o [(a --s)2 + b ]3/2
n n

= 7/2(

: ! _
Together with 1lim = 0 and the above inequality this implies that
n+o Vn-p
n-p 3
L OE(Xmu )
. 1lim i=ln_p
i
i=1
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According to Liapounov's theorem, see Cramer [3], pp. 215-218, the
mutual independence of the Xi's and (i), (ii), (iii) imply that

n-p n-p
z - L u _ - _
4=1 1 4 1 Qq (n p)(an s) F

/7P 2 /2(n—p)[(an-s)2 +b]

i=1 T

n(0, 1)

if s # 1 and n»», which completes the proof of (E.4).
In the case s = 1 the random variable Q; becomes a sum of kt+f-2p terms

since A;-1 vanishes when Ay = 1 and this root has multiplicity mntp-k-2.

Hence, the theorem of Liapounov cannot be applied and (E.4) does not

hold for s = 1. . ,
From (E.2) and (E.4) we obtain the following large sample approximation

of Fo(s) when s # 1:

Q = (n-p)(a -s) ) Yn-p (s-a ) )

S (a )2 + b 1 V2l(s-a)? + b ]

Fo(s) = P(Q < 0) = P(

and this yields for s # 1

Yo-p (s-a_)
(E.6) Fo(s) = N( L ) for large n,

2[(s—an)2 + bn]

2
where N(x) = L e“%t dt and where a; and bn are as given in (E.5).

o 21

In order to compute aﬁ and bn it is often more easy to use

1
nTp tr(P)

1 2 2

From the definition of P we get:




a = H{-p- (nt+k - 32 - p - +tr(AB))

. -— 1 _é- -_5- _l_ 2 - 2
b gl (ot3k = 4 = p 2tr(AB) + 4tr[(AB) D-a,

where A = (X'X)"1X'Z en B = (2'2)712'x.

The formulae (E.7).can also be obtained from (E.5) and Table 1 of
Section 5.

In appliéations we often néed the value of c which satisfies Fo(c) = aq
for some a between 0 and 4. We shall now derive a large sample
approximation of c based on (E.6).

From Fo(c) = o and (E.6) it is seen that we are looking for an

approximation of c, say x, which satisfies

Yn=p(x-a_)
N( L ) =a, 0< a< 4.
V2l(xma )2 + b

If £, 1s the (100a)th percentile of the n(0, 1) distribution the above

expression can also be written as

/n=p(x-a )

(E.8)
' /2[(x—an)2 + bn]

where t < 0 since 0 < o < %
In other words, we are looking for a value of x which satisfies (E.8)
and xian. »
By taking the square at both sides of (E.8) we obtain
(n-p=2t2)(x=a )2 - 2t%b_ = 0
a n an *

If we assume that nrp-Zti > 0 we get

(x-a )% - qu(a)b, = 0,




or equivalently,
(E.9) x2 - 2a x + a2 -q(a)b_ =0
* n n n n 4

where
2t2

¢ > o.

(E.10) q (a) =
n—p—2t

Note that for a < 4 the condition n—p—2t > 0 is equivalent to
o > N(- ——ED
The discriminant D of the right-hand side of equation (E.9) is equal to

_ 2 _ 2 _ -
= 4a_ - 4la - q (a)b ] 4qn(a)bn-
Since D > 0 it follows that (E.9) has two real roots:

= Yq (a)b

n

+ an(a)bn.

Note that x) = x, = a_  if and only if o = 4.
It is easily seen that only the root X satisfies (E.8) with ta_S_O.
Hence, the large sample approximation of the level o critical value ¢

(satisfying Fy(c) = a) with 0 < a < } becomes:

(E.IZ) od CA = an - an(a)bno

The approximation Cp makes no sense if Cp < T since we know in advance
that c > s which follows from P(T1 < S K< TM) = 1,

When a < % (di.e., t, < 0) it 1is easily verified from (E. 12) that cA > 1
if and only if

(E.13) o> N(d)),

where

Vn—p(rl-an)

(E.14) 1=

/&[(Tl—an)z + bn]




Note that d, < 0 and also that o > N(dl) implies n—p-Zti > 0. In other
words, if we choose a value of a with N(- —%29 < a‘S_N(dl) we get an
approximation cA-S-Tl'
However, unless t; = 1, we have d; » = = if n+o and therefore N(dl) + 0
if n»e, | A »
That is, if T1 < 1 the condition (E.13) is no restriction on o for large
n. In order to see this, suppose that T < 1, then there exists a
constant g such that t; < g < 1 for all n. This implies that for
sufficiently large n we have T <gX« a, (an > 1 if n » =),
Hence, for large n we get Tl-an.ﬁ.g—an < 0 and therefore
(Tl—an)z_z_(g-an)2 > 0, which implies that
bn b
7 <
(ty=a) (g=a )

n

2.

b - b
Since lim 2 - 5 = 0, it follows that lim

n>o (g-an)2 (g-1) N+ (Tl—an)

n

= 0, which
yields

lim
n+o b
1+

(E.15)
n

(rl-an)2

Now d1 can be written as

b
n

(r,ma)”

and it is easily seen from (E.15) that

(E.16) d; » = if nroo,

Finally we consider a large sample approximation to the distribution of

S under Hi.

As 1is shown in Section 5 and Appendix B, under Hi we have




n-p
121 b1
(E.17) 8§ = —t
n—p 1
o
i=1 M 1

with the Ai's and gi's as before.

From

1 = P(——

it follows in a similar way that for large n and s # 1 ‘we can

approximate P(S < s; Hi) by

»’n-p% - a:)

(E.18) P(S < s; HY) =~ 1 - N(
- 252+ b
S n n

— % ]
Y/n=p (an - Eﬂ

’

N
* 12 *
Au%f;)+bJ

m
1o (a2
(an)o

1
=P .4 T2
T
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