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1. Introduction

This paper is concerned with the problem of testing two linear

statistical models, i.e.,

(1.1) H0' = Xa u vs. H : = Zy u,

where 3.7 is a 11-dimensional vector of observations, X is a nxk matrix of

constants of rank k, Z is a nx2, matrix of constants of rank 2,, a E Rk

and y R37' are .unknown parameter vectors and u is an unobservable

n-dimensional random vector which is assumed to be generated by the

following multivariate normal distribution

(1.2) u n(0, a

where a > 0 is an unknown parameter.

Under the assumption (1.2) it is seen from (1.1) that

(1.3) n(p, a'1),

where u = E(Y) = Xa or Zy.

This shows that (1.1) can be formulated as the following problem of

testing linear hypotheses: Given that the observable random vector y is

generated by a n(p, a2I) distribution we want to test

(1.4) Ho: p = X0 vs. Hi: i = ZI * X.

In general, the problem of finding good tests has been attacked in a

variety of ways.

Two major approaches can be described as follows:

(I) Restricted classes of tests.

Since (except in rare cases) there does not exist a test which is

uniformly best, narrow classes of procedures has been proposed using

criteria such as

a) level of significance

b) invariance or symmetry

c) unbiasedness.
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Researches have then sought procedures which improve (in terms of the

power of the test) all others within the restricted class.

(II) Minimax and Bayes procedures.

After specifying a loss function for the problem, the tests are compared

on the basis of their risk functions. Since there does not exist a test

with uniformly minimum risk, we compare the procedures by global

criteria such as

d) the maximum of the risk function

e) the weighted average of the risk function.

Then we choose the test which minimizes the maximum risk (Minimax) or

the averagerisk (Bayes), respectively.

For our problem of testing linear hypotheses approach (I) is only

succesfull in the case of nested linear models. That is, when the linear

hypotheses are nested, there exists a uniformly most powerful (UMP) test

in the restricted class of invariant tests with level a (conditions a)

en b)). This test coincides with the classical F test for the nested

problem. Moreover, if 12,-ki = 1 this test turns out to be UMP unbiased

(condition c)) and equivalent to the well-known t test for this special

nested case.

On the other hand, when the linear hypotheses are nonnested the approach

(I) does not yield a UMP test. In particular, it is shown by Bouman [2]

that in the nonnested case invariance considerations do not reduce the

problem sufficiently far for the existence of a UMP invariant level a

test.

Since we are mainly concerned with the nonnested case and since approach

(I) is not succesfull for this problem, it is reasonable to apply

approach (II) to the problem of testing linear hypotheses.

This approach requires the specification of a loss function. Usually, a

simple loss function is chosen by specifying RI > 0 as the loss

associated with the wrong decision of rejecting Hi when this hypothesis

is true (i = 0, 1) and by assuming that the loss of a correct decision

is zero.

With this loss structure it can be shown that every unbiased test with

size a = 1/(k0 + 1) is a minimax test for our problem.
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In particular, this implies that the (trivial) test which rejects Ho

with probability a = 2.1/(t0 + Xi), regardless of the observations, is a

minimax test. It should be noted that the latter test is a purely

randomized test which can be performed through an auxiliary random

experiment. In other words, the minimax approach does not lead to a

satisfactory solution for our problem.

Let us next consider the Bayesian approach. As is shown by Zellner [12]

and Gayer and Geisel [5] (see also Judge et.al. [7]), with the above

loss structure and suitable prior distributions (weight functions) for

the parameters it is possible to derive the Bayes.test, i.e., the test

which minimizes the expected (average) risk, for the problem of testing

linear hypotheses (nested as well as nonnested). It should be emphasized

that this approach requires a completely specified loss function and

completely specified prior distributions. That is, in order to apply

this principle it is necessary to assume not only that the loss function

is known and that the parameters are random variables but also that the

loss function has a very simple form and that the prior distributions

are completely known.

Since these assumptions are usually not warranted in applications of the

type we •consider, in this study we choose a different approach in order

to find a test for our problem. This approach, which can be thought of

as a combination of the approaches (I) and (II), does not require a loss

function nor completely specified priors (or weight functions). To be

more specific, instead of expected (average) risk we concentrate on the

expected (average) power function of a test and moreover we assume that

the parameters possess certain incompletely specified prior

distributions (i.e., distributions containing unknown parameters).

Within this framework we try to find the test which maximizes the

expected power under H1, in the class of tests whose expected power

under Ho does not exceed a (a preassigned level).

However, since we work with incompletely specified prior distributions,

the expected power function will depend on the unknown prior parameters

and there does not exist a test which maximizes the expected power

uniformly, i.e., for all values of the prior parameters. Since the

problem of testing linear hypotheses remains invariant under a certain

group of transformations, a possible way out is to restrict further

attention to the invariant tests and then to try to solve the above

problem within this restricted class.
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The outline of this study is as follows.

In Section 2 we derive the Bayes test for our problem under the

assumption of a completely specified loss function and completely known

prior distributions. We also show that the Bayesian approach can be

considered as a possible way of reducing the original problem to a more

simple form.

In Section 3 we introduce certain imcompletely specified prior

distributions and derive the corresponding reduced problem.

Section 4 is concerned with the problem of finding the UMP invariant

test for the reduced hypotheses.

The probability distribution of the test statistic is derived in Section

5.

Although we are primarily interested in the problem of testing nonnested

linear hypotheses, our approach is applicable to the nested as well as

the nonnested case, and in Section 6 we reconsider the nested case.

In Section 7 we show that the test possesses the above stated optimum

property. A summary of the results and a description of the required

computations are given in Section 8. Finally, in the appendices some

special results are proved.
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2. The. Bayesian approach to testing linear hypotheses

As we saw in the foregoing section the problem of testing linear

hypotheses can be formulated as the problem of testing

(2.1) H0:.11 = Xa vs. H1: p = Zy * )(a

on the basis of the observable random vector y with probability

distribution

(2.2) u, a21),

where a E Rk, y E R and a > 0 are unknown parameters and X and Z are

given nonstochastic (regressor) matrices.

The matrix X is of the order nxk with rank k and Z is of the order nxt

with rank St, where k < n and 2, < n.

Before considering the Bayesian approach we shall rewrite the above

problem in a slightly different form.

In general, letP4(A) denote the linear (vector-)subspace (of Rn) spanned

by the columnvectors of the nxm matrix A. Using this notation, the above

problem can be reformulated as follows:

On the basis of the observable random vector y with a probability

distribution as given in (2.2) we want to test

(2.3) Ho •. II E /40( vs. • p EH1. WZAM(X).

Note that a > 0 is an unknown nuisance parameter.

In the Bayesian approach to this problem the parameters presented by u

and a are considered as unobservable random variables with a known

probability distribution, which reflects our prior knowledge (ideas).

The distribution (2.2) is now considered as the conditional distribution

of y given and a. That is, if f(ylu, a) denotes the conditional

probability density function (p.d.f.) of y given p and a, we have:

(2.4) f(ylp, a) = (2) 2 -nexPf- 
1

a 2 (Y-10 1(Y-01.
2a
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Often it is convenient to represent the prior information in such a way

that the required computations can be easily performed and that the

functional form of the posterior distribution (the probability

distribution of the parameters given the sample y) is the same as that

for the prior distribution. Such a prior is called natural conjugate and

it treats prior information as if it were a previous sample of the same

process.

In our case the natural conjugate family is formed by the so-called

normal-inverted gamma-2 distributions. The joint prior distribution of p

and a is defined by specifying the marginal distribution of a and the

conditional distribution of p given a.

For the marginal distribution of a we choose the inverted gamma-2

distribution (see Raiffa and Schlaifer [11], p. 228), which is defined

through the following p.d.f.:

(2.5)

2
vw

h(a) = 
2 (,vw

2
.) a e
v/2 -v-1 2a

2
, a > 0--T- 

r(i)

= 0 elsewhere,

where the parameters v > 0 and w > 0 are supposed to be given.

The first two moments of the distribution are:

(2.6)

E(a) = w iF7  2  , v > 1
r()

Var(a) =w
2 v

- [E(a)]
2
, v > 2.

v-2

When v+00, the limiting distribution is degenerate with all probability

mass concentrated in the point a = w.

Next we consider the specification of the conditional distribution of p

given a. Here we have to distinguish between Ho and Hi. Under Ho we know

that p Mr(X) and if we treat p as an outcome of a random vector, it is

necessary to require that the total mass of the distribution of p given

a belongs to NX) and not to any linear subset of dimension less than k.



A necessary and sufficient condition for this being the case is that

E(Pla) = xn

Cov(pla) =

where n e R1 . and Q is a symmetric positive-definite matrix of the order

kxk and where it is assumed that the moments exist.

The vector T1 and the matrix Q may depend on a. In view of this a natural
candidate for the conditional prior distribution of p given a under H0)
is the following singular normal distribution

(2.7) la - a2XQX'

where n E Rk is a given vector and Q is a given symmetric, positive-
definite kxk matrix.

Under H12 similar considerations lead to the prior

(2.8) Hi.• I a (ZE, a MT),

where E E 101 is a given vector and A is a given symmetric, positive-
definite SOO, matrix.

It should be emphasized that the singular normal distribution has no
density function (with respect to Lebesque measure in Rn). This
distribution is defined in terms of its characteristic function. That
is, if P is the probability measure of a n(0, r) distribution, P is
uniquely determined by specifying

f eit'xdP(x) = exp{it10 - ert},

where t E Rn and where i denotes the imaginary unit. Although this
definition also works in the case of a nonsingular normal distribution,
the latter distribution is usually defined directly in terms of the
well-known density function.

The product of the distributions in (2.7) and (2.8) with the
distribution as specified by (2.5) yields the joint prior distributions

of (p, a) under H0 and H12 respectively.



Note that these prior distributions are completely specified, i.e., they

do not contain unknown parameters.

If we think of the unknown parameters as (unknown) outcomes of random

variables possessing a (known) prior distribution, the sample y can be

considered as the result of a two—stage process. Under Ho for instance,

first (p, a) is selected according to the joint prior distribution given

by the product of the distributions specified in (2.5) and (2.7). Then,

given the outcome (p, a), the sample y is selected according to the

distribution specified by the p.d.f. f(ylp, a) as given in (2.4).

Combining these two stages, we can think of y as an outcome form the

marginal distribution of y under H. (This distribution is often called

the predictive distribution under Ho.)

The marginal distribution of y under Ho can be computed from the joint

distribution of y and (p, a) under Ho, where the latter distribution can

be found by taking the product of the prior distribution of (p, a) under

H and the conditional distribution of y given (p, a).0

Since the joint distribution of y and (p, a) does not have a density

function, the p.d.f. of the marginal distribution of y under Ho cannot

be derived in the usual way through integration on p and a.

However, by making use of the fact that every probability distribution

has a unique characteristic function, we shall derive the conditional

p.d.f. of y given a (under H0). The latter p.d.f. together with (2.5)

then yields the p.d.f. of the marginal distribution of y under Ho.

Let i be the imaginary unit and t be a vector in 0, then the

characteristic function of the distribution of y given a is defined by

E(eittYla).

According to the double—expectation theorem we have:

(2.9) E(
it'Yl, 1.e --1sr p, a)),E(Eke

where where the inner expectation is taken with respect to the conditional

distribution of y given (p, a) and the outer expectation with respect to

the conditional distribution of p given a under Ho.

From (2.4) it follows that

(2.10) E( it' 2 a) = exp{ittp — la et}.



Substitution of of (2.10) into (2.9) yields

(2.11) E(eittY1 = E(exp{it' 4a2tio)

2 1
20 t

(e--11110•

As we saw in (2.7), under Ho, the conditional distribution of p given a

is n(XTI, a2XRX'), which implies that

(2.12) = exp{ittX - 4a2 t t}.

Substitution of (2.12) into (2.11) gives

(2.13)

where

it'Yla) = exp{-1a2Ct} exp{it'Xn - a2t'XQX't}

(2.14) p = Xi
0

and

2.15) = I +

= explit'T.10 a eV
0
t)

It is not difficult to verify that Vo is symmetric and positive

definite.

The result (2.13) shows that the distribution of y given a (under Ho) is
- a nonsingular n(po, a

2 
Vo) distribution. Hence, the p.d.f. k0(y) of the

marginal (predictive) distribution of y under Ho can be found from

00

(2.16) k (y) = f (2n) 2 a-ndet
-1 1(V

0 
)] expf- PV-1(y - T.1 )1 h(a)da,

0 0

where h(a) is defined in (2.5).
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Substitution of a = z 2 and integration on z yields

n+v, 2 -n n+v
v w

2 
(2.17) k (y) =0 Q0(Y)) 2

717 r() (liaTIT)

where

(2.18)
-1 - 2(MY) = CY - 'vo CY - o 

.

The density in (2.17) is the p.d.f. of a multivariate t distribution,

see Raiffa and Schlaifer [11], pp. 256-259. In general, when the

n-dimensional random vector x has the p.d.f.

(2.19) f(x) -

rn+r, 2
r r

2

r(1) 1/det(V)
2

r + (x—O)'V-1(x—O))

n+r
2

2

we say that x has a multivariate (n-dimensional) t distribution with r

degrees of freedom and parameters 8 and V, where r > 0, 8 e 0 and V is

a symmetric, positive-definite nxn matrix. We use the notation

x tr(8, V). The first two moments of x are

(2.20)
E(x) = 8, r > 1

Cov(x) =
r— , r > 2.

If r 03, the limiting distribution of x is n(8, V).

It follows from (2.17) and (2.18) that the marginal distribution of y

under H0 is a multivariate t distribution 
with v degrees of freedom and

parameters 110 and w2 V0, i.e.,

(2.21)
- 2

t w V
0 
).

v 0' 

In a similar way, under Hi we can think of the sample y as an outcome

from the marginal (predictive) distribution under H1 with the following

p.d.f.
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n+v) v2 w-n n+v
2 

2(2.22) k
1(
y) - Ql(Y))

]T  v
7r r(-) idet(V )2

where

(2.23) Q ( = (y -

Here we have

(2.24) u
1 
= ZE

v-1

and

(2.25) V1 = 1+ ZAZi.

Again the marginal distribution of y is multivariate t, that is

(2.26) H y t 7( 1, w2V ).

Since u0, ' Vu1' V, vandware given, it is seen from (2.17) and0 1
(2.22) that the marginal distributions of y under Ho and Hi are

completely specified.

In other words, by considering ii and a as random variables with known

prior distributions under Ho and Hi, the problem is reduced to that of

testing the following simple hypotheses:

- 2(2.27) H('): y tv(-1-10, w2V) against HI: y tv(ul,

When the p.d.f. k(y) is interpreted as the conditional p.d.f. of y

given Hi and if pi is a prior probability assigned to Hi, i = 0, 1

1), we can derive the Bayes test for our problem.

Let ti > 0 be the loss associated with the wrong decision of rejecting

Hi when this hypotheses is true (i = 0, 1) and let the loss of a correct

decision be zero, then the expected risk or Bayes risk r() of a test

(critical function) (I) is equal to:
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(2.28) r() = 2,0p0E0(E(4(y)lu, a)) + t1p1E1(E(1 (Y)111, a)),

where El is the expectation taken with respect to the prior distribution

of (u, a) under Hi, i = 0, 1.

From the double—expectation theorem it follows that

(2.29) r(4)) = 2,01)00(Y); HP ± 2,1P1E(1 gY

• • • f [koPo (Y) — 2,1131 (Y)] (Y)dYi ... dY,

where y' = (y1 y2 ... yn) and where k0(y) and k (y) are as defined in

(2.17) and (2.22), respectively.

Hence, the Bayes test, i.e., the test (I) which minimizes r() has the

form

(2.30) gy) = 1 if z0p0k0(5) giki(Y

= 0 otherwise.

<0

That is, the Bayes test rejects Ho((y) = 1) if

k1(y) pot()
(2.31)

k0(y) p12,1

and accepts Ho((y) = 0) otherwise.

It easily follows from (2.17) and (2.22) that the Bayes test rejects Ho

when

2v + Qi(y) det(V0) 
n+v P 51')n+v.(2.32)

v + Q
0 
(y) < [det(V 

(-11

1
)1 )

0 0

Further it is not difficult to verify that the test (2.32) is also the

Bayes test for the reduced problem (2.27), provided that the same prior

probabilities and losses are assigned to the latter problem.

Moreover, it follows from the lemma of Neyman and Pearson that this test

is most powerful (of its own size) for testing (2.27).

If one finds it difficult to specify pi and RI., i = 0, 1, it is also

possible to compute the most powerful test of size a (where a is a
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preassigned significance• level) for problem (2.27). Again it easily

follows from the Neyman—Pearson lemma that this test has critical region

(2.33)
v Q1(y)

v Q0(Y)
c,

where the critical value of c has to be computed from

• v + Qi(y)
f 

( 

) 

V + Q0(y) 
c; 0) = a.

Although the distribution of y under H('0 is known, the critical value c
is very difficult to compute.

An advantage of the Bayesian approach is that, through complete
specification of the prior distributions, the original problem is
reduced to a simple problem of testing two simple hypotheses. On the
other hand, however, it can be expected that this method is sensitive
(at least for relatively small samples) for the specific choice of the
priors or the parameters of the prior distributions.
If we consider the Bayesian approach as a possible way of reducing a
problem, it seems reasonable to choose incompletely specified prior
distributions (i.e., distributions which contain unknown parameters). In
this manner ae do not obtain a problem of testing two simple hypotheses,
but it turns out that for a suitable choice of the prior distributions
the reduced problem can be solved by applying invariance considerations
to it. The resulting test is uniformly most powerful (UMP) among the
invariant tests and can also be obtained by means of the generalized
likelihood—ratio (GLR) criterion, as we shall see in the next sections.
For a slightly different derivation of the Bayes test (2.32) and a
discussion of the Bayesian approach to testing linear models we refer to
Gayer and Geisel [5] and Zellner [12].
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3. Incompletely specified prior distributions

In this section we shall consider incompletely specified prior

distributions for the parameters p and a, i.e., prior distributions

which contain unknown parameters.

To be more specific, we again assume that p and a are random variables

with prior distributions belonging to the class of normal-inverted

gamma-2 distributions, but we no longer assume that the parameters of

these prior distributions are completely known.

We recall that the original problem can be formulated as:

(3.1 Given that the observable random vector y has a n(p, a
2I)

distribution, we want to test

Ho: p (X) vs. Hi: p E Mr( ) X) ,

where a > 0 is unknown.

As before, we consider the n(p, a2I) distribution as the conditional

distribution of y given (p, a) and we treat a as an (unknown) outcome of

a random variable with the following p.d.f.:

2
VW

2 (vw
2
)v/2 a-v-le 2a

2
(3.2) h(a) = , a > 0

2r()1

= 0 elsewhere,

where v > 0 and w > 0.

Moreover, given a, we think of p as an (unknown) outcome of a random

vector with the following distributions under Ho and Hi, respectively:

(3.3)

H0: la n(Xfl, a2XQX')

H1: pta - (Z, a2ZAZ'),

where fl E Rk, E e Rt, Q is a symmetric, positive-definite kxk matrix and

A is a symmetric, positive-definite txt matrix.
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In Section 2, we saw that treating p and a as random variables with

prior distributions as stated in (3.2) and (3.3) is equivalent to saying

that y is a sample from either a t
v
(p

0' 
w
2
V
0 
) or a t 

(pl' 
w
2 

1)
v 

distribution. That is, by treating p and a as random variables the

original problem i "reduced" to the problem of testing

(3.4)

where•

(3.5)

H':
0

=

p =
1

t

= I + XQX'

= I + ZAZ'.

w
2
V
0

vs. H'
1
: y t

2
w V

When no further restrictions are placed on v, w, fl, E, Q and A, we

cannot say that problem (3.4) is a reduction of the original problem

(3.1) and problem (3.4) turns out to be too complicated for a solution.

On the other ',Land, as we saw in Section 2, by completely specifying the

prior parameters v, w, n, E, Q and A the reduced problem (3.4) becomes a
problem of testing two simple hypotheses. However, in this case we are

risking the possibility that our guesses of the priOr parameters are
wrong and that the resulting most powerful test (see (2.33)) is bad.

We are looking for a situation somewhere in between these two extreme

cases. The original problem (3.1) itself can be seen as a limiting case

of such a situation. This follows from the fact that for vi-co, Q+0 and
- 2/1+0 we have 

tv(p0' 
w
2
V ) 

n(p0' 
w
2
I) and t

v
(p w

2
V1) n(p1' 

63 I).0
Hence, if v+00, Q-4-0 and A+0, and if we consider fl E R'„ E E R-9 and w > 0
as unknown, the reduced problem (3.4) becomes:

(3.6)
H'•0

y n(Xn, w2I) vs. HI: y n(Z, w2I

which is equivalent to problem (3.1).
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In order to find suitable restrictions to be placed on the prior

parameters, we first observe that the original problem (3.1) is

invariant under the transformations

(3.7) X XA and ZB,

for all nonsingular kxk matrices A and 2,x2, matrices B. This is easily

seen from the fact that M(CA) = M(X) and M(ZB) = M(Z) for any

nonsingular A and B.

The transformations (3.7) can be interpreted as changes of the

coordinate system in which the explanatory variables are expressed.

Since the original problem (3.1) is independent of the particular

coordinate system chosen, it is natural to require that the reduced

problem (3.4) satisfies the same property. That is, we require that the

v
— 
0

t (p w V
0 
) and the tv(p

12 
w
2
V1) 

distribution remain unchanged after2 
2 
, 

the transformations (3.7).

As is seen from (3.6) this can be achieved in a simple way by specifying

n, Q, E and A as follows:

(3.8)

Ti = (X'X)-1X'q0

(Z'Z)-1Vci1

A = (Z'Z)-12

where qo E Rn and ql E Rn are specified independently of X and Z. With
this choice of the prior parameters, Tio, Vo and V become

(3.9)

p - = X(X'X

p - = Z(Z'Z) 1Z'q
11

Vo = I + X(X' X) 1X'

= I + Z(Z'Z)-1Z',
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which clearly are invariant under (3.7).

In the second place we consider the choice of p and p
l' 

or
0

equivalently, qo and ql. Since the original hypotheses Ho and H1 provide

no information concerning qo and ql and since Hb and Hi in (3.4) take

the place of Ho and Hi for the purpose of testing problem (3.1),

knowledge about qo and ql should provide as little help for this task as

possible. We might expect that the problem of testing Ht) against HI

becomes more difficult when H' is "close" to H. For this reason we try0 1 
to specify qo and ql in such a way that H6 is as close as possible to

HI.

What we need is a measure of "distance" between a distribution under H'
0

and a distribution under H. That is, we are looking for a nonnegative1
number d which measures the distance between a t (p

0' 
w
2
V
0 
) and a

v 
t
v 

w2
 
V1) V
1
) distribution, where p p 

, 
V
0 

and V1 are as 
specified in0 1 

(3.9).

We first consider the general case. Let P0 and P1 be probability

distributions in Rn and suppose that these distributions have density

functions (with respect to Lebesque measure) f0(x) and fi(x),

respectively (x E Rn).

Let the function, p(z; be defined as

A
(3.10) p(z; ) 

= z
x , z > 0, A * 0,

where by definition

(3.11) p(z; = lim p(z; A) = ln z.
A+0

Then the generalized Kullback—Leibler "distance" from Po to P is

defined as:

(3.12)
f
0 
(X)

= E0[p(TT675-; A)], A> 0,

where X E Rn is a stochastic vector and where the expectation E is

taken with respect to Po.

It may be shown that for any A > 0 the number dx is always defined

though possible infinite. Moreover we have for any A E [0,03):
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dx > 0

= 0 if and only if P

Note that for we get

(f0(X) = Eo[lrqf (xN)J
)1
,

1' '

= 
pl'

which is the well-known Kullback-Leibler number, see Kullback 9] and

Bickel and Doksum [1], P. 226.

In the case of measuring the "distance" between two nr-dimensional t

distributions with the same number of degrees of freedom v, a convenient
2

choice of A turns out to be A = 
nv
. For this choice of A the required

computations are easily performed and moreover for any n and any v > 0

the number dX takes on a finite value.

As is shown in Appendix D, when Po = tv(po, w
2
V0), Pi = t

v
(p w V )

where po, pi, Vo and Vi are as given in (3.9), and fo and fl are the

corresponding p.d.f.'s, the "distance" d = d 2 from Po to PI is equal

to: n+v

(3.13)

1

d = Edet(V
0
V
-11
)] 

nv
[v + tr(V

o
V

1

Et)
2

,-1-. n+v
-p0) V (P -P)] - 2 •

When we consider d as a function of qo and ql (through p - and Ti, see (3.9))
it is easily seen that d has the minimal value

1

(3.14) = I[det(V V )] 
n+v 

[v + tr(V V
-1
)] -

-1
0 0 1

for all points qo and ql which satisfy po

Hence if we restrict attention to the points qo and ql with the property that
_

p - = 
0 

p
1, 1

the hypothesis H' appears to be "closest" to H'. 
0 

Since we know from (3.9) that To = X(X'X)
1

p - = Z(Z'Z)- Z'q
1 

_E iV(Z), the restriction 71
1 

(3.15) ji,, = U1 = p € 14(X) n M(Z).

€M(X) and

= p implies that
1
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The linear subspace M(X) n M(Z) plays an important role in the testing

problem. Note that in the original problem (3.1) the points (p, a) with

p E M(X) n M(Z) and a > 0, which belong to Ho, are limit points of H1. That

is, these points form the boundary between the hypotheses Ho and H.

If we suppose that M(X) n M(Z) has dimension p, it is not difficult to verify

that (see Bouman [2])

(3.16) 0 < p < r < min k,

where r = rank(XZ).

In general, hypotheses Ho and H1 are said to be nested if and only if every

point in Ho is a limit point of H1 or vice versa. Otherwise the hypotheses are

called nonnested. We speak of strictly separate hypotheses if Ho and Hi have

no common limit points. This means that the hypotheses in problem (3.1) are

nested if and only if M(X) c M(Z) or M(Z) C MOO, which is equivalent to

p = dim(M) n M(Z)) = min(k,t). Further it follows that our problem is

nonnested if and only if p < min(k,t).

Since the point p 0 always belongs to M(X) n M(Z) the hypotheses in problem

(3.1) are never strictly separate (the points (0, a) with a > 0 are always
common limit points of Ho and H1).

The above considerations show that if 
74,= 

is the only restriction placed1
on the prior means, the common prior mean p belongs to the boundary between
MOO and M(Z) but is otherwise unknown.

In other words, if p > 0 we have

(3.17) -171 = CS,

where S E RP is supposed to be unknown and where C is a nxp matrix, the

columns of which form an arbitrary basis for the p-dimensional linear subspace

MOO fl M(Z). When p = 0 we have M(X) fl M(Z) = {0}, which implies that

(3.18) p = 0.

If no further restrictions are placed on the prior parameters v > 0 and w > 0,

the above specification of E, Q and A yields the following prior

distributions of p and a:
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The prior distribution of a has p.d.f.

h(a) = 
2 (vw

2
)v/2a-v-1e 2a

2
, a > 0(3.19)

= 0 elsewhere,

2
VU)

where v > 0 and w are unknown parameters. When p > 0, the conditional

distributions of u given a are

(3.20)

Ho: pa n(C6, a X(X'X -1X')

H: pla n(C6, a2Z(Z'Z)-1

. where 6 e RP is unknown.

In the case p = 0 we have

Ho: pta n(0, a2X(r X) ir

H : pa - n(0, a2Z(Z'Z)-1Z')

(3.21)

2

Note that the prior distribution of p and a are incompletely specified.

As we saw above, by treating p and a as random variables with the stated prior

distributions the original testing problem is reduced to

(3.22) r: t (C6
' 

w
2
V
0 
) vs. • tv(C6, w

2
Vi)Ho 

v 

for the case p > 0, where v > 0 w > 0 and 6 E RP are unknown parameters.

When p = 0 we get

(3.23) 2y 4- t(0, 0A,
0 

)1 vs. H." y t
v
(0, w V )vi

with v > 0 and w > 0 unknown.

The matrices V0 and V1 are given by

(3.24)

= I+ x(rx) ix'

V1 = I + z(z,z)-1



The columns columns of the nxp matrix C form a basis for the linear subspace

M(X) n M(Z). It will be clear that C can always be constructed from the given

matrices X and Z.

The problems (3.22) and (3.23) are invariant under the transformations (3.7).

This follows from the fact that M(XA) n AZB) = M(X) n AZ). When p = 0 we
obtain WXA) n M(ZB) = {0}. In the case p > 0 the construction of a basis for

Agx,A0 n AZB) from the matrices XA and ZB yields the nxp matrix C* which

satisfies C* = CD for some nonsingular pxp matrix D. Hence after a

transformation of the type (3.7) the vector C6 is represented by C*6* with

6* =D-16 E RP. Together with the fact that Vo and V1 in (3.24) remain

unchanged under (3.7), this shows the stated invariance property.

The hypotheses H and HI in (3.22)• and (3.23) are composite and, as is
typically the case in such a situation, no UMP test exists for the reduced

problem. However, if we restrict attention to the invariant tests a UMP test

can be found within this restricted class as will be shown in the next

sections.

Now it remains to show how the matrix C can be found from the given matrices X

and Z (in the case p > 0). As is shown in Bouman [2] the dimension of

M(X) n M(Z) is. equal to p if and only if the matrix (XtX)-1X'Z(Z'Z)-1Z'X (or

equivalently, (Z'Z)-1ZT X(X'X)-1XIZ) has an eigenvalue 1 with multiplicity p.
Suppose that the value of p is given, then in most applications the matrices X
and Z have precisely p columnvectors in common.

These common vectors can be taken as the matrix C, which shows that in most
cases it is very easy to find the matrix C.

It occasionally happens that X and Z have less than p columns •in common. In
this case we can always find a nxp submatrix X1* of X and a nx(k-p) submatrix
X2* of X such that:

rank([Xl*i *]) = k and rank([X Z]) = k+2,-p.

Then there exist matrices G and G2 with G2 * 0 such that1

(3.25) = x2* + ZG2'

Hence if we can find GI we can take

(3.26) C = X * - X2*Gi.
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The matrix G1 is obtained from

(3.27) G= (F'F)-1F'X1*,

G,
where G = [il and F= [X2*":

Obviously, the above procedure also works in the case where X and .Z have

precisely p columns in common.

Finally we shall consider the number d from (3.14) which measures the

"closeness" of H to H'
1 
in (3.22) and (3.23). When the original hypotheses H0 0

and H1 are nested we might expect a small value of d, i.e., we might expect

that Hc is close to HI. On the other hand, when Ho and H1 are nonnested we

might expect a large value of a.
We shall now show that this is precisely what happens. From (3.14) and (3.24)

it is seen that a depends on X and Z through Vo and V1 and in order to
-1investigate this dependence we first compute det(V0), det(Vi) and Vi .

It can easily be verified that

det(V ) = 2
k

(3.28) det(V ) = 2'

-
V = I - 1Z(Z'Z)

Substitution of (3.28) into 3.14) yields

t-k
n+v 1 1 1 n+v(3.29) - 2 [

n+v 
-
4 
+ --1( - -

4
qj -2 2 2 '

where t is defined as

(3.30) t = tr[X(X'X)-1X'Z(VZ

The number t can be considered as a measure of the degree of "nonnestedness"

of the original hypotheses Ho and H1.

For given values of k and t we always have

(3.31) 0 < t min(k, t).



Further it it can be shown that H0 and H1 are nested, i.e., M(X) cM(Z) or

M(Z) C M(X), if and only if t = min(k, t). Also, Ho and H1 are nonnested if

and only if t < min(k, t). It follows from (3.29) that a attains a minimum
value (for given k and t) when Ho and Hi are nested. The more Ho and H1 are

nonnested, i.e. the smaller the value of t, the larger the value of a.
For given k and t it is seen that a attains a maximum value for t = 0, which
corresponds to the most extreme nonnested case moo M(Z), i.e., X'Z = O.

• The trivial nested case M(X) =M(Z) which occurs if and only if t=k=t yields

= 0, that is, in this case we have HI!), = Hi. Note that M(X) = M(Z) if and

only if Vo = V1 and that the converse of the above statement is also true,

i.e. "a = 0 implies that M(X) = M(Z).
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4. A UMP invariant test for the reduced problem

This section is concerned with the problem of finding a solution for the

reduced testing problem as defined in the foregoing section.

That is, if p = dimbV(X) 11/4(Z)] > 0, we consider the problem of testing

2
0

(4.1) H. ' t
v
(C6, w V ) vs. H' t

v
(C6 w V 

. 1
.. 

1

and if p = 0 we consider

,
(4.2) y t ( , w2

 
V0) vs. HI: y t(0, w

2
V

where C, Vo and V1 are given matrices. C is of the order nxp with rank p,

V I + X(X'0 - - X) 1X' and V1 = I + Z(Z'Z)-1Z'. On the other hand, v > 0, w 
> 0

and 6 c RP are unknown parameters.

As is typically the case in a situation of testing two composite hypotheses,

no UMP test exists for the problems (4.1) and (4.2).

Then the usual procedure is to restrict attention to a certain subclass of

tests and solve the problem of finding the UMP test within this restricted

class. When a problem remains invariant under a certain group of

transformations of the sample space onto itself, it is natural to restrict

attention to tests which exhibit the same property. That is, we only consider

tests (functions of y) that are invariant with respect to these

transformations.

The transformations can be interpreted as changes of the coordinate system in

which the. data (y) are expressed. When a problem is independent of the

particular coordinate system chosen, it is reasonable to restrict attention to

tests which satisfy the same property, since otherwise the acceptance or

rejection of the hypothesis under consideration would depend on the choice of

the coordinates, which is quite arbitrary and has no bearing on the problem.

Within the class of invariant tests we try to find a UMP test, which (if it

exists) is called the UMP invariant test.

A discussion of this type of reduction on symmetry grounds or invariance can

be found in Lehmann [10], Chapter 6.

In order to show that the problems (4.1) and (4.2) remain invariant under a

certain group of transformations we first reformulate these problems in a

different way.



-26-

Let F be the family of even n-dimensional p.d.f.'s, that is, f EF satisfies

(4.3)

f(x) > 0, x E Rn

L. • • •

co
f

f(—x) = f

dx
1 

dx
n 
= 1

, X E

Let fiv E F be 
defined by

(4.4)
fi.v

x)
r(V)vv/2 -1 - 2

4. )0AT,,
r()

nr1/2i., r-------idet(Vi)

where v > 0 and i = 0, 1.

It follows that the p.d.f. of a tv(C6, w2Vi) distribution can be written as

(4.5)
-n x-C6 .
w 

i 
f

v w
( ), i=0, 1.

Hence problem (4.1) can be reformulated as:

Given that the sample y has the p.d.f. E F, we want to test

. Ov 1
f = f vs. f = f

0 ° lv°
In a similar way problem (4.2) can be written as:

- y
Given that the sample y has the p.d.f. 

wn 
f(

CT)
), f E F, we want to test

' Ov
f = f vs. 

° 
f = f

lv
.0 1 

It should be emphasized that the parameters v > 0, w > 0 and 6 RP are

unknown.

Next we will show that problem (4.1) remains invariant under the group of

transformation given by

(4.6) Gl• g(y) = ay + Ca,.

for all a E R1, a * 0 and all a E RP.

Let g E G1 and consider z = g(y) = ay + Ca. The inverse transformation is

-1y = g (z) = (z-Ca)/a and if y has the p.d.f. w-nf((y-C6)/w) it is easily seen

that the p.d.f. of z becomes
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(4.7)
-nul-nfuz:Ca co/w) = oak)

z-C6
-n
w
* 
f  

CL)*

-n z - C(a6+a) 
a fw

where w* = !al to > 0 and 6* = a6 + a RP.

This shows that after the transformation z = g(y) the problem becomes:

- 6n z-C * Given that the sample z has the p.d.f. w* f( ), f EF, we want to test
w*

H': f = 
. 1 

f vs. H'. f = 
v$

f where v > 0, w* >0 and 6* E RP are unknown.0 Ov 1 
Since the problem in terms of z is exactly the same as that in terms of y, it

follows that the transformations (4.6) leave problem (4.1) invariant.

In a similar way it is seen that problem (4.2) remains invariant under the

group of transformations

(4.8) G: g(y) = ay, a€R1, a * O.

Note that G2 is a subgroup of Gl.
*

In the case of problem (4.1), through invariance considerations, we restrict

attention to tests (critical functions) gy) which are invariant with respect

to the group (4.6), i.e.,

(4.9) gay+Ca) =

•
for all a E R1, a * 0 and all a E R.

For problem (4.2) we only consider tests which satisfy gay = gy), for all

a R1, a * O.

We shall first derive a UMP invariant test for problem (4.1), that is, a test

which is UMP among the invariant tests (4.9).

Suppose that v is fixed at an arbitrary level, then a UMP invariant test for

problem (4.1) exists, as is shown in Appendix A. This UMP invariant test turns

out to be independent of v and is therefore also UMP invariant for the more

general problem with v unknown.

In order to derive the UMP invariant test we need some preliminary results.

* It is not difficult to see that the original testing problem as
defined in (3.1) of Section 3 also remains invariant under G1 or G2.
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Let the columns of the nxp matrix R1 be an orthonormal basis for the

p-dimensional linear subspace M(C) and let the columns of the n x (n-p) matrix

R2 be an orthonormal basis for the orthogonal complement M(C) of /4(C).

For x 0-13 we define the function Zi(x), i = 0, 1, as

f
iv
(R z + R

2
x)dz

1 
dz

where z' = (z1 z2 zp) and where fiv is as given i (4.4).

Further let w2 = Rpr and wl = Wz  (W21 -22 s"
As is shown in Appendix A, see (A.17), the UMP invariant test for problem

(4.1) with fixed v rejects (4)(y) = 1) if

(4.11)

Co

f nn-p-1  ii 

2,1(W 
w
2 
)dn

0 2(n-p)
CO

f nn—p-12, (  
w
2
)dn

0 
0 

W
2(n-p)

> c.

By making use of the property that the marginal distributions of a

multivariate t distribution are again multivariate t, the substitution of

(4.4) into (4.10) yields:

r(9±1.7)vv/2 n-p+v 

(4.12) Z (x) -   
2

(v+x'V-ix
i Ina i ,

2 v
ir r(-)lidet67

2 i

where Vi = TfiR2 , 1).

If we define

--1 2
(4.13) A. = w'V. 

w2 
/W

2(n pr 
i - 1

2 -

and make the transformation

z=
1
A
i 

+ 
2

1 -



the integrals integrals in 4.11) become

(4.14)
0

. n-p-1,  
W_z n-p

-

  A. 
2 n-pr(n-P+v 12 1  

1 1
(1_z) 2 

- 1
dz =

71.2 r*/ detay

27.2r 1112)
2 

Ina  Ai ' 
2 

i = 0, 1.

2 /
71 1 det(Vi)

Subsitution of (4.14) into (4.11) yields the following rejection region of the

UMP invariant test

(4.15)
wV ' lw
2 1 2

c*
2 0 2

Note that this rejection region does not depend on v. Therefore, in order to

prove that the UMP invariant test (4.15) does not depend on v, it is

sufficient to show that the probability distribution under H; of the test

statistic

(4.16) - 

--1
w

2 1 2S 
sev-lw
2 0 2

does not depend on v.

As a matter of fact we will show that the distribution of the above test

statistic does not depend on v, w and 6 under H; as well as HI.

Let the random vector T be defined by T' = (T1 T2 ... Tn_p_1), where

T.
•1 W

2(n-p

w2i.
= 1, , n-p-1,

then S can be written as a function of T,

T'V-1T* *
(4.17) S =

T
*
'V-
0
1T
*
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where T; = (T1 T2 ... T 1).

With the aid of the result (A.15) of Appendix A and (4.14), it is not

difficult to see that the p.d.f. ki(ti, t2, n__i of T under H'

i = 0, 1, is equal to

(4.18) k
i
(t

re-22a) 
_ n-p 

t ) 'il- -it )
2  2

n-p -1 
= (t 

Ina   
* i *

71 
2 

I' det(V.
1

I = 0, 1, where t,t = (t1 t2 t l 1).

Since the distribution of T (see (4.18)) does not depend on v, w and 6 under

H' and H'
12 

it follows that S and therefore also the UMP .invariant test (4.15)0 
does mai depend on v, to and 6 under Wo and HI. This shows that the test (4.15)

is UMP invariant for problem (4.1) with v > 0 unknown.

In a similar way it can be shown that the test with critical region

-1
y'V

1 
y

(4.19) S - < c*-1
y'V

0 
y

is UMP invariant for problem (4.2) (the case p = 0).

The critical value c* in (4.15) and (4.19) has to be chosen in such a way that

the size of the test becomes equal to a preassigned significance level a.

Throughout the above derivation it was assumed that n-p > 1 (for p > 0 as well

as p = 0). When n-p < 1 the UMP invariant test has critical fuaction gy) E a.

This is a purely randomized test which rejects with probability a regardless

of the observations.

In applications it is not necessary to compute R2 and w2 = Rpr in order to

find the test statistic S. With the aid of the relations

(i) w2 = R'y
2

(ii) R1R + R213. = I

(iii) =-1
v = (R'V

i 
R
2 
)- 1 = RT V-

i
1R
2 
- R -1'VR (RTV-

i
1R

1 
)

2 2 2 i 1 
R i = 0, 1

-1 -1(which can be derived from R ViR) = R'Vi R, where R = [R R2])
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(iv) V 
1R- - - 

(R°V
1 
R )
11 

]i 11
= 0, i = 0, 1,

--1
we get the following expression for w'V

2 i
w 
2

(4.20) W =
-1 - -

°V R )
1 
R°V y, i = 0, 1.

Since R1 = CA for some nonsingular pxp matrix A, we have

(4.21)
- -

= C(C°Vi
1 
C)

1 
C°

substitution of which into 4.20) yields

(4.22)

= 09 19

-1 -1 -1 -1 -1
2
w,v-lw

2 
= y [V. - V

i 
C(C°V. C) C'V.]y, i = 0, 1. i 

The right-hand side of (4.22) can be expressed in terms of the maximum

likelihood estimator of the parameter vector 6 under HI, i.e., under the

assumption that y tv(C6, w2V1), i = 0, 1. In order to see this, let

6 be the maximum likelihood estimator of 6 under H° then we have

(4.23) 6. = (C1V C) i = 0, 1.

A

If we define the residual vector u as

A A
(4.24) u = C6 = 0, 1

it follows from (4.22) that

(4.25) w°V w = u'
i
V u i = 0, 1.2 i  i

Hence the UMP invariant test for problem (4.1) rejects when

(4.26) S =

" -1"
'V

l 
u
l

A _1A < c
*

u'V u
0 0 0

The above results also show that the test (4.26) can be obtained by

applying the GLR criterion to problem (4.1). Similarly, the test (4.19)

turns out to be the GLR test for problem (4.2).



Until now now we did not use the fact that the matrices C, Vo and V1 have a

special structure.

Upon using

(4.27)

iti(c) = m(x) n m(z)

vo = I + x(x,x)-1

= I + i(Z'Z)—

the tests (4.19) and (4.26) can be considerably simplified.

From (4.27) it is easily seen that

(4.28)
= I — lx(x'x) ix,

—1v = I — 4z(z,z)-1zi,

If Mx and Mz are defined by

Mx = I — X(XiX)-1X'

(4.29)
Mz = I — Z(Z1Z)-1Z',

it follows from (4.28) that

(4.30)

—1V
o 

= + Mx)

= + mz).

Further it is seen from M(C) C M(X) and M(C) C M(Z) that MxC = MzC = 0,

which together with (4.30) implies that

(4.31) —1V. C = IC, i = 0, 1.

The maximum likelihood estimators S. become
1

(4.32) 6̂. = (C'C)-1C'y, i = 0, 1,
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see (4.23), which shows that i 
is equal to the ordinary least-squares

estimator of S after the regression from y on C.

Therefore, if the corresponding least-squares residual vector is denoted

by uc, i.e.,

(4.33)

where

(4.34)

u
c 
= y - C6 = My

C'C) 
-1

C'y

= I - C(C'C)-1C',

it follows from 4.24) that

(4.35) = u = M
C 
y, i = 0, 1.

C 

By making use of (4.30) and (4.35) it is seen that the test statistic S

from (4.26) can be written as

(4.36)
Y'mc(I mz)mes —
y'M (I + M )14. y.

X C

Let u and u be the least-squares residual vectors after regressionX
from y on X and Z, respectively, i.e.,

. (4.37)

u
X 
= y Xa = My

= y Zy = Mzy,

-where a = (X'X) X'y and y = (Z1Z)
1 
Z'y. Then it follows from 4.36)

that S takes the form

(4.38)

A A A A

u'u + u'u
C C Z Z 

u'u + u'u
C C X X

where use has been made of M
2 
=M MMM - M

C C' C X C X,

uCuC' YIMXY 
x and y'Mzy = upz.

A A A A

mz,
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That is, the UMP invariant test for problem (4.1) has the rejection

region

(4.39) S

A A A A

UtU U U
C Z 

<A A

UtU U U
CC XX

c*.

In the same way it can be shown that the UMP invariant test (4.19) for

problem (4.2) rejects when

y'y + upz
(4.40) S =  A < c*.

y'y + upx

It is not difficult to verify from 4.39) and (4.40) that with

probability 1 we have 4 < S < 2.

The above results show that the test statistic S can be very easily

computed from y, C, X and Z. Now it remains to find the critical value

c*. This problem shall be discussed in the next section.



-35-

5. The distribution of the test statistic

In this section we shall derive the probability distribution of the test

statistic •under the hypothesis H. That is, we shall derive the

distribution function of S as given in (4.38) of Section 4 under the

assumption that y tv(CS, w2V0) (the case p > 0) and the distribution

function of S as given in (4.40) of Section 4 under the assumption that

y tv(0, w Vo) (the case p = 0). We shall consider the former case in

detail, the case p = 0 can be treated in a similar way.

In order to derive the probability distribution of S under H it is
0

convenient to use the equivalent form of S as given in (4.16), i.e.,

(5.1) •

--1
w'V w
2 1 2
ww '
2 0 2

where "Ili = RpriR2, i = 0, 1 an
d 
w
2 
= R

2
y, the columns of the n x (n—p)

matrix R2 being an orthonormal basis for the linear subspace /1/(C) .

Since under H' we have y t (CS, 
(02

V
0 
) it easily follows that0 v 

—(5.2) t w 
2 
V ).

w
Hence if u = ---, we have

(5.3) S —
u'V

1 
.0

u t
--1 ' 

u'V
0 
u

o, V0).

Now we shall show that S has the same distribution as the ratio

x,-- -- V x/x'V
0
1 
x
' 

where the random vector x has a n(0, V0) distribution.1
1 

Let go(u) be the p.d.f. of u tv(0, V0), then it is not difficult to

verify that

(5.4) g (u) = f k(ulz) h(z)dz,
0

where ko(ulz) is the conditional p.d.f. of u given Z = z and h(z) is the

marginal p.d.f. of the random variable Z, ko(ulz) and h(z) being equal

to
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(5.5)

(27r

-

2 z-(n-P)[det(V0)]-1 exp{-

2 v v/2 -v-1
h(z) = (7) z e

r*

= 0 elsewhere.

2z
2
z> 0

1
U

2z
2

-
0

That is, the conditional distribution of u given Z = z is a n(0, z
2 
V )

distribution and the marginal distribution of Z is a inverted gamma-2

distribution with parameters v and 1.

Let the (n-p)-dimensional random vector x be defined by

(5.6) X =
G"

then it follows that the conditional distribution of x given Z = z is a

n(0, Vo) distribution. Since the latter distribution does not depend on

z, it is seen that x and Z are stochastically independent and that the

unconditional (marginal) distribution of x is a n(0, V0) distribution.

Substitution of (5.6), i.e., u = Zx, into (5.3) yields

(5.7)
Z PV-1(Zx)

1

(Zx)V-01(Zx)

=MIMI

x'V
1 
x

--1
x`V

0 
x

where x n(0, V ) and this proves the stated property. This result also
0

shows that the distribution of S under H' does not depend on the unknown
0

parameters v, w and 6, a fact which was already observed in Section 4.

The fact that the test statistic can be written as

S= with x n(0
' 

V
0
),

--1
x'V x

0

enables us to find the distribution of S under H'
' 

i.e.,
0

(5.8) o(s) = P(S < ; H').
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--1-Let 
T1 T22 

TM be the M different eigenvalues of the matrix V
1 

Vo' 

and let mi, m2, ..., mm be the corresponding multiplicities. It is not

difficult to see that T is real and T > 0 for j = 1, 2, ..., M.

We also have E in. = n-p. As is shown in Appendix B (see (B.15)) the
j=1

distribution function F0(s) can be written as (provided that M > 1):

CO

(5.9) = sin e(u;s)
du,

2 Tr
0 

u y(u;s)

where

u;s) = It

j=1
1+ • .—s)

2
u
2 4

M in.
e(u;s) = E arctg((T.-s)u).2

j=1•

The value of the integrand in (5.9) at u = 0 is defined by

(5.12)

sin e(u;s 
u y(u;s) lu=

sin e(u;s)= lim
u+0 

u y(u;s)

=4 E T.m. - 1( -1)
j=1 •

Next consider the case p = 0, that is, we want to derive the

distribution function of the test statistic S as given in (4.40) under

the hypothesis Hip y tv(0, w2V0).

If we express S in the equivalent form (4.19), i.e.,

(5.13) S=

it can be shown in a similar way that F
0 
(s) = P(S < s; HD takes the_ u

form (5.9), where now T1, T2, ..., TM are the M different 
eigenvalues of

-the matrix V
1 
V
0 

with corresponding multiplicities m12 
in 
2,2"m 

m_. In
1 

M
this case we have E m. = n and (5.12) becomes:

j=1 J
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(5.14)
sin c(u;s)
u y(u;s) lu=

E T.M. Ins.
j=1

The above results show that F0 (s) can be computed for any s through

numerical integration of (5.9). We refer to Appendix B for more details

on this numerical integration.

Here we are more interested in finding the critical value c of the UMP

invariant test with critical region

(5.15) S < c.

That is, we want to find c such that in the case p > 0

(5.16) sup P(S < c; Hp = a,

where a is a preassigned significance level.

When p = 0, we have to compute c such that

(5.17) sup P(S < c.
' 

H')
0(v,w)

However, as we have seen above the probability distribution of S does

not depend on the unknown parameters and it follows that the critical

value c can be found by solving the equation F0(c) = a or

(5.18) _ 1 r sin c(u,c)
du = a.u y(u;c)

0

The solution of (5.18) not only requires numerical integration but also

an iteration procedure. This would not be an objection if the value of c

could be determined once and for all, that is, if the distribution of S

under 11; does not depend on the particular testing problem (the matrices

X and Z), but only on n, k and t. In the latter situation we can

tabulate the critical values of c and use these tables for any problem

of testing linear hypotheses. However, as we shall see below, only in a

few special cases tabulation is possible and in general the distribution

of S under H depends on the particular matrices X and Z under0
consideration through the eigenvalues T1, T2, ..., TM and multiplicities

mi, m2, 000, Mm0
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In view of this it seems more attractive to report the p-value of the

test (also called the observed size), instead of computing the critical

value c.

Since the p-value of our test is defined by F (S)i where S is the test

statistic we have

(5.19)

0.
1 

F 
sin c(u;S)du

0
(S) = - 

2 7IT 
0

which shows that the computation of the p-value only requires numerical

integration and no iteration procedure. The procedures of first

computing c (for given a) and then rejecting 11 if S < c is equivalent

to computing the p-value F0(S) and rejecting H; if F0(S) < a.

In other words, we can think of F0(S) as a standardized test statistic

and the critical region becomes F0(S) < a, since under H; the random

variable F0 (S) has an uniform distribution on the interval (0, 1).

The use of F0 (S) also means that we are very flexible in our choice of

a.

If we are •interested in the power of the UMP invariant test, we first

have to compute the critical value c, since the power is defined as

P(S < c; H'
1
). The probability distribution of S under H'

1 
again does not

depend on the unknown parameters (v, w and 6 in the case p > 0 and v, w

in the case p = 0) and, as indicated in Appendix B, in a way similar to

the case H' we can derive the distribution function of S under 
H. 

This0 1 
results into the following expression for the power of the test

(5.20) P(S < c;

where

(5.21)

and

(5.22)

1
co 

1 1 
sin c (u.

'
—)

* c+ f

y*(u;s) = (1 +
j=1

1
/1. 0 u y

* c

m.

224
— - s) u )

M mi
c*(u;s) = I tarctg((-T-1 -- - s)u).

j=1

 du,
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The value of the integrand in (5.20) at u = 0 now becomes

sin e* u;s

u y*(u;s)

M m.
= 

2 
E - 1(n-p)s

u0 j=1 
T
j=

for p > O.

When we want to compute the p-value Fo(S), the critical value c or the

power P(S < c; Hi), we always need the eigenvalues Tl, T2, , TM and
_

corresponding multiplicities mil, m2, ..., mm of the matrix VilVo in the

case p > 0 or of the matrix V
-
1
1
V
0 

in the case p = O.
1 ___

In order to compute the eigenvalues of Vi Vo in the case p > 0 it is not

--_
necessary to compute the matrix V

1

1 
V
0 
= (RIV

1 
R
2 
) 110V

0 
R
2 
, where the

2 1 2 
_L

columns of R2 are an orthonormal basis for M(C) .

We shall shall show that the eigenvalues of V
1 

V
0 

are equal to the nonzero

eigenvalues of the nxn matrix

(5.23) P = [V
-1 
- V

-1
C(C'V

-1 -1
C'V1 1 1 1

__1_
The matrix V

1 
V
0 

can be written as

VT1V = (R'V R R0 2 1 2 2 0 2

- - - -where A, = Vi
1 
- V

1
1 
R
1 
(WV

1
1

1 
R
1 
)
-1

1
R'V

1
1 
and where the columns of R form

an orthonormal basis for M(C) (see formula (iii) of Section 4).

Since R
2 
R = I-- R

1 
R' and AR

1 
= 0 it follows that AR

2 
Rt = A and this

2 1  2
yields

(5.24) V-11V0 = Rt A.V
0 
R
2 
.

2 

1 ---Let A be an eigenvalue of V
1 

V
0 

with corresponding eigenvector x, then
--1-
V
1 

V
0
x = Ax, A > 0 and therefore

(5.25) R1 V
0 
R x = Ax.

2 

This gives R R'AV
0 
R
2 
x = XR

2
x and since R2

 
RA = A it is seen that

2  2
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(5.26) AVoy = yt

where y = R2.x.

From (5.26) it follows that A > 0 is an eigenvalue of AV0 with

eigenvector. y.

Now we always have R1 = CB for some nonsingular pxp matrix B and this

shows that

- -A = V - V C(C'V 
1 
C'V1 1 1 

11.

Hence AV =P and we have

(5.27) Py = Ay.

That is, is, if A is an eigenvalue of V
1 

V
0 

it follows that A is an

eigenvalue of P.

Conversely, if A is an nonzero eigenvalue of P it can be shown in a

similar way that A is an eigenvalue of V
1

 1V
0 

and this proves the above

statement.

If we define the matrix P for the case p = 0 as

(5.28) P = V
1

it follows form the above discussion that the probability distribution

of the test statistic S under H' and H'
1 
(for p > 0 as well as p = 0) is0 

given by (5.9) and (5.20), respectively, where T T2, ..., Tm are the
nonzero eigenvalues of the matrix P and ml, m2, ..., m the

corresponding multiplicities.

In order to apply the UHF invariant test to a certain problem we

therefore need the nonzero eigenvalues of the nxn matrix P. These

eigenvalues can be numerically computed for any given C, Vo and V1, but

this can be a rather time-consuming process. At this point it should be

emphasized that in the above discussion nowhere did we use the fact that

for our problem the matrices C, Vo and V1 have a special structure,
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m =m(x) n m(z)

(5.29) V0 = I + X(X'X)-1X'

V1 = I + Z(Z'Z)-1Z'.

When we no longer consider the problem

(5.30) H': y—t(C6, w
2
V
o
) vs.H:y—t( 

' 
w2V1)

0 

as a reduction of the original problem of testing two linear hypotheses,

that is, if we consider the problem (5.30) for any given matrices C, Vo,

V1 (where C is of the order nxp with rank p and Vo and V1 are symmetric

and positive definite), it was shown in Section 4 that the UMP invariant

test (with respect to the transformation y 4- ay + Ca) for this general

problem has rejection region

(5.31) S =

A —1-
u'V u
1 1 1

- —1^
ulf!)V0 uo

< c,

— — —
where u

i 
= y — C6

i 
and = (C'V

i
1 
C)

1 
C'V

1 
y, i = 0, 1.

Moreover, as we saw above, the distribution function of S under H; is

given by (5.9) and this function depends on C, Vo and V1 througft the

nonzero eigenvalues of the matrix P as defined in (5.23), for any given

C, Vo and V1'

In the above discussion it was assumed that p > 0, of course similar

remarks can be made for the case p = 0.

As is shown in Section 4, by making use of the fact that in our problem

the matrices C, Vo and V1 have the special form as given in (5.29),the

computation of the general test statistic in (5.31) can be considerably

simplified (see formula (4.38)). Now we shall see that the same holds

true for the computation of the eigenvalues of the matrix P.

Substitution of (5.29) into (5.23) yields for the case p > 0:

(5.32) P = I + X(X'X)— 1X' — 1Z(Z'Z)-1Z' — 4Z(Z'Z)-1Z'X(XT X

•••

—1 — C(C'C -1 C'.
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If the columns of the nxk matrix X form an orthonormal basis for M(X),

the columns of the nxt matrix Z form an orthonormal basis for /14(Z) and

the columns of the nxp matrix C form an orthonormal basis for )14(C), the

expression (5.32) can be written as

(5.33) P = I + IZZ' IZZ'XX' - CC'.

When p = Owe get in a similar way

(5.34)
..11.0.111

P = I + XX' - IZZ' IZZ XX'

Now it is shown in Appendix C that the eigenvalues of the nxn matrix P

as given in (5.33) or (5.34) can be deduced from the eigenvalues of the

kxk matrix X'ZZ'X (or equivalently, the eigenvalues of the txt matrix
4111.10.a1/1

Z'XX'Z).

The eigenvalues of X'ZZ'X always lie between 0 and 1.

If p = dimMX) n WZ)) and r = rank(X'Z), it is not difficult to verify

that To22,7( has an eigenvalue 0 with multiplicity k-r and an eigenvalue
1 with multiplicity p and vice versa. In other words, the values of p

_ -
and r can always be concluded from the eigenvalues of X'ZZ'X. See Bouman

[2], pp. 26-29 and 94-96.
_ -

Suppose that X'ZZ'X had R different eigenvalues, say, pl, p2, pR.

with 0 < pi < 1, -j = 1, 2, ... R and let lip r2, rR be the

corresponding multiplicities.

_
Note that r = p + I r4 and that the matrix Z'XX'Z has precisely the

j=1 j
same eigenvalues and multiplicities as X'ZZ'X, except for the eigenvalue

0, which has a multiplicity t-r.

As is shown in Appendix C, the matrix P has the following eigenvalues,

where

(5.35) a. -p.) - i(1-p.)(9-p.), j = 1, 2, ..., R,
3 4 j

and where we assume that 0 < p < r < min(k,
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Table 1. Eigenvalues > 0 of the matrix P.

Eigenvalue Ti Multiplicity mi

T1 = i
M1 = 9'-r

T2 = al m2 = rl

T3 = a2 m = r2

.
•
.

.
•
•

TR+1 = aR mR+1 = rR

TR+2 = 1 mR+2 = 1171-13-k-f6

-1
T/14.3 = aR mR+3 = rR

-1
TR+4 = aR-1 mR+4 = rR-1

. .
•

.

.
. 

-1
.

T2R+2 = al m2R+2 = rl

T2R+3 = 2 m2R+3 = k-r

n
M = 2R+3 E mi = n-p

i=1

_

It should be noted that M is the number of different eigenvalues > 0 of

P, 4 < a < 1, j = 1, 2, ..., R and that P has an eigenvalue 0 with

multiplicity p.

In Appendix B it was shown that the test statistic S can be written as



where ni, 112, ..., nm are random variables with P(ni > 0) = 1.

This shows that min(T.) < S < max(T ) and it is seen from Table 1 thati 1

we always have 4 < S < 2, a fact which was already concluded at the end
of Section 4.

The above results show that the eigenvalues of the nxn matrix P can be
_

found from the eigenvalues of the kxk matrix X'ZZ'X. In order to find

these latter eigenvalues it is not necessary to compute the matrices

R. and Z. This follows from the fact that the matrices. X'ZZ'X and

(X'X)-1X'Z(Z'Z)-1Z'X have the same nonzero eigenvalues (see Bouman [2],

p. 19).

Hence, the eigenvalues of P can be found from the eigenvalues of the kxk

matrix (XX)-1X1Z(Z1Z)-1Z' X or, equivalently, from the eigenvalues of

the foq, matrix (Z'Z)-1Z1X(X'X)-1X'Z.

The number M, being the number' of different eigenvalues > 0 of P, does

not always take on the value 2R+3. As a matter of fact for given R the

maximum value of M is equal to 2R+3 and this value is only attained in

the case 0 < p < r < min(k, t).

For instance, when r = t < k the eigenvalues T1 = 4 vanishes and M =
2R+2. Similarly, if r = k < 2, the eigenvalue T2R.1..3 = 2 vanishes and

again M = 2R+2. Moreover, if r = k = t both Ti = 4 and T2R+3 = 2 vanish
and we have H = 2R+1.

Another case occurs if 0 < p = r < min(k, t).

Since p = r if and only if R = 0, if follows that
-1

T2 = al' "'s R+1 = aR and TR.F3 = aR , T2R+2 
= a

-1 
vanish and we

1
have M = 3.

Let us next consider the case of nested linear hypotheses. As we saw in

Section 3 the problem of testing linear hypotheses can be divided into

two categories:

(i) The case of nested linear hypotheses, i.e., M(X) c M(Z) or
M(Z) c M(X).

(ii) The case of nonnested linear hypotheses.

The case (i) occurs if and only if p = min(k, and can be subdivided

into:

(a) The trivial case M(X) = M(Z), i.e., p = k = t.
(b) The nontrivial case M(X) C M(Z) and M(X) * WZ), i.e., p = k < t.
(c) The nontrivial case M(Z) C M(X) and WX) * M(Z), i.e., p = t < k.
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For these three cases we get the following eigenvalues > 0 and

multiplicities of P (after renumbering the Ti and mi):

(a) In this casep=r=k=tand therefore t-r = 0,R= 0, k-r = 0 and

M = 1. We have T1 = 1 and ml = n-k = n-t = n-p.

(b) Nowp=r=k<tand it is seen that k-r = 0,R= 0 andM= 2. We

get T1 = 1, T2 = ,1, ml = t-k and m2 = n-t.

(c) In this casep=r=t<kand therefore 9.-r = 0,R= 0 andM= 2.

Now we have T
1 
= 1, T2 = 2, ml = n-k and m2 = k-t.

The trivial case (a) yields a reduced problem with H; = HI. It follows

that S = 1 and that the UMP invariant test with size a rejects with

probability a regardless of the observations. More interesting are the

nontrivial nested cases (b) and (c). It follows that in these cases the

distribution of S only depends on X and Z through k and Z.

Therefore, in these cases it is possible to tabulate the critical value

c for different values of a and t-k, n-t or k-t, n-k, respectively.

However, as will be shown in the next section, tabulation is not

necessary since in the cases (b) and (c) we can use the tables of the F

distribution in order to find the value of c.

On the other hand, if we are testing nonnested linear hypotheses,

tabulation of c is no longer possible since the distribution of S

depends on the particular X and Z matrices.

Finally, we shall consider a large sample approximation to the

distribution of the test statistic S. From the results of this section

and Appendix B it follows that under Ht we have
0

(5.36) S

n-p
E X

i i
i=1

where i < Xi < X < < Xn_p < 2 are the nonzero eigenvalues of the

matrix P and El, E2, En_p are mutually independent random variables

with Ei - x2(1), i = 1, 2, ..., n-p.

We know that there are M different Xi's, i.e., i < T1 < T2 < < TM < 2

with multiplicities ml, m2, ... mtv as shown in Table 1. Note that

I m4 = n-p and P(T < S < TM) = 1. We only consider the case M > 1,
j=1
since in the trivial case M = 1 we always have P(S = T1) = 1.,



If F (s) = P(S < s; Hi), it is seen from 5.36) that

(5.37) F

where

(5.38)

) =

n-p
E (X

i 
- sM.

i=1

Hence, for any s the distribution function F0(s) can be found from the

distribution function of the random variable Qs.

As is shown in Appendix E, if s * 1, we have

(n-p)(a n -
(5.39) n(0, 1)

12(n-p)[(an s

Qs

indistribution when n+00.

2
+ bn]

Here an and bn are defined by

(5.40)

1
n-p
E X = E M.T.n-p i=1 i n-p . 3 3

3=1

1 n-P 2 2 2 2b = E X. - a = E M.T. - a .n n-p 1 n n-p 
j=1 

3 3 ni=1 

From (5.37) and (5.39) it follows that for s * 1 and large n, we

approximately have

(s - an)
(5.41) F0(s) N  ),

where N(x) =
f 1 e

-co iTir
2dt.

2
b
n
]

Note that a and b can easily be calculated from Table 1.

The result (5.41) shows that for large n the p-value F0(S) as given in

(5.19) can be approximated by
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,/n-p (S an)
(5.42) F (S)0  )*

an)
2
+ bn]

The large sample approximation (5.41) also enables us to approximate the

level a critical value c of the test, i.e., the value of c which

satisfies F0 (c) = a.

When 0 < a < 4, it is shown in Appendix E that, for large n, the

critical value c can be approximated by

(5.43)

where

(5.44)

c
A 
= a - iqn(a)bn

q (a)
2t
2
a

n-p 2t
2'
a

ta being the (100a)th percentile of the n(0, 1) distribution.

Since we know in advance that c > T12 the approximation cA in (5.43)

makes no sense if c TA< — 1'
In Appendix E it is shown that a necessary and sufficient condition for

cA > Ti is given by

(5.45) a > N(d ),

where

(5.46) d1

+ bn]

Note that d1 < 0.

In-p - a
n
)

Except for the case Ti = 1, it can be shown that d1 -00 if n+c0, and

therefore, N(di) 0 if n+00. Hence, except for the case Ti = 1, the

condition (5.45) is no restriction on the level a for large n.

The case T1 = 1 occurs if and only if (Z) c (X) and (Z) * (X), i.e.,

the nested case (c) with p = 9.. < k.

In the latter case we have M = 2, T1 = 1, = 2, m1 = n-k and m2 = k-t.
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This gives:

a =

=

1+
n-2.

(k-t2)
n-t

which yields d1 = - 1(1V.")/2 it.)"C° if n+.0.

Therefore, in the nested case (c), the condition a > N(di)

= N(-1/(k-0/2) may be a restriction on the choice of a, even when n is

large. However, in this nested case there is no need to approximate c,

since we can find the exact value of c with the aid of the F distribution.

In order to compute the values of an and bn it is often more 
easy to use

the formulae

a = tr(P)
n n-p

1b = tr(P
2
) a

2
,

n n-p 
n

•which  yield

(5.47)

n+k - t-p - t (AB))
n-p

(n+3k -
• n-p 4

5 1
—
2
tr(AB) + —

4 
tr[(AB - a

n
,

where A = (X'X)-1X'Z and B = (Z'Z)-1Z'X.

Once the value of c is computed or approximated, it can be shown in a

similar way (see Appendix E) that, for c * 1 and large n, the power of

the test P(S < c; HI) as given in (5.20) can be approximated by

(5.48) P(S < c; HI) N(

where
M

'j
a* = 

1
—

n n-p
j=1 j

ATT (a: ),

h[(a: - Jc--)2 +b*]

Mm.  * *2Jb = 
I ____ 4...

n n-p . ,
i 

2 n
j= T.

3
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6. A reconsideration of the nested case 

In this section we reconsider the nontrivial nested cases:

(i) M(X) C Mr(Z) and M(X) # M(Z)

(ii) /1/(Z) C. /14(X) and M(X) # /1/(Z).

As is well known, in the case of nested linear hypotheses we can use the

classical F test.

It will be shown in this section that in case (i) the general.

(Bayesian-) approach, which we have developed in the foregoing sections,
exactly reproduces the above mentioned F test. However, in case (ii) the
situation is different and it turns out that the two approaches lead to
different tests.

Moreover, it will be shown that a number of special (nested) cases can
easily be incorporated into our general approach.

As said before, when the linear hypotheses are nested we can apply the
classical F test to the (original) problem of testing

u M(X) against H EM(Z)\M(X).

Since in case (ii) we get M(Z)\M(X) = 0, the hypotheses for this case
are reformulated as

p E M(X)\M(Z) against H1: p e M(Z).

The F test can be obtained by applying the GLR principle to the original
problem. Moreover, it is well known (see Lehmann [10], Chapter 7, pp.
265-272) that the F test is UMP invariant with respect to a certain
group of transformations G. This group differs from the group GI
considered in (4.6) of Section 4. As a matter of fact G contains Gi as a
subgroup. It should be emphasized that in case of testing nonnested
linear hypotheses no F test is obtained by applying the GLR principle or
invariance considerations to the original problem.
Before applying our approach to the nested cases (i) and (ii) we shall

briefly discuss the F tests.

In case (i) the F test has the following rejection region

(6.1) F -

A A A A

U U
X X Z n"q, *

• -> c,
tkuzuz
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where ux = y - X, Uz = y - Zy with 13 = (X'X) 1X'y and y = (Z'Z)
1 
Z'y.

A A A

Writing

(6.2) F -
Yt(MX MZ)Y n-t

Y'MzY •

where Mx = I - X(X'X) 1X' and Mz = I - Z(Z'Z

that under Ho. • y n(Xf3, a2I) we have:

(6.3) F F(2-k, n-t).

', it is easily verified

From (6.3) it follows that the F test with level a rejects when

(6.4) F =

A A

u
X
u
X

./.4

Z Z
A A

u
Z
u
Z

n-t
f

t-k 1.-TO

where f1-a is the (100(1-a))th 
percentile of the F(2-k, n-2.)

distribution.

Under H1 we have y n(Zy, a2I) and it is seen that

(6.5) F F(2,-k, n-t, 0

where 01 = y'Z'MxZy/a2, y E RZ, a > 0.

With the aid of (6.5) we can compute the power of the test

P(F > fl_a; 1) for different values of y and a.

Next consider case (ii). Now the F test has rejection region

(6.6) F -
U U
ZZ X

U
X n-k

< c .
• k-t

In this case F can be written as

(6.7) F - 
Y"Z MX)Y n-k

• •
YIMXY 

k-t 
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Under Ho: y 
n(X, a2I) we get

F(k-t n-k, 02), 02 > 0,

where 82 = atXtMzXa/a2, a E Rk, a > 0 (ca I PAZ)).

Let G(x, 02), 02 > 0 be the distribution function of a F(k-t, -k, )

distribution, then

sup G(x, 02) = G(x,

02>0

Now we have to choose c* in such a way that

sup P(F < c

(a,a)

•

Since P(F < c* H0) = G(c
*
, 82),

a.

for all x.

> 0, it follows that

sup P(F < c • 
' 

H0) = sup G(c , = G(c ,
(a,a) 8

2
>0

That is, c must satisfy G(c
* 

0) = a.

Now G(x,0) is the distribution function of a F(k-t, n-k) distribution

and it is seen that the rejection region of the F test in case (ii)

becomes

(6.8)

A A A

UzUz uxux n_k
F- A • k-t < 

fauuX

where ft is the (100a)th percentile of the F(k-t, n-k) distribution.
a

Under H1: y n(Zy, a2I) we have

(6.9) F F(k-t, n-k),

and therefore the power of the test is equal to

P(F < Vett; 
11
i) = G(Pct, 0) = a for all y E and a> 0.
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Let us next apply the method proposed in the foregoing sections to
 the

nested cases (i) and (ii).

That is, we assume that p and a are (unobservable) random variables

possessing the following incompletely specified prior distributions:

The marginal prior distribution of a is an inverted gamma-2 dist
ribution

with unknown parameters v > 0 and w > 0. Under Ho the conditional prior

distribution of p given a is a n(C6, 
0.2x( xt ) distribution and

under H1 a n(C6, a
2Z(Z1Z) Z ) distribution, where the columns of the

nxp matrix C form a basis for the p—dimensional linear subspace

M(X) n M(Z) and where 6 E RP is unknown.

We shall first consider case (i). Then we have 11/(X) c Mr(Z) and

M(X) XZ), i.e., p = k < Z. This implies that C = X and the

conditional priors of p given a become

: pia n(X6, a2X(X1X)-1X')

Hi: pla n(X6, a2Z(Z1Z)-1Z ),

where 6 E Rk is unknown.

(6.10)

This results into the following reduced problem

(6.11) Hi!): y tv(X6, w
2
V0) vs. HI: y tv(X6, w

2
V1),

where as before Vo = I + X(X'X)-1X' and V1 = I + Z(Z'Z)-1Z1.

From Section 4, see (4.39), we know that the UMP invariant test for

problem (6.11) rejects if

(6.12)
U til + tOU

X X Z Z 
S A. A < c.

2u'u
X X

It is not difficult to verify that

(6.13)
sz,...k

S = + 

where F is as defined in (6.1).
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The inverse transformation of (6.13) is

, 1-S n-2,
1: = TT • 2, -10

and it follows that the critical region S < c is equivalent to F > c
*
.

This shows that the UMP invariant test for problem (6.11) has rejection

region

(6.14) F

A A A A

LOU us. IOU

XX ZZ n-t
•

c .
u
^ 2,-k
'
Z Z

In order to find the critical value c
* 

we derive the distribution of F

under H" y t (X6„ w
2
v
0 
).

0' v 
We first write F in the equivalent form

(6.15) F -
'X MZ)Y

Ytmg

Let u = (y-X6)/w, then u t(0, V0).

Substitution of y = wu + X6 into (6.15) yields

(6.16) F
u' (M - Mz)u

u'M u
n-ft

with u t(0, V

where use has been made of Mxx = mzx = 0.

By using the argument applied to the test statistic S in Section 5, it

is seen that the random variable F in (6.16) can be rewritten as

(6.17) F.=
'(MX 11Z)w n-t

where w n(0,
0
)

w'M
Z
w • 2,

which also shows that the distribution of F under H' does not depend on
0

v, w and S.

The numerator as well as the denominator in (6.17) are quadratic forms

in normally distributed random variables.

In general we have:

(a) If x n(p, V), then x'Ax x2(m, 6), with m = rank(A) and 0 = p'Ap

if and only if AV is idempotent.

(b) If x n(p, V), then x'Ax and k'Bx are stochastically independent if

and only if AVB = 0.
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Since (Mx - Mz)V0 = (Mx - Mz)(I + X(X1 X) 1X') = Mx - Mz and (Mx - Mz)
2 =

Mx Mz it follows from (a) that

(6.18) wt(MX MZ)w

where also use has been made of rank (Mx - Mz) = tr(Mx - Mz) = tr(Mx) -

tr(Mz) = n-k - (n-t) =

In a similar way it is seen from MzVo = Mz(I + X(X'X)-1X') = Mz,

M
2 
= M

Z 
and rank(M

z
) = tr(M

z
) = n-t that

Z 

(6.19) w'M w x2(n-).

Moreover, (Mx - Mz)VoMz = (Mx - Mz)Mz = Mz - Mz = 0 and it follows from

(b) that 10(Mx - Mz)w and w'Mzw are stochastically independent.

This independence together with (6.18) and (6.19) implies that under Hp

(6.20) F F(2,-k, n-Z).

The results (6.14) and (6.20) show that the UMP invariant test with

level a for testing the reduced problem (6.11) has critical region

(6.21)

414.

U U U
XX ZZn-2,

F -  A A "t-k
UZUZ

where fl_a is the (100(1-a))th percentile of the F(9,-k, n-Z)

distribution.

The test (6.21) is exactly the same as the classical F test (6.4). In

other words, in the case of testing nested linear hypotheses with

M(x) C Mr(Z) and M(x) * M(Z) our approach reproduces the classical F

test.

It should be noted that the random variable

F=

A A A
u
X 
- u'u

Z Z
St-k

A A

u
Z
u
Z

has a F( -k, n-t) distribution under Ho: y n(Xf3, a2I) as well as under

ty (XS, w
2 
V
0 
).Ho. 

v 
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This is no longer the case under H1 and HI. The distribution of F under

H1* y n(Zy, a2I) is given in (6.5). On the other hand, in a way

similar to the derivation of the distribution of F under H it can be
0

1
shown that under H': y t (X6, w

2 
V
1
) we have:

(6.22) 4F F(9,-k,

Hence, the power of the test (6.21) under HI becomes

(6.23) P(F > fl_a; Hi) = 1 - Faf
1-a-'

where F(x) is the distribution function of a F(2,-k, n'-Q) distribution.

It is easily verified that P(F > fl_a; HI) > a for 0 < a < 1.

In the second place we consider the nested case (ii), that is,

AZ) c M(X) and M(X) * AZ). Now we have p = t < k and C = Z. This

yields the following prior distribution of p and a:

(6.24)

Ho: p I a

H1: p

4,0
z 0. 2x( xf xr 1 xf

a - (ZS, a Z(Z1Z)-1V).

The reduced problem becomes:

• (6.25) IV y tv(Z6, w2V ) vs. y t Z6, w
2
V

where v, w and 6 are unknown and V0 and V1 are as before. In this case

the UMP invariant test for problem (6.25) has critical region

(6.26) S -
2 u'u

Z Z
A A al% < c.

quz + upx

Let F be as defined in (6.6), then we have ,

(6.27) S -
k-t -1 + (1 4- 717.71z F) 1

2

and the inverse transformation of (6.27) is
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F
2(S-1) n-k

-
2-S k-e

It follows that the region S < c is equivalent to F < c*.

Hence, the UMP invariant test for problem (6.25) has rejection region

(6.28)

A A A A
1 - uuzu u/z 

X X n-k
F=

/ k-t
u....0
x X

The critical value c
* 

can be found from the distribution of F under

y t (Z6, w
2 
V
0 
). By using similar arguments as before it can be

0 
shown that under H we have

0

(6.29) jF F(k-t, n-k).

Then it is seen from a = P(F < c ; = < lc ; Hp that fc =

which implies c* = 2f'
' 

where as before f' is the (100a)th percentile of
a a

the F(k-t, n-k) distribution.

These results show that the UMP invariant test with level a for testing

the reduced problem (6.25) has rejection region

u/ /u
(6.30) F=  

zu _ 

zA 
uxx n_k

A . < 2f'.

u....0
x X

The test (6.30) differs from the classical F test for the nested case

(ii) as given in (6.8). That is, our approach does not reproduce the

classical F test in the nested case with M(Z) C M(X) and M(X) * M(Z).

Note that in case (ii) the random variable

F=

A A

u 
uu

ZZ 
x x

A A

uxux

does not have the same distribution under H0 
and H. On the other hand,0 

in this case it can be shown that F has the same distribution under

H1' • y n(Zy, a2I) and HI: y t (Z6, w2V1), i.e.,
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(6.31) F F(k-t, n-k) under Hi.

From (6.31) it follows that the power of the test (6.30) under

H'
1 

becomes equal to

(6.32) P(F < 2 Pa; HI) = G(2Pot

where G(x) is the distribution function of a F(k-t, n-k) distribution.

Again it is easily verified that P(F < f'; H') > a for 0 < a < 1.a 1

The nested cases (i) and (ii) are not the only cases where a

F distribution can be used. It turns out that besides the nested cases

also in a few nonnested cases the test S < c is equivalent to W > c*

where under H' the statistic W has a F distribution. In order to see
0

this we write the test statistic S in the form (see Appendix B)

(6.33) S -

where M is the number of different eigenvalues Ti, T2, ..., Tm with

multiplicities ml, m2, m as given in Table 1 of the foregoing

section.

Under H the random variables n n0 l' 2'
wt- 1 4 — 1 '3with ni 2- A \mi.', oils, M.

Suppose that M = 2 with T1 < T2, then

(6.34)
1

fl
1 

T
2

fl
2

S
n1 + 112

Let W be defined by

(6.35)
hnw 1

7277712'

then under H' we have
0

(6.36) W F(mi, m2).

are mutually independent
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Writing S in terms of W we get

(6.37)

m
1
- W +

1 m
2 

T2
S =

m
l

m2

2

which has the inverse transformation

(6.38)
T2

W
S - T

1

m
2
m
1

It follows that the region S < c is equivalent to W > c* and that the

UMP invariant level a test for the reduced problem in the case M = 2 has

critical region

(6.39)
S mT2 

2 *
W=   f

T 1-a2
1 ml

where f
*
1 

is the (100(1-a))th percentile of the F(mi, m2) distribution.
-a

The most important cases with M = 2 are again the nested cases

(ii). First consider case (i), then we have Ti = 4 and T2 = 1,

and n = n-ft. The test (6.39) becomes

1-S n-
¼0.'4) W =--n-

S-t -k fl -a.

It is easily verified that (see (6.13))

A A A A
1

UxUx uzuz
W = F -  A A -k

uzuz

(i) and

1 = Z-k

and it follows that the test (6.40) is equal to the classical F test as

derived in (6.21) and (6.4).

In the second place consider the nested case (ii). Now we have Ti = 1,

12 = 2, ml = n-k and m2 = k-t. The test (6.39) becomes
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6.41)
2-S k-it *>f 

•
S-1 • n-k 1-a

From (6.27) it is seen that W =

A A A A
uuz u;cux n_k

A A • k-t•
uxux

Hence 6.41) is equivalent to

2
(6.42) F < = 2f',

a
1-a

where

1
where IF = TT- F(k-t, n-k) under Wo.

This is precisely the test (6.30) derived above for the nested case

(ii).

All other cases with M = 2, i.e., cases where the F test (6.39) can be

used, are nonnested.

From Table 1 of Section 5 it follows that in all these cases we have

n = 16-1-p and either k 9. > r, R = 0 or k =9. = r, R = 1.

Finally we shall consider the cases where k = 0 or t = 0 and k = n or

t = n. The analysis in the foregoing sections was carried out under the

assumption that 0 < k < n and 0 < t < n. Therefore the cases where k or

t take on a boundary value do not follow at once from the general case.

However, as we shall see below, these boundary cases can easily be

incorporated into the general case.

First consider the situation where k = 0 and 0 < 9. < n (the case

0 < k < n and t = 0 can be derived in a similar way). When k = 0 we have

/V(X) = {0} and the original problem has the form

(6.43) H0' • p = 0 vs. : U E M(ZA{01,

where y n(p, a2I).

Since we have p = k = 0 < 2, it follows that (6.43) is a subcase-of the

nested case (i).

If we specify the conditional prior distributions of p given a as

follows
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(6.44)

H: pia - n(0, 0

H1: pia - n(0, a Z(ZIZ) 1ZI),

it is easily seen that the reduced problem becomes

(6.45) t(0, w
2
I) vs. HI: y , w

2
V1),

where as before V1 = I + Z(Z'Z)
-1Z' and v and w are unknown.

Note that the conditional prior distribution of p given a under Ho is a

degenerate distribution with all probability mass concentrated at the

single point p = 0.

From the result (4.19) of Section 4 (with Vo = I) it follows that the

UMP invariant test for problem (6.45) rejects when

(6.46)

Since V
1

-1
y'V

1 
y

S= <c.
Y'Y

-1
= I - 1Z(ZIZ) Z', the test statistic S can be written as

(6.47) S =

A A
y'y + u'u

• Z Z
2y'y

As would be expected the result (6.47) can be obtained from the general
A t.

case (4.40) through the substitution of u u = y'y when M(X) = {0}.
X X

The probability distribution of S under H; can be found by using the

method described in Section 5. In this case we have M = 2, T1 = 4,

T2 = 1, mi = 2, and m2 = n-Z.

Since we have to do with a case of nested models it follows from the

results of the first part of this section that the test S < c is

equivalent to the classical F test for problem (6.43), i.e.,

(6.48) F

A A
y'y u'u

Z Z
^ ^

UzUz

> 
1-a

wherewhere 1'a is the (100(1-a))th percentile of the 
FOt, n-2, distribution.
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Usually (6.48) is written in the equivalent form

(6.49)
AF yZZy 

f
1—a° 

where y = (Z'Z) 1Z'y,
u
Z
u
Z

which is precisely the classical F test for the problem of testing

Ho: y = 0 against H1: y * 0 in the linear model y = Zy + u with

n(0, a2I). Of course, this latter problem is equivalent to problem

(6.43).

From the above discussion we conclude that the case k = 0 (or similarly

= 0). can be incorporated without any difficulty into our general

approach.

A very interesting particular case occurs if besides k = 0 we have 9 = 1

and Z = 1, where 1° = (1 1 ... 1).

In this particular situation the original problem (6.43) becomes

equivalent to the problem of testing

(6.50) Ho: 6 = against H1 '• 6 * 0

on the basis of a random sample y' = (Y1 Y2 ... Yn) from a n(6, a
2)

distribution.

The reduced problem has the form

(6.51) H': y t ( , w
2
I against H': y t v(0, w

2 
(I + 1(10 1 

The UMP invariant test for problem (6.51) rejects when (see (6.47))

(6.52) S

2 — 2
E Y.+E(Y. -- Y)1 

i=1 
1

i=1

2
E Y.

1
i=1

where "i =-- E Y
i•

i=1

Since (6.52) is equivalent to

(6.53)

<

—2
nY 

f1—a°
E (Y —

i=1
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where f1-a is the (100(1-a))th percentile of the F(1, n-1) distribution,

'which in turn is equivalent to

(6.54) IT, >

where

T=
/17

/ 1
E (Y

i 
- 7)2n1 11

and t
1- 

is the (100(1-fa))th percentile of the t(n-1) distribution, it2a
follows that our general approach reproduces the classical t test for

problem (6.50).

In the second place consider the case where 0 < k < n and k = n (again

the case k = n and 0 < 9, < n can be handled in a similar way). When

9. = n we have M(Z) = 0 and the original problem can be written as

(6.55) H0: i E AX vs. H1: p E Rn\AX).

Sincep=k<Z=nit follows that (6.55) isasubcase of (i). The

conditional prior distributions of p given a are specified by

(6.56)

Ho: pa n(X6, a2X( X' X)'".1.X'

Hi: pia - (XS, a2I),

where use has been made of Z(Z'Z)-1Z' = I.

Note that in this case the conditional distribution of p given a under

H1 is a nonsingular normal distribution. The reduced problem becomes

(6.57) H'
'0

t (X6, w
2
V0) vs. Hi: y tv(X6, (2I)),

where Vo = I + X(X'X)-1X' and where v, w and (S are unknown. From (4.26)

it is seen that the UMP invariant test for problem (6.57) rejects when
A A

1
2 -1-1

(6.58) S < c,A 
u'V u
0 0 0
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- - -
A

where ui = y C(C'Vi
1 
C)

1 
C'Vi

1 
y, i = 0, 1 with C = X and V1 = 21.

Since u
0 
= u = u

X 
= My we get

(6.59)
u
X
u
X 

S 
=

A A
2u'u •
X X

As would be expected this result can be obtained form the general case

(4.38) through the substitution of u'u = 
u'XuX 

and u'u = 0 whenCC Z Z
M(X) c M(Z) =

With the aid of the results of Appendix A it is seen that the UMP

invariant level a test for problem (6.57) rejects with probability a

regardless of the observations.

A A A A
ux1ux uzuz 

 Note that in this case the F statistic  A A is not defined
t-kA A

since u'u = 0 and n-2,= 0. uzuz
Z Z

The above results show that the observations are of no use in testing a
problem of the type (6.55). This is not surprising since in this case
the alternative hypothesis Hi is left almost entirely unspecified.
In the foregoing derivation it was assumed that k > 0, when k = 0 a
similar result is obtained.

From Section 5 it is seen that in the case t = n we have M = 1, T1 =
and ml = t-k = n-k, which shows that P(S = I) = 1, as would be expected
and it follows that the boundary case 2, = n can easily be incorporated
into our general approach.
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7. An optimum property of the test

In the foregoing sections we have derived a test for the problem of

testing linear hypotheses which has the property of being UMP invariant

for the so—called reduced problem.

In this section we shall show that this test is also optimal in a

certain sense for the original problem. We no longer consider the

parameters u and a as random and we interprete the prior distributions

as weight functions which express the importance the experimenter

attaches to the various values of the parameters.

Throughout this section we use the following notation:

0 =

(7.1) . {01, a

f(x;6) = (2w)

= {(11, a)I u M(X), a> 01,

E M(Z)\M(X) , a > , 0 = 0 U

li—n 
1

a exp{-
2 
(x—u)'(x—u)},

2a

where x E Rn and 6 E 0.

Then the problem of testing two linear hypotheses can be formulated as:

(7.2) Given that the sample y ~ f(x; 0), 0 E 0, we want to test

Ho: 6 00 vs. H1: 6 E 01.

Now 0 is treated as an unknown parameter and not as a random vector,

which means that we consider f(x; 6) as the unconditional p.d.f. of y.

Suppose that we assign a weight function W to the various subsets of the

parameterspace 0.

We first assume that this weight function is completely specified and

expresses the importance attached to the various subsets of 0.

The mathematical expression for a weight function is a probability

measure defined on a suitable class of subsets of 0 (a nonnegative set

function with W(0) = 1).

In a testing problem of the form (7.2) usually the weight function W is

specified in steps. That is, we first specify the weight functions wo
and W1 on 00 and 01, respectively and then assign (positive) weights wo
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and wi to Ho and H1, where wl = 1 — wo. The weight function Wi is a

completely specified probability measure defined on a suitable class of

subsets of 0, i = 0, 1. Note that W1(e1) = 1 for i = 0, 1.

Now the weight function W on 0 is defined by

(7.3) W =wW +wW0 0 1 1'

that is, a (measurable) subset A of 0 has weight W(A) = w0W0(A) + wiWl(A).

It is easily verified that W is a completely specified probability

measure.

Note that W(0) = w0w1= 1 and W(0i) = wl, i = 0, 1. For subsets of Ai

of 0 we have:

(7.4) W(Ai) = wiWi(Ai), i = 0, 1.

Problem (7.2) can be considered as a statistical decision problem with

two possible decisions: do = "accept Ho" and d1 = "reject Ho". Let D be

a stochastic variable with possible outcomes do and dl, then a test gy)

(critical function) is defined as the conditional probability that D

takes on the value d1 given that the sample outcome is y, i.e.,

(7.5) gy) = P(D = y E Rn.

The power function Tr(0, ) of the test (I) is

(7.6) i(0, = P(D = d1) =

100

.•.

where y' = (y1 y

We also have

f po = f(y; Odyi dyn =
mi.00

00

gy) f(y; Odyi dyn, e E

yn).

(7.7) 1 — n(0, = P(D = do).
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Further we specify the following loss function 2,(e, d) > o, d = d0,

8 E 0 for the above decision problem:

(7.8) 2,(0, = 0 if d = d0, 8 E 00

= 0 if d = dl, 0 E el

2, if d = dl, e E 00

= 2, if d = do, 8 E 01,

where Zi > 0 (i = 0, 1) is a given number.

The risk (expected loss) of a test 4) is given by

(7.9) RO, = E(2,(0, D))

From (7.8) it follows that

0, 0) =

-F Z(0, d1) P(D = d1), 8 E 0.

(7.10) R(8, = ZoP(D = d1), 8 00

= t1P(D = dO)' 6 E 01

and by making use of (7.6) and (7.7) we get

(7.11) R(8, (1)) = ton(8, ,0 E 00

= n(8, 4), 8 E 01.

Usually n(8, 4), 8 00 is called the probability of a type I error and

1T(8, (I)), 0 E 01 is called the power of the test.

As is well known there does not exist a test (I)
* 

which minimizes the risk

R(8, (1)) for all 8 0 and all 4), i.e., a test (I)* with R(6, (1)*) < R(0, )

for all r E 0 and all 4). In view of this a natural procedure is to

consider the (weighted) average risk of a test 4) with respect to weight

function W as given in (7.3), i.e.,

(7.12) r(cl)) = f R(8, 4)dW(8),
0

and minimizing this average risk among all tests.

That is, we try to find a test 4)
* 

with r(*) < r(q)) for all 4).



With the the aid of (7.3) and (7.11) we have

(7.13) r(4) = f R(e, )dW(0) =
0

f R(0, 4)dW(0) + f R(0, )dW(0) =
01

wo 0 + wdwo( 1

= w

00

R(0, )dW1(0) =

n j n(e, )dw ( ) +w1 1 t w11— t f ff(e, OdW (e)

00

7;o°) - wiki;(),

where the average probability of a type I error .3'0() and the average

power ;11(0 are defined as

(7.14)

= f Tr(0, OdW (e)
o

= f 7r(0, 4)dW1(0).
0

Let the function ki be defined by

(7.15) ki(x) = f f(x; OdWi(0), i = 0, 1,
O
i

where f(x; e) is as given above.

Then k1(x) (i = 0, 1) satisfies the requirements of a p.d.f. and we get:

(7.16) ( f OdW (0) =

00

00

00

• • •

• • •

Co

_Co
gy)f(y; Odyi dyndW (0)

f gy) f f(y; OdW (0)dy
Co 0

f 4)(Y)k0(Y)dY
CO 

• • • dyn,

dYn



where use use has been made of (7.6).

Similarly, we have

(7.17) ;10) = f ••• f gY)k1(3)dY1 •••

Upon substituting (7.16) and (7.17) into (7.13) we obtain

(7.18) r(4)) = w1
2,
1 _00

Co

gY)[w02,0k0( ) w1 t1 k1 (Y)WY •••1
—co

It easily follows that the test (j)
1 
with miminum average risk becomes:

(7.19) 4)*(Y) = 1 if w0 k (y) w
1
2,
1
k
1
(y) < 01 

= 0 if Oo

In other words, the test 4)1 rejects 110( 1(y) = 1) if

k1(y) we°

ko(y) w12,1

Usually the test (1)1 in (7.19) is called the Bayes test for problem 7.2)

and it is seen that this test depends on the weight function W

(specified by wo, wl, Wo and W1) and on the loss function 2,(0, d).

Now we take the weight functions Wo and W1 equal to the probability

measures corresponding to the prior distributions of 0 under Ho and H1,
respectively, as given in (2.5), (2.7) and (2.8) of Section 2 and

moreover, we take the weights wo and wl as considered in Section 2. Then

it is easily seen that ki(x) becomes

(7.21) k (x)

where

(7.22)

and

„n+v, —n
w

2
n+v
2

(v + Qi(x)) , i = 0,
n
n/2 v

2 i

Q(x) = (x — )'V-1(x 171 )/w2 i = 0, 1i i '
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(7.23)

= Xfl
0

=

= I + XQX'

= I + ZAZ'.

Since the parameters v, w, fl, Q and A are given it follows that the

weight function W = w0W0 + witil is completely specified. Substitution of

(7.21) and wi = pi, i = 0, 1 into (7.20) shows that the test (pi which

minimizes the average risk 1.() = f R(6, 4)dW(6) has rejection region

(7.24)
v + Q (y) det(VA) p1t1
  < [ u rrr
v + Q (y) det(Vi)

Pe0

2
rri-v

= C,

which is precisely the Bayes test (2.32) derived in Section 2 under the

assumption that 6 is a random vector.

From the mathematical point of view it does not matter whether we

consider 0 as nonrandom and W as a weight function or 0 as random and W

as a prior probability measure. The solution is the same only the

interpretation differs.

A difficulty with the above procedure is that a complete specification

of the weight function W and the loss function 9,(0, d) is required.

If one is not able to (or willing to) specify a weight function and a

loss function, it is natural to concentrate on the power function

Tro,

Again there does not exist a test 4)
* 

which minimizes the probability of

a type I error for all 6 E 01 and all (I) and at the same time maximizes

the power of the test for all 6 E 01 and all (I). Then the usual procedure

is to restrict attention to tests which satisfy n(6, 0 < a for all 6 E

e0, i.e., the probability of a type I error does not exceed the

preassigned significance level a, and to attempt to maximize the power

Tr(e, ) for all 6 E 0 subject to the above condition. When such an1
optimal test exists it is called uniformly most powerful (UMP) of level

a.
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For our problem (7.2) no UMP test exists and it is customary to narrow

the class of tests still further and to try to find the UMP test within

this smaller class. Well—known criteria for narrowing the class of level

a tests are unbiasedness and invariance. However, except for the case of

nested models, reduction through unbiasedness or invariance

considerations does not lead to a solution for problem (7.2).

A possible way out is to concentrate on the average probability of type

I error n (40 and the average power of the test Tr
1
(4)) as given in

0
(7.14). In this approach no loss function is specified and the weight

function W is only partially specified, that is, the weight functions Wo

and W1 are completely specified but the weights wo and w1 are considered

as unknown.

*Now we try to find a test (I)
* 

which maximizes the average power

among all tests with an average probability of a type I error ir0(4)) not

exceeding the level a. In other words we try to find a test (1) which

satisfies

(7.25)

*
n (4) ) < a.•

;10*) 0), for all (1) with ;00) < a.

If such a test (I)
* 

exists it will be called a test with best average

power for problem (7.2). From (7.16) and (7.17) it follows that problem

(7.25) is equivalent to: Find the test 4)
* 

which satisfies

(7.26)

00

• • •

00

r *j (1) (y)ko(y)dyi dyn <
mo00

00 00
f f (Y)k(Y)c1371

as00
n

a•

00 CO

f (y)k (y)dy,
ar00

for all (1) with f f (1)(y)k
0 (y)dy1 Y a,

d < where the average
n 

densities ki(x) (i = 0, 1) are as given in (7.15). Since the latter

problem is precisely the problem of finding the most powerful level a

test for

(7.27) H'. y 
k01 
(x) vs. HT: y k (x)0* 1 '

n'
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where ko and kl are completely specified, it follows from the lemma of

Neyman and Pearson that, apart from trivial cases, the solution for

problem (7.26) becomes

(7.28) (P2(
k
1
(y)

= 1 if   >c
k
0
(y)

=0 if IC,

where c has to be determined from

• • •

-co am.00

k (y)
1 

2
(y)k

0 
(y)dy

1 
dy 

k
0
(y)n 

= ( 
' 
c. H') = a.

0

Hence, the test with best average power for the original problem (7.2)

is given by (7.28) and the average power of (1)2-can be found from

,7rr1(

zoo

• • •

co
4 

k
1 
(y)

2(
)k (y)dyi Y = 

(
 
k (y)
0

c; Hi). 
) 

If we again take the weight functions Wo and W1 equal to the probability

measures induced by the prior distributions of 0 under Ho and H1,

respectively, as given in (2.5), (2.7) and (2.8) of Section 2, it is

easily verified from (7.21) and (7.28) that test (I) with best average
2

power for the problem of testing two linear hypotheses (7.2) rejects

when (4(y) = 1):

v + Q1(y)

v + Q0(y) < c'
(7.29)

where c has to be chosen such that

v (11(Y) 
v 

Q(y) 
< c; Wo) = a,

and where Qi(y), i = 0, 1 is defined in (7.22) and (7.23). The test

(7.29) is exactly equal to the test (2.33) of Section 2, which was

derived under the assumption that 0 is a random vector.

Although the above procedure does not require the specification of a

loss function 2,(0, d) and prior weights wo and wl, it remains a

difficulty that we need completely specified weight functions Wo and W1

For instance, in order to apply the test (7.29) we have to choose the

real numbers v > 0, w > 0, the vectors n E Rk, E RZ and the matrices Q

and A.
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It would be an improvement if we could find a test which maximizes the

average power for a whole class of weight functions. We shall show below

that under certain conditions such a test indeed exists.

Let 114010 E 411 and {W10. In be families of weight functions

defined on suitable classes of subsets of 00 and 01, respectively. The

vector * which labels the weight functions belongs to a given space T.

That is, Will) (i = 0, 1) is a weight function for every lp E T.

If cp is a test for the problem (7.2) and if n(O, ) denotes the power

function of this test,

(7.30) n e, = f
.0111 cc.

. . f 4)(Y)f(Y; e)dY • • • d y
n
,

it follows that the average probability of a type I error and the

average power of the test depend on the vector ip which labels the weight

functions, that is,

(7.31)

= f

(1) ) = I
0

8, OdW (0)

Tr(0, OdW (0)

where ip E T.

Now we are looking for a test 4) which maximizes the average power

n
1
(*, ) for all tp e T among all tests with an average probability of

type I error no0p, 0 not exceeding a. That is, we try to find a test

which satisfies

(7.32)

< a, 11) E

7;1(1), (1)*) > ;PI(11), ), for all 4) E T and all

with 71r0(11), < a, i E T.

If such as optimal test 4) exists, it will be called a test with

uniformly best average power for problem (7.2).

Upon substituting (7.30) into (7.31) we get

a

cti *



-74—

CO CO

(7.33) ;0J), = I
0 Co

'Co
• • •

f gy)f(y; Ody
1 

dy
n
dW(0)

Co

f(y; OdWi
0
i

Ody1 ...dy
n

f gy)kicy; odyi ...dyn, =
Co

where the functions k( x; 0 are defined by

(7.34) ki(x; = f
ei

; OdW i = 0,

9

with x E 0 and lp E T.

It should be noted that the function ki(x; (i = 0, 1) satisfies the

requirements of a p.d.f. for every ip E T. With the aid of (7.33) it is

easily verified that problem (7.32) is equivalent to the problem of

finding a test (I)
* 

satisfying

Co

(7.35) f • • •

f (y)ko(y; )dyi ...dyn < a, E

Co

r *(f) (y)ki(y; )dyi ...dyn > f
am. CO awe CO

CO Co

• • •

CO

f gy)kl(y; )dy, dyn,

for all lp E T and all cp with f gy)ko(y; Odyi dyn < a,
Co

E V.

Since 7.35) is precisely the problem of finding the UMP level a test

for

(7.36) H': y 0(x; *) vs. HI: y ki(x;
0

where ip E T is considered as an unknown parametervector, it follows that

(subject to its existence) the test with uniformly best average power

for problem (7.2) is equal to the UMP level a test for problem (7.36).
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Unfortunately, however, no such test exists for problem (7.36).

Since problem (7.2) is invariant under the group of transformations

(7.37) G: g(y) = ay -1- Ca for allaER a* 0 andaE

where the columns of the nxp matrix C span the p-dimensional linear

subspace M(X) n M(Z) (we only consider the case p > 0, the case p = 0

can be treated in a similar way), it is natural to restrict attention to

the invariant tests, i.e., tests 4) which satisfy

(7.38) gg(y)) = gy) for all g

Then, among the invariant tests we try to find the test with uniformly

best average pawer.

In other words, we try to solve problem (7.32) or, equivalently, problem

(7.36) subject to the extra restriction (7.38).

The transformation g G induce a group of transformations in the

parameter space 0 given by:

(7.39) -6: i(e) = (au + Ca, lala) for all a E R ,

a * 0 and a c RP, where 8 = (u, a) E 0.

Moreover, the group G induces a group 'd of transformations g in the

space T of points lp which label the weight functions.

If the weight functions Wilp are chosen in such a way that the families

{W • 1p E Tl, i = 0, 1, remain invariant under the group of

transformations G, it follows that problem (7.36) remains invariant

under the transformation g E G.

Since problem (7.32) subject to the restriction of invariance is

equivalent to the problem of finding the UMP level a invariant test for

(7.36), it is seen that under the above conditions the test with

uniformly best average power among the invariant tests for problem (7.2)

is equal to the UMP invariant level a test for problem (7.36), provided

that the latter test exists.

To be more specific, let q) = (v, w, 6) and T = {(v, w, 6)1v > 0, w > 0,

6 E RP} and take the weight functions Wolp and W14 equal to the

probability measures corresponding to the prior distributions of 8 under

Ho and H1, respectively, as given in (3.19) and (3.20) of Section 3.



-76--

With this choice of Wi .* it 
is easily seen that the functions ki(x;

becomes equal to:

(7.40)

,(n+v)
V w

2  
[v 
+1

n/2 v  r(-27.) vdetkv

n+v
-1 2

i = 0, 1, where Vo = I + X(X'X)-1X' and V = I + Z(Z'Z)- Z'.

The function ki(x; ) is the density of a multivariate t distribution

and this shows that problem (7.36) can be written as:

(7.41) Hip y t (CS, w2V0) vs. H'
1
: y tv(C6, w

2
V

with lp = (v, w, 6) e T unknown.

Moreover, the group o' of transformations i induced by the group G in the

space T becomes:

(7.42) rd: i(1) = (v, lalw, a6 + a),

for all a e R', a * 0 and a E RP, where tp = (v, w, 6) E T.

It easily follows that problem (7.41) remains invariant under the group

G and the above argument shows that the test (I)
3 

with uniformly best

average power among the invariant tests for problem (7.2) is equal to

the UMP invariant level a test for problem (7.41). The latter test can

be obtained from the results of Appendix A and Section 4 and it is seen

that the test (1)3 with uniformly best average power among the invariant

tests becomes:

(7.43) 4)3(

u'u + u'u
= 1 if S -  

CC ZZ 
< c

= 0 if

uuc + u)'cux

If

„
where u

C' 
u and u are the vectors of residuals after least-squares
X

regression of y on C, X and Z, respectively, and where the critical

value c has to be determined from P(S < c; H') = a.
0

This test was derived in Section 4, see (4.39), under the assumption

that 0 = (p, a) is a random vector.
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The average probability of a type I error wo(ip, (1)3) and the average
*,

power Tr 0, (I) ) of the test (7.43) turn out to be independent of tp E T,1 3

and

IT (
3

CO

= f
03

• • • _co 3 )k0' 
(y. Ody dyn

= P(S < c; Hp = a for all ip E T,

_00 • • •

03

jr *
ct'3(37)k CY; OdYi

= P(S < c; H) = constant for all tp T.

* *A final judgement of the tests (1)1, (1)2 and (1)3 as given in (7.24), (7.29)
and (7.43) can be made by computing the true probability of a type I
error and the true power of these tests, i.e., by computing the value of
the power functions

(7.44) ir(e, =
Ice

• • • f (pi(y)f(y; 8)dy1 dyn; i = 1, 2,
amp 00

for some relevant points 8 E 00 and 0 e 01 respectively, where f(y;
is the p.d.f. of a n(p, cr2I) distribution.
In the above discussion three different approaches were considered in
order to find a test for the problem of testing two linear hypotheses
(problem (7.2)).

These approaches result into:

(i) A test with minimum average risk 00.
*(ii) A test with best average power (4)2).

(iii) A test with uniformly best average power among the invariant
tests ((1)3).

Although it is possible to use other weight functions than those
considered above, the resulting procedures loose much of their
simplicity when a different type of weight functions is chosen. Finally,
we note that when 8 is considered as a random vector and Wi or Will),
i = 0, 1 as a prior probability distribution, only the interpretation
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differs but the results remain the same. That is, in this case we obtain
* *

a test (I)
1 
with minimum expected risk, a test (I)

2 
with best expected power

*
and a test (1)3 with uniformly best expected power among the invariant

tests, respectively.

I
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8. Summary of the results and conclusions

In this section we shall summarize the results from the foregoing

sections and meanwhile we shall draw some conclusions. Moreover, we

shall give .a description of the required computations in order to use

the test in practice.

The data set in a problem of testing linear hypotheses consists of

(y, X, Z), where the sample y is considered as an empirical outcome of

some n-dimensional random vector, X is a given nonstochastic nxk matrix

with rank k and Z is a given nonstochastic nxt matrix with rank t. Often

X and Z are referred to as the regressor matrices.

Given the above data set, the problem of testing linear hypotheses

(under the normality assumption) has the following form

(8.1) Ho: y (Xa, a2I) vs. H1: y n(Zy, a2

where aER,yER anda> 0 are unknown parameters and where under H1
the points y with Zy = Xa, a E Rk are excluded.

Let p = dim(R(X) n Mr(Z)), suppose that p > 0 and let C be a nxp matrix,

the columns of which span M(X) n Mr(Z). As we saw above, if we treat the

parameters (u, a) = (Xa, a) or (Zy, a) as an (unobservable) outcome from

a certain incompletely specified prior distribution and if we consider

the distributions in (8.1) as conditional on (11, a), the sample y can be

thought of as originating from a multivariate t distribution with v

degrees of freedom (denoted by the symbol tv).

In other words, under the above assumptions, problem (8.1) is equivalent

to the reduced problem of testing

(8.2 y t
v
( 6, w

2
V0) vs. HI: y t

v
(CS, 

w2 
1/1),

where v > 0, w > 0 and 6 E RP are unknown and Vo = I + X(X'X)-1X',

V1 = I + Z(Z'Z)-1Z°.

Similarly, in the case p = 0 the reduced problem becomes

(8.3) H': y t (0 w 
V01 

vs. H': y t
v
(0, w

2
V
1 
).0 v 

Since (8.2) or (8.3) is equivalent to (8.1), it is natural to reject Ho

if and only if H; is rejected.



That is, is, we derive the best test for (8.2) or (8.3) and use this test

for problem (8.1).

With the best test we mean the UMP invariant level a test for (8.
2) or

(8.3), where a is some preassigned significance level.

It follows that in the case p > 0 we reject Ho if

(8.4) S =
u'u + u'u
C C Z Z 

A A < c,
utu + u'u
C C X X

A

where uc, ux and uz are the residual vectors after least—squares

regression of y on C, X and Z, respectively, and where the cri
tical

value c has to be chosen in such a way that

(8.5) P(S < c; = a.

It should be noted that the probability distribution of S unde
r HI) does

not depend on v, 0) and S. In the case p = 0 we reject H if

(8.6)
y'y + u u

Z Z 
<c.

yt y + utu
X X

Again c is chosen in accordance with (8.5).

Since the computation of the distribution function F0(s) of S under H'0

requires numerical integration, it is more easy to use the p—value F0(S)

of the test instead of the level a critical value c.

In terms of F0 (S) we g
et the following decision rule, which is

equivalent to S < c:

(8.7) Reject Ho if F0(S) < a,

where S is as defined in (8.4) when p > 0, or (8.6) if p = 0 
and where

(8.8)

00

1 1 f sin e(u; S)du.= —
u y(u; S)

0

For large n we can use the approximation
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(8.9) F0(S) N
In-p (

n)

12[(S an)2 + bn]

2
--

where N(x) = 
1 e4 

dt.
-00 1/27r

The functions y(u; s), c(u; s) in (8.8) and an, bn in (8.9) are known.

They depend on the matrices X and Z through the nonzero eigenvalues and

corresponding multiplicities of the nxn matrix P defined by

(8.10)

P = I + X(X'X)-1X' - 4Z(Z'Z)-1Z' - 4Z(Z'Z)-1Z1 X(X'X)-1X'

- C(C1 C)-1C1, if p > 0

P =.I + X(X'X)-

if p = 0.

4gz,z)-1z, 4gziz)-1z,x0ox ,

It should be emphasized that the eigenvalues of P can be found without

first computing P.

As is shown in Appendix C and summarized in Table 1 of Section 5 the

eigenvalues of P can be found from the eigenvalues of the kxk matrix

(X'X)-1X'Z(Z'Z)-1Z1X or, equivalently, from the eigenvalues of the VOL

matrix (Z‘Z)-1Z'X(XlX)-1X1Z.

In the special case of testing (8.1) when M(X) C M(Z) and M(X) * M(Z),

the test (8.7) turns out to be equivalent to the classical F test with

level a applied to this situation. In other words, our general approach

reproduces the F test in the case of testing nested linear hypotheses.

An interesting subcase of the above situation occurs if we want to test:

(8.11) H : y n(0, a2I) vs. H: y n(Zy,

The data set for this problem becomes (y, Z) (the matrix X vanishes) and

if we set u = y in (8.6), i.e., if we takeX

(8.12) S -

^ ^
y'y + u'u

Z Z
2y'y



again the the test (8.7) can be applied and turns out to be equivalent to

the F test for problem (8.11).

Our general approach can also be applied to a number of trivial cases

which occur if p = k = t, n-p < 1, k = n or t = n, respectively. In

these cases we always get S = c with c = 1, 1, 2 and P(S = c) = 1, or S

is not defined which happens in the case n = p. In all these situations

the "best" test procedure is to reject Ho with probability a regardless

of the observations. That is, in the trivial cases the sample y is of no

use in testing (8.1).

As was shown in Section 7, the above test uniformly maximizes the

average (expected) power among all invariant tests whose average

(expected) probability of a type I error does not exceed a.

In order to apply the test in practice a number of computations have to

be carried out. We shall now describe how these required computations

can be made from the given data set (y, X, Z).

We first assume that k > 0 and t > 0.

(i) Compute A = (XtX)-1X'Z and B = (Z'Z)-1Z'X.

If k < Z, compute AB and the eigenvalues of this matrix. When

k < k, compute BA and the eigenvalues of BA. In the case t = k it

does not matter which of AB or BA is computed.

Suppose that AB (or BA) has an eigenvalue 1 with multiplicity

p > 0 and R> 0 different eigenvalues pl, p2, pR with

0 < pi < 1 and multiplicities rl, r2, rR, where rj > 0.

Then it follows that dim(M(X) n M(Z)) = p and r = rank(X'Z) =

p+ E r..
j=1

(ii) If p > 0, the matrices X and Z usually have precisely p common

columnvectors. Then the matrix C is defined as the nxp matrix

formed by these common vectors.

It may occasionally happen that the number of common columnvectors

is smaller than p. In that case the matrix C can be computed as

outlined in Section 3, see (3.26).
A A

(iii) Compute 13 = (X'X)-1X'y, y = (Z'Z)-1Z'y, uX = Xf3,uZ = ZY

-
and if p > 0 also compute 6 

1 
= (C'C) C'y and u = y - CS.

(iv) From (iii) we compute the test statistic:

uu'u + u
C C AZ

A
Z 
if p > 04.6

UCIUC 

U U

XX



-83-

arge

yly + utu
ZZ

S=  " if p = O.
y'y + u'u

X X

In the trivial cases p = k = 9., n-p = 1, k = n or t = n we always

get S = c, where c = I, 1 or 2 and P(S = c) = 1. The "best"

procedure is to reject Ho with probability a through an auxiliary

random experiment.

(v) In the nontrivial cases, since we know n, k, 9. and from (i), p, R,

pl, p2, pR, r1„ r2, r and r, we compute the eigenvaluesR

Ti, -cm and multiplicities ml, m2,

Table 1 of Section 5.

Compute the p-value of the test

1
F
0 
(S) =

2 11

r sin c(u; S)d
u y(u; S 

) u,
0

• • • ,

through numerical integration.

The functions y(u; s) and c(u; s) are given by

c(u;

where

sin c(u;s

m.

- s)
2
u
2
)
4

j=1

M m.
E -ilarctg((r. s)u),

j=1 3

u y(u; s)

(vii) Reject Ho if F

u=0

•

E T.M. 4(n-p)s.
j=1 3 3

mM as indicated in

When k = 0 and t > 0, instead of (i) we get p = k = 0, R = 0 and r = 0.

Step (iii) becomes: Compute y = (ZIZ) 1Z'y 
' 

u = y and u
z 
= y - Zy. The

X
remaining computations are unchanged. Similarly, if k > 0 and k = 0,

step (i) becomes p =9. = 0, R = 0 and r = 0, while under (iii) we
-1

compute P. = (XIX) XI y, ux = y - Xa and uz = y. Again the other

computations remain unchanged.
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For large n the p-value F (S) in (vi) can be approximated by

where N(x) =

N
In-p ( - an)

4[(S - an)2 + bn]

1 
42

dt and where an and bn are given by
i2ff

1 r 1
. T. = (n+k -

n-p j=1 jn-p
- p -Itr(AB))

M
2 1 5 1= E M .T . - a

2 
= (n+3k - - p - --2-tr(AB) + Titr[ (AB)

2
]) - a

n n-p I
J=1
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Appendix A

Uniformly most powerful invariant tests for a certain class of problems

In this appendix we shall derive a uniformly most powerful (UMP)

invariant test for a certain class of testing problems.

The problems can be formulated as follows.

Let F be the class of even probability density functions on R. That is,

any probability density. function (p.d.f.) f€ F satisfies:

(1) f(

(ii) f

) > 0, x = (x1 x2 ...

f f(x)dx
1 
... x

n

(iii) f(-x) = f(x), x E Rn.

Some well-known examples are:

n

- f(x) = (2) 
-2.[det(V)]4exp{-4xtV-1x),

where V is a symmetric, positive definite nxn matrix a multivariate

normal distribution).

- f(x) -

n+v, ]T) v n+v2
(v + x'V- x) 

2

v  
idet(V2

where V is a symmetric, positive definite nxn matrix and v > 0
(a multivariate t distribution).

- f(x) = 2-nexp{- I 1x.1
i=1 1

Let y = (y1 y2 ... yn)'

variables with p.d.f.

(

Rn be a vector o observable random



-87—

where 6 E RP, a > 0, f E F and where C is a given nonstochastic nxp

matrix with rank p.

In the case p = 0, the p.d.f. of y takes the form

a-1.1“-c-yT), a > 0, f €F.

Suppose that fo, f1 E F are given functions and that we want to test the

hypotheses

(A.1) f = fo against H1: f = fl

on the basis of the observation y.

Since (f0, f1) may be any pair of functions from 
F, we have a whole

class of problems of the type (A.1). In problem (A.1) the parameters

6 E RP and a > 0 are considered as unknown, which means that the

hypotheses Ho and H1 are composite. As is typically the case in such

situations, no UMP test exists. The usual approach is to restrict

attention to a certain subclass of tests and then to try to find the UMP

test within this restricted class. When a problem exhibits certain

symmetry or invariance properties, it seems natural to restrict

attention to those tests which satisfy the same invariance properties.

Within this restricted classof invariant tests it is often possible to

derive a UMP test.

It can easily be verified that problem (A.1) remains invariant under the

following group G' of transformations g':

(A.2) G': W(y) = ay + Ca

for all a E R1, a * 0 and all a e RP.

When p = 0, we have: W(y) = ay for all a E R1, a * 0.

The class of invariant tests then consists of all tests (critical

functions) (I) which satisfy

(A.3) gg'(y)) = (y) for all g' E G'.

In this appendix we shall show that the test
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(A.4)

7 7
gy) = 1 if  

00

f f
0 —co

a
-(n+1) 

d6pda

f (1-(n+1)f 
(Y-C6)d6 ... (16 da

a 1
ear CO

>c

= y if 'p = c

= 0 if I, <C

is UMP invariant for testing problem (A.1).

If p = 0, we get:

(A.5)

gy) = 1 if ° 
f a
0

n+1)

n+1)f

-Yi)dcy

da

>c

= y if =c

Problems of the type (A.1) are considered in Lehmann [10], Ch. 6, par.

6.3, pp. 218, 219 and 248, 249 (Ex. 5).

In order to derive the UMP invariant test it is often more easy to

transform the original problem, through a suitable (1-1) transformation

w = h(y), into an equivalent problem with a more simple structure.

After applying invariance considerations to this new problem the

resulting UMP invariant test can then be expressed in terms of y through

the substitution of w = h(y). In our case we consider the linear

transformation

(A.6) w = R'y,

where the orthogonal nxn matrix R is defined as follows

(A.7) R= [R1



-89-

where the columns of the nxp matrix R1 form an orthonormal basis for the

p-dimensional linear subspace M(C) spanned by the columns of C.

Consequently, the columns of the nx(n-p) matrix R2 are an orthonormal

basis for M(C)

Since y = Rw is the inverse transformation and det(R) = 1, the p.d.f.

of w becomes:

a-nf(  - C6)
) 
= 

cl-nf(R(w -
a
le C6)  ) 

•

By construction we have RC = 0 and this gives

[ 

RIC] [RCS

Rta = ... . ... .

R'C 
2 0

Hence, after the reparameterization 0 = RIC6 and by making use of

w' = (wl wp, where wi = Rly, i = 1, 2, we get the following p.d.f.

h(w; 0, a ) of w:

(A.8) h(w; 0,
w 
-e

-n„ la Lk.„
1( a 

+ R
2 •

E RP, a > 0 and f E F.

After the transformation w = R'y the problem becomes:

On the basis of the vector of observations w with p.d.f. (A.8)

we want to test Ho: f = fo vs. Hi: f = fl.

In this problem 0 E RP and a > 0 are unknown nuisance parameters.

The above problem is invariant with respect to the group of .

transformation G generated by the following 2 subgroups: .

w
1 
+

G1: g ( ) = • • for all b E
w
2

G2: g (w) = cw, c E R1, c * O.

This can be seen as follows. In the first place consider Gl.

Let z = g1(w) for b E R. Then the inverse transformation becomes
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z-1 1
w = gi (z) 0, 

2

which shows that the p.d.f. of z takes the form

h(g (
1 ); 0, a

-n= a f

-n
= f R

- b 6

0-Fb)

z
2

R
2

R (7-) = h ; 6 ,

with 0.= 8 b E RP and a> 0.

Hence, the problem remains unchanged after the transformations

= gi(w), gl E

In the second place, consider G2. If z = g (w) for c * 0, the inverse

transformation is

-1w 

= g2 (z) =-2

-and the absolute value of the Jacobian equals c111.

The p.d.f. of z becomes

- -
nh(g

2
1(z);

f(R

2 a) = (lc

c6 z
2

 ) 
R2frela 

= h(z; 6

z2

R (-))2 ca

where 8
* 
= c 8 E RP and a* = Icla > 0.

Here use has been made of f(-x) = f(x). The above argument shows that

the transformations z = g2(w), g2 G2 leave the problem unchanged.

Out of all tests gw) we now restrict attention to the invariant tests,

i.e., tests which satisfy

(A.9) (g(w)) = gw) for all g E G,

where G is the group generated by G1 and G2.



-91-

Since a function is invariant with respect to G if and only if it is a

function of a maximal invariant (see Lehmann [10], Ch. 6, pp. 215-218),

the totality of invariant tests can be characterized by a maximal

invariant statistic with respect to G.

A statistic t(w) is maximal invariant with respect to G if and only if

(i) t(g(w)) = t(w) for all g E G

(ii) t(w*) = t(w) implies that wic = g() for some g E G.

As is shown by Lehmann [10], Ch. 6, p. 218, Theorem 2, a maximal

invariant can be derived in steps corresponding to the subgroups G and

G2 of G.

In our case it is easily verified that the function ti(w) = 1472 is

maximal invariant with respect to Gl. In the space of w2 the group G2

induces the following group G2 
of transformations g2

:

* *

G2. 
g
2 
(w
2 
) = cw

2 
for all c E R1, c 0.

If the elements of the (n-p)-vector x4/2 are denoted by Vi, i = 1, 2,

n-p, it is again easily verified that the function

V
1 

V
2 n-p-1 

t
2
(w ) = 

)
' (V

n-p
' V

n-p 
V
n-p

is maximal invariant with respect to G
2' 

where it is assumed that

n-p > 1. When n-p < 1, there are no maximal invariants and the only

invariant functions are the constant functions.

Since this stepwise procedure yields a maximal invariant with respect to

G, it follows that

(A.10) T = t(w) =
' T2

, 

V
2 

V

V ' V' V
n-p n-p n-p

is a maximal invariant statistic with respect to G.

1



-92—

As we saw above a test (w) is invariant under G if and only if it is a

function of T. This means that the class of invariant tests is precisely

equal to the class of tests based on T as defined in (A.10) (i.e., we

only consider tests or critical functions ip(T)).

In other words, invariance considerations reduce the sample w to a

maximal invariant statistic T (a reduction form Rn to

Now, as is typically the case, invariance considerations not only reduce

the sample space but also the parameter space. In general, a group of

transformation in the sample space induces a group of transformations in

the parameter space and it can be shown that the probability

distribution of a maximal invariant statistic only depends on the

parameters through a corresponding maximal invariant function in the

parameter space (see Lehmann [10], Ch. 6, p. 220, Theorem 3).

The parameter space in our problem consists of all points (6, a, ) with

6 E RI, a > 0 and f e {f0, fl}.

It is not difficult to see that the group G of transformations g induces

a group U of transformations g in the parameter space which is generated

by the following subgroups (corresponding to G1 and G2, respectively):

a, 0 = (6+b, a, 0 for all b RP

: g2(0, a') = (c6, Ida, f) for all c e R , c * 0.

Again it is easily verified that the function

(A.11) v(0, a, f

is maximal invariant with respect to the induced group U.

This shows that the probability distribution of the maximal invariant

statistic T only depends on f and no longer on 0 and a. In other words,

invariance reduces the sample space to the space of T and the parameter

space to {f0, fl}. That is, the original problem is reduced by

invariance to a problem of testing two simple hypotheses on the basis of

the observation T.

If the p.d.f. of T is denoted by ki( 1, t2, tn_p_i) when f = fi,

i = 0, 1, it follows that ki (i = 0, 1) is completely specified and that

invariance reduces the original problem to:
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against

Ho: T k (ti, t2,

H1•• i(tl, t2,

By the well-known lemma of Neyman and Pearson the most powerful (MP)

test for the latter problem rejects when

(A.12)
k1(T T

2
, Tn_ 

P
_1)

> c,k (T T2, T )0 l' n-p-1

and it follows that this test (which does not depend on 8 and a) is UMP

invariant for the original problem. It remains to show that the critical

region (A.12) of the UMP invariant test can be written in the form

(A.4). To this extend we first derive the p.d.f. of the random vector

w2 = (V1 V2 ... Vn...p)' for arbitrary f E F.

Let the function t(x) be defined as

(A.13) 2,(x) • • • f f(R
1
z + R

2
x)dz

1
dzp,

where x = (x1 x2 "' x - )' and z = (z1 z2 z
p
)'.np 

Then it is easily seen that 2,(x) is a p.d.f. and g-x) = gx). By

integrating on the elements of wl and using the transformation

z = (w1 - 0)/a it follows from (A.8) that the p.d.f. of w2 becomes:

(A.14) 
h2 
(w
2' 
• a) = a2, .

v
2

••,
CT 
2

v
n-p)

),a

where w2 = (v1 v2 ...

Note that the p.d.f. of w2 no longer depends on 8. Next we shall derive

the p.d.f. of T by using the transformation

t =
i v

n-p
'

v
i

t
n-p 

= v .
n-p

= 1, 2, ..., n-p-1

The inverse transformation is
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.= titn_

v = t _p,

= , 2, ..., n-p-1

with absolute value of the Jacobian n-p I n-P-1. Then it follows from

(A.14) that the p.d.f. of T T2' T  Tn-p where T = Vn-p 

has the form:

tin-p-1
n-p 

a
t t t t

__21.272 
t
n-p-1 n-p n-p)

a a a a ).

After integration on the variable tn_p, making use of the substitution

n = t - /a and the fact that 2,(-x) = (x), we obtain the p.d.f. of thenp

maximal invariant statistic T for arbitrary f E F:

m -p -1
g(A.15) k(t t2, t

-p 
f 

n 
) = 2 nt , flt n)dn.

n -1
0

Note that this p.d.f. only depends on f (through 0 and not on 8 and a.

If Li (i = 0, 1) is defined by (A.13) with f replaced by fi (i = 0, 1),

it is seen from (A.12) that the UMP invariant test takes the form

( A.16)

f

11)(T) = 1 if ° 

f nn-p-

y if

=0 if

(nT„ n—p—i' n)"

(nT„ ...,
n-p -1' n)dn

It

>c

C

By using T = t(w) (see (A.10)) and defining gw = i(t(w)), it follows

that gm) is the UMP invariant test in terms of w, i.e.,:

(A.17)

f , n

(
41Uti

n-p 
w2)dn 

0) = 1 if ° c

=y if

= 0 if

r flp
J 
n--

0
(c-w2 )d
n-p

II

It

=c

<C
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where w = (V
1 

V
2 
... V).2

When When n-p < 1, the test gw) E a is UMP invariant (a purely randomized
test which rejects with probability a regardless of the observations).
The above analysis is carried out under the assumption p > 0. If p = 0,
we can always take R = I, that is w = y. In that case we have G = G2 and

= f. (i = 0, 1), and it follows that the UMP invariant test is of thei
form (A.16) or (A.17) with p replaced by 0, provided that n > 1. In the
case n = again the test gw) E a is UMP invariant. Finally we shall
write the test (A.17) in terms of the original observations y. Since
w = Rty, it follows that the test e(y) = gRty) is the UMP invariant

test in terms of y. In order to express (I)
*
(y) in terms of the p.d.f.'s

fo and f1 we proceed as follows.

From (A.13) and fi(-x) = fi(x) it is seen that

nf n
n-p-1 

w 
Vn-p 

2
)d =

0

W W

f f 00.

0 -co _00
n- -1

fri R z + -
[V 

R2w
n-p

Consider the new integration variables 6 E RP and a > 0 which are
related to z and fl through

(A.18)

— (-10 C6 + wa 1 1

V I

a

dz dn.

Since by construction C = RIA for some nonsingular pxp matrix A, it
follows that the Jacobian of (A.18) is equal to

Idet(A)1 IVn_pl a-(p+2).

By making using of R1RC 
=CandR1w1 +R2w2 

= Rw =ywe get:

Co

(A.19) f n-
0

for I = 0, 1.

.( n w
2
)V

n-p

det(A) I IV
n-p

• • • 1
imp CO

a
n+l)f y -C6

)d6... d6da,a 1 p
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Substitution of (A.19) into A.17) yields

(A.20)

03 00

• f f f
o(1)*(y) = 1 if

= I if

=0 if

07(n+l)f alq§ndo
a ) 1

.. do da

00 00 

f a-(n+1)
f

17.7f1)d6 dada
0 aIf

moo 00

'I

I I

>c

=c

< C.

The proof of (A.4) is completed by observing that there exists a 1-1

correspondence between the group G in w-space and the group G' in

y-space as defined in (A.2). This fact can easily be verified with the

aid of the 1-1 transformation w = Rly with inverse y = Rw. In the case

p = 0 it can be shown in a similar way that the test (A.5) is UMP

invariant.

When n-p < 1, the test (1)*(y) E a is UMP invariant. In order to obtain

the UMP invariant test with level a, we have to choose y and the

critical value c in such a way that the size of the test is equal to a

preassigned significance level a. Usually we can take y = 0.

In applications it is sometimes more easy to use the form (A.17) instead

of (A.4) or (A.5).

An interesting application of the above procedure to the problem of

testing for serial correlation in least-squares regression is given by

Durbin and Watson [4].
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Appendix B•

The probability distribution of the test statistic

In this appendix we shall derive the probability distribution of the

statistic

(B.1)

—1
x'V

1 
x

S = —1 ,
x'V

o 
x

where Vo and V1 are given symmetric, positive—definite nxn matrices and

where

(B.2) x n(0,V ).

Since Vo is symmetric and positive definite, there exists a nonsingular

nxn matrix r such that V = r r'0 0 o'

Let z be defined by

(B.3)

and

(B.4) S=

,

zir'v—lr0 zo 

0 
x
' 

then we have

Let Xi > 0, i = 1, 2, ..., n be the eigenvalues of rpi ro, A the
diagonal matrix with main—diagonal elements Xi and H the corresponding

orthogonal matrix of eigenvectors, then S can be rewritten as follows:

(B.5) V.M

where E = H'z n(0, I).

Hence, if E' = (EI

(B.6)

) we haven $
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2
where E

2 
' '

E
2 

..., E
n 
are mutually stochastically independent and

l 2 

E
2 
- X

2
(1) fo

r i = 1, 2, ..., n.

As is typically the case, not all eigenvalues Xi are different. Suppose

thatr'V
1
lr
0 
hasMdifferenteigenvalues. Tj with multiplicities

0 

j = 1, 2, ...,

If we define

M, where I m. = n.

j=1 j

m +m
j-1 j

2=

i=m +
j-

it is seen from (B.6) that

(B.7)

T. fl.

j=1
S=

j=1

2, M and mo = 0,

where ni, n2, ..., nm are mutually stochastically independent and

xk2,mi) 
N

ni .
In order to find the distribution function

(B.8) F(s) = P(S < s)

of S, we introduce the auxiliarly random variable

(B.9) Q(s) = I (T. -

j=1 3 
3

Since the event

is equivalent to
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j=1 Iii 
< 0,

it follows from (B.8) and (B.9) that

(B.10) i(s) P(Q(s) < 0).

The characteristic function (t; s) = E(eit((s)) (where i denotes the

imaginary unit) of Q(s) can easily be found from (B.9) by making use of

the fact that the 's are mutually independent and ni x2(mj).fli

We get:

m.
—

(B.11) gt; II (1 - 2i( t. 
2 

s)t) .
j=1 3

For random variables of the type Q(s) the inversion formula for

characteristic functions can be written in the following form, provided

that M > 1:

(B.12) P(Q(s) < x) I(t; s)Isin arg(gt; s)) tx}dt,

where x E R1 and I(t; s)1 and arg((t; s)) denote the modulus and

argument of the complex-valued function (t; s), respectively.

From (B.11) it can be deduced that:

m.
M _.....i

(B.13) Igt; = II (1 + 4(r. - s)
2
t
2 4

j=1

and

M m.
OLIO aregt; = E arctg 2(T. sj=1 2

The above results yield the following expression for F(s):

(B.15) F(s) —

where

Co

I sin e(u-
' 

s) 
du,u y(u,s
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(B.16)

and

(B.17) c(u; s

Y ;

m.

s) = II (1 + (T - s)
2
u
2
)
4

j=1

M m.
= E -aarctg[(T.

2 
j=1 3

The value of the integrand in (B.15) at u = 0 is defined by

(B.18)
sin e(u;
u y(u;

sin e(u; s)
= lim

u=0 u y(u; s)
1140

, 1 1
E (T - sim — T

j 
.M - —ns.

j 2 j
j=1 

2
j=1

Note that u y(u; s) is a monotone increasing function of u.

The formula (B.15) shows that we have determined F(s) up to an integral.

That is, for any value of s we can compute F(s) through numerical

integration. This method of computing F(s) is known as Imhof's method

and there exists several computer programs for the numerical integration

of (B.15), see for instance Imhof [6] and Koerts and Abrahamse [8].

The process of calculating (or approximating) F(s) consists of two

parts.

Co

sin e(u; ) 
(i) The improper integral f s- du is approximated by the proper

0 u y(u; s)

sin e(u; s)du
integral j u y(u; s) •

0

U
f s)

(ii) The integral 
sin e(u; du is approximated by using (the compound)

0 
u y(u; s)

Simpson's rule.

The errors arising from (i) and (ii) can be made arbitrarily small.

As far as the truncation error from (i) is concerned this can be seen

from the fact that for arbitrary A we have:

CO 

f sin e(u; s) 

u u y(u; s) 
dui < A

for
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j=1

j 2

2 n, s T..
3

When s = T for some i, we get U = A II
j=1
j*i

—S

m.
3
2

Hence, F(s) can be approximated to any desired degree of accuracy.

In the above derivation the eigenvalues Ti and corresponding

multiplicities raj are supposed to be given.

For the computation of the eigenvalues of the matrix rtv
-
1
1
r
0 
it is not

0 
necessary to find a matrix ro which satisfies Vo = ror('). This follows

—1 —1
0

from the fact that the matrices riv
1 

r
0 

and V
1 

V have the same 

eigenvalues, as can easily be verified. —1
xtV

1 
x

Finally consider the probability distribution of S = under the
—1

assumption that x n(0, V1). 'V 
0 
x

If F*(s) = P(S < s) when x n(0, V1), a similar analysis shows that:

1
. sin 

c* 
u;

s 
(B.19) Ft(s) =-1+--.f 1 

du,
0 u y( u;

where

(B.20)

1*(u; II (1 +
j=1

....11•Mne MIS

m.

2
u
2
)
4

Mm.
1

s) = I -2 arctg[(7- — s)u].
2

j=1

1Here use has been made of P(S < ) = 1 — 
S 
<1 

and the fact that if
s

T is an eigenvalue of V-
1
1V
0 

with multiplicity m
'
. then -1-- is ani 3 T.

eigenvalue of (V1 Vo) = Vo V with multiplicity mi.

In the above case we have

sin c*(u; s)

U y*(u; s)
1 M m

I —1 
1

• T 
—ns

3---q i 2 •
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Appendix C

The eigenvalues of P

In this .appendix X and Z denote given matrices. X is a n
xk matrix with

rank k and XIX = 1(k). Z is a nx2, matrix with rank 2, and Z'Z = 1(0.

Throughout this appendix, the linear subspace RI) spanned by the 
column-

vectors of. a nxm matrix A is denoted by M(A).

Let p = dim(M(X) n WZ)) and let the columnvectors of the nxp matrix C

be an orthonormal basis for M(X) n WZ), provided that p > 0. Then the

nxn matrix P is defined as

(C.1) P = I + xx, izz — izz,xx, — cc,.

When p = 0, .e., M(X) n M(Z) = 1 we define P as

(C.2) P = 1(n + xx, — fzz, — izz,xxi.

Now we shall show that the eigenvalues (and corresponding multipli-

cities) of P can be deduced from the eigenvalues of the kxk matrix

X'ZZ'X (or equivalently, from the eigenvalues of the 2,x2, matrix Z'XX'Z).

To this extend we first consider the eigenvalues of the matrices X'ZZ'X

and Z'XX'Z. It is not difficult to verify that:

(i) If A is an eigenvalue of X'ZZ'X then 0 < A < 1. The same result

holds for Z'XX'Z.

(ii) X'ZZ'X and Z'XX'Z have the same nonzero eigenvalues.

(iii) If p = dim (XX) n AIM) > 0, then X'ZZ'X (and Z'XX'Z) has an

eigenvalue 1 with multiplicity p and vice versa.

Let pi be an eigenvalue of X'ZZ'X (and Z'XX'Z) with 0 < p< 1 and

multiplicity r., j = 1, 2, ..., R.
3

When r is defined by r = p + I r4 it can be shown that
j=1

(see Bouman [2]):

(iv) rank(X1Z) = rank(Z1X) =

(v) X'ZZ'X has an eigenvalue 0 with multiplicity k-r

Z'XX'Z has an eigenvalue 0 with multiplicity 2,-r
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I. 1(vi)dim(M(X) n M(z) ') = k—r, dim(M(X) n M(Z)) = St—r and

I I 1
dim(M(X) n M(Z) ) = n+p—k—t, where M(A) denotes the orthogonal

complement (with respect to Rn) ofM(A).

Further we define the linear subspace V by

V = 014(x) n M(Z)) (M(X) nM(Z) )(C.3)

(M(X) n M(Z)) -e Mx) n M(Z)

where the symbol 43 denotes the direct sum of two linear subspaces.

It follows that

dim(V) = n-2
(C.4)

dim(V ) = 2(r—p) = 2 r..
j=1

Let hi be an eigenvector of X'ZZ'X corresponding to the eigenvalue pj,

i.e..

(C.5) X'ZZ'Xhi = pihi, j = 1, 2, ..., R.

rjNotethatforeachjthereare.linear independent vectors ti.

If If we define w. and q by

(C.6)
wJ 

= h. . 

1
q. = w. + a.ZZ'w. a. E R ,
J J J J $ J

it is easily verified that

(C.7)

and

1.
q. E V for any a E R

C'q = 0

(C.8) XX'qj = (1 + pjapwi

ZZ'qj = (1 + ai)ZZ'wi,
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for any aj E R

From the above results we can determine the eigenvalues of the matrix P.

First suppose that p > 0, then we get:

) Let q M(X) n it/(Z), then

Pq = q + XX' - IZZ'q IZZ'XX'q - CC'q =

I - I =0

It follows that 0 is an eigenvalue of P with multiplicity p.

b) Let q E M(X) M(Z) then

Pq = q + XX' - IZZ'XX'q CC'q =

q + - = 2q

That is, 2 is an eigenvalue of P with multiplicity k-r.

c) Let q E M(X) A M(Z), then

Pq = q + XX' - 1ZZ'q - CC'q =

q + 0 - - 0 -0 = iq

Therefore, 4 is an eigenvalue of P with multiplicity Z-r.

d) Let q E M(X) A M(Z) , then

Pq = q + XX'q iZZ'q iZZ XX'q - CC'q =

q+ 0 - 0 - = q

It follows that 1 is an eigenvalue of P with multiplicity n+p-k-Z.
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e) Let qj be as defined in (C.6),. then qj E V and we shall show that

there exist values of a such that q is an eigenvector of P.

Moreover, we shall determine the corresponding eigenvalue Xi.

In order to obtain the desired result we solve the equation

Pqj = Xjqj for aj and Xi. First we compute the left—hand side of this

equation. From (C.8) we get:

Pqj = qj + XX'qj — IZZ'qj — IZZ'XX'qj — CC'qj

= qj + (1 + piai wj — 4(1 + aj)ZZ'wj — 1(1 + pjaj)ZZ'wj

= (2 + p.a.)w. + 1((1 — p.)a. — 2)ZZ' .
J J J J 

wj.

The right—hand side Xjqj becomes:

X.q. = X.w. + X.a.ZZ'w.
JJ JJJ

This gives:

(2 + p.a.)w. + 1((1 — p.)a. — 2)ZZ'w = X.w. + X.a.ZZ'w.
J J J J J J J J J•

Hence, we are looking for values of a—and X • which satisfy3

2+

(C.9)

4((1 — pj)aj — 2) =X.a..
J J

Solving (C.9) for aj we get:

1((1 ppaj — 2) = (2 + pjapai,

which yields:

(C.10)
2

2p.a. + (3 + p.)a. + 2 = 0.
J J J J

The roots of this equation are
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3 + p.) - 1(1 - p.) 9 - .)Pj

4p.

-(3 + P.) + 1(1 - P.)(9 - P.)
J J

4P.

Substitution of (C.11) into Ai = 2 + pjaj gives

(C.12)

X =
2j 4

4
1  
— 1(1 P.)(9 - P.3

1  
p .) + 

4
- 1j 

Note that X1iA2i = 1 and let 4 < Ali < 1.

It follows that Ali is an eigenvalue of P with multiplicity rj and

corresponding eigenvectors qij = wj + aliZZ'n. for j = 1, 2, ..., R.

Similarly, A2j is an eigenvalue of P with multiplicity rj and

corresponding eigenvector qj = wj + a2iZZ'wi, j

Note that the sum of the multiplicities is equal to:

In the

(C.2).

1, 2, ..., R.

p + (k-'r) + (t-r) + (fi+p-k-t) + 2 I r, = n.
j=1

second place, consider the case p = 0, then P is as defined in

It is easily verified that P has an eigenvalue 2 with

multiplicity (k-r), an eigenvalue i with multiplicity t-r, an eigenvalue

1 with multiplicity n-k-t, an eigenvalue Ali with multiplicity .r3,
j = 1, 2, R and an eigenvalue A2j with multiplicity

j = 1, 2, R, where Xii and X2i are as given in (C.12) and where

r = I r..
j=1 3

The above results make it clear that the eigenvalues and multiplicities
of the nxn matrix P can easily be determined from the eigenvalues
(1 and pi) and multiplicities (p and rj) of the kxk matrix X'ZZ'X
(or equivalently, the txt matrix Z'XXIZ), where it should be emphasized

that in the applications k and t are often considerably smaller than n.
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Appendix D

The distance between two t distributions

In this appendix we shall compute the distance from a

distribution to a t(8, V) distribution.

Let f0(x) be the p.d.f. of a t(0, I) distribution and f (

of a t(8, V) distribution, i.e.,

(D.1)

and

(D.2)

fo( ) n/2

(r1-42-V)v

+ x'x) 2

f(=
1 0  2 v

( 1-re771I) (5-

n+v
- + (x-OPV

-1
(x-0) 

2

the p.d.f.

where x Rn, v > 0, n = 1, 2, 3, ..., 8 E Rn and V is a symmetric,

positive-definite matrix of the order nxn.

As a measure of distance we consider

(D.3) d = E
0

2
f (X) n+

f ( X) 1 v

2
n+v

n = 1, 2, 3, ..., v > 0,

where X is a n-dimensional random .vector and E0 denotes the 
expectation

taken with respect to the p.d.f. fo.

We first compute the ratio f0(x)/fi(x). From (D.1) and (D.2) we get

(D.4)
f (x)

f
1 
(x)

It follows from (D.3) that

(D.5) d = (n+v)[det(V)]

n+v
v + 

v + x'x

• • •

00

+ (x-O)'V-
v + x'x

x-8 n+v
(x)dx

1 
... dxn 2 •
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The ratio f0(x)/(v + x'x) takes the form

r(V)v2

n/2 v (v xtx)

n+v+2
2

and this can be rewrittten in the following way

(D.6) 0
+ x'

r(nnv2 
n+v+2 n+v+2 
2 • [(v+2) +   

Ictx]2 1
n 2 v 2 

*(x),

2 (1±2)

where f*(x) is the p.d.f. of a t 2(0,

(D.7) f =

v 
I) distribution, i.e.,v+2

v+2
v 2 n+v+2r(n+v+2)(17+2)2 (

2v2
(v+2) +  x'x 

2 
I

n/2 v+2r( (T;i:7)

Substitution of (D.6) into D.5) yields

(D.8) d = Ijd t(V)]n+v
Co

• • •

1

-Co

n+v+ (x-O) V- (x-6))f(x)dx
1 

dx
n 2

v + (X-6)'V-1(X- 
rt+v= ,f[det(V)1114-v E
2 '

where E* denotes the expectation with respect to the p.d.f. f* as given

in (D.7).

We have

(D.9) E*(v + (x-e)'v-1(x,--0) = v + E*((X-O)'V- (X-e))

= v + tr(V-1E*[(X-6)(X-6)'])

= v + tr(V-1[E*(XX') - E(X)o' 6(E*(X))' + 66

Since it follows from (D.7) that

1) -
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E(x) = 0, v+2 > 1

v+2 v E (XX') = I v+2 > 
2,-77.v-1-2

we get

(D.11) E*(v + (X-0)111-1(X-03)) = v + tr(V-1) +

for all all v > 0 and n = 1, 2, • • •

- Substitution of (D.11) into D.8) gives

(D.12) d =

1

Edet(V)in+v(v + tr V
-1 

+ e'v-10 — n+v
2 '

v > 0, n = 1, 2, 3, ...

Note that in the special case V =I we get d = 4 0'0.

Suppose that we want to compute the distance d from a t(00, Vo)

distribution to a t(01, V1) distribution, where d is as defined in

•(D.3) with f1(x) the p.d.f. of a tv(0i, Vi) distribution, i = 0, 1.

Consider the random vector X and the transformation

(D.13) Z =
0

where r S a nonsingular nxn matrix which satisfies

(D.14) r0r = Vo.

Then it is easily seen that Z t(0, I) if X - t(00, Vo) and

tv(0 V) if X - t(01, V1), where

(D.15)

-1

—1V = r v

It follows that d can be found from (D.12) through the substitution of

(D.15).
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Since

(D.16)

we get

' (D.17)

1 
det(V) = det(r 1V

1 
(r,) = det(V 1V

1
) -

0 0 -
det(V

0 
V
1
1
)

tr(V-) = tr(rpi = tr(r rpT

6t V
1 0 0

1

= tr(V0V7 )

-1r (0 -o o eo I-o -60),

- n+v - -
d = Edet(V

0
V

1
1 
)] (v + tr(V

0
V
1
1 
) + (6

1 -6)
tV
1
1 
(6

1
-6 ))

Note that in the special case V = V = V* we have d = 1(6 -6 PV1 0 *
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Appendix E

2,....121.gamle approximation to the probability 

distribution of the test statistic

In this appendix we shall derive a large sample approximation to the

distribution of the test statistic S.

From the results of Section 5 and Appendix B it follows that under H'
0

the test statistic S can be written as

(E.1)

n-p
E X Ei ii=1S=
n-p '
E Ei

i=1

where 4< X1 < X2 < Xn_p < 2 are the nonzero eigenvalues of the

matrix P as defined in (5.32) of Section 5, and where E2, En_p

are mutually independent random variables with Ei x2(1), i = 1, 2,

n-p.

There are m different Xi's denoted by 4 < T, < T2 < TM < 2 with

corresponding multiplicities ml, m2'P as shown in Table 1 of

Section 5, where E m4 = n-p. Note that we always have P(Ti < S < Tm) = 1.
j=1

We only consider the case M > 1, since for the trivial case M = 1 we get

= T1) = 11.

Moreover we know that one of the T.:IS is equal to 1, say T.* = with

corresponding multiplicity mi* = n+p-k-Z. This implies that

and also

i* 
n-p -0- 1 if n4-00

!IL+ 0 if n+w, j * j*.n-p

Let F0( = P(S < s; Hp, then we get

E XiEi
F0(s) = P(S < s; H) = P( „ < s) = P(E(Xi.$)Ei < 0).si
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This yields

(E.2)

where

(E.3)

F0(s) =

n-p

Qs = E (Xi-s)Ei.
i=1

We first prove the following result:

(E.4)
Qs - (n-p)(an-s)

if s * 1 and 11+00,

112( -p)[(an-s)2 + bn]

where denotes convergence in distribution and where an and bn are

defined by

(E.5)

1 
n-p
E m.Tn-p .

3=1

n-P 2 2
E M.T - a .
j1

n-p 3 j n
=

Proof: We first observe that an 1 and bn 0 if 11+00. This easily

follows from Tjm, = 1 and 4 < T < 2 for all n.

Also note that T
1 
< an < TM and bn > 0 since M > 

1. Let s * 1 and define

Xi = (Ai-s). Then X1, X2, ... Xn_p are mutually independent random

variables and

(i)
•
p = E(X ) = -s

. i

2
a.= Var(X ) = 2(A -s) .

We also have

E(1Xi -pi = Emxi-s) 1 - (X-s)J3) = s13 (1Ei-
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Since B(lEi-113) < 28 and I i-S 3 < (2 + Is1)3, it follows that

(ii) E( I Xi-

Moreover we get

and

) < 28(2 + Is!)

n-p n-p n-p
E p = E (X. -s = E X (n-p)si 

i=1 i
=1 

i=1

E m.T - (n-p)s = (n-p)(an-s)
j=1

n-p 2 n-p
E a = 2 E

i=1 •i=1

This gives:

2
rip 2 n-p

=2[ E X - 2s E X + (n-p
i=1 i=1

2 ,
= 2[ E M.T - S L M.T (n-p)s ]

j=1 3 j 
L 

j=1 3 j

= 2(n-p)[b + a2 2sa + s
2
]n n

= 2(n-p)[(an-s)2+ b].

n-P
E E( X

i
-p

13
)E1 

(n-p)[28(2 + Is') ] _ 1

n-P 2,3/2
(- E cYi)
i=1

n-P 2 3/2
E a )

i=1

Since s 1 it follows from an 1 and b 0 that

7ñ(2+urn 
 Is1)3 7f5(2 + 151

))
3

Y`n+co [(an-s)
2
+ b I

3/2 11 -s1

52]

s[)3 

in-p [(a -s) + bn]
3/2.

00.

7/2(2 +

1Together with lim = 0 and the above inequality this implies that
n+00 In-p

n-p
E E(1X

i 
-p
i
13 
)

i=1(iii) lim
n-P 2

) 
3/2

i=1

0.
n+co
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According to Liapounov's theorem, see Cramer [3], pp. 215-218, the

mutual independence of the Xi's and (i), (ii), (iii) imply that

n-p n-p
EX -E
i=1 

u
i 

i=1 
i Qs - (n-P)(a -s

/2(n-p)[(an-s)2 + bn]

n(0, 1)

if s * 1 and n+00, which completes the proof of (E.4).

In the case s = 1 the random variable Q1 becomes a sum of 
k+ -2p terms

since Xi-.4 vardEams when X - 1 and this root has multiplicity n+p-k-t.i 

Hence, the theorem of Liapounov cannot be applied and (E.4) does not

hold for s= 1.

From (E.2) and (E.4) we obtain the following large sample approximation

of F (s) when s 1:

F (s) = P(Qs < 0) = P

and this yields for s * 1

(E.6)

Qs ( -0( -s

2(n-p)[(an- 
2 
+ b

n

(s-a
n

N  ) for large n,

4[(s-an)2 + bn

47p (s-an

/2[(s-an)2 + bn]

1 
2

where N(x) = f 
-ft

dt and where an and b are as given in E.5).

In order to compute an and bn it is often more easy to use

a = tr(P)
n n-p

1
tr(P2) - a

2
.

n-p

From the definition of P we get:
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a = n+k 42. p- itr(AB))
n n-p

1 (n+3k
n-p

5 1
p - 

4
—tr(AB) + —tr[(AB)

2
2 

where A= XIX) -1X'Z en B = (Z'Z) 1Z'X.

-a
2
,

The formulae (E.7) can also be obtained from E.5) and Table 1 of

Section 5.

In applications we often need the Value of c which satisfies Fo(c

for some a between 0 and 4. We shall now derive a large sample

approximation of c based on (E.6).

From F0(c) = a and (E.6) it is seen that we are looking for an

approximation of c, say x, which satisfies

in-p(x-a)
N(  = a, 0 < a

/2[x-a2 + bn]

=

If ta is the (100a)th 
percentile of the n(0, 1) distribution the above

expression can also be written as

(E.8)
1171=5(x-an)

12[ (x-an) 2 + bn]

- t
a
,

where t < 0 since 0 < a < 1.—

In other words, we are looking for a value of x which satisfies (E.8)

and x < a.

By taking the square at both sides of (E.8) we obtain

-p-2t
2
)(x-a ) 2t

2
b = 0.a n a n

If we assume that n-p-2t > 0 we get

- q(a)b,1 = 0,
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or equivalently,

(E.9)

where

(E.10)

2a
n
x + a2 - q (a)b = 0,n n n

q(a) =
2t
2
a
2 > °.

n-p -2ta

Note that for a < i the condition n-p-2t2a > 0 is equivalent to

a >

The discriminant D of the right-hand side of equation (E.9) is equal to

D = 4a
2 
- 4[a

2
n

q(a)b} = 4q(a)b.

Since D> 0 it follows that (E.9) has two real roots:

(E.11)

x
1 
= a - iTI-675Tn -

n n

= a + cliTc—c)b.n n n

Note that x1 - - x2 = an if and only if a = 1.

It is easily seen that only the root xl satisfies (E.8) with ta < 0.

Hence, the large sample approximation of the level a critical value c

(satisfying F0(c) = a) with 0 < a<4becomes:

(E.12) c c
A 
= a

n 
- Irci-7(57.

The approximation cA makes no sense if cA < Ti since we know in advance

that c > T1, which follows from P(Ti < S < TM) = 1.

When a<4(i.e., ta 0) it is easily verified from (E.12) that cA >Ti

if and only if

(E.13) a > N(di),

where

(E.14)
Ti-a)

/2[(Tran)2 + bn]
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Note that d1 < 0 and also that a> N(di) implies n—p-2t
2 
> 0. In other

a

words, if we choose a value of a with < a < N(di) we get an

approximation CA <

However, unless Ti = 1, we have d — co if n+co and therefore N(di)

if n+co.

That is, if Ti < 1 the condition (E.13) is no restriction on a for large

n. In order to see this, suppose that Ti < 1, then there exists a

constant g such that Ti < g < 1 for all n. This implies that for

sufficiently large n we have Ti < g < an (an 1 if n

Hence, for large n we get Tran < g—an < 0 and therefore

(T1—a)2 > (g—a)2 > 0, which implies that

Since lim
n+co

yields

(E.15)

b b
n n 

2
(T —a) (g—an

0

(g—a)2 (g-1)

lim

/1 + 
b
n

n+co

(T
1
—a

1

Now d1 can be written as

d
1 
= —

2

)
2

1.

it follows that lim
n+co ( —a

n
)2T 

co).

b
n

/1+ 
b
n 

, which

—a
n
)

and it is easily seen from E.15) that

(E.16) —co if n+00.

Finally we consider a large sample approximation to the distribution of

S under H.
1.

As is shown in Section 5 and Appendix B, under HI we have
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(E.17) S -

with the X

From

s and Ei's as before.

1 
P(S < s; Hi) = 13(-s- >

1
HI) = 1 -

E
x

= - P( EE —
<
s
1 

P o ) ,(7; — —

it follows in a similar way that for large n and s * 1 we can

approximate P(S < s; HI) by

(E.18) P(S < s; H) 1 - N(

r--
-

n

[ (2: - a*n) 2 +b *n]

/n-p (a
n 

s)
N(  

-1)2 + b*
n s

where a
* 
= 

1 
E --al and b

* 
=

* 2
n-p 

j1 
T. n 

n-13 • J=1 T.= j j
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