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Abstract

A flexible numerical integration metho
d is proposed for the computation
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integration and Monte Carlo integrat
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Mixed integration is parsimonious in
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1. INTRODUCTION

Our research is directed towards the efficient computation of posterior

moments of measurable functions of parameters of econometric models in

multivariate cases.

Given our prior assumptions these posterior moments cannot be evaluated

using analytical integration methods without gross approximation errors or

excessive computational costs. In earlier work [4, 8] we made use of Monte

Carlo integration methods [2, 6]. As an example of an econometric model we

took the well known simultaneous equation model, which is nonlinear in the

sense that the expected values of the endogenous variables are usually

nonlinear functions of the parameters of interest 8. As a Monte Carlo

integration method we made use of importance sampling.

Our application of importance sampling may be described briefly as

follows. Let g(8) be a measurable function of the parameters of interest 8,

where g may be a scalar, a vector or a matrix. Standard examples of g are

elements of 0 and 06', but we are also interested in marginal posterior

densities [4] and in nonlinear functions of 6 such as short-run and long-run

multipliers [8]. Our purpose is the efficient computation of

(1)
(8)w(6)I(0)d0

E g(0) j TAT(0)I(0)de

The weight function w(8) is defined as p(6)/I(8), where p(e) is a kernel of a

multivariate posterior density function and the importance function 1(0) is a

multivariate density function with properties to be discussed below. The

region of integration in (1) is the set of all 0 satisfying I(0) > 0. The

importance function is supposed to be a good approximation of p(0), so that

w(8) is roughly a constant, and the importance function is supposed to have

convenient Monte Carlo properties, so that it is relatively easy to generate



random drawings from it. As an importance function we made use of the

truncated multivariate Student t density. For details we refer to [4, ]. We

shall use the term simple importance sampling for the approach used in [4, 8].

In several econometric applications we found that the surface of the

posterior density of a nonlinear model may be ill behaved. An important reason

for this phenomenon is small sample size. Then the question arises whether

such a density can be approximated with a reasonable degree of accuracy by a

multivariate Student t density. A limitation of the Student t is its symmetry,

while truncation of the density is helpful only in special cases. Since our

experience with the Student t density was not always successful, we started to

consider alternative approaches.

In the present paper we consider the case where the kernel of the

posterior density p(8) is unimodal but has different tail properties i

different directions and we propose a flexible numerical integration method,

which is intended to handle this situation. The method proposed transforms the

s-dimensional parameter space of vectors 0 into another s-dimensional

parameter space of pairs (n, p), where n is an (s-1)-dimensional vector and p

a scalar. For p we take ± d, where d is a measure of the distance between a

point 8(i), generated at random, and a point 80, a location estimate of 8. As

a location estimate we take e.g. the posterior mode or a preliminary estimate

of •the posterior mean. The vector n is taken as the direction

(i) 
(0 - e

0 
)/p

(i
 with one coordinate deleted to avoid degeneracy. After

having performed the transformation, we generate a vector n by means of

Monte Carlo and apply classical numerical integration with respect to p given

n(i). So the method amounts to a combination of classical numerical

integration and Monte Carlo integration. We call it the mixed integration

method. More details on the transformation are given in Section 2 and the

Appendix B. The mixed integration method is discussed in Section 3. Further

comments are contained in Section 4, while our conclusions are given in



Section 5. An application of mixed integration is presented in Appendix A.

2. A TRANSFORMATION

In this section we describe a particular transformation of a multivariate

normal random variable. We start by defining a multivariate normal density

function on the parameter space as

(2) I(8) = 270

with -00 < e < = 1, s. Here

-4
exp[-4(0 -

0
)'V

-1
(8 - 8

0
)]

is the posterior mode or a (possibly

rough) first stage estimate of the posterior mean; V is minus the inverse of

the Hessian of the log posterior evaluated at 80 or another preliminary

estimate of the posterior covariance matrix. For more details on the choice of

parameters for importance functions we refer to 8, Section 4; and 10].

Next, we partition 8 - 00 and V-1 as

(3)

where v and r are scalars.

(4)

(5)

V-1 =

We shall make use of

d := 'Pu + 2u'qv + rv

v := E(v 
u'q 

Note that d measures the distance from 8 to 8 according to a norm based on

V-1 and that v is the mean value of the conditional normal distribution of v

given u, which is called the regression function [1, p.29]. We partition the



region of integration of 0 as

(6)
8 E R

s 
and v > vj

18 I 8 E Rs and v < ;71

The transformation that carries 0 into 71, p s given by the following

transformation formulae,

(7)

Oh = T1(0) = d) if v >

p) = T2(8) = (- -d) if v < v

The regions of integration of (n, p) are given by

(8)

s' = {(n, P)

S  = 1(n, 02

rrcl"
EN,TIE 0/

E R—, r E

where R and R- are the sets of positive and negative real numbers,

respectively. The characterization of 2 will be discussed in the Appendix.

Note that the sign of p determines the region of integration SI or S.

The inverse transformation that carries (n, p) into 6 is defined on

and S' as the function2

(u, v) = T

with

1
11, = (pn, 312 p + 11

r r



D(n) = (q'n)
2 
+ r(1 - n'Pn)

where we make use of (4) and (7). Note that v can be rewritten as

P
v = v + vD(n)

So the transformation Ti(e) maps the elements of Si onto SI, i = 1, 2. The

purpose of the inequality conditions In (7) is to make this transformation

one-to-one. We shall give a geometric interpretation below.

The Jacobian determinant J, obtained by taking derivatives of u and v

with respect to n and p, equals

(12)

with

-
J = p

s1 
J

( 13) (n) = (T)

which can straightforwardly be verified. So the absolute value of the Jacobian

determinant IJI is the same in both regions of integrations.

The density function of (n, p) is given by

(14) I*(r1, P) = I[T-1(n2 0]1J1

s-= (2 )—IsIvl—le p(-4P)1p1
1
Jn)

where we have deleted an index for the region of integration S' or S'2 2
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pp.156 and 157], because the density of (n, p) is invariant with respect to

changing the region of integration. This result is due to the symmetry

properties of the multivariate normal density.

A geometric interpretation of the transformation of the random variables

0 is presented in Figure 1. At the top we have drawn a contour of a bivariate

Si

qu+rv=0

A
+1

0 riA

Fig.1 A transformation of the bivariate normal random variable 0 LIN into (rip)

EG1113413



normal importance function I(8) = c with 80 = 0 and d = 1, for convenience

only. The regression line qu + rv = 0 partitions the region of integration of

0-elements into S1 and S2 
[compare (6)]. Consider the point A generated at

random from I(0). A is an element of S1 because VA 
> VA [see (7)]. It follows

that A is mapped into the point A' E Si at the bottom of Figure 1, where A'

has the coordinates TIA, = uA and ppo = +1. A similar analysis can be given for

B. The points C and D are elements of S2 for which p = -1 
and n = -u. Note

that C' and D' [in the (n, p) space] are reflected with respect to the

vertical axis compared with C and D.

We conclude this section with a remark. If we do not use the inequality

conditions of (7), the transformation of 0 into (n, p) will be two-to-one in

the following way. Let n = u/p and p = d, instead of the transformation (7).

Then the inverse transformation 0 = T- (n, p) will give two solutions of v

that are not symmetric around 00. This is illustrated in Figure 1. Consider

the point A' = (nA„ +4) at the bottom. Given uA = nA, [compare (9)], it is

seen that there exist two solutions of 8: the points A and A on the contour

I(0) = c. This is a disadvantage for practical applications. Another

disadvantage of the two-to-one transformation is the asymmetric treatment of

the elements of 0. In order to define the direction n one may delete any

element of the s-vector (0 - 00) instead of the last one. In such a case one

obtains s+1 solutions of 0 by inverting the transformation. Because of these

disadvantages we have constructed the transformation described.

3. THE MIXED INTEGRATION METHOD

In this section we apply the transformation of Section 2 to the integrals

of equation 1). We write the numerator as A = Al + A2 where



(15) A
i 
= f g(8 8)I(0)d8 (i = 1, 2)

S
i

The denominator is handled in the same way after substitution of g(8) = 1. By

making use of the inverse transformation (9) we can write Ai in terms of n and

Let

(16)

g(8) = g[T-1

w

11, =: g*(fl,

p[T-1(n,  
w*(n, p)

I[T-1011

Using (12), (14) and (16) we find

(17)
-1

w*(n, p)Iiqn, p) P[T 1", p)] I[T -1(n, P)]IJI
I[T-'(n, p)]

-1
Prr P iJ ( )

Note that the importance function has been dropped from (17). We shall comment

on this result in the next section. By making use of (14) and (16) we can

write the first of the two integrals in (15) as

A
1 
= if g*(fl, p)w*(n, p)I*(fl, p)dfldp

S'1

We assume that appropriate regularity conditions are satisfied and substitute

(17) into (18). Then one obtains

(19) = •I 14 g*(ri, P)P
1 fl, 11 s-1

dpjJ(n)dn
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Similar results can be obtained for A2' where 
the integration with respect to

p is over R . We recall from Section 2 that the importance function (14) is

invariant with respect to the sign of p, but we emphasize that the expressions

in (16)—(19) will usually not be invariant.

Now suppose we draw N vectors n(i) from a distribution with a density

proportional to J2(n). Then we may estimate Al by means of

(20) E If+ g*(n(i), p)pET —1 (i)n , P)] P
i=1 R

s —1

The proportionality sign in (20) is necessary since we have not bothered about

the question which part of the integration constant of (2) corresponds to n

and which part to p. If we treat the numerator and the denominator of (1) in

the same way the constants will cancel. The generation of the random drawings

n is done by drawing 8 from (2) and deriving n through (4) and (7). The one—

dimensional integrals in (20) are calculated by means of classical numerical

integration methods. There are two reasons for this choice. First, classical

integration procedures are known to be quite efficient in handling one—

dimensional integration problems. Second, in the type of nonlinear problems we

are interested in, it will be difficult to find a good importance function,

since for certain values of n the expression p[T
-1(n, p)] considered as a

function of p will decrease faster than a normal density as Ipl tends to

infinity, while for other values of n it may decrease slowly as a Student t

density with a few degrees of freedom only. Anyway, this is our experience

with the examples we studied in [9, 10, 11]. In fact, the integrals in (20)

may not converge at all for a diffuse prior when p tends to infinity. In our

own applications we have taken'a prior which is positive on a bounded region

only, but the approach of this section can be applied to integration

over R
s 

provided the integrals exist.
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For the practical application of the integration approach we shall

discuss one further development. Suppose 0(1) is a point generated at random

from the normal importance function (2). Given 0(i) we know which trans—

formation formula, T1(0) or T2(0), we have to take from (7). Suppose we take

T1 which gives (n(i), p(i)). Numerical integration is then performed on the

half—line through the points 00 and 0(1), consisting of all positive multiples

of (0(i) — 00). In case one has to take T (instead of T1) one performs

numerical integration along the half line consisting of all negative multiples

of (0(i) — 00). One may generate another direction n(1+1) (through 0(i+1))as

a next step. We recommend however a modification in the practical application

of the integration procedure. Clearly the points 0(1) — 00 and

00 _ (0(i) _ 00.) are symmetric around 00. Suppose as before that 0") is a

point generated at random. Let 00 — (0(i) — 00) be the next point to be

considered. Then one can perform one—dimensional numerical integration along

the line consisting of 00 plus all positive and negative multiples of

(0(i)
0
0 ). This method of generating one point by Monte Carlo and the next

one by a symmetry argument is well known in the literature as antithetic

sampling [2, 6]. It implies that we replace (20) by

(21)
N 00

Am E {f g*(-  2N i=1 , P)14T-1
i) 2 p)fl pis-gdpl

We divide by 2N since each point drawn is used twice,. The posterior kernel is

not defined at p = 0 but since this event has measure zero it is of no

importance in the computation of the integrals.

In our integration approach the proportionality (21) is the basic formula

for the estimation of the integral A. Since this approach amounts to a

combination of classical numerical integration and Monte Carlo integration, we

call it the mixed integration method. In the next section we give some further



comments.
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4. FURTHER COMMENTS

First, it seems useful to compare the present approach with an alter—

native we tried before. In [10] we gave pictures of some very skew posterior

densities. Student t densities necessarily yield bad approximations in such

cases since they are essentially symmetric. Existing families of skew multi—

variate densities, such as Wishart and poly—t, might be considered but it is

rather difficult to fit them to a given posterior. We also considered products

of univariate skew densities fitted along the main axes, but the results were

not encouraging. Compared with these alternatives the present approach has the

advantage that it is both flexible and parsimonious. By flexible we mean that

we perfectly follow the shape of the posterior when we integrate with respect

to p. By parsimonious that we do not introduce additional parameters to

describe the shape of the importance function, given preliminary posterior

mode estimates or first—stage integration results on posterior mean and

covariance matrix.

Second, one might observe that the reciprocal of the density function

I[T-1(1, p)] does not appear in (19)—(21) in the same way it appears in (1)

through w(0). If we are interested in computing the integral

(22) f g(0)p(0)d0

and if p(0) has no convenient Monte Carlo properties, we substitute p(0) by

[p(0)/I(0)]I(0) in order to obtain an expression containing a density from

which we can conveniently draw points 0(i) at random. If we apply the

transformation defined by (3)—(7), we can rewrite (22) as follows



(23)
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fig[T-1(n, P)]P[T-1(0, p)]IJIdpdfl =

iiig[ 101, PAPET-1(n,• (n)dfl

compare Section 2 and, in particular, (12). Since J2(n) is already

proportional to a density with convenient Monte Carlo properties there is no

reason to introduce an importance function in this stage. In fact, when

defining the transformation we have already implicitly introduced our

importance function. Note that the posterior kernel of (n, p) is decomposed as

a conditional density of p given n and a marginal density of n. We have

incorporated the importance function I(0) of (2) explicitly in our derivation

since we want to emphasize the link between the kernel J2(n) and the normal

density I(8) that is used to generate the random directions n(i) (i = 1,

N). We note that there exists a computational efficiency problem with respect

to the generation of the random directions. This is illustrated in Figure 2a

below [compare comment four].

Third, we mention that one can use the same integral with respect to p

for different functions g*(11, p). For instance, when one is interested in the

computation of the first order moments of the vector 8 — 0° one takes for g

the elements of u and v. But (given n) these are constant multiples of p

[compare (9)]. As a consequence only one integral with respect to p has to be

computed for all elements of 0 in (21). So moments of linear functions of 8

are easy to compute. This holds similarly for the zero order and second order

moments of 8. Marginal posterior densities may be approximated by making use

of the integration results for the case g(8) = 1 on some interval and zero

elsewhere [4, Section 7]. Moments of complicated nonlinear functions of 0

require additional numerical integrations.

Fourth, a geometric interpretation of some of the features of mixed

integration is illustrated for s = 2 in Figures 2a and 2b. In Figure 2a we
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have drawn a contour of a posterior density p(0) = c with the mode = 0, for

convenience only. The point A, generated at random from a bivariate normal

importance function with 00 = 0, is located on the contour 1(0 = c. Numerical

integration can be performed on the line through the points -A and A by making

use of antithetic sampling. Note that (-)A is mapped into (-)A! [compare also

-
Figure 1]. Typical shapes of the function p[T

1 
(nA,, P)] 1 PI, considered as a

function of p given TIA„ are shown in Figure 2b. The different shapes

illustrate the flexibility of mixed integration. Furthermore, Figure 2a

illustrates that it is less efficient to take a standard normal importance

function (V = I) because one should generate more lines in the direction of

the main diagonal than orthogonal to it.

Finally, we mention two cases in the literature where a transformation of

the multivariate normal density is considered with a Jacobian factor that

differs from (12) and (13) only with respect to the expression of J2(n).

First, Anderson [1, pp. 175 and 176] and Kendall and Stuart [3, pp. 246 and

247] give the transformation of normal variables into polar coordinates.



Fig. 2a

1 5

Contours of the posterior density p(0)=c and the normal importance
. function I (0)=c with 00=0

P fr-1( 71A

-P
Fig. 2b

A 0 —A

Typical shapes of the function p[T 1(7JA,p)]IpJ considered as a
function of p given ?IA

EGI114!83
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We have opted for (7) since it appears relatively easy for practical

applications. Second, Trotter and Tukey [7] make use of a transformation of

normal random variables in what is known as Conditional Monte Carlo. In this

approach a possibly awkward parameter space is enlarged to a more suitably

chosen space. Details are discussed in [2, Chapter 6]. By contrast, we have

reduced the s-dimensional parameter space of 0-elements into an (s-1)-

dimensional space of n-elements. Our approach has the advantage of being

parsimonious with respect to the number of parameters of the importance

function.

5. CONCLUSIONS

In this paper we have proposed a flexible numerical integration method

that can be used for the computation of posterior moments in case the

multivariate posterior density has different tail properties in different

directions. The method is parsimonious because one makes only use of the

parameters of the more restrictive multivariate normal importance function,

which will approximate the tail behavior of the posterior mentioned above very

poorly. Increased flexibility is of course, not a free good. But the price of

one-dimensional numerical integration along lines in the parameter space is

not very restrictive on modern computers. Practical experience with several

examples, for instance with the Klein-Goldberger model, which involves thirty-

dimensional numerical integration [9], indicates the feasibility of the mixed

integration approach in a case where simple importance sampling failed to

converge. In [11] we compared mixed integration and simple importance sampling

with an alternative Monte Carlo method where the importance function consists

of a finite mixture of multivariate normal densities. The particular mixture

used was tailor-made for the example studied. In other words, the finite
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mixture approach can probably not be applied to arbitrary models, without

first studying the properties of their likelihood functions. The results of

some experiments indicate that an importance function based on mixtures i

rather efficient but that mixed integration appears robust and can be used in

a rather mechanical way. Of course, more experience is needed in this area

before any final conclusions can be given.
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APPENDIX A*

In this appendix we apply the mixed integration method in order to

compute the scores wi, w of n alternatives Ai, ..., An

(0 < w. < 1 V j = 1, n; E
n 

1 
w. = 1). The scores of the alternatives arej 

obtained taking into account m different decision-criteria Cl, ..., C. More

details are given below. As a particular example we consider the case

presented in Lootsma (1980) where three candidates, Al, A2 and A3, have

applied for a professorship in Operations Research. In order to compare the

abilities of the candidates an advisory committee of N=3 members has

identified four decision-criteria Cl, ..., C4. These criteria are mathematical

creativity (C1), creativity in implementations (C2), administrative

capabilities (C3), and human maturity (C4): the candidates remain anonymous.

Atraditionalinethodtoobtainthescorew. ofthealtermative lk.is by

means of direct assessment. At a first level a weight ai is assigned to

criterion C. (0 < a < 1 V i = 1, ..., m; Elm a = 1). At a second level the
i=1 i

alternative Ai is given a weight (3ii under each criterion separately

(0 < 13ij < 1 V i = 1, m, j = 1, ..., n; En 
=1 ij 

= 1 V i = 1, ...,
j 

Then the scores of the alternatives are computed according to

In
w. =j iji=1

(j = n) Al)

In practice, however, the weights c and e frequently unknown. A131j
common approach to this problem is to obtain estimates via a method of

pairwise comparison (cf. Saaty (1980)). At the first level each of the N

committee members is asked if he or she prefers either the k-th criterion or

the 2.-th for all k > 2. (k, 2. = 1, m). Further it is assumed that the

probability of preferring criterion Ck over Ct is equal to

pkt = akgak + at). Then the probability that Nkt of N independent committee

members will vote for Ck rather than Ct is given by the binomial probability

distribution

a
k

N
idt(  

a
X  )

N-N( N )(
Ja +a )

kt k ak ± aft
(A2)

Hence, assuming that the comparisons of different pairs of criteria are

independent as well, the likelihood function of the unknown parameters

al, ..., am is equal to
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in k-1 ,
ak 

N,fl
N.x,( 

axN-N
kka)= II H )(  (A3)

m k=2 k=1 -1,01 ak ak 4c41‹. ak j

Bradley and Terry (1952) use (A3) to find the maximum likelihood

estimates for the weights al, ..., am of the criteria. At the second level the

maximum likelihood estimates of the weights hi of the alternatives for each

criterion separately are determined in a similar way. Substitution of the

computed estimates in (Al) then yields the scores for each of the

alternatives.

In this appendix we introduce a Bayesian analysis of (A3), where the

prior distributions of the ai and hi are assumed to be uniform, and we apply

the mixed integration method to compute the posterior expected values and

covariances of these unknown parameters. Then one can determine the posterior

expected values and standard deviations of the final weights wl, wn,

using (Al) and statistical results with respect to the expected value and

variance of sums and products of random variables.

Next, we compare the results of the maximum likelihood and the Bayesian

approach on the example mentioned above. The data for the problem are

presented in Table 1. For each pair of factors Ci/Cj and Ai/Ai we depicted the

number of committee members which preferred the i-th factor over the j-th, as

well as the total number of voters. Note that not all members expressed their

opinion on each pair of factors. Furthermore, if a committee member considered

the i-th and j-th factor equally important this vote is attributed half to

each of these factors.

Table 1. Data for the Operations Research professorship

C2/ -C1 C /Ci C /C2 C4./ -C1 C /C4' -2 C /C3

(1.5, 3) , 1) (0, 2) (3, 3) (1, 3) (1, 1)

A3/ A2

C2 (0, 1)

C3 (02 
3)

C4

(1, 2)

(0, 0)
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Given these pairwise comparisons the likelihood functions are given by

(A4) up to (A8), apart from normalizing constants. Note that since we have

chosen our prior distributions uniform the kernels of the posterior

distributions are proportional to the likelihood functions.

L (0
11'• 12'• 13) cc

L (
2 '1322°23)

31'32'33
L

L (B
41'

13.
42'

P.
43

an
(

a +a )
1

(  
a
2 

eic2+a
3

1331
(133132

4( )

al ct2
(:÷a3

a

3 )4 1(cc1÷a3)4 *

a
4  (  a4 

afa
4 

a2+a
4

(A5)

a
2

a
2
+a
4

a4 
a
3 +a4 
)'

1311  )1(  1313  )11(  o11  )
) 1+1312 '11+1313 1311+1313)

1321  )1,

1 
) '

1 23
(A6)

1332 fi33
+ f3
2 33 f332+1333

+13+13.
341-1-1343 41 43 42 43

)

(A4)

°13  )

2
+13

13
)

(A7)

(A8)

The resulting maximum likelihood estimates, which coincide with the

posterior modes, have been determined by a constrained numerical optimization

routine: we used the TWOFAS—package of Louter and Van der Hoek (1984). In

order to compute the Bayesian estimates we used the mixed integration method.

Our results are shown in Table 2. It is of considerable interest to observe

that candidate A1 would definitely prefer a Bayesian 
procedure for choosing

the new professor. However, further inspection of the posterior standard

deviations indicates that the difference is not as clear—cut as suggested by

the maximum likelihood estimates.
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Table 2. Results for the Operations Research professorship 

, Maximum likelihood

.111 .384 .037 .466

Bayes

(14

.152 .357 .106 .385

(.088) (.141) (.090) (.148)

2 3 1 2 3

1 .158 .119 .723

2 1.000 .000 .000

3 1.000 .000 .000

4 .000 1.000 .000

(.187) .118) (.164)

.304 .454 .242

(.195) (.228) (.167)

.439 .479 .080

3

.256 .239 .505

(.152) (.158) (.195)

.534 .233 .233

(.210) (.184) (.184)

.623 .154 .223

w3

.413 .311 .277

(.127) (.128) (.110)
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APPENDIX B

The set Q in equation ( may be defined as

where

s-1= 1r E and 'V1 <n 1} B1

1
:= P — q q B2

The characterization of Q is based on the following argument. We start with

(2) and (3) and note that v is a real number. Next, given an (n, p) the

corresponding value .of v is obtained from the inverse transformation (9).

Suppose the discriminant D(n) i (9) is negative. Then there is no real

solution for V. This is a contradiction. Therefore, using the definition of

D(n) in (10), we have

n'q 'n — rn'Pn + r > 0

This inequality can be rewritten by making use of B2), as

n'V
1 
n < 1
--

B3

n'V n < 1 B4

So Q is an ellipsoid provided Vi is positive definite. It is straightforward

to verify, using (2) and (3), that V1 is the inverse of the covariance matrix

of the vector u. The covariance matrix of the multivariate normal random

variable 0 in (2) is positive definite. Then the covariance matrix (and the

inverse of the covariance matrix) of u is positive definite [cf. Anderson

(1958), p. 337].
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