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Some Very Easy Knapsack/Partition Problems

by James B. Orlin
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Abstract

Consider the problem of partitioning a group of b indistinguishable
objects into subgroups each of size at least £ and at most u. The objective is
to minimize the additive separable cost of the partition, where the cost
aséociated with a subgroup of size j is c(j). In the case that c(.) is convex,
we show how to solve the problem in O(log u) steps. In the case that c(.) is
concave, we solve the problem in O(min( %, b/u, (b/2)-(b/u), u-2)) steps. This
problem generalizes a lot-sizing result of Chand and has potential

applications in clustering.




Consider the problem of partitioning a group of b objects into subgroups
each of size at least £ and at most u. The objective @s.to minimize an
additive cost Zg=zc(j)xj where c¢(.) is some real—valuedbfunctipn and X5 is the
"number of subgroups of size j. This problem may be'expressed-as the knapsack
‘problem P below. ) .

i

. e u
Minimize . c(j)x.
=2 (3) ;

Subject to )T jx. = b
ubj Liopdxy

xj.ZVO integer for j=2,00.,u.

It is well known that the problem P may be solved in 0((u-2)b) steps via
“‘dynamic programming recursion. Moreover, if b 2_@2, then P may be solved in
0((u-2)u) steps because the optimal solution to the associated group problem
_is feasible for P. (See Garflnkel and Nemhauser [1972] and Denardo and Fox _
[1979] for further details.)

The purpose of this note is to provide very efficient algbrithms for the
case ‘that c(.) is either concave or convex. In particular, we éhow that we can
solve the case of P in which c(.) is convex ig 0(1eg u) steps. Thisvalgorithm
‘extends a previous algorithm by Chand [1972] for a variant of the discrete

» time EOQ model, as mentioned below.

In the case that c(.) is concave, we show how to solve the
knapsack/partition problem in O(min (&, b/u, (b/&)=(b/u), u=-2)) steps. It is
an open question as to whether the concave case can be solved in a number of

steps that is polynomially bounded in log b.

) In both the case that c( ) is convex and the case that c(.) is concave,
1f the number of subgroups in the partition is spec1fied then the resulting
- problem is solvable in 0(1) steps._
The bounds on the number of. steps are based on the'computational model of
counting each arithmetic operation as one step. If one counts the addition of
x and y as log (x+y) steps, then we must add the'assumption that c(.) is 4

- integral, and the cenvex case is solvable in 0((log b)(log cmax)) steps,




whereas the number of steps in the concave case should be multiplied by a
factor of (log b)(log c_..).

We assume that the data for the problem is specified by the values
(2,u,b), and by an "oracle function" c. Thus the size of the data is 0(log b).

Thus the algorithms for the convex case is polynomial in the size of the data,

whereas - the algorithm in the concave case is not necessarily polynomial.

As an example of the knapsack/partition problem consider ‘the problem of
subdividing a group of b people into subcommittees, each consisting of between
2 and u members. Suppose further that the "yalue" of a committee with j .
numbers is c(j), where. the function c(.) is concave, reflecting decreasing
marginal retdrns. Here the objective is to maximize the value of the partition

of people into subcommittees.

As another example, suppose that a data base includes data on b distinct
users, and we are interested in aggregating the b users into subgroups each
with a number of users between & and u. Suppose further that the cost of

aggregating j users into a subgroup is c¢(j), reflecting a loss in accuracy but
| a gain in computational convenience. Then the optimum solution to the knapsack

problem gives an estimate of how much aggregation is desirable.

A third eﬁample is an application to-a variant of the F0Q model as
described and solved by Chand. Chand addressed the usual EOQ model with two
minor modifications. First, the number of "periods" of the problem is b
(rather than « as in the usual model). Secondly, each order interval must be
an integer {rather than continuous) number of periods. In our knapsack model,

xj.would represent the number of order intervals of j time periods.

The Convex Case

We first consider the case in which c(.) is strictly convex. (If c(.)

were convex but not strictly convex we could replace c(.) by c¢'(j) = c(j) +

ed for a suitably small €.)

Henceforth, we let cj denote c(j). As a preliminary we define the




parametric linear programming problem LP(M).

(LE(M))

Minimize

u
L3185

' u
Subiject to ), .jx.
i Liop3%5
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X,
=273

> 0 for j = L,ee0,u.

_ We denote each instance of P as a quadruple < c, 2 u, b > , and we

" denote each instance of LP(M) as a quintuple < ¢, %, u, b, M >. The following
l lemma is implicit in the work of Sinha and Zoltners [1979] on the more general
multiple choice knapsack problems. The proof in the special case below is more

elementary than that of the more general problem.

LEMMA 1. Let < ¢, %, u, b, M > be an instance of LP(M) such that c is

. strictly convex with M integral. If £ } b/M or if u < b/M then there is no

- feasible solution. Otherwise, let t = {b/M|. Then the unique optimal solution
for < ¢, £, u, b, M> is x* defined as follows: '

(t+1)M-b for j=t
x% = {b - tM  for j=t+1
0 otherwise.

PROOF. If & > b/M or if u < b/M it is cleor'that there is no feasible
solution. If £ £ b/M < u, then it is easy to see that the above solution is
feasible by considering separately the case that t = b/M and the case t.> b/M.
(In the former case it is possible that t+l > u.)

If £ = b/M or u = b/M, then the above solution x* is the unique feasible
solution and is thus optimal. Otherwise, Let TS Gy T and let

e+l ~ Ct

Ty = (t+1)c - t+1' Then the reduced cost of 5 is cj = cj - jnl - Tye It is

easy to verlfy that ct = t+1 = 0, and by the strict convexity of ¢ it is easy

to ver1fy that c > 0 for j < t-1 or j > t+2. Thus the basic feasible solution

x* with basic varlables X, and X, is the unique optimal solution. o




In the following, we let x(M) denote the unique optimal solution for

instance < c, %, u, b, M > of LP(M). We observe that by Lemma 1-the solution
is integer valued for each integral value of M. We also let z(M) denote the

corresponding objective value.

THEOREM 1. Suppose that { c, £, u, b> is an instance of problem P and
that ¢ is a convex function. If [b/u] = [b/2] + 1, then there is no feasible -
solution to P. Otherwise, let r be chosen so that c(r)/r =
min{c(j)/j : 2<{j<u} and let M' = b/r. Then x([M']) or x([M']) or both are

optimal solutions for problem P.

fROOF. We first observe that the optimal solution to P is the best of
the<solutions {x(3)-: j>1}. In the case that [b/2&] = [b/u] + 1, there is no
integer M satisfying b/q_S_MFS_b/R and thus by Lemma 1 there is no feasible
solution to P(M) for any M. If [b/u] < [b/%], then b/u  b/r < b/% and thus
P(IM']) or P([M'1) or both have feésible solutions. ]

The optimal solution to the linear relaxation of P is given by x,. = M'
with all other values being 0. The optimality of x([M']) or x([M']) then
follow from the cbnvexity of the optimal value function z(M), which is

minimized at the (possibly fractional) value M = M',

We note that we have dropped the assumption of stfict convexity. As
before, if c¢ is convex and cr/r = min(cj7j ¢ #j<u), then we méy perturb ¢ to
a strictly convex function c! with c;/r = min(ca/j : 2<{j<u). An optimal
solution for (c', £, u, b) will also be optimal for < c, &, u, b >,

Because the function.c(;) is convex,‘it follows that the function d(j) =
ce(j)/j for 2 £j<uis quasi4convgx (see, for éxample, Avriel [1976]).
Therefore, if d(r) < d(r+l) it follows that d(r) < d(j) for all j > r+l. If
d(r) > d(r+l), it follows that d(r+1) < d(j) for all j £ r. One can thus find
the integer value r with l's_r;s u which minimizes d(j) in 0(log(u-%)) steps .
by using binary search. (Recall that each arithmetic operation is being
counted as one step.) In the case that d is differentiable, then the minimuﬁ '
will occur at r = L or r = u or at [r'] or [r'], where r' is a real number at
which the derivative of d is 0. In many cases, finding the O of the derivativ¢ 

will be faster than binary search.




The Concave Case

Below we solve the case in which c¢(.) is strictly concave. We offer two
different algorithms, the first of which takes O(min(%, b/u)) steps and the
_second of which takes O(min((b/%) - (b/u), u-2)) steps. Unfortunately, the

author does not know of any algorithm than runs in time polynomial in log b.

‘We do note that for & = 1 or u = b, the first algorithm runs in O(1) steps.

As a preliminary, we define the parametric integer program P(M).similarly
" to the problem LP(M) for the convex case

P u
Minimize . ,C.X.
ZJ=2 i3

Subject to ? ix, = bv.
j Liagd 37

u :
Lieg;

> 0 integer for £< j < u.
LEMMA 2. Suppose that < ¢, £, u, b ; is an instance of the Knapsack
. problem P and that c¢ is strictly concave. Suppose further that M is an integer
‘ such that b/u_S_M_S_b/l. Then there is a unique optimal solutibn ; for P(M)
- defined as follows: |
(1) x = [(b - w/(u - D],
(11) [CaM - B)/(u = 8], o
(iii) = (b - M) mod(u - 2) and 1 < r<u=2-1thenx, =1,

4r
(iv) . 0 otherwise.

PROOF. Let x* be an optimum solution to P(M) and let

k = xi+1 +oeot x3+1. We first. show that k { l. Suppose otherwise that k > 2.

" Choose s, t so that % + 1<s, t{u~-1and either (1) xg, xt >land s £t

or else (2) s =+t and xg‘z 2. Let x' be obtained from x* by decrementing both
Xg and x by 1 (i.e., if s = t we decrement xg by 2), and incrementing Xg_1
and Xel by 1. Let z* and z' be the objec;ive values for x* and x'
respectively.‘Then x' is feasible for P(M). Moreover,

zk — 2" = ¢c(s) + c(t) — c(s = 1) - C(t -1,




and z* - z' > 0 by the strict concavity of c(.), contradicting the optimality

of x*. Thus we have proved that k < 1.

If k = 0, then xi and xﬁ are determined uniquely by the equations

"2xi + uxt = b", and "xi + xﬁ = M". Thus‘xi = (uM - b)/(u - 2) and
xﬁ = (b - M)/ (u - L). Since xﬁ is integral it follows that (u - £) is a

divisor of b - 2M. Thus x* = x.

If k = 1, let r be the index such that 1 { r { u - £ and Xi+r = 1,
Then &x% + ux* = b - £ - r and x% + x* = M' - 1. Solving for x%* and x* we get
L u L u ) 2 u v .
that x? =(Mi-b- (u- 2 - r))/(u - %) and.xt =(b=- ML - 1r)/(u - 2). Since

xﬁ is integral it follows that x* satisfies (iii) and (iv), and thus x* = x. O

In the above lemma we have proved that Z(xj : 41 < j <u-l) £ 1. Thus,

an optimal solution x* may be determined uniquely as a function of
xﬁ and xﬁ. In the next lemma, we show that the optimal solution x* is almost

uniquely determined by the value xﬁ.

LEMMA 3. Suppose that < c, &, u, b > is an instance of problem P and
that ¢ is strictly concave. Suppose further that x* is optimal for P. Then at
least one of (i), (ii), (iii) and (iv) is true.

(i) xi = 0,

(i1) =) = (b - wk)/2,

(iii) xi = [(b ~- uxt -u+ 1)/121,
or (iv) xi = |(b - uxt -2 -1D/4].

PR)OF. Let k = x% +eoot xt_ . By Lemma 2 we know that k = 0 or 1. If k

2+1 1

= 0 then (ii) holds. Henceforth we consider the case when k = 1 and when

= — — ' = —
X§+r l for 1{r<u L l. Let b b qxﬁ.

Then xi =(b' - & - 1r)/8. If 1<{r< 2-1, then (iv) holds, If u - 22 <
r {u-=2-1, then (iii) holds. Let us now assume that £ < r { u - 22 - 1 and
that xﬁ_z 1 and we will derive a contradiction.

Let x' be obtained from x* by incrementing Xy by 1, incrementing x. by 1,
and décrementing Xpyg Dy -l Let x'' be obtained from x* by decrementing xg and
Xpg by 1 and incrementing Xppog DY 1. Let z',‘z" and z* be the objective

values for x', x'' and. x* respectively. Then.




2z% - z' - Z' = 2¢(r + &) = c(x). - c(r + 2%),

~and thus
| (z% = 2') + (z% = 2'') > 0

by the strict concavity of.c(.). It follows that z' < z* or z'' < z%,

contradicting the optimality of z*. Thus the lemma is true.

Lemma 2 suggests the following method for solving problem P : solve P(M)
for all integral M such that b/u_S;Mls_b/l and choose the best of these
solutions. Lemma 3 suggests the following method for éolving P : for each.

_ integral value s with O_S;s‘s_b/u let x° be the best of the solutions (1),
(ii), (iii) andb(iv) of Lemma 3 withbxi = s. Then choose ;he best of the

solutions of {xl,..;,xblz}

In order to improve the  computational bounds of these two procedures, we

show that the range of values for M and s can be limited further.

LEMMA 4. Suppose that < é, %2, u, b > is an instance of problem P and
that c¢(.) is strictly concave. Suppose further th;t x* is an optimal solution
.and that M = ~i +eoot xt. Then ‘

(1) If c¢g/% < c, /u, then 0 < xt.S L -1
and = (u - £) + (b/2) <M < b/%.
(ii) If clll > c;/u, then [(b + 2+ 1)/u] - 2 -1 5_xt_s b/u

and (b/u) <M< (u=-2)+ (b/u).

PROOF. We note first that in any feasible soluﬁion (b/u) < M < (b/2) and
0 S_xi S_b/u. If cz/z < cu/u and Xﬁ.z £, then we can find an improved solution
x' by decrementing xﬁ by 2 and incrementing xi by u, contradicting the
optimality of x*. If xt-S 2 -1, then by (i) of Lemma 2 it follows that
M>=(a=2) + (b/e).
' If c2/2 > cu/u and xi _Zgu, we can find an imprqved solution x' by
decrementing xﬁ by u and incrementing xt by 2. Thus x¥ < u - 1 and by (ii) of

2
Lemma 2 it follows that M < (u - %) + (b/u). In addition, since

- ' % - + 2(u -1
b o= wek + (& + D)k, + b Cuxk 4 (u - 1)+ Hu - 1),

it follows that




xﬁ Z_[(b + 24+ 1)/ul - (2+ 1). o

We observe that if c,/8& = cu/u, then ﬁhere may be multiple optimum‘ In
this éase, there is an optimqm solution so that the conclusion (i) of Lemma 4
holds and "anothef" optimum solution so that the conclusion (ii) of Lemma 4
holds. The proof of this fact follows from the same "interchange'" argument as

in the broof of Lemma 4.

THEOREM 2. Suppose that < ¢, £, u, b > is an instance of problem P and
that c(.) is strictly concave. Then we may solve P in O(min(%, b/u, (b/2) -
(b/u), u - 2)) steps. ‘

PROOF. The first method is to solve P(M) for b/u‘S_MFS_bJQ and choose

the best of these solutions. Moreover, by Lemma 4 we may further restrict our -

search to a range of at most_u - % consecutive integers. Thus this procedure

is O(min((b/&) - (b/u), u - 2)) steps.

The second method is to consider the four éolutibns determined upon
setting x, = s as provided by Lemma 5. The best of these x5 is calculated in
0(1l) steps. Moreover, we can restrict our search to at most min(l, b/u) values
of x, by Lemma 4. Thus determining the best solution x% for this range of the

parameter s takes O(min(%, b/u)) steps, completing the proof.
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