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Abstract

Consider the problem of partitioning a group of b indistinguishable

objects into subgroups each of size at least X and at most u. The objective is

to minimize the additive separable cost of the partition, where the cost

associated with a subgroup of size j is c(j). In the case that c(.) is convex,

we show how to solve the problem in O(log u) steps. In the case that c(.) is

concave, we solve the problem in 0(min(X, b/u, (b/k)—(b/u), u—X)) steps. This

problem generalizes a lot—sizing result of Chand and has potential

applications in clustering.



Consider the problem of partitioning a group of b objects into subgroups

each of size at least R. and at most u. The objective is to minimize an

additive cost E c(j)x where c(.) is some real—valued function and x is the

• 
i=X

number of subgroups of size j. This problem may be expressed as the knapsack

. problem P below.

Minimize

Subject to

u c(j)x.
J=2.

jx =

x, > 0 integer for j = X,...,u.j

(P)

It is well known that the problem P may be solved in 0((u—t)b) steps via

dynamic programming recursion. Moreover, if b > u2, then P may be solved in

0((u-2)u) steps because the optimal solution to the associated group problem

is feasible for P. (See Garfinkel and Nemhauser [1972] and Denardo and Fox

[1979] for further details.)

The purpose of this note •is to provide very efficient algorithms for the

case that c(.) is either concave or convex. In particular, we show that we can

solve the case of P in which c(.) is convex in 0(log u) steps. This algorithm

•extends a previous algorithm by Chand [1972] for a variant of the discrete

time EOQ model, as mentioned below.

In the case that c(.) is concave, we show haw to solve the

knapsack/partition problem in 0(min (X, b/u, (b/X)—(b/u), u-50) steps. It is

an open question as to whether the concave case can be solved in a number of

steps that is polynomially bounded in log b.

In both the case that c(.) is convex and the case that c(.) is concave,

if the number of subgroups in the partition is specified, then the resulting

problem is solvable in 0(1) steps.

The bounds on the number of. steps are based on the computational model of

counting each arithmetic operation as one step. If one counts the addition of

x and y as log (x+y) steps, then. we must add the assumption that c(.) is

integral, and the convex case is solvable in 0((log b)(log cmax)) steps,
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whereas the number of steps in the concave case should be multiplied by a

factor of (log b)(log cmax).

• We assume that the data for the problem is specified by the values

(k,u,b), and by an "oracle function" c. Thus the size of the data is O(log b).

Thus the algorithms for the convex case is polynomial in the size of the data,

whereas .the algorithm in the concave case is not necessarily polynomial.

As an example of the knapsack/partition . problem consider the •problem of

subdividing a group of b people into subcommittees, each consisting • of between.

X and u members. Suppose further that the "value", of a. committee with j

numbers . is c(j), where.the function c(.) is concave, reflecting decreasing

marginal returns. Here the objective is to maximize the value of the partition

-of people into subcommittees.

As another example, suppose that a data base includes data on b distinct

users, and we are interested in aggregating the b users into subgroups each

with a number of users between X and u. Suppose further that the cost of

aggregating j users into a subgroup is c(j), reflecting a loss in accuracy but

a gain in computational convenience. Then the optimum solution to the knapsack

problem gives an estimate of how much aggregation is desirable.

A third example is an application to a variant of the EOQ model as

described and solved by Chand. Chand addressed the usual EOQ model with two

minor modifications. First, the number of "periods" of the problem is b

(rather than co as in the usual model). Secondly, each order interval must be

an integEx (rather than continuous) number of periods. In our knapsack model,

x would represent the number of order intervals of j time periods.

The Convex Case

We first consider the case in which c(.) is strictly convex. (If c(.)

were convex but not strictly convex we could replace c(.) by c'(j) = c(j) +

ej for a suitably small e.)

Henceforth, we let c denote c(j). As a preliminary we define the



parametric linear programming problem LP(M).

Minimize lui=tc jxj

xi
Subject to j= b

1 M.1;.txj = 

x. > 0 for3 -- = 20,410,,UO

(LP(M))

We denote each instance of P as a quadruple < c, k, u, b > , 
and we

denote each instance of LP(M) as a quintuple < c, k, u, b, M >. The 
following

lemma is implicit in the work of Sinha and Zoltners [1979] on the m
ore general

multiple choice knapsack problems. The proof in the special case 
below is more

elementary than that of the more general problem.

LEMMA 1. Let < c, 1, u, b, M > be an instance of LP(M) such that c is

strictly convex with M. integral. If k > b/M or if u < b/M then there 
is no

feasible solution. Otherwise, let t = tb/M.J. Then the unique optimal solutio
n

for < c, X, u, b, M. > is x* defined as follows:

(t+1)M-b
= {b - tM

0

for j=t
for j=t+1
otherwise.

PROOF. If X > b/M or if u < b/M it is clear that there is no feasible

solution. If k < b/M < u, then it is easy to see that the above solutio
n is .

feasible by considering separately the case that t = b/M and the case t.> b/M.

(In the former case it is possible that t+1 > u.)

If k = b/M or u = b/M, then the above solution x* is the unique feasible

solution and is thus optimal. Otherwise, Let ni = ct.+1 ct 
and let

n
2 
= (t+l)ct - c +1. Then the reduced cost of cj 

is cj = cj - jni - n2. It is

easy to verify that ct = = 
0, and by the strict convexity of c it is easy

ct+1 

to verify that j > 0 for j < t-1 or j > t+2. Thus the basic feasibl
e solution

c 

x* with basic variables x and xt1 is 
the unique optimal solution.



In the following, we let x(M) denote the unique optimal solution for

instance < c, u, b, M > of LP(M). We observe that by Lemma 1 the solution

is integer valued for each integral value of IL We also let z(M) denote the

corresponding objective value.

THEOREM 1. Suppose that < c, b> is an instance of problem P and

that c is a convex function. If [b/u] = [b/k] + 1, then there is no feasible

solution to P. Otherwise, let r be chosen so that c(r)/r =

min{c(j)/j : 2,<j<u} and let M' = b/r. Then x([M.']) or x([11']) or both are

optimal solutions for problem P.

PROOF. We first observe that the optimal solution to P is the best of

the solutions {x(j). : In the case that [13/2] = [b/u] + 1, there is no

integer M satisfying biu < M < b/2, and thus by Lemma 1 there is no feasible

solution to P(M) fOr any M. If [b/u] < [b/R,], then bill < b/r < big, and thus

P(1.11'1) r'POW1) or both have feasible solutions.

The optimal solution to the linear relaxation of P is given by xr =

with all other values being O. The optimality of x([1,11]) or x([11']) then

follow from the convexity of the optimal value function z(M), which is

minimized at the (possibly fractional) value M. = M'.

We note that we have dropped the assumption of strict convexity. As

before, if c is convex and cr/r = min(cp : 96<j<u), then we may perturb c to

a strictly convex function c' with eifr = min(eij : 51<j<u). An optimal
—

solutioa for (c', u, b) will also be optimal for < b >.

Because the function c(-.) is convex, it follows that the function d(j) =

c(j)/j for 2, < j <U is quasi—convex (see, for example, Avriel [1976]).

Therefore, if d(r) < d(r+1) it follows that d(r) < d(j) for all j > r+1. If

d(r) > d(r+1), it follows that d(r+1) < d(j) for all j < r. One can thus find

the integer value r with 2, < r < u which minimizes d(j) in 0(log(u-2,)) steps

by using binary search.*(Recall that each arithmetic operation is being

counted as one step.) In the case that d is differentiable, then the minimum

will occur at r = It or r = u or at [r'] or [r'], where r' is a real number at

which the derivative of d is 0. In many cases, finding the 0 of the derivative

will be faster than binary search.



The Concave Case

Below we solve the case in which c(.) is strictly concave. We offer two

different algorithms, the first of which takes 0(min(9, b/u)) steps and the

second of which takes 0(min((b/2) - (b/u), u-2.)) steps. Unfortunately, the

author does not know of any algorithm than runs in time polynomial in log b.

We do note that for 2, = 1 or u = b, the first algorithm runs in 0(1) steps.

As a preliminary, we define the parametric integer program P(M)similarly

to the problem LP(M) for the convex case

Minimize P(M)

Subject to

vu m
Li =x j 

=

x. > 0 integer for 2, < j < u.

LEMMA 2. Suppose that < c, 2„, u, b > is an instance of the Knapsack

problem P and that c is strictly concave. Suppose further that M is an integer

such that b/u < M < b/2„. Then there is a unique optimal solution x for P(M)

defined as follows:

(i) x = [(b - £M)/(u-
Au

(ii) x = RuM - b)/(u -
0,4

(iii) If r E (b - 2.14) mod(u - 2,) and 1 < r < - 1 then x
r 
= 1,

(iv) x. = 0 otherwise.

PROOF. Let x* be an optimum solution to P(M) and let

k = 
x*1 x*u+1. 

We first show that k < 1. Suppose otherwise that k > 2.2+ 
Choose s, t so that 2, + 1 < s, t < u - 1 and either (1) x*, x* > 1 and s A ts t —
or else (2) s = t and x* > 2. Let x' be obtained from x* by decrementing both

s —
xs and xt by 1 (i.e., if s = t we decrement xs by 2), and incrementing xs_i

and xt1 by 1. Let z* and z' be the objective values for x* and x'

respectively. Then x' is feasible for P(M). Moreover,

z* - z' = c(s) + c(t) - c(s - 1) - c(t - 1),



8

and z* z' > 0 by the strict concavity of c(.), contradicting the optimality

of x*. Thus we have proved that k < 1.

If k = 0, then x* and x* are determined uniquely by the equations
X

"kg + mqci = b", and "x*x + = M". Thus x = (uM b)/ (u - X) and

x* = (b - £M)/(u - X). Since x* is integral it follows that (u 2,) is a

divisor of b XM. Thus x* = x.

Ifk= 1, .let r. be the index such that 1 <r<u-kand xt+r = 1.

Then 2,xt + uxt =b -k -rand er xx + xt =M- 1: Solving for xt and xt we get

that x* = (Mu - b (u r))/(u - k) and x* = (b MX - r)/(u - X). SinceX • u
x* is integral it follows that x* satisfies (iii) and (iv), and thus x* = x.u .

In the above lemma we have proved that E(x : 2+1 < j < u-1) < 1. Thus,

an optimal solution x* may be determined uniquely as a function of

x* and x*. In the next lemma, we show that the optimal solution x* is almostX
uniquely determined by the value x.

LEMMA 3. Suppose that < c, u, b > is an instance of problem P and

that c is strictly concave. Suppose further that x* is optimal for P. Then at

least one of (i), (ii), (iii) and (iv) is true.

(i) x*
X 
= 0,

(ii) x* = (b wit)/X,

(iii) x* = [(b u;e1T., - u + 1)/2,],

or (iv) xl = (b—L uxicu — ft — 1)/Rd.

PR')OF. Let k = x* x* By Lemma 2 we know that k = 0 or 1. If k
2+1 u-le

= 0 then (ii) holds. Henceforth we consider the case when k = 1 and when

x*2,-F 
= 1 for 1 <r<u-X- 1. Let b' =b- ux*.r
Then xt = (b' - X - r)/X. If 1 < r < X - 1, then (iv) holds, If u - 2k <

r < u X - 1, then (iii) holds. Let us now assume that X < r < u 2Z - 1 and

that x*x > land we will derive a contradiction:

Let x' be obtained from x* by incrementing xt by 1, incrementing xr by 1,

and decrementing x t by 1. Let x" be obtained from x* by decrementing xx and

xr.1.44 by 1 and incrementing x by 1. Let z',

values for x', x" and.x.* respectively. Then

t and z* be the objective



S.

and thus

2z* - z"= 2c(r + X) - c(r) - c(r + 22,),

(z* z') + z* z" > 0

by the strict concavity of c( .). It follows that z' < z* or z" < z*,

contradicting the optimality of z*. Thus the lemma is true.

Lemma 2 suggests the following method for solving problem P : solve P(M)

for all integral M such that b/u < M < b/2, and choose the best of these

solutions. Lemma 3 suggests the following method for solving P : for each

integral value s with 0 < s < b/u let xs be the best of the solutions (1),

(ii), (iii) and (iv) of Lemma 3 with xu = s. Then choose the best of the

solutions of ix
1
,..;,xb/21.

In order to improve the computational bounds of these two procedures, we

show that the range of values for M and s can be limited further.

LEMMA 4. Suppose that < c, X, u, b > is an instance of problem P and

that c(.) is strictly concave. Suppose further that x* is an optimal solution

and that M = x* x*. Then

(i) If c9,/2, < cu/u, then 0 < xitc, < X - 1

and - (u X) + (b/ £) < M < b/ £.

(ii) If cx/X > cu/u, then [(b + X + 1)/u] - - 1 < xic < b/uu

and (b/u) < M < (u X) + (b/u).

PROOF. We note first that in any feasible solution (b/u) < M < (b/X) and

0 < x* < b/u. If c
X 
/X < cu/u  and x* > X, then we can find an improved solutionu

x' by decrementing xiici by X and incrementing x by u, contradicting the

optimality of x*. If xt < - 1, then by (i) of'Lemma 2 it follows that

If c9,/2, > cu/u and x* > u, we can find an improved solution x' by

decrementing x*it by u and incrementing xt by £. Thus xi < u - 1 and by (ii)

Lemma 2 it follows that M. < (u X) + (b/u). In addition, since

b = ux* + (2, + r)x* + Xx* < ux* + (u + 2.(u - 1),
X+r X — u

it follows that
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> [(b + £+ 1)/u1 - R, + 1u

We observe that if ck/R, = cu/u, then there may be multiple optimum. In

this case, there is an optimum solution so that the conclusion (i) of Lemma 4

holds and "another" optimum solution so that the conclusion (ii) of Lemma 4

holds. The proof of this fact follows from the same "interchange" argument as

in the proof of Lemma 4.

THEOREM 2. Suppose. that < c, 9, u, b > is an instance of problem P and

that c(.) is strictly concave. Then we may solve P in 0(min(R„, b/u, (b/Z) -

(b/u), u - steps.

PROOF. The first method is to solve P(M) for b/u < M < b/R, and choose
...•••••••

the best of these solutions. Moreover, by Lemma 4 we may further restrict our

search to a range of at most u - consecutive integers. Thus this procedure

is 0(min((b/X) (b/u), u - Z)) steps.

The second method is to consider the four solutions determined upon

setting xu = s as provided by Lemma 5. The best of these xs is calculated in

0(1) steps. Moreover, we can restrict our search to at most min, b/u) values

of xu by Lemma 4. Thus determining the best solution xs for this range of the

parameter s takes 0(min(R., b/u)) steps, completing the proof.
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