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EXPERIMENTS WITH SOME ALTERNATIVES FOR SIMPLE IMPORTANCE SAMPLING

IN MONTE CARLO INTEGRATION

by H.K. van Dijk and T. Kloek

SUMMARY

Some alternatives for simple importance sampling [compare Kloek and van

Dijk (1978) and van Dijk and Kloek (1980)] are investigated for the compu—

tation of posterior moments and densities. An importance sampling method that

is based on a mixture of a finite number of multivariate normal densities is

compared with simple importance sampling and with a method that is based on a

combination of Monte Carlo and classical numerical integration. These methods

are intended to handle econometric applications where a simple importance

function that is a reasonable approximation to the posterior density is

difficult to find. For illustrative purposes use is made of a small

econometric model. The results include bivariate marginal densities of the

importance functions and the posterior plotted in three dimensional figures.
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1. INTRODUCTION

In two earlier papers [Kloek and van Dijk (1978) and van Dijk and Kloek

(1980)], we applied Monte Carlo integration (in particular, importance

sampling) for the purpose of finding posterior moments and densities for

parameters of econometric simultaneous equation models. (A simultaneous

equation model is nonlinear in the sense that the expected values of the

endogenous variables are nonlinear functions of the parameters of interest.)

We made use of the multivariate Student density as an importance function. In

these papers we emphasized the use of importance functions that fit reasonably

well to the posterior distribution. So there exists a problem when the

posterior is skew. In van Dijk and Kloek (1983a) we addressed this problem,

but in a rather ad hoc way. For that reason we have started to investigate

alternative, approaches. We shall use the term simple importance sampling (SIS)

for the approach used in our 1978 and 1980 papers.

The present paper contains some experiments with two alternative .

approaches to SIS. First, we propose a flexible importance function which

consists of a mixture of a finite number of multivariate normal densities.'

This importance function is intended for cases where the dominating skewness

is in one or two directions. More details are given in Section 2. Second, we

make use of an alternative to simple importance sampling, where the basic idea

is to transform the s—dimensional space of parameters of interest 6 into

another s—dimensional space of vectors (n' p) where p is a scalar and n an
(s-1)—vector, and the prime denotes transposition. The transformed posterior

density of (n' p) is decomposed as a conditional density of p given n and a
marginal density of n. For p we take ÷ d, where d is a measure of the distance
between a point 0(i), generated at random, and a central point (60) such as

the posterior mode or a preliminary estimate of the posterior. mean. For n we
(i) take the direction (6 — 6

0 
)/p

(i)
 with one coordinate deleted in order to

avoid degeneracy. After having performed the transformation described we draw

a vector n(j) and apply classical numerical integration with respect to p

given na). So, this method amounts to a combination of classical numerical
integration and Monte Carlo, which we call mixed integration. For a motivation

and. details of this approach we refer to van Dijk and Kloek (1983b). This

method is intended to handle cases where the posterior is skew in several

directions.

In Section 3 we discuss the results that have been obtained with some

4.



experiments using the alternative approaches. As an example we make use of the

same econometric model as in Kloek and van Dijk (1978). For details with

respect to the choice of the prior density we refer to van Dijk and Kloek

(1983a). Our conclusions are given in Section 4.

. A NORMAL—PIECEWISE—UNIFORM IMPORTANCE FUNCTION

In this section we describe a flexible class of importance functions,

which may be useful in cases where the surface of the posterior density of a

nonlinear model is skew predominantly in one or two directions. The present

approach was inspired by a technique for generating univariate random

variables, called composition [compare Rubinstein (1981, Chapter 3), and the

references cited there]. In this technique a composite density function is

defined as a convex linear combination of a number of more elementary density

functions in the following way. Let pl, ..., ph be a set of nonnegative

constants that sum to unity and let 61, ..., eh be a set of random variables

with distribution functions F1(01), Fh(Oh) and density functions

Ii(61), Ih(6h). Define the random variable 0 as equal to 0i with

probability pi for j = 1, ..., h. The composite distribution function of 6 is

given in the point 6* as

F(6*) = P[0 < 0/] = E P P[e. < 0*] = E p.F.(0*)
j=1 J j=1

and the composite density function is given as

1(e) = p414(0)
j=1

(1)

(2)

where we deleted the asterisk for notational convenience. In certain

univariate cases this approach is very efficient [see Atkinson and Pearce

(1976)]. In the literature the density (2) is also known as a mixture of a

finite number of density functions with mixing parameters pl,•, ph [see

Everitt and Hand (1981)].

One may extend the use of the composite density (2) to cases where 6 is a

vector of parameters. We have experimented with a composite density as an

importance function where the elementary densities are multivariate normals.

However, there are at least two problems with this approach. First, the number

of parameters of a composite importance function I(6) is very large. The
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estimation of the parameters of the multivariate normal densities

• Ii(8), Ih(8) and the estimation of the mixing parameters pi, ..., ph is

a far from trivial matter. Second, equation (2) implies that in order t

evaluate 1(6) in a point 8(i), every elementary function I(0) has to be

evaluated in 6 (1) . This may be computationally expensive. So, there exists a 

need for simplification of the estimation of the large number of parameters

without affectirl; the flexibility of the composite density more than 

marginally. Below we present a first attempt in this direction.

First, we note that the index variable j in equation (2) can be

interpreted as a discrete random variable with probability mass function pi

and the elementary density functions can be interpreted as conditional density

functions 1(81j) with the index j as a conditioning variable. One may

generalize this by assuming more general distributions of the conditioning

variable. In the continuous case, for instance, one has

1(e) = f c(elz)I ( )dz (3

The composite density (3) is an infinite mixture of conditional densities
c
(61z) given the values of the continuous random variable z. The marginal

density IM(z) of z, which is an auxiliary random variable, is called the

mixing density. The Student density is an example of an infinite mixture of

normal densities where the gamma-2 is the mixing density.

In our example we noted from a preliminary diagnostic analysis that the

posterior density p(6) is, roughly speaking, very skew in the direction of one

component of 6. We make use of this information in the following way. Let e be
partitioned as

4

where 81 contains s-1 components and 82 is a scalar and the skewness is

supposed to be predominant in the direction of 62. The importance function

J(6) is factorized as the product of a conditional multivariate normal (CMN)

density of 01 conditional upon 02 and a marginal piecewise—uniform (MPU)

density of 62. The MPU distribution of 82 is defined as

—0 if 02 <a0
P

F(02)
j-1 

 = P + 
a —ja 

—1 
02 — 

if 62 a j (5)

(j = 1, h)
1 if ah 62



where

P
0 

0 Pj = 1, • • •

E 13 * = Ph = 1
j=1

and the MPU density function of 6 is defined as

0

a,

0

if. 6
2 
< a

0

if < 62 < aj

= 1, h)
if a

h 
< 0

2

(6)

Random drawings 02 can easily be generated by an inversion method because the

distribution of the random variable F(02) is uniform on [0, 1]. The CNN

density of 0 conditional upon 02 i (for j = 1, h) given as

x
-1

P.)] if a-1. < 0
2 

a.
J j j

(7)

where p and V are the well known parameters of a multivariate normal

density. Therefore the CMNMPU importance function can be written as

r(e) = c le
2

I(0 1t02, 2 a. - a. 1
j j-

pi

4,

4 vector 6 with the case where the composite importance function of 8, given in

equation (2), contains s-dimensional conditional multivariate normal densities

as elementary functions and the conditioning index variable is an auxiliary

random variable. In contrast, in the CMNMPU approach we have partitioned 0

[see (4)] and our conditional densities are (s-1)-dimensional rather than s-

dimensional. As a result we have a composition (or mixture) of a finite number

(8)

if a. <0 a.
J 2 j

, h) and the interval boundsThe parameters of (8) are pi, Vi, Pi, =
alp al, aII'

One may compare the case of the CMNMPU importance function (8) of the s-

of conditional multivariate normal densities of the (s-1)-vector 01,
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conditional upon the scalar e2. The marginal piecewise—uniform density of the
continuous random variable 62 plays the role of the mixing density.

The CMNMPU approach has three advantages.

First, it simplifies the evaluation of the importance function 1(6). In a-

particular point 6") one has to evaluate only one elementary normal

density IC(6(1)16")) for a given value e ) [compare equation (8)].j 1 2
Second, the number of parameters of the CMNMPU density is smaller than

-the number of parameters of a composition of s—dimensional multivariate normal

densities. This may simplify the estimation of the ,parameters, see below.

However, the number s of parameters of the CMNMPU density is larger than the

number of parameters of a multivariate Student density. This gives the CMNMPU

density flexibility. In our example of a three dimensional. posterior density

-we make use ofa CMNMPU density with h = 20 conditional bivariate normal

densities and a total of 138 unrestricted parameters. [20 x 5 parameters

Vj) of the bivariate normals; 19 unrestricted bounds aj (j = 1, ..., h-1)

since the end points ao and ah are .determined a priori; and 19 unrestricted

parameters .pi,i = 1, ..., h-1]. More generally we make use of h(s — 1 +

(1/2)s(s-1))* 2h — 2 parameters if the model contains s parameters of

interest, and we use h elementary densities. By contrast, a composition of 5—

dimensional normal densities contains an additional h(s+1) parameters.

Third, there are relatively simple algorithms to estimate the parameters

of the CMNMPU importance function. This advantage is the most important one.

One of these algorithms is described in the following four steps.

Step 1. Generate a random sample for 6 of size N (N = 2000,. say), by

making use of the simple importance sampling method (SIS). described in van

Dijk and Kloek (1980). Estimates of the parameters of the importance function

of SIS have been discussed in Section 4 of that paper;

Step 2. Arrange the drawings of 62 in ascending order and divide them

into h (h = 20, say) groups. Then the interval bounds ai, j = 1, h-1 are
1900given by the random drawings 

62 
(100) 

e2 
(200)

, 6(
2 

. The bounds ao and
' ' 

ah are given a priori (or by a preliminary diagnostic analysis);

Step 3. Compute posterior first and second order moments of 61, by a.

standard Monte Carlo method, for the twenty regions constructed in step 2.

Take these moments as estimates for 'pi, Vj, j = 1, ..., 20;
• 

. Step 4. Estimate pi, j = 1, ..., 20, by a linear regression of the .

posterior density p(6) on the importance function given in the right hand side

of (8). The regression coefficients are
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100j
1  /C0(i)1 ( ))p(o(i))

Pj
i=100(j -1)+1 aj 

. - 100j

j[a 
1 
aj 

IC( ( )1 (i)12 
12J=1000-1)+1 

_1

(9)

(i)Note that the summation is on points satisfying a
j-1 

< e
2 

<

One may perform a second round of parameter estimation by generating a

sample of 2000 random drawings from the CMNMPU density (8) and reiterating

steps 2 to 4. Since our starting point was a composition approach we shall

call the approach consisting of steps 1-4 COM1 and the approach where a second

round of parameter estimation has been performed COM2. In the next section we

report some results using COM1 and COM2.

Note that as an alternative to Step 4 one may take the integral of the

posterior density on the region <
1 
< 00 and a

j-1 
< 6

2 
< 
a,
. and use this
j 

integral as estimator for the parameter pi. Estimates of these integrals for

= 1, h can be computed by the same standard Monte Carlo method as

mentioned in Step 3.

Finally, we emphasize that our approach of estimating parameters of a

multivariate composite density is only a first step. More research is needed

in this area.

3. SOME EXPERIMENTAL RESULTS

In this section we discuss the results of some experiments with alter-

native Monte Carlo methods using a simple example. We take as an example the

three dimensional marginal posterior density of the structural parameters 01,

02 and y2 of the Johnston model [see Kloek and van Dijk (1978) and van Dijk

and Kloek (1983a)]. The prior on all structural parameters is the same as

described in the latter reference. In this particular case we have taken a

uniform prior on the interval (-2, +2) for the three parameters (01, 02, y2).

Further, we note that the marginal posterior density of (al, 01, 12) is in our

case of two stochastic equations equal to the concentrated likelihood function

apart from a constant factor. We shall consider three methods: simple

importance sampling (SIS); simplified composition in one and two rounds (COM1

and COM2), compare Section 2; and mixed integration (MIN).



Next, we describe briefly some problems that had to be solved in the

design of the experiments. First, there exists the problem of the

comparability of the Monte Carlo rounds for the different methods. We make use

of the same starting value of the random number generator for all three

methods. But the methods differ with respect to the importance function and as

a consequence with respect to the way the random numbers are generated.

Therefore we opted for the (crude) criterion of approximately equal CPU—time.

All results of Tables 2 and 3 were taken after approximately 40 seconds CPU—

time on a DEC 2060 computer. The computer programs were executed at different

times of the day and night in order to verify the sensitivity with respect to

the workload of the computing system. The results were only marginally

affected. The 40 CPU—seconds gave 10,000 accepted random drawings for SIS and

COM1 and COM2. The parameters of the CMNMPU—importance function were estimated

with a sample of 2000 random drawings. The program for MIN was stopped after

the 40 CPU—seconds, mentioned above, had been reached.

Second, we performed a preliminary diagnostic analysis. This analysis

indicated that in our case several prior bounds could be reduced in absolute

value without affecting the posterior results substantially. So we changed the

lower bound of —2 for the three parameters (h, 02, y2) into the vector (-2.0,

—1.7, —.4) and the upper bound of +2 for the three parameters into (.8, .25,

1.0). In this way we reduce the numerical integration on the region where the

posterior density is almost zero. This is an advantage in particular for MIN

where one—dimensional integrals are computed on the intervals, bounded by the

upper and lower bounds, mentioned above. Further, the diagnostic results

indicated that the posterior is very skew in the direction of the parameter

al. so 01 was chosen as the parameter 62 of equation (4). We note that there

is a minor notational problem with respect to al. In reporting the results we

have taken the mixing parameter 01 as the first element of the vector

6' :=
1, 

0
2' 

y
2
), while in the theoretical discussion of Section 2 the last

element of 6, denoted by 62, was taken as the mixing parameter.

Third, we had to specify the values of the parameters of the importance

functions in the different Monte Carlo methods. As mentioned before we make

use of a multivariate Student density as importance function in SIS and in the

first step of COM1 and COM2. Further, we make use of a multivariate normal

importance function in MIN. The location parameters (pi, 112, p3) correspond

with the parameters of interest Op 132, y2 .We shall consider two cases of

parameter estimates. The degrees of freedom parameter of the Student function
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is fixed at unity in both cases. The location parameters p and the covariance

matrix V are different in the two cases. Case I consists of taking the

posterior mode for p and minus the inverse of the Hessian of the log posterior

for V. We call this case the local approximation case. Case IIconsists of

taking a preliminary estimate of the posterior mean for u and a preliminary

estimate of the posterior covariance matrix as estimate for V. This we call

the global approximation case.

Fourth, there exists a problem with respect to the choice of the

parameter estimates of ji and V in the global case. One may apply the different

Monte Carlo methods in a two—stage approach in the sense that the posterior

moments obtained in the first (local) round of each different method are used
as parameter estimates of the importance functions in the second (global)

round. As a consequence a poor approximation of the posterior moments in the
first round of a particular approach influences the posterior results in the
,second round. In order to avoid different effects of large sampling errors in
different Monte Carlo methods, we decided to take the same set of posterior
estimates in the second round for all alternative Monte Carlo methods.
Further, we decided to take a large sample of 100,000 Monte Carlo drawings,
using the COM2 approach, in the first round. This is a very large sample and
we performed a sensitivity analysis with respect to the sample size in the
following sense. The posterior first and second order moments from the COM2
(local) approach, using 10,000 random drawings (instead of 100,000 drawings)
were taken as parameter estimates of p and V for all alternative methods in
the global case. The results of Tables 2 and 3 were not very much affected. We
emphasize that it is attractive to have a rather small sample of random
drawings (say N = 1000) in the first round of Monte Carlo. Further research is
needed to decide upon the trade—off between sample size and desired accuracy
of the preliminary estimates of p and V in the first round.

Fifth, Table 1 gives the two cases of estimates of importance function
parameters. These estimates indicate three major differences between the local
and global case. First, the modes and means of $1 and 02 differ considerably,
which indicates skewness. Second, the posterior standard deviations of el and
02 are for the global case roughly eight times as large as for the local case.
This indicates leptokurtosis. Third, the correlation between 02 and y2 is
positive in the global case but negative in the local case. This is an
•indication that the contours of the posterior density are not concentric
ellipsoids as is the case in linear models. This concludes our discussion of
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the main points of the experimental design.

The results on the numerical errors of the posterior mean estimates of

01, 02 and 12 are presented in Tables 2 and 3 using the alternative Monte

Carlo methods. We take two measures of numerical error. First, we take the

ratio (x 100) of the standard deviation of the Monte Carlo estimate of the

posterior mean and the posterior standard deviation. This relative numerical

error is chosen because we are more interested to estimate a posterior mean

accurately if the posterior variance is small, than if it is large. Second, a

quadratic loss function (x 100) is evaluated around the large sample estimate

of the posterior mean reported in Table 1, with the inverse of the posterior

covariance matrix as the matrix of weights. This function has been tentatively

chosen as a summary statistic for high dimensional cases.

TABLE 1

ESTIMATES OF IMPORTANCE FUNCTION PARAMETERS

Means

Posterior mode (I)

Posterior mean (II)

.46

—.60

.09

—.31

.36

.31

Standard deviations

Local approximation in mode (I) .10

Posterior standard deviations (II) .79

.04

.33

Correlations r13

Local approximation in mode (I) .88

Posterior correlations (II) .92

.17

.19

.11

.15

r23

—.16

.33

* These posterior moments have an absolute numerical error which is less than

.005 at the five per cent significance level.
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TABLE 2

RELATIVE NUMERICAL ERRORS OF POSTERIOR MEAN ESTIMATES

SIS

Case

9.92

10.02

5.56

MIN
••

COM1 COM2 Best method

(local approximation)

5.51

6.22

4.47

1.95

2.19

2.96

1.52

1.88

2.30

COM2

COM2

COM2

Case II (global approximation)

a, 2.88 2.05 1.63 1.62 COM2

a2 2.64 1.90 1.75 1.69 COM2

12 2.12 1.71 1.55 1.57 COM1

TABLE 3

SQUARED ERROR LOSSES OF POSTERIOR MEAN ESTIMATES*

SIS MIN COM1
•••

COM2 Best method

Case I 22.23 8.62 .48 1.27 COM1
Case II .12 .62 .03 .01 COM2

* The squared error loss function L(O, E(0)) = a - EMPWO - WO),
where Thi is the Monte Carlo estimate of E(0) and W is the inverse of the
posterior covariance matrix.
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We make the following remarks on the numerical results in Tables 2 and 3.

(1) According to the results of the relative numerical error COM2

performs best with one exception, but the differences with COM1 are very

small. The results for MIN are between those for COM and SIS for all cases.

Note that the results of the squared error loss functions are in some cases

different from the results of the relative error criterion. For instance, in

Table 3 MIN does poorly in case II. Since the summary statistics give

sometimes conflicting evidence we shall investigate the approximation of the

marginal posterior densities in some cases.

(2) The local approximations of p and V are poor starting values for SIS

and MIN. There is a substantial gain in computational efficiency for these

methods when the parameter estimates• of the global case are taken as values of

the importance function parameters.

(3) The results of the different methods are sensitive for different

reasons. With respect to SIS we note that the results are sensitive for the

prior bound of 01 = -2.0. When the value of this bound is relaxed SIS performs

worse. That is, SIS is sensitive to the degree of skewness of the problem. We

shall comment on this below. The computational efficiency of MIN is sensitive

for the accuracy level of the one-dimensional classical numerical integration.

We took an iterative 16-point Gauss-Legendre formula for the numerical

integration with an accuracy level of three digits, because the Monte Carlo

estimates of the posterior means have usually no more than a two-digit

accuracy. Further, it has been mentioned before (see the second problem of the

design of the experiments) that it is an advantage for MIN to change the upper

and lower bounds of the region of integration in such a way that one-

dimensional integration on intervals where the posterior density is almost

zero can be avoided. The results of COM1 and COM2 are, of course, dependent

upon the preliminary diagnostic analysis that indicated that in our case the

skewness was in the direction of 01. Here MIN appears rather robust since it

is not dependent on a priori or diagnostic knowledge with respect to the

direction of skewness (compare COM1 and COM2) and it is not dependent on the

degree of skewness (compare SIS). Only a few hundred random drawings were

sufficient to indicate the direction(s) of skewness.

Next, univariate and bivariate marginal posterior densities and

univariate and bivariate marginal importance functions are shown in •Figures 1

to 6 for simple importance sampling based on the local and global cases and

for the two-step composition method for the global case. The marginal
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posterior densities from the mixed integration method require additional

numerical calculations. For diagnostic purposes one may use a rough

approximation procedure. We have deleted these results in order to save space.

The approximations to the marginal posterior densities of 131, 02 and y2

are presented in Figures lb to 3b for a sample of 2000 random drawings.

Especially .Figure lb illustrates the poor approximation of the SIS/LOCAL

importance function for the posterior of al. The spikes in the middle of this
figure are caused by very large values of the ratio p(0)/I(0). The Student

importance function in the SIS/LOCAL approach is considerably below the

posterior density in the long tail for 01. This phenomenon has shown up in

several other experiments. The bivariate densities illustrate clearly the poor

approximation of the Student density in the local case. The CMNMPU'density

appears to approximate the posterior very well in the global case. Finally, we

note that the shapes of the different bivariate posterior densities confirm

the remarks about skewness, leptokurtosis and nonlinearity which we made from

an inspection of the point estimates of Table 1 above.

. 4. CONCLUSIONS

In this paper we have reported on the results of some experiments with

alternative Monte Carlo methods for simple importance sampling. The results

must be interpreted with care since the experiments were limited and were

performed on one model only. However, preliminary experiments with Klein'

Model I, which involves nine—dimensional numerical integration, using the same

methods appear to confirm the following. First, considerable skewness causes

gross approximation errors for simple importance sampling, but a minor case of

skewness can be dealt with. Second, poor values of the importance function

parameters yield also gross approximation errors for simple importance

sampling. Mixed integration appears more robust and can be used in a

mechanical way. Our experience with the computation of the posterior moments

of the Klein—Goldberger model which involves thirty—dimensional numerical

integration indicates that mixed integration is feasible in high dimensional

cases where skewness occurs in several directions. In contrast, simple

importance sampling does not appear to give reliable results in this case

[compare van Dijk and Kloek (1982)]. Third, the simplified composition

approach, which makes use of the CMNMPU importance function, is

computationally efficient once the direction of skewness is known.
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Finally, we emphasize that more research is needed in diagnostic analysis

in order to investigate which Monte Carlo alternative is suitable and that

more research is needed in the area of' estimating the parameters of mixtures

of multivariate density functions.
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