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BAYESIAN MULTINOMIAL ESTIMATION OF ANIMAL POPULATION SIZE

C.G.E. Boender

Rinnooy Kan

Erasmus University Rotterdam

Summary

This paper deals with the problem of estimating the size k of a closed animal

population from data obtained by sampling one animal at a time, which is

marked and then immediately returned to the population. It is assumed that

conditional on a capture, each animal i (i=1,...,k) has a fixed probability

0. of being the victim (6
1
+...+6

k
=1), which need not be equal for all animals.

Since a trapped animal is immediately put back, the above assumption implies

that the result of a sequence of captures follows a multinomial distribution

with an unknown number of cells which is equal to the population size k, and

unknown cell probabilities which correspond to the catch probabilities

6 ...,6 of the animals in the population. This observation is used to derivek
a Bayesian method to estimate the population size under various assumptions

about available prior information. The estimation method is tested on a

fictive population of k = 500 animals with equal catch probabilities 6i =

1/500 (i=1,...,k), as well as on a sample from a population of butterflies.

Keywords: Closed population; Population size estimation; Bayesian inference;

Multinomial distribution with unknown number of cells.



1. Introduction

We consider the problem of estimating the size of a population from capture-

recapture data. For a review on the available methods in this field and an

extensive bibliography, see the recent book by Seber 1982].

Our approach differs from the existing ones by assuming that, given a capture,

each animal of the population of size k has a probability ei(i=1,...,k) of

being the sampled one, where 0
1
+...+0

k
= 1. These catch probabilities are

further assumed to remain fixed in the course of the experiment. Obviously

these assumptions require that the animals are taken one at a time, and, after

being marked, are immediately returned to the population. Note that we do not

make further assumptions about the catch probabilities such as, for

example, e.= e.(i,j=1,...,k) which is required by most other estimation

methods in this area.

The above assumptions imply that the result of a number of captures follows a

multinomial distribution with an unknown number of cells which is equal to the

population size, and with unknown cell probabilities which are equal to the

catch probabilities of the animals.

In [Zielinski 1981; Boender & Zielinski 1982; Boender & Rinnooy Kan 1983]

Bayesian estimates of the parameters of a multinomial distribution with an

unknown number of cells are derived under the a priori assumption that each

number of cells

population size

tributed on the

in these papers

in the interval [1,03) is equiprobable, and that, given a

k, the cell probabilities ei(i=1,...,k) are uniformly dis-

unit simplex 01+...+0k=1. In this paper the results obtained

are applied to the estimation of population size. However, the

Bayesian estimate of the population size is derived here under the assumption

of an arbitrary discrete prior distribution for the population size and a

Dirichlet distribution with equal

probabilities. If we choose a = 1

distribution on the unit simplex.

concentrated in the neighbourhood

0 < a < 1, then more probability

simplex eff.....÷ ek= 1. Section 5,

parameters a > 0 for the catch

then the Dirichlet is equal to the uniform

For a > 1 the Dirichlet is increasingly

of (3.= 1/k (i=1,...,k). Finally if

mass is located in the corners of the

which contains a numerical example, will

show that especially the introduction of the hyperparameter a which has to be



3

chosen by the user, has in important effect on the quality of the estimates.

In Section 2 the multinomial distribution with an unknown number of cells is

examined. The prior distribution is described in Section 3, and the posterior

• results are derived in Section 4. Section 5 concludes the paper with some

numerical examples.

2. The multinomial model

We consider the problem of estimating the size of a closed animal population,

given that the animals are captured, marked, and then immediately returned to

the population. In Section 1, we observed that, given a number of captures,

the result obtained is a sample of a multinomial distribution whose cells

correspond to the animals of the population: the number of cells of the

distribution is equal to the population size, and the cell probabilities are

equal to the catch probabilities of the animals. Hence, if

• the population size,

• the catch probability of animal i (i=1,..

n = the number of captures,

N. = the random variable defined as the number of times animal i is

then

sampled in n captures (i=1,...,k),

n
i

)
{(N.
-1k)k

)1 = 
Hn! 

!
H. .
1=1 i

. n 
1=1 i

(2.1)

Since We CIO not kIMM4 to 'which probability e.(i=1,...,k) a caught animal
1

corresponds, it is impossible to use (2.1) directly to obtain statistical

estimates about the population size. If, for example, in three captures one

animal has been observed once, and another twice, it is impossible to

distinguish the individual events (n1,n2) = (1,2), (n1,n2) = (2,1), (n1,n2,n3)

= (1,0,2), (n1,n2,n3,n4,n5) = (0,1,0,2,0) etc. A possible solution to this

problem is to define aggregates of the individual events, so that for each

sample outcome we do know exactly to which aggregate it belongs.
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To arrive at such aggregates, let

W = the number of different observed animals in n captures,

N4 = the number of times an observed animal is sampled in n captures

—
E N =n).

The outcome of the n captures now corresponds to the set N }.
—1' --W

To calculate the probability that this outcome is equal

to {r11.- } (-LT > 
0' 

Ew
1i 

=n)
' 

let
w i i= 

hi = the number of n!s that are equal to j (j=1,...,n),

Sk[ = the set of all permutations of w different elements from

{1,...,k}.

The required probability is then given by

, • •

{N N } =
—1'

--n

1  n!  v

un- 
- 

I I L
nj=1ja ni=lni i

which, considered as a function of k,e1

1} =
(2.2)

n.
w 

6 1
i=1 g

,
i7

is our likelihood function.

It is easily seen from (2.2) that the maximum likelihood estimate for the

population size k is equal to co for all possible outcomes {n1,...,n }. We

therefore adopt a Bayesian procedure in which the unknown population size k,

and the catch probabilities 0 ...,0
k 

are assumed to be themselves random

variables 
K,01 ' 

...,0
K' 

for which a prior distribution can be specified. Given
— — —

the outcome of a number of captures, we then use Bayes theorem to compute the

posterior distribution of the unknowns, which obviously incorporates both the

prior beliefs about k,e1,...,ek, and the sample information {n1,...,nw}. Next

an optimal estimate of the population size is computed from the posterior

distribution obtained.
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A

3. Prior distribution

For the population size K we will assume an arbitrary discrete prior

distribution, i.e.

pr{K=k} = 4Jk for (3.1)

where the hyperparameters
u 

have to be chosen by the user. The

posterior distribution will also be given for the special case of (3.1) where

each integer population size in the interval [k,u] = Woo) is equiprobable.

(This choice, of course, amounts to an improper prior distribution).

Given K = k, the catch probabilities,g
K 
are a priori assumed to follow

a k-dimensionalDirichletdistributionwithparametersa.=a > 0

(i=1,...,k):

(ak-1)!  k a-1 k
=1. (3.2)

[(a-1)!]
ki=1 i

Togainsomeintuitionabout(3.2),notethatfora.=a = 1 it corresponds to

the uniform distribution on the (k-1)-dimensional unit simplex 81+...+Ok=1.

For a # 1 the Dirichlet distribution is symmetric around the centre of gravity

O. = 1/k (i=1, ..,k) of the simplex. For a > 1 the distribution attains a

unique maximum at this centre, whose relative size increases if a gets larger.

For 0 < a < 1 the distribution attains a unique minimum in the centre, and is

infinitely large in the k vertices of the simplex. If a gets smaller, then the

minimum decreases 'arid more probability mass is concentrated in the corners of

the simplex. Note that the fact that for 0 < a < 1 the probability mass is

equally concentrated in all the corners of the simplex is in accordance with

our assumption that, for any sampled animal, we do not know to which of the

probabilities
i
(i=1,...,k) it corresponds. This assumption does force us to

restrict ourselves to a Dirichlet prior distribution with equal parameters.

The expected value E, and standard deviation a of the Oi's are given by [Wilks

1962]

0 IK=kl (i= (3.3)
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a{0. K=k1 =  
-s ak+1 •

(f

(i=

or a large)

(for a small)

(3.4)

The user is asked to choose a positive value for a. If he or she thinks that

the catch probabilities are approximately equal, then a should be chosen

larger than or equal to 1. If the user has an a priori belief that, given a

population size k, the catch probabilities differ substantially from 1/k and

are located in the corner of the simplex, then a should be chosen in the

interval (0,1). In view of (3.3) and (3.4) the user has the freedom, by

choosing a * 1, to specify a smaller or larger standard deviation from the

expected equal catch probabilities than the one corresponding to the uniform

distribution on the simplex 0
1
+...+ e

k 
1.

Since

.. 
22K.

,...,0k)}=Pr{(0
—1

,...,0k)IK=k}Pr{K=k} (3.5)

our (joint) prior distribution now follows by multiplication of (3.1) and

(3.2).

4. Posterior results

Theorem 1. Posterior distribution of the population size K:

(ak-1)! k! 

PriK=kla 
rk (n-Fak -1)! (k-w)!

V 
T 1= 671I} =

-n (am -1)! 
Lm=max{w,52,}111m (n+am-1)!

kE[max{w,11,},u].

m!
m-w)!

, (4.1)

Proof Application of Bayes' theorem to the likelihood function (2.2) and the

prior distribution (3.5) yields
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Pr{K=kI TT-,--1/-41-n
={n 1}1, w

(ak-1)!  v n.
w 

1 
k 

k. 
[(a

-1)!]k L(g1''gw)ES 
[w]f...fI =1 

8
g 

H
1

. 8 1.
1.

1 
1= 1

k-1 1

(4.2)

Lm=max{
, (am -1)! 
}'m m 

)ES [w][(a-1)!] 1 w m 1-

where . denotes the i-dimensional unit simplex.

We observe that

1=

(n+am-1)! em—w 1=1 g
i

1

a-1
0.

n.
m a-im

f H. w H. 8. H. dw.1=1 g
i 

1=1 1 1=1 1
I
m-1

is an m-dimensional Dirichlet distribution with parameters
••••••••••

n1+ a ... n + a a ... a so that (4.2) simplifies tow

(ak-1)!  v

[(a
-1)!]k L( 

\g1'...'g 
ES [w (n+ak-1)!

+a-1)![(a-1)!]
k-ww --

1=1 i

(4.3)

vu

(ilin-1)!Lm=max{w 2.}4)m -
' [(a-1)! )Es [w]

W M

w 
1
(
—
n.+a-1)! [(a-1

i=
(n+am-1)!

(4.4)

1 
k
(ak-1)!X

(gl'—'gw)ESk 
(n+ak-1)!

vu
L=max{w,}m(am-1)! 1 
in /(g , ,gw)ESm[w] (n+am-1)!

(ak-1)! k! 
k (n+ak-1)! (k-w)!

Vu (am-1)! m! 
Lm=max{w,011'm (n+am-1)! (m-w)!

From Theorem 1 we easily obtain the posterior expectation of the population

size, which is well known to be the optimal Bayesian estimator under a



quadratic loss function:

KI }={-n- , , } =
—n

and its standard deviation

a{K N ., n
—1' —W 

, ..•, 
w

—n

(ak-1)! k! 
k=max{w,01"k• (n+ak-1)! • (k-w)!

vu
Lm=max{

,  (am-1)! m! 
Pim (n+am-1)! (m-w)!

(4.5)

(4.6)

1,2„  (ak-1)! k! (ak-1)! k! 
/111‹.=max{w,kr (n+ak-1)! (k-w)! r.ki=max{w,X}k k (n+ak-1)! (k-w 
Vu m! (am-1)! ,  (am-1)! m! 
Lm=max{w,Wm (n+am-1)! (m-w)! 411=max{w,Wm (n+am-1)! (m-w)!

Note that the posterior distribution of K, and a fortiori its expected value

and standard deviation, do not depend on the values n
1' nw' 

but only on the

realization of W Thus, with respect to the populaiton size, all the sample

information is incorporated in the number of different animals observed .

Although the formulae (4.1), (4.5) and (4.6) do not look easy, they can very

efficiently be computed by considering the relations between successive terms.

Conditional on any observed

size, for example, requires

a is chosen very large, say

result (n,w), the posterior expected population

(4a+3)(u-max{w,}) multiplications. Thus, even if

equal to 100, then (4a+3)(u-max{w,0) 400,000

multiplications suffice. Further, if the upperbound is

large with respect to the real population size, then for

chosen to be

all formulae

(4.5) and (4.6) the terms will ultimately get negligibly small. Since

of the posterior distribution of K is monotonic, the computations can be

stopped as soon as this point is reached.

very

(4.1),

the tail

A

For the special case that 2.=1, u=o0, a=1 (i.e., the case

that for the population size k each positive integer value is a priori assumed

equiprobable, and that, given KFk, the catch probabilities follow a uniform

distribution on the unit simplex), (4.5) and (4.6) are especially simple to

evaluate. Then we have [Boender & Rinnooy Kan 1983]
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{ K= k I {3 =
(k-1)!k!(n-1)!(n-2)! 

(n.?4+2)w!(w-1)!(n-w-2)!(n+k-1)!(k-w)!

n-1 
E KI{N N } = {n ...n1 = w,

w n -w -2 
(n.?...

''7+
3),

(4.7)

(4.8)

-- 1} 
= = 

rw(w+1)(-2))
(n>w+4). (4.9)1 

—n (n-w--2) (n-w-3)

As a result of the improperness of the prior distribution of the population

size, the above posterior results can only be evaluated if at least 2

different animals have been sampled.

5. Numerical example

In this Section we will first consider a fictive population of k = 500 animals

with equal catch probabilities ei = 1/500 (i=1,...,k). Table 1 for a number of

captures n shows the expected number of different animals which will be

sampled in the course of these n trials if the animals are taken one at a time

from the above population and then immediately put back. Next, given a prior

distribution on the assumed unknown parameters of the population, Table 2

shows the posterior the expectation E, the standard deviation a and a 95%

posterior credible interval C95 of the unknown population size.
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Table 1

Sampling results on a population with k = 500 animals with equal catch

probabilities 0. = 1/500 (i=1,...,k).

Number of captures n Expected number of different

animals observed w

50 47

75 69

100 90

150 129

250 197

500 316

1,000 433

Table 2

Baysesian estimation results for a population of k = 500 animals with equal

catch probabilities ei = 1/500 (i=1,...,500)

Table 2A

1 
Prior distribution : a = 100; X = 100; u = 1000: lb

= 901 
=100,...,1000)

50

75

100

150

250

500

1000

47 544 217 [205,963]

69 552 184 [250,929]

90 548 157 [283,879]

129 530 111 [337,758]

197 522 63 [406,649]

316 506 27 [455,561]

433 503 11 [483,527]

et
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Table 2B

1 Prior distribution : a = 100; ft = 1, u = 2500; = 
2500 

(i=1,...,2500)i 

50

75

100

150

250

500

1000

Table 2C

a C
95

47 796 503 [150,1913]

69 640 319 [211,1290]

90 574 204 [266,976]

129 531 114 [336,761]

197 522 63 [406,649]

316 506 27 [455,561]

433 503 11 [483,527]

1 Prior distribution : a = ; = 1; u = 2500; tb 
= 2500 

(i=1,...,2500)

50 47 1198

75 69 1149

100 90 1093

150 129 1011

250 197 961

500 316 866

1000 433 765

550

459

371

237

136

64

32

C
9

[344,2305]

[423,1213]

[492,1870]

[603,1489]

[712,1235]

[744,995]

[703,830]
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Table 2D

Prior distribution : a = 1; =

50

75

100

150

250

500

1000

47 2203

69 1276

90 1113

129 1011

197 961

316 866

433 765

00.
' 

th. 11).

737

421

238

136

64

32

,j=1,2,000)

C
9

[220,6455]

[375,2629]

[481,1939]

[603,1490]

[712,1235]

[744,995]

[703,830]

The table shows that the prior distributions for which a--= 100, that is, whose

probability mass is heavily concentrated in the neighbourhood of the true

parameters of the populaiton, yield precise estimates if at least 10 different

animals have been sampled. Also, for a = 100, the posterior 95% credible

interval always contains the true value of the population size. The, table

further shows that the quality of the estimation results is far more sensitive

to a proper specification of a than to the choice of the a priori range .[k,u]

for the size of the population. If a = 1, i.e, high a priori probability is

given to vectors of unequal catch probabilities, then, since the true catch

probabilities of the animals in the population actually are equal, the method

(as expected) seriously overestimates the true value of the population size.

.Of course, if we would have tested the method on a population of animals with

unequal catch probabilities, the situation .would have been reversed: 'prior

distributions with large values for a would lead to underestimation, and

priors with a small value for a would yield more precise estimates.

We conclude with a practical example. [Craig 1953] studied a population of

butterflies (Colias eurytheme) by sampling the butterflies one at a time, and

observed w = 341 different ones in n = 435 captures.

Assuming that

(1) all animals have the same probability pn of being caught in the n-th

trial, and
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(ii) for any individual the events of being caught in the i-th trial

(i=1,...,n) are independent,
A

then (see also [Seger 1982]) the maximum likelihood estimate M is the solution

of

(1 ;4i) (1

A

For the population of butterflies, this yields a maximum likelihood of M = 854
1 butterflies. Under the a priori assumption [k,u] = [1,2500], =

2500
(1=1,...,2500), and a = 100 our Bayesian method yields a posterior expectation

for the population size E = 876 (a=78; C95=[730,1033]) which, of course, is

very close to the maximum likelihood estimate assuming equal catch

probabilities pn. However, if we assume a priori that [X,u] = [1,2500],

a = 1, i.e. each subset of the simplex el+...+ek = 1 with equal volume is

thought to contain the true vector of catch probabilities (01,...,0k) with

equal probability, then our estimate is E = 1626 (a=168; C95= [1292,1946]).

So, how many butterflies were there?
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