
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


.1

G1ANNINI FOUNDA
AGRICULTURAL

441-
Nov L) 1984

%NA

OF
OlvlICS

  L

ON THE UTILITY FUNCTIONS OF THE INDIRECT
ADDI-LOG BUDGET ALLOCATION MODEL

J. VAN DAAL

REPORT 8304/E

ERASMUS UNIVERSITY ROTTERDAM - P.O. BOX 1738 - 3000 DR ROTTERDAM - THE NETHERLANDS



ON THE UTILITY FUNCTIONS OF THE

INDIRECT ADD I-LOG BUDGET ALLOCATION MODEL

by

J. van Daal

Abstract

In this paper the conditions for integrability of the indirect addi-

log budget allocation model are sharpened. This is done by means of the

indirect utility function. The conditions for the existence of an

analytical expression of the direct utility function are set out and the

pertinent analytical expression is presented.
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1. Introduction

The indirect addi-log can be introduced in several ways. In Somer-

meyer and Wit (1956) it is put forward as:
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where:

wk = budget share of good k (=

pk = price of good k,

C = total amount to be spent;

the parameters dk are always positive. Somermeyer and Wit prove that if
all ak are less than 1 the system (1) meets the well-known four
conditions of integrability for consumer demand systems: adding up,
homogeneity, symmetry and negativity.

Leser (1941) introduced the model (1) as a model that meets the
condition of adding up, i.e hwh

• • • , K

= 1, and that has the property that the
cross price elasticities of all goods k with respect to the price of
some good X are equal, meaning that if only price pst changes the amounts
spent on the other items will change proportionately in order that total
consumption remains equal to the total budget. Leser used the model as a
vehicle for computing price elasticities using budget data plus one
additional datum long before Frisch's (1959) well-known alternative.

Houthakker (1960, 1961) discovered the model's indirect utility

function. He also gave the model its present name. Neither Leser nor

Houthakker got deeply into the subject of optimality.

In this paper we shall set out that Somermeyer's condition (all

ak < 1) for integrability can be sharpened. To be precise, we shall show

that in order that (1) be the result of maximizing a strictly quasi-

concave utility function subject to a budget restriction, at most

one a
k 

may be equal to 1, whereas the other have to be less than 1. We

shall do that, starting from the indirect utility function, in section

3. [In Van Driel (1974, section 4.7) the same assertion is proved by

analyzing the Slutsky matrix of system (1). There exists some confusion

about this borderline case. Some authors even say that the utility

functions's quasi-concavity is not strict in this case.]



Second, we shall prove (in section 4) that if one parameter ak is

equal to 1, there exists an analytical expression for the direct utility

function. If all a
k 

are less than 1 than only in some special cases (a

set of measure zero in the whole set of possibilities) an analytical

expression for the direct utility function can be found.

2. Some lemmas

In this section some lemmas are mentioned. We need them in the next

sections. For reason of shortness we only indicate briefly how they can

be proved or where a proof can be found.

Lemma 1. If a demand system's indirect utility function is increasing

and strictly quasi-convex in its arguments rl, rK (rk = pk/C) and 

differentiable in r1, **" rK' then the system can be considered as 
the

result of maximizing a strictly quasi-concave direct utility function

subject to a budget restriction.

The proof can be given in two steps. First, because the indirect

utility function is increasing in C given prices it can be inverted into

an expenditure function that is strictly quasi-concave and linear-

homogeneous in prices. Second, it can be proved that this expenditure

function defines a direct utility function that is strictly quasi-

concave in quantities. This can be done in a way similar to that of

Varian (1980) p. 39-40, where it is proved how a cost function defines a

technology; Varian restricts himself to quasi-concavity but the argument

can also be used for strict quasi-concavity.

• Lemma 2. If f(x , xN) is twice differentiable and quasi-concave

then for each n = 1, N:

(2)

where:
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Lemma 3. The twice differentiable function f is quasi-concave if for all
U = 1, • • • , N:

(-1)'D > 0. 4)

These two lemmas together form Theorem 5 of Arrow-Enthoven (1961).
Note that lemma 2 is a necessary condition for quasi-concavity, whereas
lemma 3 is a sufficient condition and that both show a subtle
difference. In the next section we use lemma 2 in order to get a first
restriction on the parameters of the indirect utility function, the
sufficient and necessary conditions for strict quasi-concavity are
further determined by using the special properties of the function at
stake. Lemma 3 is mentioned for completeness' sake.

Lemma 4. The system:

d, ri,

h=1

with rk = pk/C and qk = quantity consumed of good k (= 1,

E d
h
r
h

•• • , K

(5)

, is a
bijection of the positive K-dimensional orthant of the vectors
(r1 rK) into the positive K-dimensional orthant of the vectors
(q1 qK) if all a are less than 1.

Lemma 5. If a = 1 and a
k 

< 1 for k = 2, ..., K then the system 5) is a1
bijection of the positive K7dimensional orthant of all r-vectors into

the subset of the positive orthant of q-vectors such that:
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The two lemmas above are proved in Van Driel (1974), section 4.8 and

4.9. Theyare purely mathematical and allow us to prove in a simple way

that the direct utility function is always differentiable.

Lemma 6.
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The proof of this lemma is elementary.

(7)

Lemma 7. The system of N partial differential equations in the positive

real numbers x •••, x N.

a
n
-1

3f = a x .g
ax nn

has as general solution:

N (an)
xN) = Ff E ax 1,

n n
n=1

where F is some differentiable function of one variable and where
a
n

x
n 

is the so-called Box-Cox transformation of x:

a
n

x
n 

-1

a
n

if a * 0

= log x if a

if and only if for all xl, xN:

(a )
= F'{ E a xnn

n=1

(9)

(10)



[Note that x is continuous in a
n 
for each positive value of xn

an-1and that always dxn /dxn = x
n

The proof of this lemma can be given by considering the function f

with:

, xN) = GfEa 
n
x n
n

• , xN) + B(x , • • • ,

(o)
where neither A nor B are non-constant functions of Ea x but

n n

(12)

otherwise arbitrary and where G is some differentiabh function of one

variable. After substitution into (8) one can conclude that (12) is a

solution of (8) if and only if A is a non-zero constant and B is an

arbitrary constant. From this (9) and (11) follow easily.

3. The indirect utility function

In order to find the indirect utility function v of the system (5)

we use Roy's theorem. For our purposes this theorem can most suitably be

formulated as:
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Comparing this with (1) yields:

ay
ar
k 
= dkrk

(13)

rK), (14)

where (because v is decreasing in the rk) (I) is a negative function of

rl, rK. Lemma 7 learns us that there is no loss of generality if we

take as indirect utility function:

(a )
= - E d

h=1
(15)



This formulation is a generalization of Houthakker's (1960) expression

d
h 

a
h

for v (= -E r in our notation) because (15) allows for zero values

h% h

of some ak; it differs from Houthakker's expression by E dk/cxk in case

no ak is equal to zero. 
.„

The Hessian of the indirect utility function is diagonal. Hence the

matrices in (3) of lemma 2 have the form of the matrix in (7) of lemma

6. Instead of v we consider now -v and apply lemma 2 in order to find 
a

first set of restrictions on the parameters ak. It can now easily be

seen, using lemma 6, that for all k = 1, K the determinants Dk of

-v are:

k 2a.- k
2 j 

a
X
-2

D
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(16)

k = 2, ..., K. Let be given two vectors r and r and let r
1 

and r
2 

be

and, therefore, -1) Dk > 0 if all ak < 1 and (-1)
k
D
k 

0 for each

k = 1, K if all a < 1 and at most one a = 1.

Hence for quasi-convexityl) all ak 
have to be at most equal to 1;

apparently, in this case quasi-convexity cannot exist without convexity.

In the special case at stake, however, strict quasi-convexity is

impossible if two or more a are equal to 1. Let, say, a1 
= a 

2 
= 1. For

1 1 2 2
each two vectors (r1, rd and (r1, ..., rid that only differ in the

first two elements and that yield equal values of indirect utility one

can prove that any convex combination of such two vectors yields also

that value of indirect utility.

If all a are less than 1 then v is even strictly convex and, there-

fore also strictly quasi-convex. The only remaining case to consider is

that in which all ak 
are at most equal to one and only one of them is

exactly equal to 1. Suppose, therefore, al = 1 and ak 
< 1 for

2

the (K-1)-vectors that result from omitting the first elements of 
r1 and

r2, respectively.

First, we suppose r 
1 

r2. Then:

) Or, equivalently, quasi-concavity of -v.
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(Xr + (1-X)r) + 4)(Xri + (1-X

1
(17)

where X is a real number between 0 and 1 and where (1) is a function of

K-1 variables that is strictly concave because ak < 1 for k = 2, ..., K.

Hence, because r
1 
* r

2

(1)(X2 + (1-X

TM's means:

) > X(r) +(1-X)(1)(r2).

2 
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= -(Xv
1) (1-x)v( 2)

Consequently, in this case:

(18)

(19)

v(X 
1 
+ (1-X)r

2
) < Xv(r ) +(1-X)v(r)4 max (v(r), v(r2)). (20)

of generality we can take r
1
1 
> r

2
1. 

Then we have:

Second, we suppose alterntatively r = r
2 
and r

1 
*

- - 1
. Without loss

v Xr
1
 + (1-X)r = d x

1 
- 
(1-X)d1 

x
2 
- gr ) < v(r2) =

1  1 -

= max (v (r1), v(r
2
)). (21)

This means that for the indirect utility function in question always:

v(Xr + (1-X)r2) < max (v(r1), v(r2)) (22)

if r
1 
* r2. Hence v is strictly quasi-convex. This proves the following

theorem.

Theorem 1. The indirect utility function (15) of the addilog budget

allocation model is strictly quasi-convex if and only if all ak 4 1 and

at most one a
k 

is equal to one.



4. The direct utility function

According to theorem 1 and lemma 1 and because of the indirect

utility function's differentiability there exists a strictly quasi-

concave direct utility function such that the addi-log budget allocation

model can be considered as the result of maximizing this direct utility

function subject to a budget restriction. According to the lemmas 4 and

5 the addi-log model can be inverted into a system of K differentiable

equations:

= (qi,
Inserting this into the indirect utility function results in the direct

utility function which is, therefore, differentiable.

Hence we have proved:

Theorem 2. The addi-log budget allocation model (5) has a differentiable

strictly quasi-concave direct utility function if and only if all

ak 4 1 for all k and ak = 1 for at most one k.

If all ak are less than 1 it is virtually impossible to perform the

inversion (23) analytically. If some ak are irrational it is completely

impossible; if all a are rational then the inversion boils down to

solving a polynomial equation. If the degree of that equation is less

than 5 it can be solved analytically; otherwise such solutions are

possible in some rare cases only.

If one a is equal to 1, however, then we can perform the inversion

analytically. Let al = 1. Dividing the expressions for qk and qi

according to (5) results in:

2

for k = 2, ..., K. Hence for these values of k we have:

=

(24)

(25)
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Inserting this in

or

5 for k = 1 gives:
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We insert (25) and (27) into the indirect utility function. For ease of

exposition we restrict ourselves to the case that each a
k 
* 0. The

indirect utility function can then be written as:

Kdp ak
k ( k)v = E

k=1 ak

Note that a
1 
= 1. The direct utility function now becomes:

a
k

q /dk

k=2 

ak-1
u = - + Ed

q k • ak (qiidi1 

For k > 1 the marginal utility is:

91.1

'qk

1

q /d ak-1 1/d
k(-k k 

> 0,k • q1/d1

whereas for k = 1:

1

q / K a
k
-

k=2

3u 1

aql
[1 E (

q /d
k) ], 2

ql 
1 1

(28)

(29)

(30)

(31)

which is positive if the expression between the square brackets is

positive. This is, however, just the case if q is in the range of the

mapping (5); see lemma 5.
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