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ON THE UTILITY FUNCTIONS OF THE
INDIRECT ADDI-LOG BUDGET ALLOCATION MODEL

by

J. van Daal

Abstract

In this paper the conditions for integrability of the indirect addi-
log budget allocation model are sharpened. This is done by means of the
indirect utility function. The conditions for the existence of an

analytical expression of the direct utility function are set out and the

pertinent analytical expression is presented.
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1. Introduction

The indirect addi-log can be introduced in several ways. In Somer-

meyer and Wit (1956) it is put forward as:

where:

W = budget share of good k (= 1, eeey K),

Py = price of good k,

C total amount to be spent;

the parameters dp are always positive. Somermeyer and Wit prove that if
all o are less than 1 the system (1) meets the well-known four
conditions of integrability for consumer demand systems: adding up,
homogeneity, symmetry and negativity.

Leser (1941) introduced the model (1) as a model that meets the

condition of adding up, i.e. Ewh = 1, and that has the property that the

cross price elasticities of all goods k with respect to the price of
some good £ are equal, meaning that if only price Py changes the amounts
spent on the other items will change proportionately in order that total
consumption remains equal to the total budget. Leser used the model as a
vehicle for computing price elasticities using budget data plus one
additional datum long before Frisch's (1959) well-known alternative.

Houthakker (1960, 1961) discovered the model's indirect utility
function. He also gave the model its present naﬁe. Neither Leser nor
Houthakker got deeply into the subject of optimality.

In this paper we shall set out that Somermeyer's condition (all
o < 1) for integrability can be sharpened. To be precise, we shall show
that in order that (1) be the result of maximizing a strictly quasi-
concave utility function subject to a budget restriction, at most
one @, may be equal to 1, whereas the other have to be less than 1. We
shall do that, starting from the indirect utility function, in section
3. [In Van Driel (1974, section 4.7) the same assertion is proved by
analyzing the Slutsky matrix of system (1). There exists some confusion
about this borderline case. Some authors even say that the utility

functions's quasi-concavity is not strict in this case.]




Second, we shall prove (in section 4) that if one parameter e is
equal to 1, there exists an analytical expression for the direct utility

function. If all o, are less than 1 than only in some special cases (a

k
set of measure zero in the whole set of possibilities) an analytical

expression for the direct utility function can be found.

2. Some lemmas

In this section some lemmas are mentioned. We need them in the next
sections, For reason of shortness we only indicate briefly how they can

be proved or where a proof can be found.

Lemma 1. If a demand system's indirect utility function is increasing

and strictly quasi-convex in its arguments Ly eeey Iy (rk = pk/C)_ggg
differentiable in L1y ooy Iy then the system can be considered as the
result of maximizing a strictly quasi-concave direct utility function
subject to a budget restriction.

The proof can be given in two steps. First, because the indirect
utility function is increasing in C given prices it can be inverted into
an expenditure function that is strictly quasi-concave and linear-
homogeneous in prices. Second, it can be provedAthat this expenditufe
function defines a direct utility function that is strictly quasi-
concave in quantities. This can be done in a way similar to that of
Varian (1980) p. 39-40, where it is proved how a cost function defines a
technology; Varian restricts himself to quasi-concavity but the argument

can also be used for strict quasi-concavity.

Lemma 2. If f(x;, ..., xy) is twice differentiable and quasi-concave

then for each n =1, ..., N:
n
(-1) Dn > 0,

where:




. )
with £ af/axn and £, =3 f/axnaxn,.

Lemma 3. The twice differentiable function f is quasi-concave if for all

n =1, .0, N:
=D > o. : (4)

These two lemmas together form Theorem 5 of Arrow-Enthoven (1961).
Note that lemma 2 is a necessary condition for quasi-concavity, whereas
lemma 3 is a sufficient condition and that both show a subtle
difference. In the next section we use lemma 2 in order to get a first
restriction on the parameters of the indirect utility function; the
sufficient and necessary conditions for strict quasi-concavity are
further determined by using the special properties of the function at

stake., Lemma 3 is mentioned for completeness' sake.

Lemma 4. The system:

a, =1
k
4 Tx

q = H
k K %h
I d,r

h=1 h™h

with 1 = p,/C and q = quantity consumed of good k (= 1, +.., K), is a
bijection of the positive K-dimensional orthant of the vectors
(rl oo rK) into the positive K-dimensional orthant of the vectors

(ql ooe qK) if all a, are less than 1.

Lemma 5, If a; =1 and oy <1 for k = 2, ,.., K then the system (5) is a
bijection of the positive K-dimensional orthant of all r-vectors into

the subset of the positive orthant of q-vectors such that:




ah-l

K qh/dh
qh(ql/dl)

T < 1. : (6)

h=2

The two lemmas above are proved in Van Driel (1974), section 4.8 and
4.9. Theyare purely mathematical and allow us to prove in a simple way

that the direct utility function is always differentiable.

Lemma 6.

|

o O m

D eee

The proof of this lemma is elementary.

Lemma 7. The system of N partial differential equations in the positive

real numbers Xyy eees Xyt

.g(xl, cees xN)

has as general solution:

N (an)
f(xl, ey xN) = F{nillanxn },

whfge)F is some differentiable function of one variable and where

n .
xn is the so-called Box—Cox transformation of b

log X,

if and only if for all Xy, ..., Xy

N
g(xl, cee xN) =F'{Z a x
n=1




(a)
[Note that X " is continuous in oL for each positive value of X,

(a_) a —1

and that always dx rax o=x T, ]
n n n

The proof of this lemma can be given by considering the function f

with:

(a.)
£(x), eey X)) = G{)r:lanxn oy, ARy, eeey x) + B(X), eeey X0, (12)‘

(o)

where neither A nor B are non-constant functions of Eanxn ™ but
otherwise arbitrary and where G is some differentiable function of one
variable. After substitution into (8) one can conclude that (12) is a
solution of (8) if and only if A is a non-zero constant and B is an

arbitrary constant. From this (9) and (11) follow easily.

3. The indirect utility function

In order to find the indirect utility function v of the system (5)

we use Roy's theorem. For our purposes this theorem can most suitably be

formulated as:

Comparing this with (1) yields:

-1
v %k
'5‘;:—k—= dkrk . ¢(r1, couy rK), (14)

where (because v is decreasing in the rk) ¢ is a negative function of
T]s> +ee, Tyg. Lemma 7 learns us that there is no loss of generality if we

take as indirect utility function:

h=1 M D




This formulation is a generalization of Houthakker's (1960) expression

d Q,
for v (= -z — r
h %h

in our notation) because (15) allows for zero values

of some o3 it differs from Houthakker's expression by I dk/ak in case
no o is equal to zero. k

The Hessian of the indirect utility function is diagonal. Hence the
matrices in (3) of lemma 2 have the form of the matrix in (7) of lemma
6. Instead of v we consider now -v and apply lemma 2 in order to find a
first set of restrictions on the parameters e It can now easily be
seen, using lemma 6, that for all k = 1, ..., K the determinants Dy of

-V are:

k 9 2.2 'k a£—2
D = - % dir. ] I cp (o =Dr,” . ‘ (16)
=139 =1

L#]

and, therefore, (—l)ka > 0 if all ay < 1 and (—l)kDk > 0 for each

k=1, .., Kif all %y < 1 and at most one a, = 1.

Hence for quasi—convexityl) all o have to be at mdst equal to 1;
apparently, in this case quasi-convexity cannot exist without convexity.
In thé special case at stake, however, strict quasi-convexity is
impossible if two or more a, are equal to 1. Let, say, oy ='a2 = 1. For
each two vectors (ri, cees r;) and (r%, P ré) that only differ in the
first two elements and that yield equal values of indirect utility one
can prove that any convex c0mbinétion of such two vectors yields also
that value of indirect utility.

If all o

fore also strictly quasi-convex. The only remaining case to consider is

are less than 1 then v is even strictly convex and, there-

are at most equal to one and only one of them is

t

the (K-1)-vectors that result from omitting the first elements of r
2

that in which all o
exactly equal to 1. Suppose, therefore, o, = 1 and oy <1 for

2 and let El and r2 be

"1

k =2, ..., K. Let be given two vectors r and r

and

r“, respectively.

First, we suppose 51 # 52. Then:

1) Or, equivalently, quasi-concavity of -v.




—~Orl + (1-0)r?) = dl(kri + (1-x>r§) + o0l + (1m0, (17)

where A is a real number between O and 1 and where ¢ is a function of
K~1 variables that is strictly concave because o <1 for k=2, «¢e., K

2
Hence, because 51 #r,

sOrt + (-0 > aezh + 0.
This means:

—Or! + (=07 > A+ e@h) + 1 + pe?) -
(19)
= —(xv(rl) + (1fk)V(r2))-

Consequently, in this case:
vor! + (1-012) <aviel) H10ve?) < max wieh), vr?).  (20)

Second, we suppose alterntatively 51 = 52 and ri # r%. Without loss

of generality we can take ri > r%. Then we have:

vor! + (1-02?) 2ad xT - (1m)d x5 = (D) < v =

1
max (v(r’), v(rz)). (21)
This means that for the indirect utility function in question always:
1 2 1 2
v(Ar® + (1-A)r”) < max (v(r’), v(r?)) (22)

if rl * r2. Hence v is strictly quasi-convex. This proves the following

theorem.

Theorem 1. The indirect utility function (15) of the addilog budget
allocation model is strictly quasi-convex if and only if all o < 1 and

at most one @, is equal to one.

k




4, The direct utility function

According to theorem 1 and lemma 1 and because of the indirect
utility function's differentiability there exists a strictly quasi-
concave direct utility function such that the addi-log budget allocation
model can be considered as the result of maximizing this direct utility
function subject to a budget restriction. According to the lemmas 4 and
5 the addi-log model can be inverted into a system of K differentiable

equations:

n =W ld, e, )

Inserting this into the indirect utility function results in the direct
utility function which is, therefore, differentiable.

Hence we have proved:

Theorem 2. The addi-log budget allocation model (5) has a differentiable
" strictly quasi-concave direct utility function if and only if all

o < 1 for all k and o = 1 for at most one k.

If all ), are less than 1 it is virtually impossible to perform the

inversion (23) analytically. If some a, are irrational it is completely

impossible; if all'ak are rational then the inversion boils down to

solving a polynomial equation. If the degree of that equation is less
than 5 it can be solved analytically; otherwise such solutions are
possible in some rare cases only.

If one o 1is equal to 1, however, then we can perform the inversion

k

analytically. Let o, = 1. Dividing the expressions for q; and q;

1
according to (5) results in:

o, —1

2, «+., K. Hence for these values of k we have:

1

3,74,




Inserting this in (5) for k = 1 gives:

(27)

We insert (25) and (27) into the indirect utility function. For ease of

exposition we restrict ourselves to the case that each oy

indirect utility function can then be written as:

[0 3
B4 P

k

V="2 C) .

k=1 %k
Note that a; = l. The direct utility function now becomes:

%k
, a, =1
a 1 qk/dk k

For k > 1 the marginal utility is:
1
a, -1
o _ o, (W MY S o
. b
8%k tq)/dy 1,74

whereas for k = 1:

1
d K q./d %1
G- E @,
ay k=2 9/%4

# 0. The

which is positive if the expression between the square brackets is

positive. This is, however, just the case if q is in the range of the

mapping (5); see lemma 5.
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