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Abstract. In this paper a sufficient condition for local

optimality is given. From this condition for local optimality a

sufficient condition for global optimality is deduced.
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1. Introduction.

First we formulate the optimal control problem, which we shall

consider.

Consider a system of differential equations and initial

conditions

= f(x,

x(t ) = x ; t and x
o 

given
o

(1.1)

(1.2)

where x, •the state vector, and f are n-vectors and u is an m-

vector.

The m-dimensional vector u(t) which is called the control

function, or control for the system, is defined on an interval

o,t ], 
where the right endpoint tu 

may depend on the function
u

u(t); we assume that u(t) satisfies the following conditions:

1) u(t) is piecewise continuous on [to,tu] and u(t) is left

continuous at each point of discontinuity T (t ,t ).
0 u

2) For all td [to,tu], u(t) e. U, where U lin is a prescribed

set, called the control set.

Controls which satisfy the conditions and 2 above are called

permissible.

A function x(t) is called a corresponding trajectory of the

permissible control u(t), t E [to,tu], if x(t) has the following

properties: x(t) is defined and continudus on an interval of the

form [to,t0+6], ô > 0; x(to) = xo 
and k(t) = f(x(t),u(t)) for all

t with to < t < minftu,t0+61 and t not a point of discontinuity

of u(t).

We denote the components of the vector f(x,u) by fi(x,u),

i = 1,2, . . ., n. The functions fi(x'u) are 
defined and continuous

on In x U; moreover, we assume that the functions

af.(x,u)

ax
exist exist and are continuous on Itn x U.

We are given a non-empty set T<III



We are also given a function f : R
n 

x U , which enjoys the

same properties as the functions fi.

Definition. Let 2 be an open subset of le such that T *

(-S-Z denotes the closure of 2). We call a permissible control

u(t), t [to,tul, 2-feasible if the corresponding trajectory

x(t) is defined throughout •the interval [to,tu] and satisfies the

following conditions

1) x(t) T

2) x(t) Q for all t [to,tu)

If c = In we say simply "feasible" instead o "2-feasible".

Fixing a set 2(Rn with 2 open and T * 0, the optimal control

problem which we shall consider, may now be stated as follows:

Find among the a-feasible controls that control which minimizes

the functional

J(u) = f 0 ( , (t))dt (1.3

(of course, the function x(t)in .3) is the corresponding

trajectory of u(t)).

An 2-feasible control u
*
(t), with corresponding trajectory

x (t), which yields the solution of the above problem, is called

an 2-optimal control; x (0 is called the corresponding

Q-optimal trajectory. We shall refer to the pair (u (t),x (0)

as an a-optimal pair. In the case 2 = In we speak simply about

"(global)optimal" instead of "In-optimal".

We conclude this introduction with some remarks on the notation

which we shall use. A vector will be either a column or a row

vector, as it will be clear from the context how the vector is to

be considered. Thus we shall write the inner product of two n-

vectors x and y simply as xy. The partial differential operator

a 
ax 'ax

nj2



will be denoted by

2. A sufficient condition for -optimality.

The following theorem gives a sufficient condition for 0-

optimality.

Theorem 1. Let u (t),t 6_ t ,t , be an a-feasible control with
o u

corresponding trajectory x (t). Suppose there exists a

continuously differentiable function g: I which has the

following properties:

(1) Vg(x)f(x,u) fo(x,u) > 0 for all (x, 
n 

x U

(2) Vg(x (0)f(x (t),u

t 6 
[to t

 
u*)

)) = 0 for all

(3) For every 2-feasible control u(t), t [to,tu], with

corresponding trajectory x(t) we have

Then

lim .g( (0) < lim g(x (t)) =
t+t t+t

(t),x )) is an 2-optimal pair.

Proof. It will be convenient to write t* for t Let

u(t),t6= [t0,tui, be an 2-feasible control with corresponding

trajectory x(t). Using equations 1.1) we see that

Vg( tflf(x(t),u(t)) = Vg(x(t))k(t) = g(x(t))]
dt

Hence, for all TeAt ,t ) we have
0 u



t
o

f Vg(x(t))f
t
o

, (t))dt = g(x(T)) - g()!.(t0)) = g(x(T))-g(x0

(2.1)

From this we conclude that

urn f Vg(x(t))f(x ,u(t))dt
T+t t

U 0

exists.

Denoting the limit (2.2) by a and using (2.1) and

theorem, we see that

(2.2)

3 of the

2.3)

Using 2 and 3) of the theorem, we deduce analogously

f f o t ,u (t))dt = g(x0) 2.4)

As a consequence of (1) of the theorem and (2.3), we obtain

t
u t

u

to
f
o

t , (t))dt > - f Vg(x(t))f(x(t),u(t))dt = g(x0)
t
o

Comparing 2.3) and (2.4) we obtain

(t),u (t))dt < f f (x(t),u(t))dt

which is what we wanted to prove,

(2.5)

3. A sufficient condition for global optimality.

Let G be the set of all starting points xo which can be steered

to a point in T by a permissible control,

:= fx06

i.e.

There exists a permissible control u(t),

t (77 [t ,t ], such that the corresponding trajectory has the
o u

following properties: x(t) is defined throughout [t 0,t1 and

x(t0) T}.

If the set Q has the additional property that



T UQ.D G 3.1)

then it is plain that Theorem 1 gives us a sufficient condition

for global optimality. Thus we have

Theorem 2. Let Q be an open subset of In such that

() T *0 and T U Q 2) G. Let u (t),x*(t) and g be as in Theorem

1 and let g have the properties (1), (2), (3) of Theorem 1.

Then (u (t),x (t)) is a global optimal pair.

4. A remark on the function ; an example.

In applying Theorem 1, it is of course necessary to determine the

function g. Which choice to make for g is suggested by (2.4). Let

y be an arbitrary point of Q. Suppose that (ii(t),(0),

to [t :id] is an Q-optimal pair for the control problem which

we considered, but with (1.2) replaced by x(t )

g(y)  =f f ( t), (t))dt (4.1
o

If the function g

t 
o

y• Now define

defined by (4.1), happens to be continuously

differentiable on Q, then it is the candidate to use in the

application of theorem 1.

We end up with an example in which we apply the sufficient

conditions given by the two theorems.

Example.

t 4- min!
1

subject to

(t) = u 1( t)
1

2(t) = u
2 
( )

o o
1(0) 

= x 
2' 

x and x
o

1 2
iven



= x
2 
(t

1 
= 0

1 

= ftu 
l' 

u 
2 I 

ER.21 u2±u2 =
tv 1 2

In this example, T = {(0,0)}. Using Pontryagin's maximum

principle see [1]), we find 111'1(0 = -1

o o2 o2
-x* 2 * 1 ) +(x2)u(0 = with t =

2
t
* 1 o

2x
1 1

corresponding extremal trajectory is

x
o
1
*
t i

as extremal control; the

o o
-x* x

1
t 

* o *„ 2x1(t) - t -  
* 

+ 
t1 

x
l' 

x2(t) =

t t
*

1 1

+ x
o
2

The corresponding value of the performance functional t1 
is

ti (x7)2+(x°2)2
x
o
1

The set G for this problem turns out to be

= {(x 1,x2) < 0} U {(0,0)}

To apply Theorem 1, we take 2 := f(xx
2
)4-3: IR

2

of (4.2) we define g: 2 9..11 by

x
2
+x

2
1 2 g(x l, = -
2x

1

(4.2)

< 01. In view

It is rather easy to verify that g meets all the conditions of

Theorem 1. In fact, since 2 T = G, the extremal pair

(u
*
(t), x

*
(0) is global minimizing by Theorem 2.
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