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Abstract. In this paper a sufficient condition for local

optimality is given. From this condition for local optimality a

sufficient condition for global optimality is deduced.
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1. Introduction.

First we formulate the optimal control problem, which we shall
consider.
Consider a system of differential equations and initial

conditions
x = f(x,u) (1.1)

x(to) = x5t and x  given (1.2)

where x, the state vector, and f are n-vectors and u is an m-
vector.

The m-dimensional vector u(t) which is called the control
function, or control for the system, is defined on an interval
[to’tu]’ where the right endpoint t, may depend on the function
u(t); we assume that u(t) satisfies the following conditions:

1) u(t) is piecewise continuous on [to,t and u(t) is left

u]
continuous at each point of discontinuity = é.(to,tu).
2) For all t & [to,tu], u(t) & U, where U & R™ is a prescribed

set, called the control set.

Controls which satisfy the conditions 1) and 2) above are called

permissible.

A function x(f) is called a corresponding trajectory of the
permissible control u(t), t € [t ,t ], if x(t) has the following
properties: x(t) is defined and continuocus on an interval of the
form [to’to+5]’\6 > 0; x(to) = X and x(t) = f(x(t),u(t)) for all
t with t, <t < min{tu,to+6} and t not a point of discontinuity

of u(t).
We denote the components of the vector f(x,u) by fi(x,u),
i=1,2, ..., n. The functions fi(x,u) are defined and continuous

on E® x U; moreover, we assume that the functions

. . n
1,2, ..., n, exist and are continuous on B x U.

We are given a non-empty set T < g™




We are also given a function fO: R x U » B, which enjoys the

same properties as the functions f;.

Definition. Let @ be an open subset ofARn such that @ T # 4.

(9 denotes the closure of Q). We call a permissible control
u(t), te [to,tu], Q-feasible if the corresponding trajectory
x(t) is defined throughout the interval [to’tu] and satisfies the
following conditions
1) x(e)) & T
2) x(t) e Q for all t & [to,tu)

If @ = B™ we say simply "feasible" instead of "Q-feasible".

Fixing a set Q< R™ with Q open and @ N T # §, the optimal control

problem which we shall consider, may now be stated as follows:

Find among the Q-feasible controls that control which minimizes

the functional

t
u
JCu) = [ £ (x(t),u(t))de (1.3)
t
o]

(0f course, the function x(t) in (l1.3) is the corresponding

trajectory of u(t)).

An Q-feasible control u*(t), with corresponding trajectory

x*(t), which yields the solution of the above problem, is called
an Q-optimal control; x*(t) is called the corresponding

fi-optimal trajectory. We shall refer to the pair (u*(t),x*(t))
as an Q-optimal pair. In the case Q@ = E" we speak simply about

"(global)optimal" instead of "EP-optimal".

We conclude this introduction with some remarks on the notation
which we shall use. A vector will be either a column or'a row
vector, as it will be clear from the context how the vector is to
be considered. Thus we shall write the inner product of two n-
~vectors x and y simply as xy. The partial differential operator
3 3

]
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will be denoted by V.

2. A sufficient condition for Q-optimality.

The following theorem gives a sufficient condition for Q-

!

optimality.

*
Theorem 1. Let u (t),t & [to,t «], be an qQ-feasible control with
u
corresponding trajectory x*(t). Suppose there exists a
continuously differentiable function g: 9 » K which has the
following properties:

(1) vg(x)f(x,u) + £ _(x,u) > 0 for all (x,u) € R" x U

\ * * % * *
(2) vg(x (t))f(x (t),u (£))+f _(x (t),u (t)) = 0 for all
t & [to,t %)
u
(3) For every Q-feasible control u(t), té~[to,tu], with

corresponding trajectory x(t) we have

lim g(x(t)) < lim g(x*(t)) =
t>t t>t %
u
u

* *
Then (u (t),x (t)) 1is an Q-optimal pair.

~

. ) *
Proof. It will be convenient to write t° for t e+ Let

u

u(t),té?[to,tu], be an Q-feasible control with corresponding

trajectory x(t). Using equations (l.1) we see that

ve(x(t))E(x(t),u(t)) = vg(x(t))x(t) = %g[g(X(t))]

Hence, for all Téf[to,tu) we have




T
[ ve(x(e))E(x(t),ule))de = g(x(r)) - g(x(t D) = glx(r))-g(x )
t

o (2.1)

From this we conclude that

T
lim [ vg(x(t))f(x(t),u(t))dt (2.2)
T>t €
u o
exists.

Denoting the limit (2.2) by a and using (2.1) and (3) of the

theorem, we see that

a S_ —g(XO) (2.3)

Using (2) and (3) of the theorem, we deduce analogously
*

t % *
/ fo(x (t),u (t))dt = g(xo) (2.4)
: .

o

As a consequence of (1) of the theorem and (2.3), we obtain

t t

u u
f fo(x(t),u(t))dt 2 - f Ve(x(t))f(x(t),u(t))dt = -a > g(xo)
t t

o o}

(2.5)

Comparing (2.3) and (2.4) we obtain
* t

t % % u

J £ (x (t),u (£))de < £, (x(t),u(t))dt

t t

o )

which is what we wanted to prove,

3. A sufficient condition for global optimality.

Let G be the set of all starting points X, which can be steered

to a point in T by a permissible control, i.e.

G := {Xoé R® { There exists a permissible control u(t),

t < [to,tu], such that the corresponding trajectory has the
following properties: x(t) is defined throughout [t ,t ] and
x(ty,) e T},

If the set 9 has the additional property that




TU QDG (3.1)

then it is plain that Theorem 1 gives us a sufficient condition

for global optimality. Thus we have

Theorem 2. Let § be an open subset of E® such that
QNT #p and T U Q@ O €. Let u*(t),x*(t) and g be as in Theorem
1 and let g have the prouperties (1), (2), (3) of Theorem 1.

* .
Then (u (t),xx(t)) is a global optimal pair.

4, A remark on the function g; an example.

In applying Theorem 1, it is of course necessary to determine the
function g. Which choice to make for g is suggested by (2.4). Let
y be an arbitrary point of Q. Suppose that (E(t),§(t)),

t, € [to’g] is an Q-optimal pair for the control problem which

we considered, but with (1.2) replaced by x(to) = y. Now define

g(y) := [ £ (R(t),U(e))ae (4.1)
] o
If the function g, defined by (4.1), happens to be continuously
differentiable on Q, then it is the candidate to use in the
application of theorem 1.
We end up with an example in which we apply the sufficient

conditions given by the two theorems.
Example.

t, > min!
1

subject to

)'{l(t) = ul(t)

>‘<2(t) = uz(t)

(o} o

B .o o .
xl(O) X, x2(0) = X,5 X and x, glven




xl(tl) = XZ(tl) = 0

2] 2. 2 _
U = {(ul,uz)é: R ’ul+u2 = 1}

In this example, T = {(0,0)}. Using Pontryagin's maximum

o
*
principle (see [1]), we find ul(t) = -1 - i ,

5

)
\ ~x? ) =) P+(x

uz(t) = ——— with t1 =~ - as extremal control; the
tl in

corresponding extremal trajectory is

o
*(t - Xt * o *
x4 )~-t—:—r+tl+xl, xz(t)~
1

The corresponding value of the performance functional ty is

(x°)2+(x0)2
L= - 1 07- (4.2)
2xl

The set G for this problem turns out to be

G = {(x,x,) & ®” x, < 0} U {(0,0)}

To apply Theorem 1, we take Q := {(XI’XZ) = R2 X, < 0}. In view

of (4.2) we define g: Q@ + K by

2,.2
x1+x2

2x1

g(X13X2) = -
It is rather easy to verify that g meets all the conditions of
Theorem 1. In fact, since @ 4 T = G, the extremal pair

(u*(t), x*(t)) is global minimizing by Theorem 2.
Reference.”
[1] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V.,

- Mishenko, E.F.: The Mathematical Theory of Optimal Processes
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