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ON LIE ALGEBRAS AND FINITE DIMENSIONAL FILTERING
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Abstract

A Lie •algebra L(E) can be associated with each nonlinear filtering
problem, and the realizability or, better, the representability of L(E)
or quotients of L(E) by means of vector fields on a finite dimensional
manifold is related to the existence of finite dimensional recursive
filters. In this paper, the structure and representability properties
of L(E) are analyzed for several interesting and/or well known classes
of problems. It is shown that, for certain nonlinear filtering problems
L(E) is given by the Weyl algebra

3 W
n 
= < x ,x   > . It is proved that neither W norn' 3 )(

1 "'" 3xn
any quotient of W

n can be realized with r or analytic vector fields on
a finite dimensional manifold, thus suggesting that for these problems,
no statistic of the conditional density can be computed with a finite
dimensional recursive filter. For another class of problems (including
bilinear systems with linear observations), it is shown that L(E) is a
certain type of filtered Lie algebra. The algebras of this class are of
a type which suggest that "sufficiently many" statistics are exactly
computable. Other examples are presented, and the structure of their
Lie algebras is discussed.
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I. Introduction

This paper is motivated by the problem of recursively filtering the

state xt of a nonlinear stochastic system, given the past observations

z = {zs' 0 < s < t}. The systems we consider satisfy the Ito stochastic—

differential equations

dx = f(xt)dt+G(xt)dwt

dz = h(xt)dt+Rclvt

where x c

E)

w c
m
, zc1R, w and v are independent unit variance Wiener

processes, and R> O. The optimal (minimum-variance) estimate of xt is of

A
course the conditional mean xt = E[xtizti (also denoted 5q it or Et[xti

satisfies the (Ito) stochastic differential equation [1]-[3]

dt 
1, -= -?*(xt) - ( T.xth -xtn 1 

Adt (4T-S4r) -1(t)dzt

where denotes conditional expectation given zt and h denotes h(xt).

The conditional probability density p(t,x) of xt given zt itself (we will

assume that p(t,x) exists) satisfies the stochastic partial differential

equation [3],[4]

dp(t,x) = Lp(t,x)dt+ h

where

))T R-
t)(dzt-F1(x)dt)p(t,x) (1.2)

n D(•f.) 1 n n

1 

j)

(*) = ax 2 Dx.Dx.
i=1 i 1=1 j=1 1

is the forward diffusion operator.

2

(1.3)



Notice that the differential equation (1.1) is in general both infinite

dimensional and nonrecursive (because of the occurrence of the expectations

^ ^f, xhT , and h). Equation (1.2) is recursive but of course still infinite

dimensional. Aside from the linear-Gaussian case in which the Kalman filter

is optimal, there are very few known cases in which the conditional mean,

or indeed any nonzero statistic of the conditional distribution, can be

computed with a finite dimensional recursive filter (a number of these are

summarized in [51). More precisely, a finite dimensional recursive filter 

is a stochastic differential equation driven by the observations of the form

(nt)dt+ jolt
i=1

(1.4)

where n evolves on a finite dimensional manifold and a and bi are sufficiently

smooth to insure existence and uniqueness (these conditions will be

strengthened later). The conditional statistic E[c(xt)(zt] is said to be

finite dimensionally computable (FDC) if it can be computed "pointwise" as

a function of the state of a finite dimensional recursive filter:

) E[c( )1zti = y(11 ). 1.5)

As a practical matter, it is also useful to require that the combined

estimator (1.4)-(1.5) yield a statistic a(x) which is a continuous

function of z; we will comment on this later in this section.

Recently, Brockett [6],[7] and Mitter [8],[9] have shown that Lie

algebras play an important role in nonlinear recursive estimation theory;

the approach of Brockett [6] is the following. Instead of studying the

equation (1.2) for the conditional density, we consider the Zakai equation

for an unnormalized conditional density p(t,x) [10]:

3



dp(t,x) = Lp(t,x)dt + .(x)p(t,x)dz. (1.6)
i=1

where z
1 
. and h. are the ith components of z and h, and p(t,x) is related to

(t,x) by the normalization

p(t,x) p(t,x)-(fp(t,x)dx)-1. (1.7)

The Zakai equation (1.6) looks much simpler than (1.2); indeed, 1.6) is an

(infinite dimensional) bilinear differential equation [11] in p, with z

considered as the input. This is the first indication (given work on the

roles of Lie algebras in solving finite dimensional bilinear equations [32],

[33]) that the Lie algebraic and differential geometric techniques developed

for finite dimensional systems of this type may be brought to bear here.

Modulo some conjectured infinite dimensional extensions of some known

results in the finite dimensional case (to be discussed below) this can be

made more precise as follows: suppose that, for some given initial density,

some statistic of the conditional distribution of x given zt can be

calculated with a finite dimensional recursive estimator of the form (1.4)-

(1.5), where a, bi, and y are r or analytic. Of course, this statistic can

also be obtained from p(t,x) by

z(xt) = f( )p(t,x)dx(fp(t,x)dx)- (1.8)

For the rest of the development, it is more convenient to write (1.4) and

(1.6) in Fisk-Stratonovich form (so that they obey the ordinary rules of

calculus and so that Lie algebraic calculations involving differential

operators can be performed as usual):

n = (n )dt +b(nt)dzt
i=1



dp(t,x = [L -

where the ith component e'si i

the kth component of b.).

The two systems (1.9),(1.5) and (1.10),(1.8) are thus two representations
of the same mapping from "input" functions z to "outputs" C(xt)- (1.10),(1.8)

via a bilinear infinite dimensional state equation, and (1.9),(1.5) via a

nonlinear finite dimensional state equation. Motivated by the results of

[12],[13] for finite dimensional state equations, the major thesis of [6] is
that, under appropriate hypotheses, the Lie algebra F generated by

(under the commutator [a,b] = 3a k - a) should be a homomorphic imagean u Bri

)1p(t,x)dt +
i=1

p(t,x)dzit (1.10)

31).
.‘ ik 

jl,k nJ 
(n bjkhere is. 

1 P 2(quotient) of the Lie algebra L(E) generated by eo = L- W h(x) and
i=1 1ei = hi(x), i=1,. . p (under the commutator [eo,ei] = eoei-eieo), with e04.:i

and e.-*b. i=1, 'p On the other hand, if there is a homomorphism (1) of
L(E) onto a Lie algebra generated by p+1 complete vector fields 
on a finite dimensional manifold, then this is an indication (possibly via

appropriate globalized and/or integrated infinite dimensional generalizations
of some results of [34],[35]) that some conditional statistic may be
computable by an estimator of the form (1.9),(1.5). It is not known in what
generality such results are valid, especially for cases in which L(E) is
infinite dimensional, and much work remains to be done (the fact that
existence of a finite dimensional filter implies the existence of a Lie
algebra homomorphism has been made rigorous for a class of estimation
problems, including the cubic sensor discussed in Section II, in [36]).
Moreover, it is clear (among others, from a number of examples discussed
below) that there is a strong relationship in general between the structure

5



of L(E) and the existence of finite dimensional filters. In this paper,

we discuss the properties of L(E) for some interesting classes of examples.

These Lie algebraic calculations give some new insights into certain

nonlinear estimation problems and guidance in the search for finite

dimensional estimators.

If L(E) is finite dimensional (this seems to occur only in very special

cases [9],[37]), a finite dimensional estimator can in some .cases be

constructed by integrating the Lie algebra representation [9]. Indeed, if

L(E) or any of its quotients is finite dimensional, then by Ado's Theorem

[27,p. 202] this Lie algebra has a faithful finite dimensional representation;

thus it can be realized with linear vector fields on a finite dimensional

manifold, which may result in a bilinear filter computing some nonzero

statistic (see, e.g., [16] and [26] for examples). However, actually

computing the mapping from p(t,x) to C(xt) (i.e., deciding which statistic

the filter computes) is a difficult problem from this point of view; at the

moment at least, one must usually use other, more direct, methods, to

actually construct this mapping or to derive the filter for a particular

conditional statistic (see, e.g., [14]-[17]). Also, just a Lie algebra

homomorphism from L(E) to a Lie algebra of vector fields is not enough

In addition to the homomorphism of Lie algebras, one needs compatibility

conditions in terms of isotropy subalgebras [34],[35], or equivalently, in

terms of the natural representations of the Lie algebras operating on the

spaces of functions on the manifolds involved. Even if L(E) or its quotients

are infinite dimensional, it is still possible that these Lie algebras can be

realized by nonlinear vector fields on a finite dimensional manifold.

Conditions under which this can be done is an unsolved problem in general;



we prove in Section II that this is not possible for certain classes of Lie

algebras. As an almost totally trivial example that two vector fields on a

finite dimensional manifold can generate an infinite dimensional Lie algebra,

3consider the vector fields a = x
2 7a and b = x

3
 on a one-dimensional

manifold; it is easy to see that a and b generate the infinite dimensional

Lie algebra of vector fields of the form x
2 
p(x) -57( , where p is a polynomial.

If a statistic E(xt) is finite dimensionally computable, the Lie algebraic

approach also gives some insight into the continuity of the estimator. Since

there is a Lie algebra homomorphism as discussed above, the vector fields

131,...,bp are homomorphic images of the operators el,...,ep which all commute

with each other (these are just multiplication operators). Thus bl,...,bp

also commute, and the results of [18] imply that the filter (1.9) represents

a continuous map (in the C
o 

and L topologies) from the space of "inputs" z

to the solutions 11. Hence, the estimator (1.9),(1.5) gives a continuous map

from z to e(x), this is a very useful property, indicating the "robustness"

of the filter (see also [19],[20]).

Brockett and Clark [38] used this approach to study the estimation of a

finite state Markov process observed in additive Brownian motion; the

algebraic approach led to the discovery of new low dimensional filters

Lie

for

the conditional distribution, even in some cases when the number of states

was arbitrarily large. And even in the extremely well known case of linear

systems (Kalman filter), the Lie algebraic approach gives an additional

result in that it tells us how to propagate a non-Gaussian initial density

[2]. In this case the Lie algebra is finite dimensional; in fact, one finds

higher dimensional relatives of the so-called oscillator algebra of some

fame in physics (incidentally, this is no accident [9]). In [21], a similar



analysis is carried out for an example of the class of estimation problems

considered in [14]-[16]; for this class of nonlinear stochastic systems, the

conditional mean (and all conditional moments) of xt given z
t 

are finite

dimensionally computable. For this example, the Lie algebra L(E) is

infinite dimensional but has many finite dimensional quotients corresponding

to the Lie algebras of the finite dimensional filters; these are analyzed in

detail in [21]. These last two examples, as well as the example of Bene

[17], are special cases of the class considered in Section III.

In Section II, we consider estimation problems for which L(E) is the

Weyl algebra Wn. A number of examples are given and useful properties of

the Weyl algebra are derived; some of these results have been obtained

independently by Mitter [9]. The major results of Section II are proofs

that neither Wn nor any quotient of W can be realized by vector fields with

either r or formal power series coefficients on a finite dimensional

manifold; this suggests that for these problems, no statistic of the

conditional density can be computed with a finite dimensional recursive

filter. This does not imply that there will not be appropriate approximation

methods. Possibly partial homomorphisms of Lie algebras [39] of L(E) into

Lie algebras of vector fields will play a role here. Also "deformations of

algebras" techniques [40]-[42] suggest a possible approach to approximate

methods. For example, the Lie algebra of dxt = dwt, dzt = (x+Ex3)dt+dvt

is W1 for all 0, but mod E this algebra is finite dimensional for all n

[43]. Finally, in Section IV we present another estimation problem with an

interesting Lie algebraic structure and discuss the possible implications

of this structure.



II. The Weyl Algebras Wn

The Weyl algebra Wn [22],[23, Chapter 1] is the algebra of all

polynomial differential operators; i.e. Wn =

A basis for W
n 
consists of all monomial expressions

A a  0 e =x
13.Dx

x1 x
1 

---
nax1n

an D 1

Dx '• • ' Dxn

(2.1)

where a,13 range over all multiindices a= (a ,...,an),

U (the non-negative inteciers). W
n 
is a Lie algebra under the

Lie bracket; as an example, we state the general formula for 141:

k  D[x   ,x
Bx

-
r=1

)( k
r ' r r! i+k-rx

3xj+Z-r

i+k-s  3j+Z-s- y ) s! x
s=1 Dx

2.2)

j! 
where ( ) (j_r)!r! is the binomial coefficient and we have used the

convention that ( 
r
) =0 if r< 0 or j < r. As is easily checked, the center

o
f Wn 

(i.e., the ideal of all elements ZEW
n 
such that [X,Z] = 0 for all

X EW ) is the one-dimensional space R-1 with basis {1} [22,p. 148]. We

next prove the simplicity of the Lie algebra W/11.1; this is of course

stronger than showing that Wn is simple as an associative algebra [22,p. 148].

Our proof follows that of Avez and Heslot [24] for the Lie algebra P
n 
of

•

polynomials under the Poisson bracket. A number of the following results

are common to P
n and W. but these two Lie algebras are not isomorphicn 

(this is basically because the expression in Pn corresponding to (2.2) would

retain only the terms for r=1 and s=1). Hence, one must be careful in

9



literally interpreting results proved for
n 

in the context of 4n [30].

Theorem 2.1: The Lie algebra Wn/R-1 is simple; i.e., it has no

ideals other than {0} and W
n/R-1. Equivalently, the only ideals of Wn

are {0}, N.1, and Wn.

Proof: Suppose I is an ideal of Wn which contains a nonconstant

3f3.
element X = y c

af3 
xa Since commuting with x. reduces.

i 
by 1 and

Dx 1

commuting with 9 
reduces a. by 1, repeated commutation implies that3x.

an element of the form xi or 3x is in I. Since every element Y EWn

can be obtained by commutation of xi ) with another element of Wn

this shows that I =Wn.

This theorem basically shows that if Wn occurs as the Lie algebra

L(E) for some estimation problem, then either the unnormalized conditional

density itself is finite dimensionally computable or no statistic at all

is finite dimensionally computable. The next two theorems complete the

argument by showing that in fact neither Wn nor its quotients can b

realized by vector fields on a finite dimensional manifold.

A M

Let V be the Lie algebra of vector fields I)m = { f.(x ) 
Dx }i=1

with (formal) power series coefficients and let V(M)

be the Lie algebra of r-vector fields on a Cm-manifold M. The proofs of

the following theorems are contained in Appendix A.

Theorem 2.2: Fix 0. Then there are no non-zero homomorphisms

from Wn to V or from W
n/R-1 to Vm for any m.m

Theorem 2.3: Fix n# 0. Then there are no non-zero homomorphisms

from W to V(M) or W
n/R-1 to V(M) for any finite 

dimensional Cw-manifold M.

10



These results suggest (assuming the appropriate analogs of the results

of [6],[12]) that if a system E has estimation algebra L(E) = Wn for some n,

then neither the conditional density of xt given zt nor any nonzero statistic

of the conditional density can be computed with a finite dimensional filter

of the form (1.9) with a and b ex) or analytic. This is indeed the case

for the cubic sensor (Example 2.1) [36] (as was mentioned before). We will

give several examples of such systems, but first we present a general method

for showing that L(E)=Wn.

Theorem 2.4: The Lie algebra Wn is generated by the elements

2
x. x.2 

3 
, i=1,...,n; and x.x i=1,...,n-1.

3 

Dx 2 i+1'

Proof (similar to that of [24] for Poisson brackets): Let L be the

3 kLie algebra generated by these elements. Since [x
2 
; , x.] = kx

k+1
. ,

u2
L contains x.

k
, k>1.
 3Now,  2 x4] = and [ 3  ,x.] = 1. Also,[ , 

3x.3x. '

2
[  3  ^v k a 

2' X.
= 2kxik-1 ( IT( )4+1 + k( k-1)x 23x Ye' k

with .e= 0, (2.3) implies that x.
k
- k > O. Then by induction (2.33x

(2.3)

3  Zimplies that x
k 
( ) cL for all k,> O. Notice that [x.; 

32 
, ,xixi+1] =i 3xi ' 3 .L-xi

2x 
1 

3 t. and commuting this with x.
k 
(----) gives xi+1.1 1+1 Dx.  >c.1 1 uAl

2  3 Repeated commutation with xj+1 ,v and ( ,,,  )
2 

yields (as above)
' 'Ai+1

IR<x 
3x'3x

i+1
>. By induction, we have that L=W

n
.

Theorem 2.4 provides a relatively systematic method for showing that

L(E) =Wn for a particular estimation problem: one need only show that by

1 taking repeated Lie brackets of L- yh
2
 and h, the generating elements of

11



W given in Theorem 2.4 are obtained. Notice that if n=1, the generating
2

elements are x, ---- and x
2 
-2 

•
- There is a "dual" result obtained by2' 9x 3x 3interchanging x. and   in Theorem 2.4. Some interesting examples areDx.

the following.

Example 2.1 the cubic sensor problem [9],[25]

= dwt
3

= x dt + dvt t

The Lie algebra L(E) is generated by the operitors

3
= X .

Consider the system

We can compute a sequence of Lie brackets to obtain a sequence of elements

ei c L(E), eventually obtaining the desired generators of Wn:

,e
_ 2 a ,x -t- ix =>

2 3
=x - + X3x

3.4.-- (k+2)x1(4.3 => X E L(E)k>3 

0 a k+l e ,adk 6
(where ad e =e and Combined with e , x ELM

e2 1 1 e 0 
e
0

,2
implies that e3 = u 2 E L(E). Continuing,

3x

2
,e = 4x a  +

Dx
2

2
3 3 ,

3x 3x
2 + 6x -3x + 1,e 3x

2 + 6x - => e5 3
2 -r* 

e = x 
32
2 +--->

3x

,e

= 6x
3
 +

3 2 9= 12x2 0 +. 24 ---+ 6
3xf- 9x

2 32

0 3 3 4.=> e6 = " 3x

12



and

2 
3
2

which combined with e5 implies that e7 = 1 and e8 = x 2x --- are inDx;x
L(E). A few more calculations will complete the demonstration:

• 
3 32x--+6

3x)(3 
2

,e01 = -

2 33,e = -5x - 9x  
Dx Dx

2

,e
2

x
3  @
 

2 D

Dx
2 12x

2   2
= 12x 3 + 24x-1-+ 6Bx 3x

2  3x

=>

• =->

=>

B2
e
11 

= 5x2 ---+ 9x
Dx
3

@x
2

1 = 
x3 ° + 3x

Bx

• 

3
2 

3
3

e = 2x2 + 4x +
13 

---
x
3 

3x
2 3x

Now e13, ell, and e4 are all linear combinations of the elements x
2

Bx

x   and --- and the coefficient matrix)(
3
2 ' ax '

0 1 1

5 9 0

2 4 1

is nonsingular. It follows that L(E) contains e14 =

2 33= x1
9x3 

•

[e1
 4,e1] = 

3x2

[ 1 ,e

Finally,

=> e17 =

e = x

B2
n5• = x 2'

3x

which combined with e2 gives x
2 

L., thus by Theorem 2.4, L(E)=W

13



Analogous computation of selected Lie brackets and the use of

Theorem 2.4 yields similar results for the following examples.

Example 2.2: For the system

x
t
d +dw

= +dvxtdt t'

1 3L() is generated by - X
X

x2 and x, and L(E

Example 2.3 mixed linear-bilinear type): Consider the system with

state equations

dx dt lt

t 
= x

tdt+xt w2t

with observations

= y dt + dv.

L(E) i D2 1 2 D2generated by 2 + x 1- x - y
2
 and y; it is shown

9x

in Appendix 13 that L(E) = W2. The same result is obtained if the xtdt term

is absent in the y equation; in that case we have a multiple Wiener integral

of Brownian motion observed in Brownian motion noise.

Example 2.4: Consider the system with state equations

2= x
tdt

14

• •



•and observations

d = x
t
dt +dv1 lt

2t 
= ytdt + dv2t.

1   2 9 1L(E) is generated by 2 - x - - -2- y2, x, and y; it is easily
Dx

shown that L(E) =W2. This is the example studied in [21], but here we have

the additional observation z2; the relationship between these examples will

be examined in the next section.

15



III. Pro-Finite Dimensional Filtered Lie Algebras

A Lie algebra L is defined to be a pro-finite dimensional filtered Lie

algebra if L has a decreasing sequence of ideals L = =D Lo L1 =D

such that

(a) n Li

(b) L/Li is a finite dimensional Lie algebra for all i.

The terminology is somewhat analogous to that of pro-finite groups [28];

no completeness assumptions are made, however. Notice that (a) implies that

there is an injection from L to $ L/L.. In the context of the estimation1

problem, this would correspond to L(E) having an infinite number of finite

dimensional quotients; if each of these can be realized with a recursively

filterable statistic (a plausible conjecture), then the injectivity of the

map makes it reasonable to conjecture that these statistics represent some

type of power series expansion of the conditional density. Of course, in

addition to those discussed in Section I, other difficult technical questions

such as moment determinacy will also be relevant here, but the structure of

the Lie algebra should provide some guidance as to possible successful

approaches to the problem and some insight into the structure of the

resulting approximations.

Example 3.1 [21]: A simple example of the class considered in [14]-[16]

is given by the state equations

dx = dw

dyt = xtdt

and the observations

dz = x dt+ dvt t t

16



with x0 
Gaussian. The computation of t is of course straightforward by

means of the Kalman filter; however, as shown in [14]-[16], all conditional

moments of yt can also be computed recursively with finite dimensional

filters. L(E) is generated by e0 = -
2 9 1  

92
1 
'77 -x2 andel9y 2 9x2

as shown i [21], a basis for L(E) is given by e0 and

•

9 3ii
{x   ,   ; i=0,1,2,...}. Defining Li to be the ideal generated

9y 3y 9y

by x i=0,1,2,..., it is easy to see that L(E) is a pro-finite
9y

dimensional filtered Lie algebra, and realizations of the L(E)/Li in terms

of recursively filterable statistics are given in [21]. In addition, L(E)

is solvable [21].

A similar analysis for systems of the form of Example 3.1, with xt

replaced by a general monomial xP has also been done [31]; for p>2, a

similar but more complex Lie algebraic structure is exhibited. It is

interesting to compare Example 3.1 with Example 2.4, which is the same

except for the additional observation dz2t = ytdt+dv2t; in that case

L(E) = W2, so that no conditional statistic can be computed exactly with

a finite dimensional filter. However, it is probable that, due to the

additional observation, a suboptimal approximate filter (such as the

Extended Kalman Filter) for the conditional mean of yt will result in

lower mean-square error than the optimal filter which computes yt in

Example 3.1. Thus some care must be taken in interpreting the Lie

algebraic structure of a nonlinear estimation problem; this structure has

direct implications on the exact computation of conditional statistics,

but its implications on approximate filtering remains to be investigated.

17



Example 3.2 degree increasin9 operators and bilinear systems 

Consider a system of the form (E) (page 2), and suppose that f, G, and h

are analytic with f(0) = 0 and G(0)=0, so that the power series expansions

of f and G around zero are of the form

f(x) = f xa G(x) = y G
a
xa,

la12:1 a al >1

where 'al = a1 + ...+ an. It follows that

G(x) G' =(x) xa.
la! L2

An example of such systems is the class of bilinear systems

+ .x dw
ti=1

dzt =Cxtdt+dvt

Another example is

dxt = x dt+ sin xt dwt

dzt =h(xt)dt+dvt

with h analytic; in general, a wide variety of examples can be found.

Let M = IR[[x1,...,xn]] be the module of all (formal) power series

in xl,...,xn, and define the submodules

M. =
a
x I =0 for jai< i}, i=0,1,2,...,

(3.1)

(3.2)

so that, e.g., Mo consists of those power series with zero constant term.

If E is a system satisfying the condition (3.1), it follows that for
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all i, the forward diffusion operator (1.3) satisfies

L M. c:
i -

hence

and of course

h(x)M1 cM..

Since the two generators of L(E) thus leave Mi invariant, it is obvious

that L(E)M
i 
c= M.; thus, each element of L(E) can only increase (or leave

the same) the degree of the first term in the power series expansion of

an element of M. Let

. = {X EL(E)IXM= Mi+p, i=-1,0,1,2,...

Then L. is an ideal in L(E) and we have an induced representation

• L/Li End(M/Mi+i).

Because M/M1+3. is finite dimensional, so is L/Li, since pi is injective

(by definition of Li). It is obvious that N..= {o}; thus L(E) is a

pro-finite dimensional filtered Lie algebra, with filtration L. One

additional structural feature of this filtration is that L
0 
/L. is a

nilpotent Lie algebra for i=1,2,...; also, Li/Li+, is abelian for all

i> O. The nilpotency of the Lo/Li is a property also possessed by the

filtration of Example 3.1.
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Since many systems can be well approximated by bilinear ones, these

results may have important implications for approximate nonlinear filtering.

We close this section with two interesting examples of this class; the

first is a bilinear system of the form (3.2), but in which some elements

of A are also unknown and must be estimated. The second is an angle

modulation problem.

Example 3.3 (Bilinear system with unknown  sarameter The simplest

example of this type is

= a x dt+x dwtt t t

dzt = x dt+ dvt t

Here both the state xt and parameter a are to be estimated recursively

1 2  2 a 3 1The Lie algebra L(E) is generated by 2 + 2x +1 -77-- ax 77-- - 77xax dX
aX

and x. Both of these operators are "degree increasing" when operating on

1Mx,a]], so L(E) is a pro-finite dimensional filtered Lie algebra.

Example 3.4 (Angle modulation without rocess noise : Consider the

problem of observing

dzit = sin(cot + e)dt + vlt

= cos(ost + e)dt + dva

where w and 0 are constant random variables to be estimated. To place

this problem in the present framework, we have the three state equations
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w 0

0 = 0

t = 1

The Lie algebra L(E) is generated by e0 = _ = sin(wt+0), and

1 = cos(wt+0). It is easily shown that L(E) has basis elements

e0 e. = sin(wt+0), f. = w
i 
cos(wt+ 0), i=0,1,2,.... The nonzero'

commutation relations are [ 0e] = fi+1, [eo,fi] = _e+1. Hence, L(E)

is a pro-finite dimensional filtered Lie algebra, with filtration ail,

where L is the ideal generated by e
i+1 

and 
i+1 
f i=0,1,2,.... Phase-lock '

loops are often used for filtering problems such as this, but the form of

the optimal estimator is unknown. This calculation suggests that an

infinite number of statistics of the conditional -density may be finite

dimensionally computable.
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IV. A Final Example

There are other filtering problems which do not fall into the above

classes, but which have interesting Lie algebraic structures with possible

implications for finite dimensional filtering. One example is the

following.

Example 4.1: The system of this example is

= dwt

xt
=e dt

= x dt + dvt t t

This does not quite fall into the class discussed in [14]-[16] (as does
xt

Example 3.1), since the y equation contains e rather than a polynomial

in xt. The conditional expectation Xt is again computed by the Kalman

filter, but the computation of ;Nit is much more difficult. The Lie

1  92 x 9 1 2algebra L(E) is generated by , - ex 
y 

yx and x; the structure
L- 3x`

of L(E) is as follows. It has as basis the elements

k2
kE = x

i
e
jx  3- 

2 , j?_1, i,k>0.ijkDx Dy Dx

Let In (n>1) be the subspace spanned by Eijk with j> n, and let In be

the subspace spanned by 1 and Eijk with j > n. Then the only ideals of

L(E) are I
n' 

I' IR-1, and II e 1R-1 e IR -a e IR•x. The quotientsn' 9x

I /I are infinite dimensional and abelian, so that L(E)/I
n 

a
r
en n+1

successive extensions of the oscillator algebra L(E)/II (the algebra of the

linear filtering problem [61-[91) by infinite dimensional abelian kernels.
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Also, n I
n n

{W. Due to this structure, it seems unlikely that there will

be injections from L(E) itself into V 
m' • however, it does seem possible that

the L(E)/I are realizable as (infinite dimensional) Lie algebras of vector

fields on some finite dimensional manifold.
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Appendix A

Proof of Theorems 2.2 and 2.3

A.1 Filtrations and Preliminary Results 

Definition A.1: A Lie algebra L admits a filtration (or is a

filtered Lie al9ebra) if there exists a sequence of subalgebras

L = L_1 =)L0= L1 = ... such that

dim (Li/Li+i)<o. ; i=-1,0,1,...

Example A.1: A prime example of filtered Lie algebras are the Vn.

The filtration is defined as follows: L
i consists of all vector fields

c -- with c = 0 for all a with lal <i, where the norm of thea,j Dxj a,J

multiindex (a1,... ,an) is lal = +...+an.

Given a filtration L_1 = Lo= L1 .. on a Lie algebra L, we define

a valuation function v: L-f14 U {0,-1} U {co} by

v(x) = max { lx y.

Properties (A.1) and (A.2) of the filtration translate into

(x) = < = > x = 0

v([x,y]) > v(x) +v(y),
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and the fact that the L. are vector spaces implies that

and

v(ax+ by) > min (v(x),v(y)); x,yEL,a,be (A.6)

y) = v(x) if v(x) <v(y)

v(ax) = v(x) if a 0

In addition, we will need the following results concerning W

First, we have the formula

  r 3 r-1 r-1- u 
n 1 = rx

Dx
n x n-1 ' Dx n-1 Dx Dx - '

Dx

(A.7)

(A.8)

this is easily proved by using (2.2) and formulas for the binomial

coefficients. The following lemma, which also follows by a straightforward

kapplication of (2.2), shows that x is an "approximate eigenvector" of
Dx

t

Dx
•

Lemma A.1: Let £<t<k1 be natural numbers. Then there are a

nonzero c 6 IR and d
l'• .,dt-1 E IR such that

k Dt k t-1 .
[ x , x = cx + y d. xk+1  D

t+i.Dx Dx 1=1

The proof of the next lemma is quite involved and is contained in

Section A.3.

Lemma A.2: Suppose that W1 = L_1 =)L0 1-DL1 :D... is a sequence of

subalgebras of W1 satisfying (A.2),(A.3),dim (141/L2) <co, and either

nA. =JO} or n L. = R-1. Let v be the valuation function defined by
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the filtration. Then v(xn).4-0. as

A.2 Proof of Theorem 2.2

The proof will be carried out for 141; the proof is virtually identical

for W1/R.1, and the result is true a fortiori for Wn, since Wn is clearly

isomorphic to the subalgebra of W
n 
consisting of expressions in xi and 

Dx
A

only. Suppose that there is a nonzero homomorphism (1) from W
1 

to V
m
. Then

A -1W
1 

has a filtration defined by the subalgebras M. - (L.) where {L.} is'

the filtration on Vm defined in Example A.1; let v be the corresponding

valuation function on 141. Since Vm/L2 is finite dimensional, so is W1/M2;

thus Lemma A.2 implies that v(x
i 

co as i-*... We claim it also follows that

. t+ik+1  
± co as i oO,

Dx

and that this will lead to a contradiction.

First notice that

[
2 k+i+2]
 'x 2(01+2) x1(41+1ax2 -75 + (k+i+2)(k+ 1 xk+i

so that from A.5 A.7) and the fact that v(X) > -1 for all XEW

2
( 

xk+i+1 ) > minfv(xk+i ), v [   , x
k+i+2I} > minIv(x

k+i), (x°1+2)-11.
Dx

(A.10)

(A.9)

Then taking r= k+i+1 and n=z-F-Ri in formula A.8 and using A.10 yields
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✓ X

de+i+i

j+i+1
3 k+i+1 k+i+1> min{v [  u x [ 

3
,e,41 v [ , xL41+1 

k+i31413x

k+i+ k+1+1 3 (xk+i 
1> min{v x x -

> min{v xk-41+1 
k+i+2, v(x )- , v(xk+i)-1

which converges to as proving A.9

Now choose to EN such that

v(xt 
for

Dx
>

k +
Choose any k > 1 and consider the sequence {v (x 0

9x
Then because by (A.9) this sequence converges to ... there is for any Zo

an t

V X

2. such that0

k+L Li

  ; i >1

Take
0 
= t
0 
+1, choose Li such that (A.12) holds, and take t=t, +1.

Then we can apply Lemma A.1 with t Z=Zi., and k= k +del

(notice that the assumptions are satisfied). We find

[
t-1 • 3Z-4-1 

xt 3t 
k 3Z k c x y d , x

Bx i=1 x
t

3x3x

Because of A.12), we have by A.7) that
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t-1k 
+cx Dx,e, 

i=1

de+ik+i. x k a= v(x —7E) .
Dx

t t
But because v(x   ) > .f., A.11)) we have by (A.5) thatt --

Dx-

v( [ 
t 

Dx

k Dt> 1+ v(x ).
Dx

Comparing this to (A.13) gives a contradiction, completing the proof of

Theorem 2.2.
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A.3 Proof of Lemma A.2

A.3.1 A Preliminary Reduction

Lemma A.3: Under the hypotheses of Lemma A.2, if there is an element

2, such that v(xn) > 0, then v(xn1)-÷00 as

Proof: Suppose we had such an element xn. Because dim (WilL2)<...,

there is an element Y ai 
6j=r 3xj ' as 0, s > 2, of valuation > 2.

A simple computation shows that ads = n s! as xs(n-1), which hasxn

valuation > 2 (by repeatedly using (A.5) and v(xn) >0). Thus we now have

an element xk k > 2, with v(x
k
) > 2. Now

x2  3  x
k
I = k(k-1)x + 2k xl(+1

3xDx

has valuation > 1, and for any q, dP c xPk÷cl, c O. For any m>k,

there exist nonnegative integers p,q such that m=pk+q, so we have for m

large enough:

v( v(xPk+q) = ( dP xcl)

(Z) +v

2k '

where [11-1] denotes the largest integer <1 Since k is fixed, this shows— n

that v(x
in )+co as
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A.3.2 Some Combinatorial Lemmas

To prove that under the conditions of Lemma A.2 there is indeed an

nEIN, n>2 such that v(xn) >0, we need some combinatorial lemmas.

Lemma A.4: Let r,sENI with r<s, and let a e IR. Then

- )(-1) 1 (a+i+1)(a+i+2)...(a+i+r) =
i=0

Proof: The proof is by induction on (r,s); in case s=2 and r=

we have

2

(
i=0

)(-1 a+i+1)

2
= a [ y . -1

i=0 1

Then

+3(

Now assume by induction that the lemma has been proved for -1,s-1).

i=0
(-1)' (a+i+1)...(a+i+r

a [ )(a+2)... a+r )(a+3)...(a+r+1) +

( so )(a+2)...(a+r) - )(a+3)...(a+r+1) +3 ( )(a+4).. a+r+2)

A.14)
Since each term in (A.14) has a product of r-1 elements and

( S = S-1 \
k 1.4 / 

+ I 
'5 the induction hypothesis implies that the sum in

the brackets is zero and the other sum is equal to
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-( )(a+3)...(a+r+1) +2 ( s2 )(a+4)...(a+r+2) -3 ( )(a+5)...(a+r+3 • • •

= -s[( s-01 )(a+3)... a414.1) _ sil
)(a+4).. ailm+2) -1- s-21 )(a+5)...(a+s+2) _

by the induction hypothesis, and the proof is complete.

Another lemma from the same general family is the following.

Lemma A.5: Let s c RI, a c IR, kE IR. Then

( ) (a+s-1).. .(a+1)a -(1 )(a+s-2).. .(a +i) a(a-k)

+ ( ) (a+s-3). .(a+l)a(a-k)(a-k-1) -

+ (- )s-1( s ) a(a-k)...(a- -s+2) + (-1)s ( -k-1)...(a-k-s+1)s-1

= k(k+1)...(k+s-1)

1-,Proof: Using the fact that = 1 + s1
k ) and noticing that1-1 1 i

(a-k) is a factor of all terms except the first one and that a is a factor

of all terms except the last one, we rewrite the sum above as

a[( s-01 )(a+s-1)...(a+1) - ( 
sil

)(a+s-2)...(a+1)(a-k) •

+ ( )(a+s-3)...(a+1)(a-k)( -k-1)- (.4)5-1( s-1 ) (a-k)... (a-k-s+2)]s-1

- (a-k) I (s-01)(a+s-2)...(a+l)a- 
)(a+s 

-3)...(a+1)a(a-k-1 .• •

(ss:12 )(_ )s-2 )5-1 s-1a(a-k-1 ..( -k-s+2) +  -k-s+1) 1

(A.15)

The lemma obviously holds for s=1, since a- -k . Assuming the
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lemma is true for s-1, we can by induction write the terms i A.15 as

a(k+1)...(k+s-1)

, a4.a+1, k.41<+1 with respect to the lemma as stated and

(k-a)(k+1)...(k+s-1)

(s-*s-1, a -*a, k -÷k+1 with respect to the lemma as stated). Summing

these gives the desired result.

A.3.3 Idea of the Proof and More Calculations

Because L/L2 is finite dimensional, there is some nonzero linear

combination
m
xm of valuation > 2. Then Yam xm] = Yma x

m

has valuation > 1. The idea is to produce enough elements of the form

Xm
i 
a x

m 
of valuation > 0 to be able to conclude (via Vandermonde matrices)

that the individual components am x
m 

have valuation > 0, and thus that the

hypothesis of Lemma A.3 is satisfied. For example,

n n
[x  

3x
n' am xm

n-1
= Ym(m-1)...(m-n+l)am xill + bu xm+k

k=1

n+i   
, [x

r-i
r

and brackets of the form [x   , Ya x ]] produce similar
Dx Dxr

(A.16)

terms. However, considerable effort is necessary (by another application

of Vandermonde matrices) to eliminate unwanted terms .g., the final sum

in (A.16)).

First, we perform some necessary calculations. For m> r+n, we shall

need the sums
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Now

i=0
[x '

n+i 3r1 r-i r 3 
, x

m
]] .n 

r-1ri x xm m!l =
j0 m-r+j)! 

x
m-i+j 

'=

so (A.17) becomes

r-1
1 (-1) (

j=0 i=0 1 '
n+i an r  m!  m-i+j

>c
n ' j (m-r+j)!

(A.17)

(A.18)

The terms of the inner sum in (A.18) which are obtained by the action of

  , 1 < s < , on x
n+i   

are of the form—3xs

r Ni j  m! 

xm+n+i-s [ 0 jr= (-1) 

n+i) 
j s (m-r-t-i)! i n i-j)!

this sum is zero by Lemma A.4, since s<j <r. The terms of the inner

sum in (A.18) which are obtained by the action of —, i <s <j, ons —3x

x
m- +j 3j

i are of the form
Dx

( r )(
 
n)m! 3n+j-s F r

(m-i+j)! 1
s (m_r+j) n+ -s (- (m-i+j-s)!1)ox i=0 

this sum is also zero by Lemma A.4, since s <j <r. It follows that the

only nonzero terms in (A.18) arise from the action of , j+1 < s <n, on

m-i+j
so that A.18) (and thus (A.17)) has the form

ax
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xm+n-k  n-k

n-kk=1 Dx

The coefficients b remain to be calculated.

(A.19)

Fix a k, 1 < k<n; the term in (A.18) which contributes to the kth term

in (A.19) is

r-1
[ 11:

J=0 i=0

r-1 
m! 

)( i+nk I (m-k)!
[ iy 

o 
(-1

=

m!  ( . vn m-i+j)! m+n-k  Dn-k 
m-r+j)! '3+k m-i-k)! ̂  Dxn-k]

(m+j-i)! (m-k)!  I m+n-k  en-k 
(m-r+j)! m-k-i Dxn-k

(A.20)

According to Lemma A.5, with a-*m+j-r+ , s÷r, ÷k+j-r+1, the inner sum

is equal to

k j)(k j-1). .(k+j-r+1)

Thus (A.20) becomes

m!  rs-1
(m-k)! [j=0 3-1-k

m!  ,n
(m-k)

k j-r+1 m+n-k n-k

n-kDx

r-1
[  k(k-1).. k-r+j+1)] xm+n-k  fl-k

j=0 (n-k-j) -k
aXn

(A.21)

The coefficient of kr the highest power of k in the inner sum of A.21

is equal to

we will assume that r is odd, since the proof is the same for r even. It

follows that the inner sum in (A.21) is of the form
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k cr 
-1

(r)
• + (n) k ,

where the c(n) arepolynornial functions of n and r. Hence A.17 can

be written as

r m
(-1) ( ) [xn+i n ' 

r-i  
 

Dx
ri=0

y n),,r. (r)

k=1 k L' (n) c r
1

k=1

For r=1, (A.22) becomes

) k m!  
x
m+n-k  3n-k

(m-k). x
n-k •

k]
m!  m+n-k n-k

m-k ! 3xn-k 
•

(2)
Subtracting ci (n) times (A.23) from A.22 for r=2 yields

m! m+n- n-k

(m-k) n-k •

(A.22)

(A.23)

Continuing by induction, we see that there are coefficients b(t,r,n) such

that, for each t EN,

b(t,r,n) y (-1
r=1 i=0

k=1

n)  
k (m-k)!

ar
[ xn+i an , [xr--  

Wcr 
x 11

-
xm+n-k  @ 

n k
•

Dxnk
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A.3.4 Proof of Lemma A.2

According to Lemma A.3, we need only show that there is a p

p>2, such that v(xP)> O. By assumption W1/L2 is finite dimensional;

let r=dim(Wi/L )+1. Then there is for each uclti a nonzero sum of the

form

u+r-1
a
m
x

=u
A.25)

with valuation > 2. Take u> 2r, so that the calculations of the previous

section are valid for all m in (A.25). Multiplying (A.24) by am and

summing from m=u to m=u+r-1 yields the expressions

t 

X(k,n
k=1

where

t=0,... ,r-1, n=1,... ,r

u+r-1
m+n-k n-k

X(k,n
m=u 
Y a ( ) 

m! 
K (m...10!

Dxn-k •

The elements (A.26) have thus been obtained from A.25) by applying at

most two brackets and taking linear combinations; therefore,

n
( ykt X(k,n)) > 0.
k=1

(A.26)

Using the nonsingularity of Vandermonde matrices, we can write the X(k,n)

as linear combinations of the elements (A.26); thus

v(X(k,n)) > 0; n=

Taking k=n we obtain in particular the elements
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u+r-1
y a m! 

rn mm=u -n
rn

x , n=1,... ,r,

with valuation > 0. It is easily shown that the coefficient matrix in

(A.27)

(A.27) is nonsingular, implying that v(a
m
x )2LO, m=u,...,u+r-1, thus

there is at least one m such that v(xm) > 0 (because not all a are

zero). This concludes the proof of Lemma A.2, thus proving Theorem 2.2.
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A.4 Proof of Theorem 2.3

Suppose that qh: 141-01(M) is a nonzero homomorphism, where M is an

n-dimensional Cc° manifold. Then there is a point mc M such that the

image of (1), contains an element which gives a nonzero tangent vector at m.

Let G be the Lie algebra of germs of C vector fields around m; i.e., in

local coordinates centered at m, G= qf.(x)  },where f. are germs ofDx.

C functions around m. Let A be the ideal in G consisting of all elements

for which the f1 are flat functions in a neighborhood of m (a function

germ in n variables xl,...,xn defined on a neighborhood N is flat on N

f aaf (x) = 0 for all x EN and a). A is an ideal because derivatives of
9xa

flat functions are flat. Restricting the vector fields of V(M) to their

germs around m, we obtain a composed homomorphism of Lie algebras

1 
V(M) -4- G/A A.28)

which is nonzero because at least one vector field in (10 was nonzero

at m.

By Borel's extension lemma [29, p.98], GiA is isomorphic to VII.

Thus (A.28) gives a nonzero homomorphism from W1 to Vn. However, since

the only ideals of W1 are {0}, W1, and R-1, this would yield a nonzero

homomorphism from W1 or W /R-1 to Vn. This yields a contradiction by

Theorem 2.2.
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Appendix B

Calculations for Example 2.3

TeLealgebra L(E) is generated by

2  

Dx
2 2 x 

:)y
2 x Dy 

-27
J '

1 “ y.
2a

We proceed as in Example 2.1:

2 D A
,e = -x + x -3-37 - e2

2 A
{e
2'
e = x - 3

A
[e
0 
, = 2 -5--)-( + 1 = e4

[e4, 2] = -2x + 4x2 *, which combined with e implies that e
5

and e

[e ,

2 3-5-si are in L(E). Also,

3 A

= 3x e7

[e7,e5J = 1

Now,

[e ,e ] = 2)( => 
e10 

= x
ay

[e7 ,e10

D2 B
2

E 7' 01 = xBy 
Dy 
2 -> e

12 
= x 

Dy 
2

, which combined with e implies that e = x ---e
Dx

D A

By - 11

2
A,e

12 2 13

[e
6
,e 2 a2-xy-2x 3x3y - Dy -> e

14 
= 

3
px
:y 

+ x y
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,e

1

1 
,e0] = -2y -

a -33/

and

,e
2

=yx -

a2

AD
2 

DY 
+ 2xy e15)( 

2
= x - 2x 

a
15 1

ay
2

2 9 D
3

x 9y - 
17 

ay

a
e18 

= yDy

e
1

a2
which combined with e

14 implies thatDxBy'

20 3xDy 
are in L(E). Also,

[e
17'

e

e22= 2
ax

a2

2  D2 A
- e which combined with e and eay2 21' 1

y
2 
c L(E). Continuing,

2
]'e 2 -2 

a2 

Dx 
so that e23 = 

ax
2 and e24= y

2 
c L(E

[e23,e16] = 3x2 =>
_ 2e25 - x 3x

[e10, e24] 2xy => e26 = xy

[e2
,e = 2

[e27,e

=> e
27 

= yDx 9x

I = 3yx2 => e
28 = yx

2

2 'e2 = 2y
2
x => e

2 = y
2 
x

[e27,

[e
13

3

2= 3y

e
30

=>
2e31 = y
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1
2

= yx

implies that

Now,



Noticing that the elementseeeeeeandeare1, 5' 13' 23' 25' 26' 31
precisely the generators of W2 given in Theorem 2.4, we conclude that

L(E) = W2'
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