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ON LIE ALGEBRAS AND FINITE DIMENSIONAL FILTERING

Michiel Hazewinkel®* and Steven I. Marcus**

Abstract

A Lie algebra L(Z) can be associated with each nonlinear filterin
problem, and the realizability or, better, the representability of L(Z?
or quotients of L(Z) by means of vector fields on a finite dimensional
manifold is related to the existence of finite dimensional recursive
filters. In this paper, the structure and representability properties

of L(Z) are analyzed for several interesting and/or well known classes

of problems. It is shown that, for certain nonlinear filtering problems,
L(Z) is given by the Weyl algebra

_ 83 , -
wn =R < SERRREL axl seees axn > . It is proved that neither wn nor

any quotient of wn can be realized with ¢ or analytic vector fields on

a finite dimensional manifold, thus suggesting that for these problems,
no statistic of the conditional density can be computed with a finite
dimensional recursive filter. For another class of problems (including
bilinear systems with Tinear observations), it is shown that L(z) is a
certain type of filtered Lie algebra. The algebras of this class are of
a type which suggest that "sufficiently many" statistics are exactly

computable. Other examples are presented, and the structure of their
Lie algebras is discussed.
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I. Introductijon

This paper is motivated by the problem of recursively filtering the
state Xt of a nonlinear stochastic system, given the past observations
zt = {zs, 0<s<t}. The systems we consider satisfy the Ito stochastic

differential equations

dx f(xt)dt+G(xt)dwt

t
()

1
2

dz, = h(xt)dt-i-thvt

t

! n m . . . >
where xe R, we R, ze¢ lRp, w and v are independent unit variance Wiener
processes, and R>0. The optimal (minimum-variance) estimate of x; is of

course the conditional mean ﬁt 4 E[xtlzt] (also denoted X or Et[xt]);

t]t

ﬁt,satisfies the (Ito) stochastic differential equation [1]-[3]

A

dX, = ?(xt)-(§

s
X hT

o 0Ty -1
£h'=x.h )R (t)dzt (1.1)

t

ST o 2Typ=1, .10
¢ =% ARTH(£)hdt + (

t

where © denotes conditional expectation given z~ and h denotes h(

t)'
The conditional probability density p(t,x) of Xt given zt itself (we will

assume that p(t,x) exists) satisfies the stochastic partial differential

equation [31,[4]

dp(t,x) = Lp(t,x)dt+ (h(x)-A(x))T R™H(t) (dz -R(x)dt)p(t,x)

n n 32(-(GGT)..)
* I 2 9X. 90X !
i=1 j=1 i%7j

is the forward diffusion operator.




Notice that the differential equation (1.1) is in general both infinite
diménsiona] and nonrecursive (because of the occurrence of the expectations
?,,;h?, and H). Equation (1.2) is recursive but of course still infinite
dimensional. Asidé from the Tinear-Gaussian case in which the Kalman filter
is optimal, there are very few known cases in which the conditional mean,
or indeed any nonzero statiétié of the conditional distribution, can Be

cdmputed with a finite dimensional recursive filter (a number of these are

summarized in [5]). More precisely, a finite dimensional recursive filter
i$ a stochastic differential equation driven by the observations of the form
P _ ,

where n evolves on a finite dimensional manifold and a and bi are sufficiently
smooth to insure existence and uniqueness (these conditions will be

strengthened later). The conditional statistic E[c(xt)lzt] is said to be

finite dimensionally computable (FDC) if it can be computed "pointwise" as

a function of the state of a finite dimensional recursive filter:

é(xt) : E[C(xt)lzt] =v(ng). (1.5)

As a practical matter, it is also useful to require that the combined
estimator (1.4)-(1.5) yield a statistic E(xt) which is a continuous
function of z; we will comment on this later in this section.

Recently, Brockett [6],[7] and Mitter [8],[9] have shown that Lie
algebras play an 1mportaht role in nonlinear recursive estimation theory;
the approach‘of Brockett [6] is the following. Instead of studying the
equation (1.2) for the conditional density, we consider the Zakai equation

for an unnormalized conditional density p(t,x) [10]:




P
do(t;x) = Lp(t,x)dt + )

hi(x)p(t,x)dz. (1.6)
i

1 it

where z. and h. are the ith components of z and h, and p(t,x) is related to

(t,x) by the normalization
p(t:x) = p(t.x)+(fo(t,x)dx)7L, (1.7)

The Zakai equation (1.6) looks much simpler than (1.2); indeed, (1.6) is an
(infinite dimensional) bilinear differential equation [11] in p, with z
considered as the input. This is the first indication (given work on the
roles of Lie algebras in solving finite dimensional bilinear equations [32],
[33]) that the Lie algebraic and differential geometric techniques developed
for finite dimensional systems of this type may be brought to bear here.
Modulo some conjectured infinite dimensional extensions of some known
results in the finite dimensional case (to be discussed below) this can be
made more precise as follows: suppose that, for some given initial density,
some statistic of the conditional distribution of Xt given zt éan be
calculated with a finite dimensional recursive estimator of the form (1.4)-
(1.5), where a, bi’ and y are C~ or analytic. Of course, this statistic can

also be obtained from p(t,x) by

S(xy) = fe(x)p(t,x)dx(fo(t,x)dx) L. (1.8)

For the rest of the development, it is more convenient to write (1.4) and
(1.6) in Fisk-Stratonovich form (so that they obey the ordinary rules of
calculus and so that Lie algebraic calculations involving differential

operators can be performed -as usual):

p
dnt = a(nt)dt + .Z
1:

i bs(ng)dz;y




p
do(t,x) = [L- % Lo 2(x)1(t,x)dt + I b, ((Xo(t,x)dz, (1.10)
i=1
here the ith com oneht a.( )>= a.(n) -1 Y b. (n) EEi& (n) (here b
W p 1-'1’1 i n 2 i jk n an. n

., 1is
My Jk

the k& component of bj).
The two systems (1.9),(1.5) and (1.10),(1.8) are thus two representations
Jr (1.10),(1.8)

via a bilinear infinite dimensional state equation, and (1.9),(1.5) via a

of the same’mapping from "input" functions z to "outputs" ¢(x

nonlinear finite dimensional state equation. Motivated by the results of
[121,[13] for finite dimensional state equations, the major thesis of [6] is

that under appropriate hypotheses, the Lie algebra F generated by a,b;,...,b

1° p
2a 3b
N b - = a) should be a homomorph1c image

1

(quot1ent) of the Lie algebra L(Z) generated by ey = L--§ Z h2(x) and

e, = i(X), i=1,...,p (under the commutator leg-e;1 = ege,- e1e0) with e)~a

'(under the commutator [a,b] =

and ei-+b1, i=1,..f,p. On the other hand, if there 13 a homomorphism ¢ of

L(Z) onto a Lie algebra generated by p+1 complete vector fields a,b b_,

RRRREL
on a finite dimensional manifold, then this is an indication (possibly via
appropriate giobaiized and/or integrated infinite dimensional generalizations
of some results of [34],[35]) that some conditional statistic may be
computable by an estimater of the form (1.9),(1.5). It is not known in what

generality such results are valid, especially for cases in wh1ch L(Z) is

infinite dimensional, and much work remains to be done (the fact that

existence of a finite dimensional filter implies the existence of a Lie

a1gebra,homomorphism has been made rigorous for a class of estimation
prleems, including the cubic sensor discussed in Section I, in [36]).
Moreover, it is clear (among others, from a number of examples discussed

below) that there is a strong relationship in general between the structure




of L(2) and the existence of finite dimensional filters. In this paper,
we discuss the properties of L(I) for some interesting classes of examples.
These Lie algebraic calculations give some new insights into certain
non]inéar estimation problems and guidance in the search for finite
dimensional estimators.

If L(Z) is finite dimensional (this seems to occur only in véry special
cases [9],[37]), a finite dimensional estimator can in some ‘cases be

constructed by integrating the Lie algebra representation [9]. Indeed, if

L(z) or any of its quotients is finite dimensional, then by Ado's Theorem

[27, p. 202] this Lie algebra has a faithful finite dimensional representation;
thus it can be realized with linear vector fields on a finite dimensional
manifold, which may result in a bilinear filter computing some nonzero
statistic (see, e.g., [16] and [26] for examples). However, actually
computing the mapping from p(t,x) to E(xt) (i.e., deciding which statistic
the filfer computes) is a difficult problem from this point of view; at the
moment at Teast, one must usually use other, more direct, methods, to
actually construct this mapping or to derive the filter for a particular
conditioné] statistic (see, e.g., [14]-[17]). Also, just a Lie algebra
homomorphism from L(Z) to a Lie algebra of vector fields is not enough.

In additibn to the homomorphism of Lie algebras, one needs compatibility
conditions in terms of isotropy subalgebras [34],[35], or equivalently, in
terms of the natural representations of the Lie algebras operating on the
spaces of functions on the manifolds involved. Even if L(Z) or its quotients
are infinite dimensional, it is still possible that these Lie algebras can be
realized by nonlinear vector fields on a finite dimensional manifold. |

Conditions under which this can be done is an unsolved problem in general;




we prove in Section II that this is not possible for certain classes of Lie
algebras. As an almost totally trivial example that two vector fields on a

finite dimensional manifold can generate an infinite dimensional Lie algebra,

consider the vector fields a = x2 é%- and b = x3-§% on a one-dimensional

manifold; it is easy to see that a and b generate the infinite dimensional

Lie algebra of vector fields of the form x2

p(x)é%-, where p is a po]ynOmia].
If a statistic E(xt) is finite dimensionally computable, the Lie algebraic
approach also gives some insight into the continuity of the estimator. Since
there is a Lie algebra homomorphism as discussed above, the vector fields
bl""’bp are. homomorphic images of the operators el,...,ep which all commute
with'each other (these are just mu}tip]ication operators). Thus bl""’b

p
also commute, and the results of [18] imply that the filter (1.9) represents

a continuous map (in the CO and Lp topologies) from the space of "inputs" z

to the solutions n. Hence, the estimator (1.9),(1.5) gives a continuous map
from z to E(Xt); this is a very useful property, indicating the "robustness"
of the filter (see also [19],[20]).

Brockett and Clark [38] used this approach to stUdy the estimation of a
finite state Markov process observed in additive Brownian motion; the Lie
algebraic approach led to the discovery of new low dimensional filters for
the conditional distribution, even in some cases when the number of states
was arbitrarily large. And even in the extremely well known case of linear
systems (Kalman filter), the Lie algebraic approach gives an additional
result in that it tells us how to propagate a non-Gaussian inifia] density
[2]. In this case the Lie algebra is finite dimensional; in fact, one finds

higher dimensional relatives of the so-called oscillator algebra of some

fame in physics (incidentally, this is no accident [9]). In [21], a similar




analysis is carried out for an example of the class of estimation problems
considered in [14]-[16]; for this class of nonlinear stochastic systems, the
'conditionaI mean (and all conditional moments) of Xt given zt are finite
dimensionally computable. For this example, the Lie algebra L(Z) is

infinite dimensional but has many finite dimensional quotients corresponding

to the Lie algebras of the finite dimensional filters; these are ahaTyzed in

detail in [21]. These last two examples, as well as the example of Benes
[17], are special cases of the class considered in Section III. |

In Section IT, we consider estimation problems for which L(Z) is the
Weyl algebra wn. A number of examp]eé are given and useful properties of
the Weyl algebra are derived; some of these results have been obtained
jndependent]y by Mitter [9]. The major results of Section II are proofs
that neither W, nor any quotient of W can be realized by vector fields with
either C* or formal power series coefficients on a finite dimensioha]_
manifold; thfs suggests that for these problems, no statistic of thé
conditional dehsity can be computed with a finite dimensional recursive
filter. This does not imply that there will not be appropriate approximation
méthods. ‘Possib1y parfiallhomomorphisms of‘Lie algebras [39] of L(Z) into
Lie algebras,of vector fields will play a role here. Also "deformations of
- algebras" techniqﬁes [401-[42] suggest a possible approach to approximate
~methods. For example, the Lie algebra of.dxt = dwy, dz, = (x+ex3)dt+dvt
is‘w1 for all ¢#0, but mod e this algebra is finite dimensional for all n
[43]. Finally, in Section IV we present another estimation problem with an

interesting Lie é]gebraié structure and discuss the possible implications

of this structure.




IT. The Weyl Algebras wn ‘

The Weyl algebra wn [22],[23, Chapter 1] is the algebra of all

polynomial dffferentia] operators; i.e., wn==B2<x1,...,xn; —

A basis for wn consists of all monomial expressions

s e

e X
B 1

0,8
ax1

‘where a,B range over all multiindices a==(a1,...,an), B= (61,...,Bn),

a,BeM U {0} (the non-negative integers). wn is a Lie algebra under the

Lie bracket; ‘as an example, we state the general formula for wlz

4 L . . j+L-r
[x1.-§—r, xk-jgz ] = (3¢ k) ri oy tker -§i;7——-
ax’ ax p=1 70T ayd -1

Jj+l-s '
9 (2.2)

£
Ly, i+k-
- L) st

axJH-s

)
where (Y) = zj:%ST;T-is the binomial coefficient and we have used the

convention that (i) =0 if r<O0or j<r. As is easily checked, the center
of wn (1.ef; the 1dea] of all elements zc;wh such that [X,Z] = 0 for all
xe;wn) is the oné-dimensiona] space R-1 with basis {1} [22, p. 148]. We
next prove the simp]iéity of the Lie algebra wn/nz-l; this is of courée
stronger than showing that wn is simple as an associative algebra [22, p. 148].
0ur<pfoof follows that of Avez and Hes]ot [24] for the Lie algebra Pn of
polynomials under the Poisson bracket. A number of the following results
are common to Pn and wn’ but these two Lie algebras are not isomorphic

(this is basically because the expression in P corresponding to (2.2) would
retain only the terms for r=1 and s=1). Hence, one must be careful in

9




‘m]itera11y inferpreting results proved for.Pnrgh the context of,wn [30].
Theorem 2.1: The Lie algebra wn/H{-l is sfmp]e; i.e., it has no
ideals other than {0} and wn/ﬂl-l. Equivalently, the only ideals of wn
are {0}, R-1, and Wn.
lfgggj: Suppdse I is an ideal of wn which cbntains a nonconstant

_ v . ~B . :
element X = § CaB x® jL§. Since commuting with X; reduces_Bi by 1 and
9X :

commuting with 53—- reduces o, by 1, repeated commutation implies that
.i .
an element of the form X; or 5%7 is in I. Since every e]emenths:wn
j .

can be obtained by commutation of x. (or-—g—)_with another element of wn,

_ 1 axj
this shows that I==wn.

This theorem basically shows that if wn occurs as the Lie algebra
L(z) for some estimation problem, then either the unnormalized conditional
-density itself is finite dimensionally computable or'ﬁo statistic at all |
‘ié/finite dimensiona]1y computable. The next two theorems complete the
argument by showing that in fact neither wn nor its quotients can be

realized by vector fields on a finite dimensional manifold.

Let 2n be the Lie algebra of vector fields Vm g {igl folxgseeiox) axi'
with (formal) power series coefficients fg aﬂ%[[xl,...,xm]], and let V(M)
bé the Lie algebra of Cw-vector fields on a C -manifold M. The proofs of
the following theorems are contained in Appendix A.

Theorem 2.2: Fix n#0. Then there are nb non-zero homomorphisms:
from wn to Vm or from'wn/ﬁirl to Vm for any m. V

Theorem'2.3:‘ Fix n#0. Then there are no non-zero homomorphisms

from W to V(M) or wn/ﬂl-l to V(M) for any finite dimensional C -manifold M.

10




These results suggest (assuming the appropriate analogs of the results
of [61,[12]) that if a system I has estimation algebra L(Z):=wn for some n,
then neither the conditional density of X¢ given zt nor any nonzero statistic
of the COhdifiona] density can be computed with a finite dimensional filter
of the form (1.9) with a and b C~ or analytic. This is indeed the case

for the cubic sensor (Example 2.1) [36] (as was mentioned before). We will I

give several examples of such systems, but first we present a general method

for showing that L(ZI) =wn.

Theorem 2.4: The Lie algebra wn is generated by the elements

,h; and x X. P41 i=1, n-1.

Proof (similar to that of [24] for Poisson brackets): Let L be the

Lie algebra generated by these elements. Since [xfpgg—, x;<] = kxl1.<+1
L contains x k k>1. Now, [ 82 ] = —ji— and [—g—j X.] =
i =" 2 LT Xy ox, > 7

X s
X
i 1

2
3% . 27 _ o k-1, 3 \£+1 k-2
[a 50 xf (28] = 2T (2B (k)]

X
i

(5}' ]
with £=0, (2.3) implies that x.*;2 €L, k>0. Then by induction (2.3)
2

implies that x;<(-§§;)z'eL for all k,£>0. Notice that [ ; 5 ,x1x1+1}

axi

Repeated commutation with x2 = and ( )2 yields (as above)

3 U S Y A d
2x1x1+1 ax » and commuting this with X; (=)" gives Xip1 ® H2<xi,55;j>-eL.

i+l ax +1 1+1

H1<x 2 __Q,_>. By induction, we have thatl_=wn.

*i+1° X, ’Bxi+1

Theorem 2.4 proVides a relatively systematic method for showing that

L(x) =wn for a particular estimation problem: one need only show that by
1,2

taking repeated Lie brackets of L - §41 and h, the generating elements of

11




wn‘given in Theorem 2.4 are obtained. Notice that if n=1, the generating

% 2 3

elements are Xs —>5s and x " There is a "dual" kesu]t obtained by
ihterchanging Xiagnd 537 in Theorem 2.4. Some interesting examples are
the following. 1
Example 2.1 (the cubic sensor problem [9],[25]): Consider the system
dxt = dw,
dz, = xjdt + dv

t

The Lie algebra L(Z) is generated by the operﬁtors

We can computé a sequence of Lie brackets to obtain a sequence of elements

e, ¢ L(z), eventually obtaining the desired generators of wn:

2 2 9
[eo,el] =.3x g% + 3x e, = X X + X

adk e = 3.4+ (B2 = Feln), k23

2

. . 6
(where adg e =ey and adk+1'e1= [eo,adz el]). Combined with €gs X eL(z)

2 ) 0
2

implies that ez = iig e L(z). Continuing,
X

2

) )
[e,.e,] = = X —5 + =
3’72 2 ax2 X

[e4aez] -

33
[eg.eq1 = 6x° 3

+ 9x
X

2
. 2 3 .
[e,,e.] = 12X~ —5 + 24x
3’76 | axz




A 2 v
which comﬁined with ep implies that e7==1 and eg = x2 éi§-+ 2% é% are in
L(2). A few more calculations will complete the demonstration:
3 2 .3
- d =y 9
[e3’e8] = ; eg X X3

[el’e8] =

_[ez,eg] =

[e3:e10] =
[e3’e12] =

Now 13> €1> and e, are all Tinear combinations of the elements x

a2
X Ji—-, and Ji-, and the coefficient matrix
ax2 X

L 2

is nonsingular. It follows that L(Z) contains e

14

and e, = x . Finally,
16 3X3

[e14,e1] = 3x2

[e14.897] = 2x

which combined with e, gives ; thus by Theorem 2.4, L(Z)==w1.




Analogous computation of selected Lie brackets and the use of

Theorem 2.4 yields similar results for the fo]]owihg examples.

Example 2.2: For the system

3
dxt = xtdt+dwt

dz dt +dv

t T Xt t?

. ’ |
L(Z) s generated by %-Ji§-- x3 g%---% x2 and x, and L(z)==w1.
X

Example 2.3 (mixed 1inear-bilinear type): Consider the system with

state equations

dxp = dwp,

‘dy,C = xtdt + XtdWZt
with observations

dz dt + dv

t T Yt t

2 2
y 13 . 1.203 5 1.2 e e
L(z) 1§ generated by ?'axz t 5 X ayz " Xgy 7Y and y; it is shown

in Appendix B that L(Z)==w2. The same result is obtained if the xtdt term

is absent in the y equation; in that case we have a mu]tip]e Wiener integral

of Brownian motion observed in Brownian motion noise.

Example 2.4: Consider the system with state equations

dxt = dwt

2
dyt xtdt




-and observations

dz., = x,dt + dv

1t 1t

dz,, = ytdt4-dv

2t 2t”

i 1 92
L(Z) is generated by > =5 - x
oX

shown that L(Z) =W,. This is the example studied in [21], but here we have

2 3
oy

- %-xz - %—yz, X, and y; it is easily

the additional observatijon Zy3 the relationship between these examples will

be examined in the next section.




IIT. Pro-Finite Dimensional Filtered Lie Algebras

A Lie algebra L is defined to be a pro-finite dimensional filtered Lie

algebra if L has a decreasing sequence of igg§1§_L==L_1:D LOZD leD ce
such that |

(a) n L; =0

(b) L/Li is a finite dimensional Lie algebra fof all 1.

The termiﬁo]ogy is somewhat analogous to that of pro-finite groups [28];
no completeness assumptions aré made, however. Notice that (a) implies that
there is an injection from L to ? L/Li' In the contéxt of the estimation
problem, this would correspond to L(Z) having an infinite number of finite
dimensional quotients; if each of these can be realized with a recursively

filterable statistic (a plausible conjecture), then the injectivity of the

map makes it reasonable to cdnjecture that these statistics represent some

type of power series expansion of the conditional density. Of course, in
addition to those discussed in Section I, other difficult technical questions
such as moment determinacy will also be relevant here, but the structure of
the Lie algebra should provide some guidance as to possible successful
approaches to the problem and some insight into the structure of the
resulting approximations.

Example 3.1 [21]: A simple example of the class considered in [14]-[16]

is given by the state equations
dxt = dwt
_ .2
dyt = xtdt
and the observations

dzt = xtdt-l-dvt




with X0 Gaussian. The computation of Qt is of course straightforward by
means of the Kalman filter; however, as shown in [14]-[16], all conditional
moments of Y¢ can also be computed recursively with finite dimensional

3 2 2

: - S22 ,109% 1 .
filters. L(Z) is generated by e = X" 3y t5 sz > X and e = X3

as shown in [21], a basis for L(Z) is given by € and

i
-é—? ; 1=0,1,2,...}. Defining L. to be the ideal generated

»...5 it is easy to see that L(Z) is a pro-finite

dimensional filtered Lie algebra, and realizations of the L(Z)/Li in terms
of recursively filterable statistics are given in [21]. In addition, L(Z)

is solvable [21].

A simj}ar analysis for systems of the form of Example 3.1, with xi

‘replaced by a general monomial xg has also been done [31]; for p>2, a
similar but more comp]ex Lie algebraic structure is exhibited. It is
interesting to comparé Example 3.1 with Example 2;4, which is the same
except for the additional observation dz2t = ytdt4-dv2t; in that case
L(z) = w2, so that no conditional statistic can be computed exactly with
a finite dimensional filter. However, it is probable that, due to the
additional observation, a suboptimal approximate filter (such as the
Extended Kalman Filter) for the conditional mean of Y will result in
lTower mean-square error than the optimal filter which computes §t in
Example 3.1. Thus some care must be faken in interpreting the Lie
algebraic structure of a nonlinear estimation problem; this structure has

direct implications on the exact computation of conditional statistics,

but its implications on approximate filtering remains to be investigated.

17




Example 3.2 (degree increasing operators and bilinear systems):

Consider a system of the form (%) (page 2), and suppose that f, G, and h
are analytic with f(0) =0 and G(0) =0, so that the power series expansions

of f and G around zero are of the form

f(x) = ) f . G(x) = yoo6 x*,

la]>1 © la]>1 ©

where |o| = ag+...+a . It follows that

G(x) G'(x) Y6 (x)x%.

la|>2 @

An example of such systems is the class of bilinear systems

P

+ ) B.x ]

dx, = AXx
i=1 ittt

t t

dz Cxtdt-fdvt

t
Another example is

dxt xtdt-ksin Xt dwt

dz h(xt)dt4-dv

t t

with h analytic; in general, a wide variety of examples can be found.
Let M = El[[xl,,..,xn]] be the module of all (formal) power series

in Xl""’xn’ and define the submodules

(o4 . .
M. = {Ja x |a,=0 for [a| <i}, i=0,1,2,...,

so that, e.qg., M0 consists of those power series with zero constant term.

If £ is a system satisfying the condition (3.1), it follows that for

18




'va11 i, the forward diffusion operator (1.3) satisfies
' LMiCMi;
hence
1,2
(L- —2-h (x))Mi .<=M1.
and of course

h(X)M_i (= Mi .

Since the two generators of L(Z) thus leave Mi invariant, it is obvious
that L(Z)Mi C:Mi; thus, each element of L(Z) can only increase (or leave
the same) the degree of the first term in the power series expansion of

an element of M. Let
Li = {XEL(Z)IXMC M_i+1}) 1=._1,0,1’.2,-.-.
Then Li is an ideal in L(Z) and we have an induced representation

py: L/Ly — End(M/M. ).

Because M/Mi+1 is finite dimensional, so is L/Li’ since Ps is injective
(by definition of Li)' It is obvious that nLi ={0}; thus L(Z) is a

pro-finite dimensional filtered Lie algebra, with filtration Li' One

additional structural feature of this filtration is that LO/Li is a

nilpotent Lie algebra for i=1,2,...; also, L1./L1.+1 is abelian for all

~1>0. The nilpotency of the LO/Li is a property also possessed by the
filtration of Example 3.1.




Since many systems can be well approximated by bilinear ones, these
results may have important implications for approximate nonlinear fi]tering.
We close this section with two interesting examples of this class; the
first_{s a bilinear system of the form (3.2), but in which some elemenfs
of A are also unknown and must be estiﬁated. Thersecond is ‘an ahg]e

modulation problem.

Example 3.3 (Bilinear system with unknown parameter): The simplest

examp]é of this type is

dxt = octxtdt-kxtdwt

dat=0>

dzt xtdt‘+dvt

Here both the state Xg and parameter a are to be estimated recursively.

2

1.2 3 3 2

. d 1
The‘L1e algebra L(Z) is generated by X — 2X — +1-ax T 5 X

3% X
and x. Both of these operators are "degree increasing" when operating on

R[[x,a]l, so L(Z) is a pro-finite dimensional filtered Lie algebra.

| Example 3.4 (Angle modulation without process noise): Consider the

problem of observing

dzlf = sin(wt+e)'dt+dv1t

d22t‘éAcos(wt-ke)dt-deZt

where w and 6 are constant random variables to be estimated. To place

this problem in the present framework, we have the three state equations




The Lie a1gebra L(Z) is generated by ey = j%- %- e = sin(wt+6), and

fl = cos(wt+06). It is easily shown that L(Z) has basis elements

eo,e. =g sin(wt +96), fi = cos(wt +0), i=0,1,2,.... The nonzero

commutation relations are [e L 1 = f1+1, [eo,f 1= €it1 Hence, L(Z)

is a pro-finite dimensional filtered Lie algebra, with filtration {Li}’
where L. is the ideal generated by €41 and f1+1, i=0,1,2,.... Phase-Tock
Toops are often used for filtering problems such as this, but the form of
the optimal estimator is unknown. This calculation suggests that an

infinite number of statistics of the conditional density may be finite

dimensionally computable.




IV. A Final Example
There are other filtering problems which do not fall into the above
classes, but which have interesting Lie algebraic structures with possible
implications for finite dimensional fi]téring. One example is the

fo]Towing.

Example 4.1: The system of this example is
dxt = dwt
X
A
dyt = e “dt

dz, = x,dt+dv

t t t

This does not quite fall into the class discussed in [14]-[16] (as does
Example 3.1), since the y equation contains eXt rather than a polynomial
in Xy The conditional expectation Qt is again computed by the Kalman

fi1ter, but the computation of yt is much more difficult. The Lie

, 13° x3 1.2
algebra L(Z) is genérated by-g-——g - e w2 X~ and x; the structure
' )

of L(Z) is as follows. It has as basis the elements

2 . J Ak
d d 2 NLPRRS R

Xe =31y, —5 - x"3 E.. = s
X 8x2 ijk ayJ axk

Let I (n>1) be the subspace spanned by Eijk with j>n, and Tet I' be

the subspace spanned by 1 and Eijk with j>n. Then the only ideals of
1@ R-1 6 R a—ax—eb R-+x. The quotients

In/In+1 are infinite dimensional and abelian, so that L(Z)/In are

L(Z) are In’ In’ R-1, and I

successive extensions of the oscillator algebra L(Z)/I1 (the algebra of the

Tinear filtering problem [6]-[9]) by infinite dimensional abelian kernels.
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Also, N In = {0}. Due to this structure, it seems unlikely that there will
n _

be injections from L(Z) itself into Vm; however, it does seem possible that

the L(Z)/In are realizable as (infinite dimensional) Lie a]erras of vector

fields on some finite dimensional manifold.
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Appendix A
Proof of Theorems 2.2 and 2.3

A.1 Filtrations and Preliminary Results

Definition A.1: A Lie algebra L admits a filtration (or is a

filtered Lie algebra) if there exists a sequence of subalgebras

L = L‘_1'3L0:> L1 > ... such that -
n Li = {0}
[Li’Lj] <= L1'+j

din (Li/Liy) <=5 i=-10,1....

A

Example A.1: A prime example of filtered Lie algebras are the Vn.

The filtration is defined as follows: Li consists of all vector fields

Joo o x* = withc_ .=0 for all & with |a] <1, where the norm of the
0, aXJ 0sJ -

multiindex (al,...,an) is |a| = apt...ta .

“Given a filtration Li=Ly=L;=... onalie algebra L, we define

a valuation function v: L-M U {0,-1} U {=} by

v(x) = max'{jlxs:Lj}.

Properties (A.1) and (A.2) of the filtration translate into

v(x) = <=> x =0

v([x5y1) > v(x) +v(y),




and the fact that the Li are vector spaces implies that

v(ax+by) > min (v(x),v(y)); x,yel,a,be R

and

v(xty) = v(x) if v(x) <v(y)

v(ax) = v(x) if a#0

In addition, we will need the following results concerhing wl.

First, we have the formula

' h n-1 n-1 n-1

3. . r d d - -

[ 5> 1 -7 X" a1-r [—éﬁjj'sxr R, an_l :
oX oX S X X

this is easily proved by uéing (2.2) and formulas for the binomial

coefficients. The following lemma, which also follows by a straightforward
'

application of (2.2), shows that xk Jizjis an "approximate eigenvector" of

; _QE_ oX

X
axt

Lemma A.1: Let £<t<k#1 be natural numbers. Then there are a

nonzero ce R and dl,...,dt_le R such that

ot 2 £ t-1
t-a—t,xk—a—ﬂ]=cxk—a—g+ Lo dy x
X oX oX i=1

ki ot

ax£f1

[ x
]

The proof of the next lemma is quite involved and is contained in

Section A.3.

Lemma A.2: Suppose.that w1 = L_1 ::LO ::L1 > ... is a sequence of
subalgebras of W, satisfying (A.2),(A.3), dﬂn(wl/L2)<<m, and either
NL; ={0}or nL. = R-1. Let v be the valuation function defined by
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the filtration. Then v(xn)-+°° as now,

A.2 Proof of Theorem 2.2

The proof will be carried out for wl; the proof is virtually identical

for wl/nz-l, and the result is true a fortiori for wn, since wn is clearly
9
1 ax1
to Vm‘ Then

isomorphic to the suba]gebra of wn consisting of expressions in Xq and
only. Supposévthat there is a nonzero homomorphism ¢ from wl
W, has a filtration defined by the subalgebras Mi 8 ¢'1(L1), where {Li} is
the filtration on Vm defined in Example A.1; let v be the corresponding
valuation function on W,. Since /Vm/L2 is finite dimensional, so is'wl/MZ;
thus Lemma A.2 implies that v(xi)—+® as i»«. We claim it also fOl]owsAthat

v(xk+i gi;: + o as i, , (A.9)

X
and that this will Tead to a contradiction.
First notice that

2 . . .
[Jiﬁ?,xk+1+2] = 2(k+1‘+2)xk+1+1 g%-+ (k+i+2)(k+i+1)xk+1,
X

so that from (A.5)-(A.7) and the fact that v(X)>-1 for all XelW,

: . L g2 i +i k+i+2
v (T2 minty (KT, [Ji?.,xk+1+2]} Z.min{V(Xk 1) av(x )-13.

3%
a .
X (A.10)

Then taking r = k+i+1 and n=4£+i+1 in formula (A.8) and using (A.10) yields




. A
- k+i0d
v(x - )
‘ BXZH

pftitl k+i+1 il k+i+1 a il

Kt
T S1ar1 2 X ] s [ = X ] v [ = X ] }
8X£+1+1 SXK'H XK'H

> min{v [

LKL kit

> min{v( -5%(-)-1, V(Xkﬁ)-l}

_>_min{v(xk+i+l)-1, v(xk+i+2)-1, V(Xk”)-ﬂr

which converges to « as 1;00, proving (A.9).

Now.- choose tOeINI such that

t
v(xJC —Q—E)zl for t>t,.
X
k0+£‘ az
Choose any kg1 and consider the sequence {v(x 1’,)
axX
Then because by (A.9) this sequence converges to = there is for any £

s £=0,1,2,...}.

0
an 1’.1 >£0 such that
K +2.+i 21”. K +0
01 9 -0t
Tl > v I
X

v(x

Take £0'= t0+1, choose f’l such that (A.12) holds, and take t=4£,+1.

1

Then we can apply Lemma A.1 with t= K +1, L= 131, and k = k.2

071

(not1ce that the assumptions are satisfied). We find

9 4. o
71 = cx K+1Zld1.x

X
Because of (A.12), we have by (A.7) that
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£ t-1
k d
vicxs =—+ ) d. x
3X£ . i

kei ot ¢

9
———) =V(X _‘).
i=1 8x£+1 axz

t v
But because v(xt ii—-) > 1 (c.f., (A.11)) we have by (A.5) that

3xt

t L L
v(xt iLE, XK 1) 2.1‘*V(Xk j;z ).
9X X X

Comparing this to (A.13) gives a contradiction, completing the proof of

Theorem 2.2.




A.3 Proof of Lemma A.2

~ A.3.1 A Preliminary Reduction

Lemma A.3: Under the hypotheses of Lemma A.2, if there is én element

Vxnewi,'h‘g_z, such that v(xn)_>_0, then v(X") >» as m+w,

Proof: Suppose we had such an element x". Because dinl(wi/L2)<w,

, S ;
there is an element Y = ) a. —3—.ew1, ag#0, s>2, of valuation > 2.
J=r ax’

A simple computation shows that adsn Y =n° s! ag xs(n-l)

' X

» which has
valuation > 2 (by repeatedly using (A.5) and v(xn)g;O). Thus we now have
an element xk, k>2, with v(xk)_>_2. Now

2 .
2 8% Ko _ L ieiivok k+1 3
[x axz » X1 = k(k-1)x" + 2k x ™

has valuation > 1, and for any q, adg x3 = cxP¥*9 c0. For any m>k,

there exist nonnegative integers p,q such that m = pk+q, so we have for m

large enough:

: v(xm) = V(ka+q) = v(adgxq)

>

where [%& denotes the largest integer f_%u Since k is fixed, this shows

that v(xm)-¥oo as m-oo,




A.3.2 Some Combinatorial Lemmas
To prove that under the conditions of Lemma A.2 there is indeed an
nelN, n>2 such that v(xn)g;o, we need some combinatorial lemmas.

Lemma A.4: Let r,seM with r<s, and let ac R. . Then

($)(-1)7 (a+i+1)(a+i+2)...(atitr) = 0
%0

Proof: The proof is by induction on (r,s); in case s=2 and

we have .

)-2(8)+3(5) =a-0 +1+4-3 = 0.

Now assume by induction that the lemma has been proved for (r-1,s-1).
Then
(3)(-1)7 (a+i+1)...(a+itr)
i=0
s

af[(g)(at2)...(atr) - (i)(a+3)...(a+r‘+1)+...]

)(a+3)...(a+r+l) +3 ( ; )(a+4)...(a+r+2) - ...

+( S)(a+2)...(a+r)- 2 (

s
1
) (A.14)
Since each term in (A.14) has a product of r-1 elements and

( ?) = ( ?:%) + ( 5;1), the induction hypothesis implies that the sum in

the brackets is zero and the other sum is equal to




i)(a+3)...(a+r+1)+—2( g)(a+4)...(a+r+2)- 3 g)(a+5)...(a+r+3)+ i

-s[ ( s61)(a+3)...(a+r+1)— (511)(a+4)...(a+r+2)+( S51)(a+5)..,(a+s+2)-...]

the induction hypothesis, and the proof is complete.

Another lemma from the same general family is the following.

Lemma A.5: Let seM, ae R, ke R. Then
(o) (a+s-1)...(a*1)a- (] )(a+s-2)...(a+1) a(a-k)
+(3) (a+s-3)...(a*1)a(a-k)(a-k-1) - ...
(15750 alank) L (akest2) + (-1)° (3 (amk) (a-k-1) ... (a-k-5+1)
= k(k+1)...(k+s-1)

Proof: Using the fact that (? ) = (?:i )+ (5;1 ) and noticing that
(a-k) is a factor of all terms except the first one and that a is a factor

of all terms except the last one, we rewrite the sum above as

(55 Mats-1).. . (a+1) - (571 ) (ars-2) ... (a+1) (a-k) -

- (a-k) [ ( 561 Y(a+s-2)...(a+1l)a - ( sil )(a+s-3)...(a+1)a(a-k-1) +...

#5013 2 aack-1). .. (a-k-s+2) + (-1)57L ( 1) (ak1)... (a-ke-s+1) ]

(A.15)

The lemma obviously holds for s=1, since a-(a-k) =k. Assuming the




lemma is true for s-1, we can by induction write the terms in (A.15) as
a(k+l)...(k+s-1)
(s>s-1, a»a+l, k>k+1 with respect to the lemma as stated), and

(k-a)(k+1)...(k+s-1)

(s>s-1, a+~a, k>k+1 with respect to the Temma as stated). Summing

these gives the desired result.

A.3.3 Idea of the Proof and More Calculations
Because L/L2 is finite dimensional, there is some nonzero linear

combination Ja_ x™ of valuation > 2. Then [X_Z%Z’ Zam XM = Zmam X"

has valuation > 1. The idea is to produce enough elements of the form

ﬁn1anlxm of valuation > 0 to be able to conclude (via Vandermonde matrices)

that the individual components ﬂnxm have valuation > 0, and thus that the

hypothesis of Lemma A.3 is satisfied. For example,

n n-1 mtk jii

Bxk,

[x“ jiﬁ., Zﬂnxm] = Zm(m-l)...(m-n+1)amxm + ) bkx

X k=1

(A.16)

+i

n .o
and brackets of the form [xn —B—ﬁ-,[xr'1 ji?-,Zanlxm]] produce similar

X 9X
terms. However, considerable effort is necessary (by another application
of Vandermonde matrices) to eliminate unwanted terms (e.g., the final sum
in (A.16)).
First, we perform some necessary calculations. For m>r+n, we shaT]

need the sums




so (A.17) becomes

) __m Xm-1+ja_j_]}
(m-Y‘+j)! ax\] ’

)

j=0 (i J

The terms of the inner sum in (A.18) which are obtained by the action of

S . AN
R 1
ﬁ?,lgsiJ,onx
X 90X

5 oare of the form

ryd m! mintj-s _oMtI-S v igr i)! .
- (050 (m-r+3) 1 ax"tI-s [120 =07 (n+i-3)! }

this sum is zero by Lemma A.4, since s<j<r. The terms of the inner

_ S
sum in (A.18) which are obtained by the action of —3—5 i<s<j, on
9X
m-i+j 9d |
X — are of the form
axJ

03) s SR () e 2K
i |

S (m-r‘+j)! 3Xn+j-s i=0 i (m-'i+j-5)!

this sum is also zero by Lemma A.4, since s<j<r. It follows that the

S
only nonzero terms in (A.18) arise from the action of iig, Jtl1<s<n, on
X
m-i+j Y
X —3 S0 that (A.18) (and thus (A.17)) has the form
oX <

(A.18)



The coefficients bk remain to be .calculated.

Fix a k, 1<k<n; the term in (A.18) which contributes to the k™ term

n (A.19) is

i, ryr m! n oy (m-itj)! men-k oMK
(-1)° (; )(5) or3) 1 (i) [CREA 5;532]

rye n v i,ry (mbj-i)! (m-k)! m+n-k an'k
jZO () ) (m k [ E UG ) o) (m-k-i)!} K
(A.20)

According to Lemma A.5, with a-»m+j-r+l, s->r, k->k+j-r+l, theﬁinner sum
is equal to

(k+3) (k+j-1)...(k+tj-r+1)
Thus (A.20) becomes

m+n-k Bn'k

r-1 .
[ 1 D00 0) (g | 0ok 2

Jj=0 ax"

nk
(‘" An=kdLyeny (ke r+3+1)} Mk (a2

J° (n-k-3)! ox
The coefficient of k" (the highest power of k) in the inner sum of (A.21)
is equal to
r-1 .
I (e = ()
j=0

we will assume that r is odd, since the proof is the same for r even. It

follows that the inner sum in (A.21) is of the form




(K™t s cg‘") (n) k,
where the cj(n) are polynomial functions of n and r. Hence (A.17)vcan

be written as

n
= 1 (R +c
k=1

r

)(n)kr-l+

For r=1, (A.22) becomes

2
Subtracting cg ) (n) times (A.23) from (A.22) for r=2 yields

Continuing by induction, we see that there are coefficients b(t,r,n) such

that, for each teN,

. . n . r
+ -
(-1)" ('1?) [x"! a—n,[xr ! —a—r,xm]]
9X X




A.3.4 Proof of Lemma A.2

According to Lemma A.3, we need only show that there is a peN,

p>2, such that v(xp)g_o. By assumption W;/L, is finite dimensional;

et r==dim(W1/L2)+1. Then there is for each ueN a nonzero sum of the

form

(A.25)

with valuation > 2. Take u>2r, so that the calculations of the previous
section are valid for all m in (A.25). Multiplying (A.24) by a and
summing from m=u to m=u+r-1 yields the expressions

kt
1

n
X(k,n); t=0,...,r-1, n=1,...,r

The elements (A.26) have thus been obtained from (A.25) by applying at

most two brackets and taking Tinear combinations; therefore,

. n t .
v( J k~ X(k,n)) > 0.
k=1

Using the nonsingularity of Vandermonde matrices, we can write the X(k,n)

as linear combinations of the elements (A.26); thus
v(X(k,n)) > 05 k=1,...,n, n=1,...,r.

Taking k=n we obtain in particular the elements
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_ utr-1 m
Y(n) = mzu %m (m-n)!

with valuation > 0. It is easily shown that the coefficient matrix 1n 

(A.27) 1is nonsingular, implying that v(ﬂnxm)gio, m=uU,...,u+r-1, thus

there is at least one m such that v(xm) > 0 (because not a11vam are

zero). This concludes the proof of Lemma A.2, thus proving Theorem 2.2.




A.4 Proof of Theorem 2.3

Suppose that ¢: w1-+V(M) is a nonzero homomorphism, where M is an
n-dimensional C* manifold. Then there is a point me M such that the
image of ¢ contains an element which gives a nonzero tangent vector at m.
Let G be the Lie algebra of germs of ¢ vector fields around m; i.e., ‘in

‘local coordinates centered at m, G= {Zfi(x) ng-},where fi are germs of

¢” functions around m. Let A be the ideal in é consisting of all elements
for which the fi are f]at functions in a neighborhood of m (a function
germ in n variables X senesXy defined on a neighborhood N is flat on N
if ;gg—(x) = 0 for all xeN and a). A is an ideal because derivatives of

flat functions are flat. Restricting the vector fields of V(M) to their

germs around m, we obtain a composed homomorphism of Lie algebras

Wl + V(M) > G -~ G/A (A.28)

which is nonzero because at least one vector field in ¢(w1) was nonzero
at m.

| By Borel's extension lemma [29, p. 98], G/A is isomorphic to Vn.
Thus (A.28) gives a nonzero homomorphism from Wl to Vn‘ However, since

the only ideals of wl are {0}, wl, and R+1, this would yield a nonzero

homomorphism from wl or wl/H2-1 to Vn. This yields a contradiction by

Theorem 2.2.




Appendix B

Calculations for Example 2.3

The Lie algebra L(Z) is generated by

2 2 '
9 1 2 9 ) 1 2
2T eX T Z Xy Y ety

]-
e = =
2 BXZ 3 ay

0

We proceed as in Example 2.1:
[eO,el] =
[e2’e1] =
[eo,e3] =
Le4,e2] = -2X + 4x2>§§-, which combined with e, implies that e; =

5

_ 23 :
and eg = X 3y are in L(Z). Also,

4

)
[eoses] _' a—x-

7

[e7,e5] =1%=eg, which combined with ey implies that e =

Now,

lese,] =
[67-€10] =
[e;.e4] =
[e708p] = =

:_2 - —
[eg-ep! X"y-2x X3y ~ 3y




2 ; A
(e7814) = Bxay * 2 = €15
2
S 3,8
[eyp-er5¥eyy] = X7 - 2

_ .2 ) . . . . . _ .2
= yx - 3x3y ° which combined with €4 implies that €19 = ¥X

2

- ) .
= X 3X3y are in L(Z). Also,

2
[e17,e19] = 3x2 Ji§-= €rqs which combined with € and N implies that

oy
2

Jiﬁ._ y2 e L(Z). Continuing,
oX

€22

82 2

[eg,e22] = -2-—72, so that €y = ii§ and €y = y2 e L(Z). Now,
X X :

.29
[ep3s€16] = 3x7 3%

=>
[e1go8pq] = 2xy = eyg =

- 9 _ =
[ep3:8p6) = 2¥ 35 = €7 =¥ 3y

| 2
[ep7-816] = 3yx

2
[eg7:€9g] = 2y7X

_ .3
[927,829] =Yy




Noticing that the elements €15 €gs

®13> €230 €p5> €pg» aNd ey are
precisely the generators.of w2 given in Theorem 2.4, we conclude that

L(z) = H,.












