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FACTORIZATION METHODS FOR SOLVING

DIOPHANTINE EQUATIONS

by

R.J. Stroeker

ABSTRACT

In this exposition we give an overview of the algebraic
factorization methods, based upon Dedekind's Unique Factorization
Theorem for ideals in Dedekind domains, which are frequently used
to effectively solve Diophantine equations. Emphasis is put on the
practical computation of solutions. This finds expression in the

many examples which have been included.
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1. INTRODUCTION

A diophantine equation is usually defined as an equation in two
or more variables

f(x1,x2,...,xn) =0 , n22

the solutions of which are required to be integers or sometimes rational
numbersf The function f ié often a polynomial function with integer
coefficients. At present a more general definition of the notion of
diophantine equation is sometimes adopted: on the one hand it isv
possible to admit solutions téken from fields other than the field of
rational numbers @, like algebfaic extensions of @ or finite fields, or
one could even search for solutions in different algebraic structures
like groups and rings, on the other hand the defining function f need
not be a polynomial function. But, in whatever way or direction one

wishes to extend the original definition of a diophantine equation, one

should always restrict its solutions to those one could call rightfully

rational or integral in some sense.

We like in this place to abide by the traditional conception, i.e.
£ EZ[x1,...,xn] and a solution (x1,...,xn) of £ = 0 is required to be
integral in the sense that x5 €Z for all i = 1,...,n.

Even then it is almost impossible to classify diophantine equations
in some sensible way. The lack of results of a general nature is partly
responsible; such results do exist, but rather sparingly. The ad hoc
character of the subject, especially of the period before 1930, is shown
very clearly in Dickson's famous history on the theory of numbers ([8]).
Nevertheless, if one insists on dividing diophantine equations into

different classes, a division which put the emphasis on methods and




techniques which have proven useful in diophantine analysis, is
preferable, rather than a classification merely based upon the external
form, such as degree, number of variables etc. This means that some
eQuations belong to more than one class.

Roughly speaking, diophantine analysis borrows mainly from the
following fields:
(1) Elementary Number Theory, (2) Algebraic Number Theory, (3) Algebraic
Geometry, (4) p-Adic Analysis, (5) Diophantine Approximation Theory and
(6) Miscelleneous Theories (like Logic, Combinatorial Theory, Geometry of
llumbers ete.). | |

With even less sophistication one might maintain each and every
diophantine equation to belong to at least one of the following
categories:

(1) Adebraic Methods: (2), (1), (3) and (4).

(II) Approximation Methods: (5), (1) and (k).
Here we shall exclusively discuss equations related to the first category.
This choice is not founded in the belief that the second category is the
lesser important one. On the contrary, the last decade has seen a great
many applications of approximation methods to the theory of diophantine
equations, especially of the so-called Gel'fond - Baker method. For the
interested reader, we have selected the following references: Baker [2],

[3], Shorey et al [20], Tijdeman [30], [31].

A natural consequence of our choice of subject is that we shall

illustrate the most important constructive techniques of category (I) by
means of specific equations. The set of equations from which we shall
draw our examples is the class of binary polynomial equations (a binary

equation has two variables). This class has been investigated extensively




and the results obtained give a clear picture of the algebraic
possibilities. The restriction implied by our choice also means that
the most famous diophantine equation of all, Fermat's Last Theorem,
shall not be included in our discussion. Much information on this
equation, i.e. <+ yn = " (n > 3), can be found in Edwards [9] and
the recently published work of Ribenboim [18].

In the closing lines of this introduction, we like to draw attention
to the books written by Ba¥makova [L4], Mordell [16] and Skolem [21],

in which one may find a real treasure of information, also of a historical

nature, on diophantine equations in general.

2. SOME RESULTS FROM ALGEBRAIC NUMBER THEORY

The purpose of the next example is to suggest that often the
relation between the variables occurring in a diophantine equation can

be made transparant by simple factorization. By this we mean application

of the Fundamental Theorem of Arithmetic: any positive integer may be
written in one way only as a product of primes, except for the order in
which the primes occur in the product.
2.1 EXAMPLE
For given k €Z, k # 0 consider the equation x* = y? + k. If
X,y €% gives a solution of this equation, then (x2 - y)(x? + y) =k

and a divisor d of k exists such that

x? - y=d and x* + y = k .

d

Here we may assume that §=; d and % > 0, because there is no loss of

generality in taking y > 0. Thus

x? = 3(d + %) and y = 3




The number of divisors of k is finite and so it should be immediately
clear from the above whether solutions do exist and if so how ‘they can
be computed.

If in addition one requires k to be prime (k = p), then d can have
no value other than 1 and consequently

x> = 3(p+1) and y=3(p-1).

This shows that at most one solution in positive integers x and y can
exist. The prime numbers p < 100 for which the equation is soluble

are p = T, 17, 31, T1 and 97.

Another example of an equation which can be solved completely by
elementary factorization is given in Stroeker [29].

Well then, most constructive methods used in diophantine problems
" apply at some stage factorization in certain algebraic number fields.
Therefore, we intend to formulate a few theoréms from the realm of
Algebraic Number Theory, which in our view are of fundamental importance
in the process of solving diophantine equations. We shall give no proofs,

but confine ourselves to indicating the relevant places in the literature.

Let K be a number field (a number field is an algebraic - and thus
finite - extension of the field Q) with ring of algebraic integers OK'
An ideal of 0K has a finite basis. A fractional ideal of 0K is a finitely
generated OK-module a’# 0, contained in K. Hence, each ideal g # O of
OK is also a fractional ideal of OK; in this context ideals of 0K are

sometimes called integral ideals. In the set of fractional ideals of

0K we define multiplication as follows: let the fractional ideals a and

b begenerated by Giseees0 and B,...,8 respectively; then the product
m

a*b is the fractional ideal generated by all ring products ai'Bj. This




way, the set of fractional ideals of OK becomes a group, the so-called
ideal group of K. This group is denoted by IK'

A direct generalization of the fundamental theorem of arithmetic
is given in Dedekind's theorem:
2.2 THEOREM (see Janusz [12], theorem I.L.2)

Each fractional ideal a of 0K can be written in one way only as the

prodauct of prime ideals of OK’ except for the order in which the prime
a a
ideals occur in the product: a = 621....&hn with distinet prime ideals &i

“and . a. €.
i o

From this theorem it easily follows that the ideal group IK is a
~ free abelian group generated by the prime ideals of OK. An important
subgroup of IK is the group of all fractional ideals generated by one
prime ideal only. This is the subgroup HK of fractional principal

ideals. The factor group IK/HK =: Cl,, the so-called class group of K,

K’
has the following important property, discovered by Dirichlet:

2.3 THEOREM (see Janusz [12], theorem I.11.10)

The class group CZK is finite.

The order of CZK 1s known as the class number of K, ﬁotation:
h = hK'
2.4 COROLLARY

Let a be a fractional ideal. Then o is principal. Moreover, if

k and h are relatively prime then a is principal whenever ak is

principal.

A very important theorem is Dirichlet's unit theorem:




2.5 THEOREM (see Janusz [12], theorem I.11.19)

The wnit group in the ring OK is the direct product of a finite
cyclic group of roots of unity and a free abelian group of rank r+s-1.
Here r is the number of real conjugate fields of X and s is the number
of pairs of complex conjugate fields of K; then r + 2s = [K:Q] the

extension degree of K over Q.

The meaning of the theorem is the following: in 0K a set of units.
{E],...,€r+s_1} may be found, so-called fundamental units, with the
property that for any unit n € 0K rational integers a; exist such that
a a
1 r+s5-1

the quotient of n and the product €y B iy is one of a finite

number of roots of unity contained in OK:

r+s-1 ai n
n=¢ I €7 ,0 =1.
. 1
1=1

The next theorem may be considered the most fundamental tool in

the process of solving diophantine equations, at least from an algebraic

point of view.

2.6 THEOREM (see also London & Finkelstein [15], theorem 25 p. T0)

Let Oy be the ring of integers of the number field K. Further, a,
16 a fixed ideal of O and m is a fized positive rational integer. If
X, ¥y 2 € OK satisfy the requirements:

i)rx' = ™ and (ii) the ideal generated by x and y divides a

then €45 €55 €5 € 0 may be found belonging to a finite set of‘unztu,
and elements o, B, Y of K belonging to a finite subset of K and also
a, b € 0K such that

= m = m = =mm
x=eoa ,y 828b s Z e3Yab and €1€2a5 €3Y

Proof From the aséumption, together with theorem 2.2 we deduce that




the principal ideals generated by x and y may be written as
(x) = a1Am and (y) = a2Bm .

where a1 and a2 are elements of a fixed finite set of integral ideals

with the property that any common ideal divisor of a, and g, also divides

1 2
as the ideals A and B are arbitrary ideals of OK' low, the number of
ideal classes is finite. So, if 4 belongs to class C, then a (fractional)

ideal A' exists belonging to the inverse class C-1 such that A+4' = (a)

for some a € 0K° Thus

(4" (x) = a1(a)m,

which shows that (4')™ and a, belong to the same ideal class. Consequently,

a1/(A')m is a (fractional) principal ideal, generated by o € K, say.
Then (x) = (a)(a)™ and hence

= m -
x = go8 ,

where €, is a unit. Now e, may be written as ¢

] = n1-n2, where the unit

1
n, can assume only finitely many different values. Now let ng be absorbed
m .

by a . Also o may be chosen from a finite subset of K, because CZK 1s

finite. The remainder of the proof now follows easily.

2.7 REMARK

If a = (1) and m and hK are relatively prime, then

m m
X =g ,y= €2b s 2 = e3ab

with a,b € OK and finitely many possible values for the units €0 € and

53. This follows immediately from corollary 2.L.
2.8 EXAMPLE

We return to example 2.1, but now we take k = pz, where p is a
given prime number. The positive divisors of k are 1, p and p2. For d = 1

we find x> = 3(p? + 1) and y = 3(p? - 1) . This is the only possible




value for d, since d = p yields x? = p. Hence

which may also be written as
Norm + x/2) = -1,

This expression means that p + x/2 is a unit of 0K with norm -1; here
K = Q(v2). The group of units of 0K is a simple one: 1 and -1 are the

only roots of unity and € = 1 + ¥2 is a fundamental unit (i.e. £ gene-
rates the free abelian unit group; r + s - 1 = 1), Since we may assume

x and p to be positive, we find that

P+ x/2=(1+ ¢§)2k+1

for some non-negative rational integer k. This means also that the prime

P can be written as
k
p= 1
320

+ .
(52! kez, k2 0).

J =
A different formulation of the problem may be given as follows.

Let the seguences {ak} and {bk} bedefined by

a *+b /2= (1+ )y em.

The sequence {ak} complies with the recurrence relation
ak+1 = 6ak -8 _, »k €Z

with initial conditions a8y = 1, a, = 7. (The sequence {bk} satisfies the

same recurrence relation, however with a different set of initial values.)

Because the sequence {ak}k 5 is increasing, we claim that the original

0

diophantine equation is soluble (with a single solution only) if and only

if the prime p appears in the sequence {a.k}k >0 The prime numbers

p < 1000 for which a solution exists are p = 7, 41 and 239.
We could also treat the equation

x* = y% + p? | p priem




in a different way. If x,y gives a solution, we write

x* = (y + pi)(y - pi).

Thus we factorize the right hand side in OL'with L = Q(i). Here hL =1,
the c&clic group of roots of unity is {1,-1,i,-i} and the free abelian
unit group is trivial, because r + s - 1 = 0, It is not difficult to
prove that p cannot possibly divide both x and y. This implies that
the only possible common prime ideal divisors of (y + pi) and (y - pi)
are (1 + i), (m) and (), where P = Tem in case p = 1 (mod L4). Now by
2.6 we see that |

y + pi=e(1+ 1)%m)P(m) %"
with € € {1,-1,i,-i}; a,b,c '€ {0,1,2,3} and A € OL. From

+ 1 = L = = = m
NormL/Q(y pi) = x* it then follows that a = b = ¢ Of Thus
y+pi=c¢e(u+iv)*=elu* - 6uv? + v* + i(budv - buv®)}

for certain u,v €Z. Because of the primality of P, we must have € = #*i,

Then equating coefficients of 1 and i gives

b 2

s *y = buv(u? - v2) , x = u? + v?

tp = u* - 6uv? + v

where the * signs correspond as indicated. This gives rise to the

generally very difficult representation problem of type (F = @(8))

qumF/Q(u -v8)=m, O0#m€EZ

with [F:@Q] = 4. We shall discuss such problems in section k.
The positive values of u and v corresponding with the solutions
(x,¥) of the original equation with P=T, 41 and 239 are (u,v) = (1,2),

(2,5) and (5,12) repectively.
3. INHOMOGENEOUS CUBIC EQUATIONS

A fundamental problem when studying diophantine equations is the

question of solvability. And further, assuming a given equation is




solvable, how many solutions are there? A very important problem,
closely related to the previous one, is the question of the actual
(and practical!) computation of the existing solutions, or in case
infinitely many solutions exist, can they be characterized in a simple
way (such as parametrization)?

Very iittle is known about solvability criteria: on the one hand
it is quite often easy to show the insolubility of a given equation by
means of impossible congruences (see: Nagell [17], Chapter VII and
Mordell [16], Chapters 2, 26; see also: Borevich [6] problem 4 on page 3),
and, on the other hand is the proof of the existence of solutions
nearly always constructive.

One of the most widely applied results obtained in diophantine

analysis is A. Thue's famous theorem on the approximation of irrational

numbers by rationals, dating from 1909. A direct consequence of Thue's

result is the following theorem:

3.1 THEOREM (see Mordell [16], Chapter 22)

Let f be a binary form (i.e. a homogeneous polynomial in two
variables) with coefficients inZ and of degree at least 3. If f is
irreducible over Q , then for any m €7 (m # 0) the equation f(x,y) = m

has at most a finite number of solutions in integers x and y.

3.2 REMARK

The condition "f is irreducible over Q" can be replaced by
"the discriminant of f (see section 4) does not vanish". Thue's proof
is ineffective. This means that it does not supply an algorithm for
constructing possible solutions, neither does it give a solvability

criterium.




The equation f(x,y) = m may be viewed as a so-called norm equation.
Indeed, let & be a root of f(t,1) = 0 and let K be the number field
generated by § over Q. Then f(x,y) = NormK/Q(x - y&). A great deal of
information is available on this type of equation. We refer to Mordell
[16], Chapters 18, 24 and 25. In the next section we shall give some
attention to this kind of diophantine equation.

Moreover, an important class of (inhomogeneous) equations exist
the solutions of which may be obtained from finite systems of binary
norm equations. A well-known example is the equation

y2=x+ax+ 01 , had + 2702 #0 (a,b €2Z).

This is a Weierstrass equation for an elliptic curve defined over the

rationals; any elliptic curve defined over @ can be represented by such
an equation. A wealth of information on this topic may be found in Cassels'
survey article [7]; see also Zimmer [32].
An important specisl case is the so-called Mordell equation, which
is obtained by setting a = 0 in the Weierstrass equation above. For a

proof of the next theorem, see Mordell [16], Chapters 24, 25 and 26, or

London & Finkelstein [15].

3.4, THEOREM

Solving the equation x* = y® + k (k €Z, k # 0) in rational integers
Xand y is equivalentAto one of the following:

(1) solving finitely many equations of type f.(u,v) = 1 in rational

3
integers u and v, where f3 18 a binary cubic form of negative or
positive discriminant as k 1s negative or positive respectively.

(ii) solving finitely many equations of type fh(u,v) = 1 in rational
integers u and v, where f), is a binary quartic form of negative
diseriminant.,

(The terminology used is explained in section L.)




From Thue's theorem 3.1 it follows immediately that Mordell's
" equation x* =y +k (k €Z, k # 0) admits of at most finitely many

solutions. Although we éhall ﬁot attempt to prove theorem 3.4, it may
help‘to know that equations of type f3(u,v) = 1 are obtained by the
factorization of y2 + k in prime ideals of a quadratic number field,
whereas the factorization of x3 - k in prime ideals of a cubic extension
of @ yields equations of type fu(u,v) =1,

Finally we allude to the exemplary character of fheorem-3.h; the
assertion, or part of it, is true for a larger class of equations than

Jjust those mentioned. This becomes evident in the next example.

3.5 EXAMPLE (see Stroeker [28])
In this example we consider the equation
(2y? - 3)% = x%(3x? - 2).
We shall show, at least in outline, that solutions of this equation in
integers x and y are determined by those of the equation
u* - 2buv® + 2y = 1
in integers u and v. To be precise, the connection is given by:
|x| = u® - 2uv + bv? and |y| = u® + 2uv - 6v2.
Well then, suppose X,y € N solve the original equation. Then a
positive integer z exists such that
3x2 -2 =122 and 2y% - 3 =xz .
It is easy to see that both x and z must be odd and 1 <x< oz On
setting uw = 3(z + x) and v = 3(z - x), one finds the relations
u? - buv + vZ = 1 and u? - v% + 3 = 2y2,

Hence, also 2u? - 6uv + v2 = y2 and this equation may be written as

(23 (=3 - q(d)2,

where u is even, v is odd and the factors of the left hand side are




relatively prime. Moreover, these factors both have negative sign.
v-3u=3v-3u-y)+3v-3u+y)=-a? - o2
and : u = 2ab
for certain co-prime integers a and b. On substituting of u = 2ab,
v = -a® + 6ab - Tb? into u? - 4uv + v2 = 1 , the equation
(a - ©)* - 24(a - b)b3 + 2Ub"* =1
is obtained, from which the required result follows.
Finally, we note that the original equation in x and y, representiﬁg
equation is for an elliptic curve defined over Q. The group of rational
point$ on this curve is generated by the point (x,y) = (3,3). There is

only one other solution in positive integers, namely (x,y) = (1,1).

3.6 EXAMPLE ( see Stroeker [24])

In this example we intend to give a rather sketchy proof of the
assertion (note that we follow theorem 3.4 to the letter): the solutions
ig integers x and y of the equation

‘ x3 o y?
are determined by, either the solutions in integers u and v of
(i) u® - 21uv? =1 and

u? - bouv? + 98v3 = 1 ’,
or those of the equations
(ii) u* - 8&u2v2 - 392uv? - 588v* =
| u® - 168u?v? - 1,176uv? - 2,352v"

u* - 92hu?v? - 15,288uv? - 71,1L8v"

Firstly, we factorize 7Ty2? + 1 in prime ideals of 0 where K = Q(V=T7).

Thus S+ yETI( - yAT) = X3

The number field K has the following fundamental properties: the class

number hK =1, {1,w} with w = 3 +,3/:7 is a basis for 0K and 2 = wew.




Common prime ideal divisors of (1 + yv~T) and (1 - yv=7) are possibly
(w) or (w) and no others. Hence
1oy +2yw=1+ 37 = (@%@ + vw)?
with o,B8 € {0,1,2} and a,b €Z. Taking also the conjugate equation into
consideration, we see immediately that o+ B =0 or 3. If a = 8.= 0,
then comparison of coefficients of 1 and w left and right, and subsequently
elimination of y from the resulting equations, yields
ud - 21uv? = 1,
Here u and v are defined by 2u =2a + b , 2v = b.
If a=1and B = 2, then similarly we obtain the equation
ud - houv? + 98v3 = 1,
where u = a + kb , v = b, Analogously, the assumption o =2 , B = 1
leads to the same equation in u = a - 3b and v = -b. This proves the
first part of our assertion.
.Secondly, factbrization inZ of x3 - 1 yields
(x = 1)(x* +x+1) =Ty .
This furnishes the three possibilities:

x - 1= )a?

} with (A,u) = (1,7), (3,21) or (21,3).

xZ+ x+ 1=
Note that hef(x - 1, x2+x+ 1) =1 or 3.
Now the particulars of the number field L = Q(p), where p is the

third root of unity p = 3 + 3/-3 , are: k. = 1, {1,p} is a basis for

L
OL’ the cyclic group of roots of unity is generated by p and the free
abelian group of units is trivial, because r +s-1=0.
For A = 1, y = 7 we write
x=-1=2a%2 | (x+p)ix - p?) = To? .

From theorem 2.6 we deduce

x+p=2a(1-20)%(c + ap)? ,




where o € {2 + p, 3 - p} , s € {0,1} and (c,d) €Z . Note that units
may be absorbed in the square (c + dp)?2.
From Norm_ , (x + p). = 7°3s(c2 + cd + d?)? and also Korm , (x + p) = Tb2,
L/Q L/Q
one deduces immediately s = O.
The choice a = 3 - p leads to a contradiction when considering
congruences mod 4 and mod 3 successively. On the other hand, if o = 2 + p
then equating coefficients yields
x = 2c? - 2cd - 3d%2 and 1 = c? + 6cd + 242 .

Because of c? - 8cd - 542 (¢ - 4d)? - 21d2, we may write

= (c - 4d - a)(c - 4d + a).

Further, from hef(c - 4d - a, ¢ - 4d + a) = 2, we deduce the existence

of co-prime integers u and v such that
c-bd+a=2u2,c-bd-a=Lhev?,d=2uv.

The second possibility, namely c¢ - 4d + a =6u? , c - 4d - a = 1h4v?

and d = 2uv, gives rise to an impossible congruence mod 5.

Now, on substitution of ¢ = u? + 8uv + 21v2 and d = 2uv into
2

c® + 6cd + 2d% = 1, we find

u* + 28udv + 210u2v2 + 588uv?® + Lhiv* = 1.

The unimodular transformation given by the matrix (; ZJ carries

this equation to the equation
u* - 8hu2v? - 392uv3 - 588v* = 1.

Similar arguments are used to obtain the other two norm equations.
o

L. NORM EQUATIONS

A binary n-ic form is a homogeneous polynomial of degree n in two

. .. . in-i,
unknowns, with coefficients inZ. If fn(x,y) = I a,xy is such a form,
i=0
we always assume the leading coefficient a to be non-zero. The

2n-2

diseriminant of £ is the number D = D(fn) =a

« 11 (8. - 0.)%, where
i<y 9




e1’ e2

D # 0 if and only if the roots of fn(t,1) = 0 are distinct. Now, norm

s-++» O are the roots of the equation fn(t,1) = 0. Clearly,

equations are equations of type
fn(x,y) =m (m€Z, m # 0),
where fn'is an irreducible (over Q)‘binary n-ic form.
A root 8 of fn(t,1) = 0 gives the extension K = Q(6) of § of
degree n. The other roots of fn(t,1) = 0 are the field conjugates of
6 and

f (x,y) = Norm_, (x - y0).

K/®Q

o

K/Q(_x'— v0) =m (m €Z, m # 0) in

rational integers x and y always boils down to solving a finite number

Solving an equation of type Norm

of equations of the form

X - y0 = eg+q | (*)
where o takes only finitely many differgnt values in 0K (this number
depends on the factorization of (m) into prime ideals of OK)’ and €
runs through the unit group of OK' What makes quation (*) so special

is the fact that the left hand side does not contain the basis elements

62,...,en-]. Hence, for each value of a, the expression (*) asks for

units € of a very special type. Consequently, each equation (*) is
equivalent to finitely many sets (depending on the number of roots of
unity contained in OK) of n - 2 equations in the exponents of fundamental
units. In case the number of fundamental units (which is the rank of the
free abelian unit group: r + s - 1), agrees with the number of exponeétial
equations mentioned above (this number is n - 2 = r + 2s - 2), then
Skolem's p-adic method [22] is applicable; see also Lewis [13]. In

example 4.3 we shall give a brief application of this method.

All these contemplations are illustrated by some examples.




4.1 EXAMPLE (see Nagell [17], Chapter VI)
Suppose (x,y) €7Z? gives a solution of the quadra.tic equation
15%% + 20xy + 6y = 1.
On setting u = 10x + 6y , v = x this equation becomes

u? - 10v: = 6.

If K = @(v10) then hK =2, {1,0} with w = V10 is a basis for 0K and

€=3+Wwis a fundamental unit of norm -1 (see the tables of quadratic
number fields in Borevich [6]). Further, 2 and 3 factor into prime
ideals of 0K as follows: (2) = 8)2 and (3) Q-9 where XJ= (2,w),
<t= (3,1 + w) and CT = (3,1 - w). Hence
u? - 1ov? = NormK/Q(u + vw) =

and this gives in terms of ideals of OK

(u + vw) = &-Ul or K:-al' .
It is not difficult to prove that 8»-02 = (4L + w) and (6).02«' = (4 - w) and
consequently
u+ vw = x(b £ )3+ w)2k
with k €Z and independent + signs. If we assume both u and v to be
possitive (this is no loss of generality) then we may drop the first
* sign. As in example 2.8 the solutions can be determined by means of
recurrences of order two;

The first few values of u and v are: (u,v) = (4,1), (16,5), (136,43),
(604,191) etc., and the corresponding“values of x (> 0) and y are: (x,y) =
(1,-1), (5,11), (43,-49), (191,419) etc.

Continued fractions are also used quite frequently when dealing

with quadratic equations.

4,2 EXAMPLE
We return to example 3.6 (i). The equation u® - 21uv? = 1 is

trivially solvable: the only solution is u = 1, v = 0. The cubic equation




f3(u,v) = ud - houv? + 98v? = 1

is anything but trivial. The discriminant D of f_ is positive, to be

3
precise D = 233373 and this means that the equation f3(t,1) = 0 has

three real roots 61, 62 and 6_ say. For each 1 = 1,2,3 the number field

3

Ki = Q(Bi) has a free abelian unit group of rank 2. Hence

ud - houv? + 98v3 = 1

or NormKi/Q(u - vei) =1

is equivalent with
m) mo
- = + "
u vei e, 5
where {€1,€2} is a set of fundamental units of Oy - This gives rise to
i
1 and my Skolem's

method, referred to above, is not applicable in this case. Considering

only one equation in the two unknown exponents m

also the conjugate equations, one may try factorization in an extension
of Ki' That this could get very complicated is apparent from Ljunggren
[1&], where the similar equation x3 - 3xy? - y3 = 1 is treated.

The fact that f3(u,v) = 1 can be solved after all, is a consequence
of the relation which exists between the solutions of this equation and
those of x3 - Ty? = 1; the solutions of the latter equation are in turn
related to those of the three norm equations of 3.6 (ii), which can be
solved by Skolem's p-adic method. The equations fh(u,v) = 1 are found
to have the solution (u,v) = (1,0) and only the third equation has the
additional solution (u,v) = (13,-1). Further, the only solutions of
x3 - Ty?2 = 1 are (x,y) =-(2,1), (4,3) and (22,39). For all this and the
corresponding relations we refer to [24].

The implication of these results is that the equation
f3(u,v) = ud - houv? + 98v3 = 1
has no other than the following three solutions: (u,v) = (1,0), (-3,-1)

and (9,2),




L.3 EXAMPLE (see Stroeker [26])
Now we shall give an example of Skolem's p-adic method.
We consider the quartic norm equation
fu(u,v) = u* +2u?v? - 2yt = 1,
The discriminant of fh equals -2°3% and thus fh(t’1) = 0 has two real

roots and one pair of complex conjugate roots; r + 2s = 4, r = 2 and

s = 1. Let 6 be a real root of fu(t,l) = 0. Then the ring OK of K = @(9)

has a free abelian unit group of rank 2. Since K is a quadratic extension
of §(¥3), it easily follows that {1,6,62,83} is a basis for O+ It is
also reasonably easy to establish that {1 + 6,1 - 8} is a fundamental
set. (In section 5 methods will be given for constructing a basis and
a set of fundamental units for 0.)
From
u* + 2u?v? -2v* = 1 or NormK/Q(u - vH) =1

we deduce

u-ve=2+(1+0)P01-0%
with p,q €72. If we do not specify the sign of u and v, then the * sign

may be dropped. Further, it is no restriction to assume p 2> q. Thus
u-ve=(1+9)PY - g2),

Because of
+ +
u? - vie? = (1 - 0%)F = 1 - (FT%e? + 2(....0),
P-aq is apparently odd. Put 2n + 1 = p - g. We intend to show that
n = 0. Define a;, bi’ c; and di for each 1 €Z by

r
(1+0)° o 4 +v.8+c.0%+.4.0°.
1 1 1 1

Then from

u-ve=(a +b6+c0+dod)1-022
n n n n

we deduce




Further, let oy and Bi be given by

2i _ a2 .

Now, after some calculations, we obtain the expressions

n
2n+1 2n+1

=21 (7, )8, =21 (,:, .)B:
5=0 2] J'1 5=0 2J+1°73-1

2n+1

2n+1 ‘ n
( )B' = Z (2J+]

Substituting these expressions for a s bn’ c and dn into the relation
ad =Dc ,yields, after dividing through by L(n + 1)(2n + 1)2,

n

r r..(n)

2 2
1 (??)( i
i,j=0 J ]

5518, 18,

1-

where the rational numbers rij(n), defined by
rij(n) = (J - 1)/(2i + 1)(2] + 1)(en - 2i + 1)(2n - 25 + 1)
are 2-adic integers, i.e. they have odd denominators.

Now suppose n > 1 with 2-adic value m (this means that n contains
precisely m factors 2 in its prime decomposition). Then it is easy to
show that for any pair (i,j) with i >0eand j >0 (i =]J =0 is excluded)
the (i,j)th term in the dubble sum above has 2-adic value at least m + 1,
with the single exception of tﬁe (0,1)th term, which has 2-adic value m.
This is a clear contradiction, because the total sum equals zero.

Hence n = 0. Then

u-ve=(1+0)(1- 022

and this is only possible when q = 0. Conseqguently, (u,v) = (1,0) is the

only solution of the original equation fh(u,v) = 1.
For more examples on this type of equation, see Stroeker [24], [25],

[27] and [28].




5. COMPUTATIONAL CONSIDERATIONS

From the previous sections it is clear that in the process of
solving a diophantine equation one is often confronted with the

necessity of computing:

(1) The class numbef of a number field.
There are computer programs for calculating the class number of
quadratic number fields (tables can be found in Borevich [6]) and
certain cubic number fields (cf. the tables by Selmer [19] and
Angell [1]).
In case one is dealing with a norm equation of type f(x,y) = 1,
one only needs to have information on units; knéwledge of class

numbers of number fields involved is of little importance here.

But when studying equations of type f(x,y) = m # 1, the prime ideal

decdmposition of (m) plays an important part; in particular, one
needs information on the class group in such cases.
Most practical methods for calculating the class number of a number

- field K = Q(e) use the fact that each ideal class contains an
integral ideal of bounded norm (this bound MK only depends on K).
By inspection of principal ideals of small norm, generated by
elements of type u + v6 (u,v €Z), it is often possible to select
a maximal set of inequivalent ideals representing all classes, and
such that each ideal is bounded by MK. This way one may find the
class number of K. For further information the reader should consult
the relevant parts of Borevich [6] and Janusi [12].

(ii) A basis for the ring O of a number field K.

In general, this is ﬁot very hard. A well written description of

the computation of a canonical basis is given in Holzer [11]. We




shall give a brief summary in example 5.1.

A set of generators of the free abelian group of units ( a funda-
mental set ) in the ring 0K of the number field K.

This is a very important, and often difficult part of the methods

described in this exposition. In example 5.2 we will discuss a

method due to Befwick [5], which is applicable in case r + s - 1

= 2 (thus, if n = r + 2s, in the cases: (n,r,s) = (3,3,0), (h,2,i),

(5,1,2) and (6,0,3)).

5.1 EXAMPLE (see Holzer [11], §29 pp.119 - 130)
Let 6 be an algebraic integer of degree n, and put K = §(6). A

canonical basis for the ring 0y is a basis {m1,w ,...,mn}, where the w,

2
have the following shape:

= 1
(a21 + 6)/b2

(a,, + a 58+ 82)/b

31 3 3

w (3. n-2
n,n-1

+ + ... +
n ni an2e a

+ an-—1)/bn

Moreover, b, = 1 and b. > 1 divides bj+ for each J = 1,...,n~1

1 J 1

Such a basis always exists. In a canonical basis the ajk can invariably

be chosen such that
19, i} : :
-3b. < a. < 3b. = 2,003k = 1,0..,3-1

.’EJ ik = j y J ’ sily ’ »d

If D(O) is the discriminant of the monic minimal polynomial of 6 over @,

then b; divides D(8). This puts a drastic restriction on the values
i=1 ’
of b..
i

The procedure for calculating a canonical basis runs along the




following lines: suppose w1""’wi have been determined (w1 = 1). Then

b. must satisfy the requirements

1i+1
2n-21

1
> 1 and bi+1 divides the quotient D(6)/ 1l b2 .
J=1

it =
For each of the possible values for bi+1’ find ai+1,k such that

b

-3p. < a. < 3b. : = el .
3b 8.1_‘_1’k ==§b1+] k 1, 51

Finally, check whether S thus obtained, is an algebraic integer.
The last part of this process may be accomplished as follows:
n-2

Lta®t o ta 67 + 6" ) /b with -fb < a8, < 3b,

For a = (a
n-1 J

we try to construct the monic defining polynomial of o over §. To this
end we consider the nXn matrix R with rational entries, satisfying:
(1) bR has only integral entries, and
(2) (aIn - R)Ve =0, where Vo is the column vector with components
1,9,...,6n—1. To calculate this expression, note that for each
i the product aei can be written as a linear combination of
140504 ,Bn_1 with coefficients in %Z.
Since Vo # 0, we have det(aIn - R) = 0. Now, det(tln -R) =t" + A1tn"1 +
cel * An is the minimal defining polynomial of o over . Hence & is an
algebraic integer if and only if Ai €7Z for all i. Because biAi €7Z and

-3b < a; < 3b, it is not difficult, using congruences, to decide whether

0 is integral or not.

A non-trivial example can be found in Stroeker [25], p.137. The
discriminant of £(t) = t* -126t% —756t - 1323 equals D(f) = - 28397%,
If £ is a real root of f(t) =>O, then a canonical basis for OK with

K= Q&) is {w1,w2,m3,wh} with w, = 1, w, = &, wy = (3 + £2)/6 and

w, = (63 + £3)/126.

5.2 EXAMPLE
We continu the previous example, but this time we direct our

attention to the units of OK. Here K = Q(&) and £ is a real root of the




polynomial £(t) = t* -126t% -756t - 1323. Because 4 = r + 25 and r = 2,
s = 1 a fundamental set of units has r + s - 1 = 2 elements.
According to Berwick [5], p. 367, the free abelian unit group of 0K is

generated by each couple of units defined by:

(1) € > 1 and minimal , |e'| <1, €"€" < 1

(2) le] <1, €' > 1 and minimal , €"€" < 1

(3) el <1, Jel <1, || = |e"| > 1 and minimal .
In addition we have 618283 =1 as Ej is determined by (j). Note that
€', €" and €" are the field conjugates of E.

An algorithm for computing the units Ej is easily devised: let
each of the restrictions from (1), (2) and (3) successively be imposed
on € = aw, + bw2 + cw3 + dwh .

Since the w; have known values, we get conditions on the rational
integers a, b, ¢ and d. So this provides € with something like an
"ideal ratio" a : b : c : d for the NormK/Q(E) to be small (this
process also can be used when calculating classvnumbers; see under (i)
at the beginning of this section). A very clear exposition, with many
examples, is given in London & Finkelstein [15], p.81 etc.; here the
algorithm in question is called the scaling algorithm.

Finally, we end this example by giving the values of Ej in the
field K = Q(&):

151(»1 + 117w2 + 29003 - 98“’1; s
1 ’ o wh and
Juw, - hme 2w3 + hwb’ .

The canonical basis {m1,w2,w3,wh} used is the one exhibited in example

5.1.
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