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FACTORIZATION METHODS FOR SOLVING

DIOPHANTINE EQUATIONS

by

R.J. Stroeker

ABSTRACT

In this exposition we give an overview of the algebraic

factorization methods, based upon Dedekind's Unique Factorization

Theorem for ideals in Dedekind domains, which are frequently used

to effectively solve Diophantine equations. Emphasis is put on the

practical computation of solutions. This finds expression in the

many examples which have been included.
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1. INTRODUCTION

A diophantine equation is usually defined as an equation in two

or more variables

f(X1,X2,00.10(n n > 2

the solutions of which are required to be integers or sometimes rational

numbers. The function f is often a polynomial function with integer

coefficients. At present a more general definition of the notion of

•diophantine equation is sometimes adopted: on the one hand it is

possible to admit solutions taken from fields other than the field o

rational numbers (4, like algebraic extensions of Q or finite fields or

one could even search for solutions in different algebraic structures

like groups and rings, on the other hand the defining function f need

not be a polynomial function. But, in whatever way or direction one

wishes to extend the original definition of a diophantine equation, one

should always restrict its solutions to those one could call rightfully

rational or integral in some sense.

We like in this place to abide by the traditional conception, i.e.

f CZ[x
1'

x
n 

and a•solution (x1,... ,x) of f = 0 is _required to be

integral in the sense that :x. NEZ for all i = 1,...,n.

Even then it is almost impossible to classify diophantine equations

in some sensible way. The lack of results of a general nature is partly

responsi;Ole; such results do exist, but rather sparingly. The ad hoc

character of the subject especially of the period before 1930,. is shown

very clearly in Dickson's famous history on the theory of numbers ([8]).

Nevertheless, if one insists on dividing diophantine equations into

different classes, a division which put the emphasis on methods and
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techniques which have proven useful in diophantine analysis, is

preferable, rather than a classification merely based upon the external

form, such as degree, number of variables etc. This means that some

equations belong to more than one class.

Roughly speaking, diophantine analysis borrows mainly from the

following fields:

(1) Elementary Number Theory, (2) Algebraic Number Theory, (3) Algebraic

Geometry, (4) p-Adic Analysis, (5) Diophantine Approximation Theory and

(6) Wscelleneous Theories (like Logic, Combinatorial Theory, Geometry of

Numbers etc.).

With even less sophistication one might maintain each and every

diophantine equation to belong to at least one of the following

categories:

(I) Algebraic Methods: (2), (1), (3) and (4).

(II) Approximation Methods: (5), (1) and (4).

Here we shall exclusively discuss equations related to the first category.

This choice is not founded in the belief that the second category is the

lesser important one. On the contrary, •the last decade has seen a great

many applications of approximation methods to the theory of diophantine

equations, especially of the so-called Gel tfond - Baker method. For the

interested reader, we have selected the following references: Baker [2],

[3] Shorey et al [20], Tijdeman [30], [31].

A natural consequence of our choice of subject is that we shall

illustrate the most important constructive techniques of category (I) by

means of specific equations. The set of equations from which we shall

draw our examples is the class of binary polynomial equations (a binary

equation has two variables). This class has been investigated extensively



and the results obtained give a clear picture of the algebraic

possibilities. The restriction implied by our choice also means that

the most famous diophantine equation of all, Fermat 's Last Theorem,

shall not be included in our discussion. Much information on this

equation, i.e. x + yn = 
n 
(n > 3), can be found in Edwards [9] and

the recently published work of Ribenboim [18].

In the closing lines of this introduction we like to draw attention

to the books written by BAmakova [4], Mordell [16] and Skolem [21],

in which one may find a real treasure of information, also of a historical

nature, on diophantine equations in general.

2. SOME RESULTS FROM ALGEBRAIC NUMBER THEORY

• The purpose of the next example is to suggest that often the

relation between the variables occurring in a diophantine equation can

be made transparant by simple factorization. By this we mean application

of the Fundamental Theorem of Arithmetic: any positive integer may be

written in one way only as a product of primes, except for the order in

which the primes occur in the product.

2.1 EXAMPLE

For given k k 0 consider the equation x4 = y2 + k. If

x,y EiZ gives a solution of this equation, then (x2 - y)(x + y) = k

and a divisor d of k exists such that

y = d and x2 y .

Here we may assume that --> d and -d> 0, because there is no loss ofd ==

generality in taking y > O. Thus

k,
x2 = + —) and



The number of divisors of k is finite and so it should be immediately

clear from the above whether solutions do exist and if so how they can

be computed.

If in addition one requires k to be prime k = then d can have

no value other than 1 and consequently

x2 = i(p + 1) and y = i(p - 1).

This shows that at most one solution in positive integers x and y can

exist. The prime numbers p < 100 for which the equation is soluble

are p = 7, 17, 31, 71 and 97.

Another example of an equation which can be solved completely by

elementary factorization is given in Stroeker [29].

Well then, most constructive methods used in diophantine problems

apply at some stage factorization in certain algebraic number fields.

Therefore, we intend to formulate a few theorems from the realm of

Algebraic Number Theory, which in our view are of fundamental importance

in the process of solving diophantine equations. We shall give no proofs,

but confine ourselves to indicating the relevant places in the literature.

Let K be a number field (a number field is an algebraic - and thus

finite - extension of the field q) with ring of algebraic integers OK.

An ideal of OK has a finite basis. A fractional ideal of OK is a finitely

generated 0 -module a 0, contained in K. Hence, each ideal a 0 of

K 
is also a fractional ideal of 0 • in this context ideals of 0 are

K'

sometimes called integral ideals. In the set of fractional ideals of

0
K 
we define multiplication as follows: let the fractional ideals a and

b begenerated by al,- an and respectively; then the product

a.b is the fractional ideal generated by all ring products This
0



way, the set of fractional ideals of OK becomes a group, the so-called

ideal group of K. This group is denoted by /K.

A direct generalization of the fundamental theorem of arithmetic

is given in Dedekind's theorem:

2.2 THEOREM (see Janusz [12], theorem I.4.2)

Each fractional ideal a of OK can be written in one way only as the

product of prime ideals of OK, except for the order in which the prime
al an

ideals occur in tile product: a -= t)
1n with distinct prime ideals

and a. EeE.
1

From this theorem it easily follows that the ideal group /K is a

free abelian group generated by the prime ideals of 
0K' 

An important

subgroup of IK is the group of all fractional ideals generated by one

prime ideal only. This is the subgroup 
11K 

of fractional principal

ideals. The factor group IKIHK =: CiK, the so-called class group of K,

has the following important property, discovered by Dirichlet:

2.3 THEOREM (see Janusz [12], theorem I.11.10)

The class group CL is finite.

The order of CL is known as the class number of K, notation:

h = h
K

2.4 COROLLARY 

Let a be a fractional ideal. Men ah is principal. Moreover, if

k and h are relatively prime then a is principal whenever a is

principal.

A very important theorem is Dirichlet's unit theorem:

a
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2.5 THEOREM (see Janusz [12] theorem 1.11.19)

The unit group in the ring OK is the direct product ()fa finite

cyclic group of roots of unity and a free abelian group of rank r+s-1.

Here r is the number of real conjugate field's of K and s is the number

of pairs of complex conjugate fields of K; then r + 2s = [K:Q] the

extension degree of K over Q.

The meaning of the theorem is the following: in 0
K 
a set of units

{ 
1" 

• . 
'
E
r+s- 

} may be found so-called fundamental units, with the

property that for any unit n E 0 rational integers a. exist such thatK 
a a

r+s-1the quotient of 1-1 and the product e
1 
....e

r+s-1 
is one of a finite

number of roots of unity contained in 0
K
:

r+s- 1 a.
= c.1

i=1 1
en = 1

The next theorem may be considered the most fundamental tool in

the process of solving diophantine equations, at least from an algebraic

point of view.

2.6 THEOREM (see also London & Finkelstein [15], theorem 25 p. 70)

Let 0
K 
be the ring of integers of the number field K. Further, ao

is a fixed ideal of OK and m is a fixed positive rational integer. If

x, y, z E 0 satisfy the requirements:
••

(i) xsy = zm and (ii) the ideal generated by x and y divides ao ,

then e
1 1 

e
2' 

e
3 
E O

K 
may be found belonging to a finite set of units,

and elements a, 13, y of K belonging to a finite subset of K and also

a, b E 0 such that

a
m 
,y=c13 

m
, z = e

3
ya and ele2

Proof  From the assumption, together with theorem 2.2 we deduce that



the principal ideals generated by x and y may be written as

(x) = a
1
Am and (y) = a

2
Bm 

9

where a
1 
and a

2 
are elements of a fixed finite set of integral ideals

with the property that any common ideal divisor of al and a
2 

also divides

ao; the ideals A and B are arbitrary ideals of OK. *Now, the number of

ideal classes is finite. So, if A belongs to class C, then a (fractional)

ideal A' exists belonging to the inverse class C-1 such that AA' = (a)

for some a E 0
K 

Thus

(A I) (x) = al(a)m,

which shows that 
(44

1)m and al belong to the same ideal class. Consequently,

a
1
A/41)m is a (fractional) principal ideal, generated by a E K say.

,Then (x) = a)ka)
111
 and hence

x.= E
1
aa
m

where e
1 
is a unit. Now E may be written as e = n -nm, where the unit

1 1 1 2

n
1 
can assume only finitely many different values. Now let n

2 
be absorbed

by am. Also a may be chosen from a finite subset of K, because CZ is

finite. The remainder of the proof now follows easily.

2.7 REMARK

If a
o 
= 1 and m and h are relatively prime, then

x a
m

y = c b
m

= c
1 ' 2 

, z = E
3 
ab

with a,b E 0 and finitely many possible values for the units c, C
2 

andK 1

£3. This follows immediately from corollary 2.4.

2.8 EXAMPLE

We return to example 2.1, but now we take k = p2, where p is a

given prime number. The positive divisors of k are 1, p and p2. For d = 1

we find x2 = i(p2 + 1) and y = i(p2 - 1) . This is the only possible



value for d since d = p yields x2 = p. Hence

p2 2x2 = -1 ,

which may also be written as

( + xV72-) = -1 .NOr11141(v)/(4.1)

This expression means that p + x1/2- is a unit of 0
K 

with norm -1; here

K = Q(/2). The group of units of OK is a simple one: 1 and -1 are the

only roots of unity and E = 1 )/7 is a fundamental unit (i.e. E gene-

rates the free abelian unit group; r + s 1 = 1). Since we may assume

x and p to be positive, we find that

P xV2 = (1 4. v-f)
2k+1

for some non-negative rational integer k. This means also that the prime

p can be written as

(2k+.1)2j
(k E2Z, k > 0

J=0 2J

A different formulation of the problem may be given as follows.

Let the sequences {a
k
} and {b k} bedefined by

k 
b
k 

= (1 + v2 )2k+1 9 k EZZ.

The sequence {a
k 

complies with the recurrence relation

ak+1 
= 6a

k 
- a

k-
, k E'ZZ

with initial conditions a
0 
=1, a

1 
= 7. (The sequence {b

k 
satisfies the

-

same recurrence relation, however with a different set of initial values.)

Because the sequence {a
k
}
k > 0 

is increasing, we claim that the original

diophantine equation is soluble (with a single solution only) if and only

if the prime p appears in the sequence {a
kk > 0. 

The prime numbers

p < 1000 for which a solution exists are p = 7, 41 and 239.

We could also treat the equation

x4 = y2 + p , p priem



in a different way. If x,y gives a solution, we write

(y + pi)(y — pi).

Thus we factorize the right hand side in OL with L = g(i). Here h = 1,

the cyclic group of roots of unity is {1,-1,i,-i} and the free abelian

unit group is trivial, because r + s 1 = 0. It is not difficult to

prove that p cannot possibly divide both x and y. This implies that

the only possible common prime ideal divisors of (y + pi) and (y - pi)

are (1 + , (7)

2.6 we see that

and (i17), where p = 7;TT in case p E 1 (mod 4). Now by

= c(1 + i)a(7T —c

with E E {1,-1,i,- }; a,b,c E {0,1,2,3} and A E OL. From

rmL/c4(y ) = 4 it then follows that a = b = c = 0. Thus

i(4113v Liuv3)}

for certain u,v E. Because of the primality of p, we must have C = ±i.

y + p = e(u + iv)4 = E{U 6u2v2 4. v4

Then equating coefficients of 1 and i gives

±p = u4 6u2v2 + 4 -
V , +y = 4uv(u2

where the ± signs correspond as indicated. This gives rise to the

generally very difficult representation problem of type (F = Q(6))

NormF/Q(u ve) = m 0 m E2Z

with [F:] = 4. We shall discuss such problems in section .

The positive values of u and v corresponding with the solutions

(x,y) of the original equation with p = 7, 41 and 239 are (u,v) = (1,2),

(2,5) and (5,12) repectively.

3. INHOMOGENEOUS CUBIC EQUATIONS

A fundamental problem when studying diophantine equations is the

question of solvability. And further, assuming a given equation is
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solvable how many solutions are there? A very important problem,

closely related to the previous one, is the question of the actual

(and practical!) computation of the existing solutions, or in case

infinitely many solutions exist, can they be characterized in a simple

way (such as parametrization)?

Very little is known about solvability criteria: on the one hand

it is quite often easy to show the insolubility of a given equation by

means of impossible congruences (see: Nagell [17], Chapter VII and

Mordell [16], Chapters 2 26, see also: Borevich (6) problem 4 on page 3),

and on the other hand is the proof of the existence of solutions

nearly always constructive.

One of the most widely applied results obtained in diophantine

analysis is A. Thue's famous theorem on the approximation of irrational

numbers by rationals, dating from 1909. A direct consequence of Thue's

result is the following theorem:

3.1 THEOREM (see Mordell [16], Chapter 22)

Let f be a binary form (i.e. a homogeneous polynomial In two

variables) with coefficients inM and of degree at least 3. If f is

irreducible over (4, then for any m E2Z 0) the equation f(x,y) = m

has at most a finite number of solutions in integers x and y.

3.2 REMARK

The condition "f is irreducible over Q" can be replaced by

"the discriminant of f (see section )4) does not vanish". Thue's proof

is ineffective. This means that it does not supply an algorithm for

constructing possible solutions, neither does it give a solvability

criterium.



The equation f(x,y) = m may be viewed as a so-called norm equation.

Indeed let be a root of f(t,l) = 0 and let K be the number field

generated by over Q. Then f(x,y) = rm104(x - 5r). A great deal of

information is available on this type of equation. We refer to Mordell

[16], Chapters 18, 24 and 25. In the next section we shall give some

attention to this kind of diophantine equation.

Moreover, an important class of (inhomogeneous) equations exist

the solutions of which may be obtained from finite systems of binary

norm equations. A well-known example is the equation

= X
3 
+ ax + b , 4E3.3 + 27b2 0 0 (a,b E2Z).

This is a Weierstrass equation for an elliptic curve defined over the

rationals; any elliptic curve defined over Q can be represented by such

an equation. A wealth of information on this topic may be found in Cassels'

survey article [7]; see also Zimmer [32].

An important special case is the so-called Mordell equation, which

is obtained by setting a = 0 in the Weierstrass equation above. For a

proof of the next theorem, see Mordell [16], Chapters 24 25 and 26, or

London & Finkelstein [15].

3.4. THEOREM

Solving the equation x3 = y2 + k (k E2Z, k 0) in rational integers

x and y is equivalent to one of the following:

1) solving finitely many equations of type f3(u,v) = 1 in rational

integers u and v, where f3 is a binary cubic form of negative or

positive discriminant as k is negative or positive respectively.

(ii) solving finitely many equations of type f(u,v) = 1 in rational

integers u and v, where 4 
is a binary quartic form of negative

discriminant.

(The terminology used is explained in section 4.) ci
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From Thue s theorem 3.1 it follows immediately that Mordents

equation x3 = y + k (k E2Z, k 0) admits of at most finitely many

solutions. Although we shall not attempt to prove theorem 3.4, it may

help to know that equations of type f3(u,v) = 1 are obtained by the

factorization of y2 + k in prime ideals of a quadratic number field,

whereas the factorization of x k in prime ideals of a cubic extension

of Q yields equations of type fOu,v) = 1.

Finally we allude to the exemplary character of theorem 3.4; the

assertion, or part of it, is true for a larger class of equations than

just those mentioned. This becomes evident in the next example.

3.5 EXAMPLE (see Stroeker [28])

In this example we consider the equation

(2y2 .... 3)2 

= X2(3X 2).

We shall show, at least in outline, that solutions of this equation in

integers x and y are determined by those of the equation

LI 
- 241.1v3 +24v4 =1

in integers u and v. To be precise, the connection is given by:

lxJ = u2 - 2uv + 4v2 and lyl = u2 + 2uv - 6v2.

Well then, suppose x,y E IN solve the original equation. Then a

positive integer z exists such that

3x2 - -2 = z2 and 2y2 - 3 = xz .

It is easy to see that both x and z must be odd and 1 < x < z. On

setting u = i(z + x) and v = i( - ), one finds the relations

- 41.1v + v2 = 1 and u2 - v2 4- 3 = 2y2.

Hence also 2u2 - 6uv + v2 = y2 and this equation may be written as

(v-3u-Yl(v-3u+y l
2 ' 2 '

where u is even, v is odd and the factors of the left hand side are
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relatively prime. Moreover, these factors both have negative sign. Thus

V - 3u = i(v - 3u - y) + i( - 3u + y) = 2 7b2

and u = 2ab

for certain co-prime integers a and b. On substituting of u = 2ab,

2 + 2 i 2 L6ab - 7b into u - 4UNT + V2 = 1 , the equation

(a - b)4 - 2)4(a - b)133 241)4 = 1

is obtained, from which the required result follows.

Finally, we note that the original equation in x and y, representing

equation is for an elliptic curve defined over q. The group of rational

points on this curve is generated by the point (x,y) = (3,3). There is

only one other solution in positive integers, namely (x,y) = (1,1).

3.6 EXAMPLE ( see Stroeker [24])

In this example we intend to give a rather sketchy proof of the

assertion (note that we follow theorem 3.)4 to the letter): the solutions

in integers x and y of the equation

X3 - 7y2 = 1

are determined by either the solutions in integers u and v of

( 
3 
- 21UV2 = 1 and

u3 42uv2 + 98v = 1 ,

or those of the equations

84U2V2 392uv3 588v4 = 1

- 168u2v2 - 1 176uv3 - 2,352v4 = 1 and

,24112v2
15,288uv3 71,148v = 1

Firstly, we factorize 7y2 + 1 in prime ideals of OK where K =

Thus (1 + - YV=7) = x3

The number field K has the following fundamental properties: the class

number h = 1, { w} with w = +. i,/27 is a basis for 0 and 2 =



Common prime ideal divisors of + y)1:7) and - yr-7) are possibly

(w) or (W) and no others. Hence

y + 2yw = 1 + yV:7 = (w)a()(a + bw)3

with a,13. E {0,1,2} and a b E2Z. Taking also the conjugate equation into

consideration, we see immediately that a + = 0 or 3. If a = = 0,

then comparison of coefficients of 1 and w left and right, and subsequently

elimination of y from the resulting equations, yields

U
3 
- 21uv2 = 1.

Here u and v are defined by 2u = 2a + b , 2v = b.

If a = 1 and fi = 2, then similarly we obtain the equation

u3 - it2uv2 + 98v3 = 1 ,

where u = a + 4b , v = b. Analogously, the assumption a = 2 , = 1

leads to the same equation in u = 3h and v = -b. This proves the

first part of our assertion.

Secondly, factorization in' of x3 1 yields

(x - 1)(x2 + x + 1) = 7y
2 

•

This furnishes the three possibilities:

x- 1 = 2

2
X + X + 1 = pb2

with (X,p) = ( ,7), (3,21) or 21,3).

Note that hcf(x - 1, x2 + x + 1) = 1 or 3.

Now the particulars of the number field L = (p), where p is the

third root of unity p = + it/7S , are: h = 1, {1,p} is a basis for

0L' 
the cyclic group of roots of unity is generated by p and the free

abelian group of units is trivial, because r + s - 1 = 0.

For A = 11 = 7 we write

x 1 = a2 , (x + p)(x -

From theorem 2.6 we deduce

x + p = ±a(1 - 2p "4- dP
2
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where a E {2 P2 3 p} s E {0,1} and (c,d) E2Z Note that units

may be absorbed in the square (c + dp)2.

From Eorm (
p)•= 

7.3S( 2
+ cd + d 2 and also Eorm

L + p = 7b2,

one deduces immediately s = O.

The choice a = 3 - p leads to a contradiction when considering

congruences mod 4 and mod 3 successively. On the other hand, *f a = 2 + p

then equating coefficients yields

x = 2c2 2cd 3d2 and 1 = c2 + 6cd + 2d2 .

Because of a2 = x - 1 = 2 
8Cd - 5d2 = (C - 4d) 21d2, we may write

21d2 = (c 4d - a)(c - 4d + a).

Further, from hcf(c - 4d - a, c- 4d + a) = 2, we deduce the existence

of co-prime integers u and v such that

c 4d + a = 2 2 = 42V2 d = 2uv .

The second possibility, namely c - 4d + a = 6u2 , = 14v2

and d = 2uv, gives rise to an impossible congruence mod 5.

how, on substitution of c = u2 + 8uv + 21v2 and d = 2uv into

C
2 

6Cd 2d2 = 1, we find

28u v 210u2v2 + 588uv3 + 441v

The unimodular transformation given by the matrix

this equation to the equation

- 84u2v2 392uv3 588v4 = 1.

(0 1 
carries

Similar arguments are used to obtain the other two norm equations.
ci

4. NORM EQUATIONS

A binary n-ic form is a homogeneous polynomial of degree n in two

-1unknowns with coefficients ila2Z. If f
n
(x,y) = E 

a.xi yn 
is such a form,

1
i=0

we always assume the leading coefficient a to be non-zero. The

-discriminant of f is the number D = D(f ) = a
n
2n2 

• II (0. - 0
. .
3.<0

where
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01, 02,-, 6n 
are the roots of the equation fn(t,l) = 0. Clearly,

D 0 if and only if the roots of fn(t,l) = 0 are distinct. Now, norm

equations are equations of type

= m (m E2Z, m 0),

where f is an irreducible (over C binary n-ic form.

A root e of f (t,1) = 0 gives the extension K = ce) of Q of

degree n. The other roots of f
n
(t,l) = 0 are the field conjugates of

and

fn(x,y) = Norm (x - y0

Solving an equation of type Norm (x - ye) = m (m E2Z, m 0) in

rational integers x and y always boils down to solving a finite number

of equations of the form

x - ye = c.a

where a takes only finitely many different values in 0
K 
(this number

depends on the factorization of (m) into prime ideals of OK), and e

runs through the unit group of OK. What makes equation (*) so special

is the fact that the left hand side does not contain the basis elements

V2 n-1
Hence, for each value of a, the expression (*) asks for

units c of a very special type. Consequently, each equation ( ) is

equivalent to finitely many sets (depending on the number of roots of

unity contained in 0
K) 

of n - 2 equations in the exponents of fundamental

units. In case the number of fundamental units (which is the rank of the

free abelian unit group: r + s 1), agrees with the number of exponential

equations mentioned above (this number is n - 2 = r + 2s - 2), then

Skolem's p-adic method [22] is applicable; see also Lewis 113). In

example 4.3 we 'shall give a brief application of this method.

All these contemplations are illustrated by some examples. .
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14.1 EXAMPLE see Nagell [17], Chapter VI

Suppose (x,y) E 2 gives a solution of the quadratic equation

15x2 + 20xy + 6y2 = 1.

On setting u = 10x + 6y , v = x this equation becomes

2 - 10v2u  = 6.

If K = Q(4-5) then hK = 2, {1,w} with w = 47(7 is a basis for OK and

= 3 + w is a fundamental unit of norm -1 (see the tables of quadratic

number fields in Borevich [6]). Further, 2 and 3 factor into prime

ideals of 0
K 

as follows: (2) = t)2 and (3) = ozeor,
( 3,1 + w) and Ort = (3,1 - w). Hence

u2 10v2 = NormK/ (u + vw) =

and this gives in terms of ideals of OK

(u + vw) = 8)1 o

where

It is not difficult to prove that = (14 + w) and (el =(14 - w) and
consequently

U + vw = w)(3 w)2k

with k EM and independent ± signs. If we assume both u and v to be

possitive (this is no loss of generality) then we may drop the first

± sign. As in example 2.8 the solutions can be determined by means of

recurrences of order two.

The first few values of u and v are: (u,v) = (4,1), (16,5), (136,43),

(604,191) etc., and the corresponding values of x (> 0) and y are: (x,y) =

(1,-1), (5,11), (43,-49), (191,419) etc.

Continued fractions are also used quite frequently when dealing

with quadratic equations.

4.2 EXAMPLE

We return to example 3.6 (i). The equation u3 — 21uv2 = 1 is

trivially solvable: the only solution is u = 1, v = 0. The cubic equation
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f
3
(u,v) = u3 - 4211172 + 981/3 =

is anything but trivial. The discriminant D of f
3 
is positive, to b

precise D = 233373 and this means that the equation f
3 
(t,l) = 0 has

three real roots e1, e2 and 03 say. For each i = 1,2,3 the number field

K. = Co.) has a free abelian unit group of rank 2. hence

u3 42uv2 + 98v3 = 1

or N rmici/Q(u - vei) = 1

is equivalent with

M1 M2

U Ve. = ±e .e
1 2 '

where ce
2
} is a set of fundamental units of 0

K.
. This gives rise to

only one equation in the two unknown exponents ml and m2; Skolem's

method, referred to above, is not applicable in this case. Considering

also the conjugate equations, one may try factorization in an extension

of K.. That this could get very complicated is apparent from Ljunggren

[14], where the similar equation x3 - 3xy2 - y3 = 1 is treated.

The fact that 
f3 - 
(u.v) = 1 can be solved after all, is a consequence

of the relation which exists between the solutions of this equation and

those of x3 - 7y2 = 1; the solutions of the latter equation are in turn

related to those of the three norm equations of 3.6 (ii), which can be

solved by Skolem's p-adic method. The equations fil(u,v) = 1 are found

to have the solution (u,v) = (1,0) and only the third equation has the

additional solution (u,v) = (13,-1). Further, the only solutions of

x3 - 7y2 = 1 are (x y) =(2,1), (4,3) and (22,39). For all this and the

corresponding relations we refer to [24].

The implication of these results is that the equation

f
3 
(u,v) = u3 - 112uv2 + 98v3 = 1

has no other than the following three solutions: (u,v) = ,0 ,-1)

and (9,2).
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4.3 EXAMPLE (see Stroeker 126])

Now we shall give an example of Skolem's p-adic method.

We consider the quartic norm equation

f(u,v) = +2u2v2 - 2v

The discriminant of 4 equals -2933 and thus f(t,1) = 0 has 
two real

roots and one pair of complex conjugate roots; r + 2s = 4, r = 2 and

s = 1. Let 0 be a real root of f4(t,1) = 0. Then the ring OK of K = Q(e)

has a free abelian unit group of rank 2. Since K is a quadratic extension

of Q(v) it easily follows that {100203} is a basis for 0
K. 

It is

also reasonably easy to establish that {1 0,1 - e} is a fundamental

set. (In section 5 methods will be given for constructing a basis and

a set of fundamental units for O.)

From

+ 2u2 v2 2v .4 = 1 or NorrrLK,t

we deduce

- ve) = 1

u - ye = ±(1 + 01'(1 - e)q

with p q E2Z. If we do not specify the sign of u and v, then the ± sign

may be dropped. Further, it is no restriction to assume p > q. Thus

Because of

202 
-

11
2 

V

- V = 0)
p-C1(1 02) .

62)Pfq 1 - (P+g)e2 + 2(....

is apparently odd. Put 2n + 1 = p - q. We intend to show that

n = 0. Define a-, b., and la. for each i by1 1i 1

Then from

we deduce

i
+ 0)

+1
 = a. + b

i6 
+ c.e2 + d.e3

u - ve = a
n 
+ b

n
0 + c

n 
2 d 03)(1 - 02)

a
n
d
n 
= b

n
c
n
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Further, let cc. and
1

be given by

1

0. IN 2

131U

Now, after some calculations we obtain the expressions

n 
2n+1

= 2 E ( 2j )f3-J-1
j=0

E (2n4:1)

j=0 2j
and

b
n 
= 2 riE (21 ) .

j=0 2J+1 J-1

n ,=

j=0 2J+1/Pj
•

Substituting these expressions for a b , and d into the relation
n n n n

ad=bnc , yields, after dividing through by 4(n + 1)(2 + 1)2,nn n

„2n„2
E ). = 0,

2i 2j 1-1 j
i j=0

where the rational numbers r..(n), defined by

r..(n) := (j - i)/(2i + 1)(2j + 1)(2n 2i + 1)(2 + 1)

are 2-adic integers, 1. . they have odd denominators.

Now suppose n > 1 with 2-adic value m (this means that n contains

precisely m factors 2 in its prime decomposition) Then it is easy to

show that for any pair (i,j) with i > 0 and j > 0 (i = j = 0 is excluded)==

the (i j)th term in the dubble sum above has 2-adic value at least m + 1,

with the single exception of the (0,1)th term, which has 2-adic value m.

This is a clear contradiction, because the total sum equals zero.

Hence n = 0. Then

u - ve = ( e2)q,

and this is only possible when q = 0. Consequently, (u,v) = ,0 is the

only solution of the original equation f(u,v) = 1.

For more examples on this type of equation, see Stroeker 24], [25),

[27) and [28].
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5. COMPUTATIONAL CONSIDERATIONS

From the previous sections it is clear that in the process of

solving a diophantine equation one is often confronted with the

necessity of computing:

(i) The class number of a number field.

There are computer programs for calculating the class number of

quadratic number fields (tables can be found in Borevich 16)) and

certain cubic number fields (cf. the tables by Selmer [19] and

Angell ).

In case one is dealing with a norm equation of type f(x,y) = 1,

one only needs to have information on units; knowledge of class

numbers of number fields involved is of little importance here.

But when studying equations of type f(x y) = m 1, the prime ideal

decomposition of ) plays an important part; in particular, one

needs information on the class group in such cases.

Most practical methods for calculating the class number of a number

field K = (0) use the fact that each ideal class contains an

integral ideal of bounded norm (this bound M
K 
only depends on K).

By inspection of principal ideals of small norm, generated by

elements of type u + ve (u,v E2Z), it is often possible to select

a maximal set of inequivalent ideals representing all classes, and

such that each ideal is bounded by MK. This way one may find the

class number of K. For further information the reader should consult

the relevant parts of Borevich [6] and Janusz [12].

(ii) A basis for the ring OK of a number field K.

In general, this is not very hard. A well written description of

the computation of a canonical basis is given in Holzer [11]. We
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shall give a brief summary in example 5.1.

(iii) A set of generators of the free abelian group of units ( afunda-

mental set ) in the ring OK of the number field K.

This is a very important, and often difficult part of the methods

described in this exposition. In example 5.2 we will discuss a

method due to Berwick [5], which is applicable in case r s 1

= 2 (thus, if n = r + 2s, in the cases: (n,r,$) = (3,3,0 (4,2,1),

(5,1,2) and (6,0,3)).

5.1 EXAMPLE (see Holzer [11], §29 pp.119 - 130

Let 0 be an algebraic integer of degree n, and put K = k(e). A

canonical basis for the ring OK is a basis {w l,w ...,w
n
}, where the w.

have the following shape:

=1

21 + 0)/b2

w, = (a + a e + 02)/b
3 31 32 3

•

n-2 n-1
w
n 
= (a

n1 
+a 

n2 
+ + a

n,n-1
e + e

a. ,b.
jk

Moreover, 
b1 j = 1 and b > 1 divides b

j+1 
for each j = 1,...,n-1 .

Such a basis always exists. In a canonical basis the a
jk 

can invariably

be chosen such that

< a.
k 

< ib. , j = 2,...,n;k = 1,.
J J == J

If D(0) is the discriminant of the monic minimal polynomial of 0 over (k,

then 11b2 divides D(e). This puts a drastic restriction on the values
i=1 1

of b..

The procedure for calculating a canonical basis runs along the
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followinglines:supposewl,...,w.have been determined (

b.41 must satisfy the requirements

Then

b 
1

. > 1 and b2n-21 divides the quotient D(e)/ b?.
j=1

For each of the possible values for b. find a. such that
1+1' 1+1,k

< 
i+1

a. < k = 1,...,i •

Finally, check whether w.
1 

thus obtained, is an algebraic integer.
1+ 

The last part of this process may be accomplished as follows:

- n-For a = (a
1 
+ a

2 
+ . a

n- 
e
n2 1

)/b with -ib < a. < 1

we try to construct the monic defining polynomial of a over Q. To this

end we consider the nxn matrix R with rational entries, satisfying:

(1) bR has only integral entries, and

(2) (aln - R)v
8 
= 0, where v is the column vector with components

n-
1,0,.. . To calculate this expression, note that for each

i the product aei can be written as a linear combination of

-110 ...,en with coefficients in

-1Since v 0 we have det(aI - R) = 0. Now, det(tI
n 

R) = t
n 
+ A tn +

. . + A is the minimal defining polynomial of a over Q. Hence a is an

algebraic integer if and only if Ai ea for all

b < a. < ib
'

.BecausebiA.E2Z and
1

it is not difficult, using congruences, to decide whether

a is integral or not.

A non-trivial example can be found in Stroeker [25], p.137. The

discriminant of f(t) = t4 -126t2 .-'756t- 1323 equals D(f) = - 283974.

If C is a real root of f(t) = 0, then a canonical basis for 0 with

K = Q(U is {w l,w2,w3,w4} with w = 1, w2 = C,w - (3 + C2)/6 and

= (63 0)/126.

5.2 EXAMPLE

We continu the previous example but this time we direct our

attention to the units of 0 Here K = Q(C) and C is a real root of the
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polynomial f(t) = t -126t2 -756t - 1323. Because 4 = r + 2s and r = 2,

S = 1 a fundamental set of units has r + s - 1 = 2 elements.

According to Berwick [5], p. 367, the free abelian unit group of OK is

generated by each couple of units defined by:

(1) e > 1 and minimal , IE'l < 1 , C" C" < 1

(2) 1E1 1

(3) I 1 <1 ,
> 1 and minimal , E"T" < 1

1 , I it I fe-tt I 1 and minimal .

InadditionwehaveElE2E3 =1ase.is determined by (j). Note that

£1, E" and E" are the field conjugates of E.

Analgorithmforcmputingtheunitsc.is easily devised: let

each of the restrictions from (1), 2) and (3) successively be imposed

on c = aw
1 
+ bw

2 
+ cw

3 
+ dw .

Since the (IL have known values, we get conditions on the rational

integers a, b, c and d. So this provides C with something like an

"ideal ratio" a :b:c:d for the Norm
K/Q
(6) to be small (this

process also can be used when calculating class numbers; see under (i)

at the beginning of this section). A very clear exposition, with many

examples, is given in London & Finkelstein [15], p.81 etc.; here the

algorithm in question is called the scaling algorithm.

Finally, we end this example by giving the values of C. in the

field K = CE):

E
1 
= 151w + 117w + 29w

3 
- 98w

2
= 

1 2 
wand 

C3 = 9w
1 

4w
2 
- 2w

3 
+ 4co

The canonical basis w ,w2,w3,w4} used is the one exhibited in example

5.1.
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