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PROCEEDINGS FILTER-DAY ROTTERDAM 1980

(New trends in filtering and identification of stochastic systems,

23 Jan. 1930)

by Michiel Hazewinkel (ed)

ABSTRACT.

This report contains the complete (expanded) texts of 4 of

the five lectures and a 2 page introduction to the remaining lecture

delivered at a one day conference on "New trends in filtering and

identification of stochastic systems", which took place on Jan. 23, 1980

at Erasmus University Rotterdam. We aimed to present some of the rather

striking and very promising new developments especially in recursive

and/or nonlinear filtering and as such the meeting was also intended

as a preliminary warm-up for the Advanced-Study-Institute

"Stochastic Systems: the mathematics of filtering and identification

which will take place at Les Arcs (Savoie) this summer (June 22-July 5).
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The series is divergent, so we may be

able to do something with it.

Oliver Heaviside

1. INTRODUCTION

2

In fair generality the filtering problem involves two second

order stochastic processes y' 
z
' 

0 < t < 00 and we desire to calculate
t t 

the "best" estimate of zt 
given the whole past y 0 < s < t of the

s ' —

process yt. In the mean square sense this best estimate is given by

the conditional expectation E[z
t
ly
t
], where y

t 
stands for the whole

past 
y, 

0 < s < t. However, this theoretical answer is of limited use
s —

as it is rarely possible to calculate this expression. Much of the work

in filtering concerns a set of (I18) equations of the type

( 1 )

where x E

dx = f(x)dt + g(x)dw

dy = h(x)dt + dv

z = k(x)

w EIRm, v E1R, z E Ile' with f, g, h, k vector and matrix

valued functions (of the appropriate dimensions) and with wand v

Wiener processes. There are of course corresponding sets of equations

for the discrete time case.

In case, f, g, h and k are all linear we are dealing with a linear

filtering problem. And this case is a pleasant and for applications in

virtually all fields of inquiry most important exception. In this case

we can calculate Ez
t
ly
t
] and the calculation is done for us by the

Kalman filter (in case z = x). Moreover this filter is itself a system

like (1) driven by the observations y
t' 

albeit a slightly nonlinear one.

This means that the filter is recursive in a very pleasant way. In the

case of just noise with linear observations, i.e. in the case of the

system

(2)dx=dw,dy=xdt+dv

the Kalman filter is

dX = - aPdt + Pdy
(3) ,2

dP = (1-P )dt

In the more dimensional case, the nonlinear part gets replaced by the

socalled matrix Riccati differential equation. This makes the geometry

and topology of these equations most important. It turns out that these

equations are most naturally studied not on the space of all n x n 
matrices,

Tem, but on certain compactificationscalled Grassmann 
manifolds



(among other things in order to understand various escapes to

infinity). This was the subject of Clyde Martin's talk (section 6

of these proceedings).

The success and wide applicability of the Kalman filter

stimulated the search for similar filtezfor nonlinear systems. Until

recently with very modest success. One can write down a stochastic

differential equation for the conditional expectation of the state

E[x
t
ly
t
] and also for the conditional density p(x,t) (assuming it

exist; cf. equations (2) and (3) of section 2 of these proceeding.

However, these equations do not look very nice, in particular not

recursive. Now a certain unnormalized version p(x,t) of the conditional

density of the state satisfies the Zakai equation

(4) dp(t,x) = Ep(t,x)dt + h(x)p(t,x)dyt

which, apart from being infinitedimensional, looks recursive, indeed

bilinear. Here E is the Fokker-Planek operator (Cf. equation (4) of

section 2 below). From experience with finite dimensional bilinear

systems it now seems natural to pay some attention to the Lie algebra

generated by the two differential operators E and h(x) (= multiplication

with the function h(x)). This philosophy of Brockett [5] has been

amazingly successful and has already let to several classes of recursive

nonlinear filters. One such class was discussed by Steve Marcus

(section 2 of these proceedings). Several other classes will be

discussed at Les Arcs [7].

Before calculating the Lie algebra L(E) generated by the operators

and h(x) one puts (4) into Fisk-StratonoviC form (so that the ordinary

rules of calculus apply). In the case of scalar observations this gives us

(5) dp(t,x) = E-111(x)2p(x.,t)dt + h(x)p(t,x)dyt

Now suppose that the system is the one given by (2) above. Then an

easy calculation shows that. the Lie-algebra L(E) is this case is a

four dimensional Lie algebra of some fame in physics, the socalled

oscillator Lie algebra. The Lie algebra generated by the two vector-

fields of the Kalman filter (3) in this case is the even more famous

3-dimensional Heisenberg .(commutation relation) algebra which is

isomorphic to • the oscillator Lie, algebra modulo its centre. These

observations [5] are most stimulating and make one moreover suspect

that there are deep relations between filtering and quantum theory.
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And indeed, there are; cf. Sanjoy Mitter's contribution in [7]

and [10]. More results pertaining to this approach to nonlinear

filtering can be found in [1,2,3,4,6] and [7] and the references

therein.

To return to the linear case, a modeling filter (or stochastic

realization) of a real stationary zero-mean stochastic sequence

with given covariance function is a linear, time invariant, causal

filter, e.g. a discrete version of a "machine" like (1) above, which

when driven by white noise reproducesan output with the perscribed

covariance. In practice it is of importance to compute approximate

(linear, discrete) machines like (1) which as the dimension increases

give better and better approximations, and to do this in a recursive

manner so that when the matching accuracy has to be improved this

can be achieved by adding some structural elements to the already

existing machine. This is the subject of Patrick DeWilde's

contribution, (Section 3). This section contains only the introduction

to the full paper: P. DeWilde, H. Dym, Schur recursions, error formulas

and convergence of rational estimators for stationary stochastic sequences.

Report 92, 1979, Delft Univ. of Techn., Dept. Electrical Engineering.

(To appear Trans IEEE on Information Theory).

All of the above concerns stochastic systems with continuous

observations. Yet many processes in nature (and in human affairs)

concern stochastic processes with observation processes, which are

jump processes, or more generally counting processes or point processes)

In section 4 Jan van Schuppen addresses himself to some basic question

in the theory of such stochastic systems.

Finally much of the above involves stochastic calculus; often

Ito-calculus. However, Ito integrals do not transform right under

coordinate changes and hence are of limited use on topologically

nontrivial manifolds. Fisk-Stratonovic integrals do transform right

but have their own (conceptual) difficulties. All this makes one wonder

whether a strictly pathwise approach might (under suitable conditions)

be possible. Several aspects related to this matter were taken up by

Jan Willems in his lecture. The problems are also much related to

robustness properties of stochastics systems (c.q. filters). Below

we have (with thanks) reproduced the original paper on which the talk

was based (it originally appeared in the IEEE Trans. AC 23 (1978)),

together with a supplementary list of references. Still another reference

which could be added to this list is [9]. The title of Jan Willems'
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talk at the conference was "Approximation of stochastic differential

equations by deterministic systems".
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THE LIE ALGEBRAIC .STRUCTURE OF A CLASS OF FINITE

DIMENSIONAL NONLINEAR FILTERS.

Chang-Huan Liu and Steven I. Marcus

Dept. of Electrical Engineering

University of Texas at Austin

Austin, Texas 78712

ABSTRACT.

We present an example of the application of Lie algebraic

techniques to nonlinear estimation problems. The method relates

the computation of the (unnormalized) conditional density and

the computation of statistics with finite dimensional estimators.

The general method is explained; for a particular example, the

structures of the Lie algebras associated with the unnormalized

conditional density equation and the finite dimensionally

computable conditional moment equations are analyzed in detail.

The relationship between these Lie algebras is studied, and the

implications of these results are discussed.
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1. INTRODUCTION.

This paper is concerned with the optimal recursive estimation

of the state x
t 
of a nonlinear stochastic system, given the past

observations z
t 
={z,  0 < s < t}. Specifically, we consider systems

of the form

(1)

dx
t 
= f(x

t
)dt + G(x

t
)dw

t

dz
t 
= h(x

t
)dt + R2dv

t t

where w and v are independent unit variance vector Wiener processes,

f and h are vector-valued functions, G is a matrix-valued function,

and R > 0. The optimal (minimum-variance) estimate is of course the

conditional mean X
t 
= E[x

t
Izt] (also denoted Xor Et[x

t ])*'

t 
satisfies the (Ito) stochastic differential equation [ 1] - [3]

(2) [ f(x) t 1-Adtx
t
h
T 
-x

t
h

T -T -1
x h -x h )R (t)dz

tt t

7

where - denotes conditional expectation given zt and h denotes h(x
t
).

Also, the conditional probability density p(t,x) of xt given zt

(we will assume that p(t,x) exists) satisfies the stochastic partial

differential equation [3], [4]

-(3) dp(t,x = Ep(t,x)dt + 
(h(x)-h(x))T 

R
1 
(t)(dz -h(x)dt)p(t,x)

where

n 2 T
(4) £(.) = - E   + E E 

(.(GG )1J)
Dxi

1=1 j = 1 i j

is the forward diffusion operator.

Notice that the differential equation (2) is not recursive, and

indeed appears to involve an infinite dimensional computation in

general. Aside from the linear-Gaussian case in which the Kalman filter

is optimal, there are very few known cases in which the optimal estimator is finite

dimensional (a number of these- are summarized in [5]). However, in [6]

- [8] we have shown that for 'certain classes of nonlinear stochastic
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systems in continuous and discrete time, the conditional mean can be

computed with a recursive filter of fixed finite dimension. The typical

nonlinear system in these classes consists of a linear system with

linear measurements, which feeds forward into a nonlinear system

described by a certain type of Volterra series expansion or by a bilinear

system satisfying certain algebraic conditions. The major purpose of

this paper is to consider these estimation problems from a new perspective,

and to gain much deeper insight into their structure.

The new perspective, originally proposed by Brockett [9] (see

also [10], [11]), takes the following approach to the general estimation

problem (1) (we assume for simplicity that z is a scalar). Instead of

studying the equation (3) for the conditional density, we consider

the Zakai equation for an unnormalized conditional density p(t,x)

12]:

(5) dp(t,x) = Ep(t,x)dt + h(x)p(t,x)dzt

where p(t,x) is related to p(t,x) by the normalization

p(t,x) = P(t,x).(ip(t,x)dx

The Zakai equation (5) is much simpler than (3); indeed, (5) is a

bilinear differential equation [13] in p, with z considered as - the input.

This is the first clue that the Lie algebraic and differential geometric

techniques developed for finite dimensional systems of this type may be

brought to bear here. Suppose that some statistic of the conditional

distribution of xt 
given z

t 
can be calculated with a finite dimensional

recursive estimator of the form

(7) dn = a(flt)dt + b(nt)dzt

(8) E[ (x = Y(11t)

where fl evolves on a finite dimensional manifold, and a and b are

suitably smooth. Of course, this statistic can also be obtained from

p(t,x): by



(9) E[c(xdizt] = I c(x)gt,x)dx (fgt,x)dx)-1

For Lie-algebraic calculations, it is more convenient to write (5)

and (3) in Fisk-Stratonovich form (so that they obey the ordinary rules of

calculus)

(10) dn = flaj.(nt)dt + b(nddzt

1 ,
(11) dp(t,x) =[E - 

h2 
(x)JP(t,x)dt + h(x)p(t,x)dz

t

where the
.th

component a1(11) = aiN

b.

E 1).01) 1 (11)
I

(Beginning with (10), all equations will be in Fisk-Stratonovich form,

unless otherwise indicated). The two systems (10), (8) and (11), (9)

are thus two representations of the same mapping from "input" functions

z to "outputs "E[c(x
t
)Izt]: (11), (9) via a bilinear infinite dimensional

state equation, and (10), (8) via a nonlinear finite dimensional state

equation. Generalizing the results of [ 14], [ 15] to infinite dimensional

state equations, the major assertion of [9] is that, under appropriate
%

hypotheses, the Lie algebra F generated by a and b (under the commutator

[a.,b] = TT a -1b) is a homomorphic image of the Lie algebra L

generated by Ao = E - h
2
(x) and B

o 
= h(x) (under the commutator

,B = A B -B A ). Conversely, any homomorphism of L onto a Lieo o o o o o
algebra generated by two complete vector fields on a finite dimensional

manifold allows the computation of some information about the conditional

density with a finite dimensional estimator of the form (10).

In [9], this approach is explicitly carried out and analyzed for

the problem in which f, G and h (1) in are all linear. In that case,

the Lie algebra L of the Zakai equation is finite dimensional and

the unnormalized conditional density can in fact be computed with a

finite dimensional estimator , the Kalman filter. In this paper, we carry

out a similar analysis for the simplest example of the class considered

in [6] - [8]. For this example, all conditional moments of the state can be

computed with finite dimensional estimators; the Lie algebra L is infinite 

dimensional but. hasmany finite dimensional homomorphic images (the Lie

algebras of the finite dimensional estimators), thus yielding a very

interesting structure. The example to be considered has state equations



(12)

with observations

(13)

dx
t 
= dw

t

2
dy = xtdt

10

dz
t 
= x

t
dt + dv

t

where v and w are unit variance Wiener processes, {x ,y ,v,w} are
o o

independent, and x
o 

is Gaussian. The computation of X
t 
is of course

straightforward by means of the Kalman filter, but the computation

of 9t requires a nonlinear estimator.

2. THE LIE ALGEBRA OF THE UNNORMALIZED CONDITIONAL

DENSITY EQUATION.

For the system (12) - (13), the equation (5) in Fisk-Stratonovich

form is

14) dp(t,x) =

so the Lie algebra

B
o 
= x.

1 3
2

1 2
Ty- 2 2 -23c-)c 

p(t,x)dt + xp(t,x)dz

2B 1 3L is generated by Ao = -x 7 3x2

2

The following theorem is straightforward to prove.

Structure theorem 1:

1 2
--x and

(i) The Lie algebra L generated by Ao and Bo has as basis the elements

A and B. C. D. = 0,1,2, where
o 1, 1, 1,

1=

1

D.
1

By
= 0,

, , • •

, • •



(ii) The commutation relations are given by

[A ,B.] = C., Vi
o 1 1

[A ,D.] = [B.,D.] = = 0, V i,j
0 j 1 j 1 j

[B.,C.] = -D. .
1 3 1+3'

[B.,B.] =1 j

V i,j

Viij

11

(iii) The center of L is {D., i = 0,1,2,-}.

(iv) Every ideal of L has finite codimension; i.e., for any ideal I,

the quotient L/I is finite dimensional.

(v) Let 'I. be the ideal generated by B., with basis

{Bi,Ci,Di; i > j}. Then I0 I ... and n = {o}, so

thatthecanonicalmap7 injective.

(vi) L is the semidirect sum [18] of A
o 

and the nilpotent ideal

I
o
; hence L is solvable.

In light of the remarks in the previous section, it should be

expected that many statistics of the conditional distribution can be

computed with finite dimensional estimators, since there are an

infinite number of finite dimensional quotients(homomorphic images)

LIT . By Ado's theorem, these can be realized by bilinear systems.

However, we will present a slightly different realization of the

sequence of quotients in (vi) above: L/ I I is realized by the

Kalman filter for X
t 
(L/ I is the oscillator algebra [9] - [ 11]),

1
and L/ I (j > 2) is realized by the estimator which computes Xtj ...
and 

y = yi:t z (i =
1,2,...,j-1). Of course, the dimension of

L/ I increases with j, so we will only present the estimatorj

equations for j = 4 in the next section. Other sequences of quotients

possessing the property (vi) can also be realized (e.g., those

generated by the {c.}), but those realizations do not have as natural

an interpretation in terms of conditional moments.

The properties (iv) and (v) of the structure theorem are useful

for an "estimation algebra" to possess, in the following sense:

they basically say that L has enough finite dimensional quotients
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that it is determined.by their direct sum. Translating this into

an estimation context via the reasoning of the previous section,

if we can realize all the quotients with finite dimensionally

computable statistics, then these properties give us hope of being

able to approximate the conditional density (or conditional

characteristic function) with a convergent series of functions of

these statistics, even if the conditional density cannot be

computed exactly by a finite dimensional estimator.

3. THE LIE ALGEBRA OF THE FINITE DIMENSIONAL

ESTIMATOR.

The method of [6] for computing the finite dimensional estimator

for 9t systematically uses the estimation equation (2) and the fact

that the conditional density of x. given z is Gaussian to express

higher order moments in terms of lower. This procedure can also be

applied to obtain equations for higher order conditional moments

of y for the estimation problem (12) - (13). The first three

conditional moments of yt, together with Xt and the necessary

auxiliary filter states are computed recursively by the finite

dimensional estimator (in Fisk-Stratonovich form, with explicit

time-dependent notation omitted):

(15)

(.
..

.)
) 
-e
- 

> 
\
 0
>
 

, 
t
v
f
 

-XP

12

x 2RU P - PP12

Fc(1312-1313) Zp(1-1312) 
-1

-
= 2

2
yR + 29p + 85"(tP + 2TP 12 - 4519y - 811 0 - 

4 222-4pr
13

51(1313-'14) -41)(1312-P13) -6(P-131)12) -W1

2' -2 2
351 y + 3y P + 2459T + 48R15-p + 24 p + 6913P12

2
+ 241312

13 
- 3y 

PP12 
- 48

,-(3p2 _ 
29
,
pp1

 3 _ 12292 _
24PP14

- 65Cty2p - 24R#69-p - 485l$p

1

dt +
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P.
P12
2-4 P
P13
4Z9T + 8C4P
P
14
A

6y2P + 209T + 48$P

0

b
o

2
Yo

#1."0

3
yo

t
o--

E &co]

0

Yo

0

EC y2]

0

E[ yo3]

0

where the nonrandom conditional covariance equations are

p2
-P

12 
= P - 

(P+21 
)P

12
2

(16) P
13 

= 2PP
12 
- PP

12 
P+P

-1
)P

13
2 -1,P

14 
= 2PP

13 
+ 
PP2 P13 

- (P+P )P141 

P(0) = cov (x0) 7‘ 0; Pi (0) = P (0) = P
1 4
(0 ) = 0

-13

The estimator (15) is obtained by first augmenting the state

x with auxiliary states E, 0, and .4); then the Kalman filter for the linear

system with states [x,,04] and observations z computes [il,,8,(1)]. In

addition, [P,P
12'

P
13'

P
14
] is the first row of the Kalman filter error

covariance matrix; (16) is obtained by selecting the corresponding

components of the Riccati equation. Then 9, y', and y3 are seen, after
tedious calculations, to be computed by the given equations (some of the

calculations are presented in the Appendix, in order to illustrate the

method). The filter state is augmented with t in order to make (15)

-time-invariant thus facilitating the use of Lie algebraic techniques.

The filter (15) can be viewed as a cascade of linear filters [ 19]:

satisfies a linear equation; some of these states then feed

forward and can be viewed as parameters in a linear equation for 9; the

states R,Z,6,9,t then feed forward as parameters into a linear equation

for y
2
; etc. This structure is typical of the class of finite dimensional

estimators derived in [6] - [8].
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In order to study the structure of the estimation problem as

discussed in section 1, we must analyze the Lie algebra F generated

by ao and bo in (15). The structure of the class of problems of [6]

is analyzed from a different point of view in [ 21].

Structure theorem 2:

(i) F has as basis the elements a•'
 b., c., i= 0,1 2 3. d., i

-o 
where a

o 
and b

o 
are given in (15) and

1

0

0

0

0

0

0

1

2 13X

P
12

24519 + 48ZP
0

0
0
1
0
29
0
3y2

0

P12
1 = 49 + 8EP

•••••••

65iy- + 24Z9P + 488P
0

2

0

39
0

0
0
0

0
0
0
0

-1

3

1

0

0 0

0 0

0 0

0 0

0 3 0
-1

1

48X
0

= 1,2,3,



(ii) The commutation relations are given by

[a ,b.] = c. • i = 0,1,2,3
o 1 1

[a ,c.] = b. - b. • = 0,1,2
o 1 1+1

[a
o'
c
3
] = b

3

[b.,c.]
1 j

-2d. . i + j = 1
1+j

-8d. . i + j = 2
1+]

-48d. . i + j = 31+j
0 otherwise

15

,d.] = [b
i 
,d. = [c.,d.] = 0, V i,jo j j 

(iii) Let ii4 be the ideal in Lwith basis B.
'
 C, D., D i > 4 and 

i i --
D. Then F is isomorphic to I/i'44 ; hence,
o F is also solvable.

(iv) The isomorphism qh between L and F / rfj4s is given by:

(1(A0) = %; (P(Bi) = (-1)1bi,

= ()1c, I = 0,1,2,3; (1)(D.) = (-1 " d.; i = 1,2,3;
1 1

(1)(E) = 0, E E 
fJ
4.

F is the semidirect sum of a

by bo.

Remarks:

and the nilpotent ideal generated

(i) The estimator (15) is not quite a realization ofL / 14, since

D
o 
is also in the kernel of the homomorphism (i.e., the ideal

T
4
). However, a finite dimensional estimator realizing Li 14

(or L/ j, • for any;) is easily obtained by augmenting (15) withI 

the equation for the normalization factor at for p(t,x) (the

denominator of (6)) which satisfies (in Ito form)

da = X
t 
a
t 
dz
t

or (in Fisk-Stratonovich form)

1 -2
(17) da

t 
= - fOct+Pdatdt + 2tatdt



If (17) is augmented at the end of (15), the Lie algebra

generated by a
o 

and b
o 

has the same commutation relations

as in (ii) above, except that

[ b c
o o

0

0

=d
o

16

and d
o 

commutes with all the other elements. Thus a

realization of L/ 14 is an easy modification of (15), so we

will concentrate on (15).

(ii) The property (v) is typical of a cascade of linear systems.

(iii) One of the conditions in [9] for the existence of a Lie algebra

homomorphism from L to the Lie algebra of a finite dimensional

estimator is that the estimator be a. "minimal" realization

in a certain sense. If we consider the output of (15) to be

y and consider this realization of the input-output map from

z to y
3
, then it can be verified by the methods of [ 15] that

the realization is locally weakly controllable and locally

weakly observable. This implies that there is no other

realization with lower dimension; it is in this sense that the

statistics Z, 6, $ are necessary for the computation of y3.

Images of L under homomorphisms with successively larger kernels

can be realized by using only certain of the equations in the

finite dimensional estimator (15); that is, some subset of the

equations (15) will generate a Lie algebra

(IL denote the ideal with basis D and B.,

alsousethenotationthat,e.g., 1."k

the above elements and D
k 
(which is in the

of some of the many possible quotients are

table, which gives the quotient along with

isomorphic to L/ I . Let

Ci, Di, i > j; we will

denotes the ideal with basis

center of 0. Realizations

summarized in the following

the set of states of a

finite dimensional estimator which realizes it (the filter states

satisfy the corresponding equations in (15)). For example, LiI 3

is realized by (15) with the equations for qh and y omitted, with

all the other filter states retained.



QUOTIENT

%
L/ I

I4 e D3)

L/(I4 6) D2 D3)

E0 D D D3)

L/ 
1 2 3

L/ I

3
e D

2 
)

% 
LAI D D2)

3 1 %
L/ 12

Lgf (0 D
1

L/ I 
1

REALIZATION

•^ /2 (7, /1
E, Y, 0,Y 9 T9 Y

E9 9, 0, y

E, 9, 0, t

E, •e9 (1),,t

.2

0,

9, 0, t
E, 0, t

E, 9, t
t

Table 1. Realization of some quotients.
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The results of Table 1 follow from two observations: first,

that if I and J are ideals of L such that I c: J , then J/I

is an ideal of L/I and (L/I)/ (J/I) is naturally isomorphic

to L/J [16,p.8] (e.g., 1 = T and J = T ). Also, it is clear that
4 (1, 3

if one defines homomorphisms from L/f
4 

to the quotients in Table 1 by

the canonical map, then the image can be realized by (15) with certain

equations omitted. For example,

be accomplished by eliminating

represents, in some sense, y .

it is clear that sending d
3 

-÷ 0 can

the equation for y3; each di thus

Notice, in particular, that
1

is realized by the Kalman filter for R.

Other interesting quotients are obtained by homomorphisms which

Lit4, other elements of the center of 
L/I4' 

say just d1, to zero.

However, such a quotient •is more difficult to realize by an

estimator, since the realization is not obtained by merely

eliminating certain equations. For these quotients, the following

result leads to a realization.

Proposition 1: Let F be the Lie algebra generated by two n-dimensional

vector fields a and b. Assume that there is an element d in the

center of F and a constant n-vector 13. such that 13'd = 1 (prime

denotes transpose). Then the mapping (1) with (I)(a) = a - ('a)d and

(I)(b) = b - ('b)d extends to a Lie algebra homomorphism with

(P(f) = f - ('f)d for all f E F, (f.(d) = 0, and (1)(F) isomorphic to

F/{d}.



Proof: We must show that, for f,g E F,

cP([f g]) = ,g] (W[f,g])d = Pp(f), ggn•

Now, since Wf and Wg are functions (not constants

Pp(f), (1)(g)] = [f-('f)d,g-(i'g)d]

= [f,g] - [ (Wf)d,g] - [f,(Wg)d] + [ (Wf)d,( 1 g)d]

= [f,g] - {(3'f)[d,g] -

— {(Wg) [f,c1] + f(Wg)(1.1

{WO (B'g)[ d ,d ] + ('f)d(Wg)d - (Wg)d(Wf)d}

Notice that, for any f E F, W[f,d] = 0 and D('d)/Dx = 0 imply that

Thus

D(Wfd('f) = D('d) f = 0.
Dx Bx

pp(f) ,(p(g) = [ (ftff) f Old

= [ f , g] — ( 1[ f , g]) d

Note finally that cp(d) = d - (Wd)d = d - d = 0.

This result can be applied, for example, to F =L/14 and d l,

since d 1 is in the center and the third component of d 1 equals 1

(thus = [0 0 10 ... O]'). The proposition implies that if we

implement (15) with a replaced by a - (Wa 
o 
)d

1 
and b

o 
-

o
)d

o o 
respectively, then the resulting estimator (call it (15')) will

%
generate a Lie algebra isomorphic to L/( 4 D. Notice that this

transformation (due to the form of d ) eliminates the 9 equation,1
2

modifies the y and y
3 equations, and does not affect the others.

From another point of view, the right-hand side of (15) is transformed

from a dt + b dz to
o t

(18)
aodt + b dz - d 1[ (13' a )dto t -o

= aodt + 
bodzt 

- d
1
d9

t

('bo)dzt
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Denoti5 the statistics in this estimator which replace y2 and
e,

y
3 
by y

2 
and y

3
, respectively, we see from (18) and the form of d

1
that

r'a
2dyt = dy

2 
- 29

t
d9
t 
= dy

2 
- d(9

t

thus this estimator computes the conditional second central
,

moment E[(y
t
-y

2
t
) /z

t
J, rather than the second moment y

t
. However,

,5
3

dy
t 
= dyt 3y

t
d9

t

= (241cZ9P+48i6P+24Z2P2 
69131'12 

+ 24.1)1313 - 48Z622

- 129PP
13 

- 12Z2972 - 24PP
14 
- 2498P- 485Z$T)dt

+ (2409P+48;1))dzt

which is not the equation for any easily recognized statistic of the

conditional distribution of y
t 
given z . On the other hand, the results

of [17] - [18] imply that, since there is a Lie algebra homomorphism

from the Lie algebra F of (15) to that of (15') and the isotropy

subalgebra of F is {0} at every point, then there is (at least locally)

an analytic map A that carries solutions of (15) into those of (15').

We have already seen that A takes the components X, Z, 3, t into

themselves, A(y) = E[ Cy-9d
2
/z

t
], and A(9t) = 0. The image X(y) is

difficult to compute, although a method is given in [ 17]; to first

order for small t, y = y - 3y
o
(9

t 
 but more complete calculations

t 
are very involved.

4. CONCLUSIONS.

We have presented one example of the method proposed in [9] for

using Lie algebraic techniques to study nonlinear estimation problems

(a similar analysis can of course be done for other problems in the

class discussed in [6] - [8]). This method clarifies the relationship

between the computation of the (unnormalized) conditional density and

the finite dimensional computation of certain statistics of the conditional

distribution (in this case, the conditional moments). Although moments

of any order can be computed by a finite dimensional estimator in this

example, it is unresolved whether the same is true of the conditional

density. That is, the Lie algebra of the Zakai equation (5) is
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infinite dimensional, but that certainly does not preclude its

being isomorphic to a Lie algebra generated by two vector fields

on a finite dimensional manifold (which would be the case if it

could be computed in terms of finite dimensionally computable

sufficient statistics). However, since moments of all orders can be

calculated,. it may be possible (modulo questions such as moment

determinacy) to approximate the conditional density to any desired

degree of accuracy by means of a series in the finite dimensionally

computable statistics.

On the other hand, the Lie algebra of the Zakai equation may

have very few ideals, in which case there may be no statistics

which are "more easily" computable than the unnormalized conditional

density. Examples of both types and further analysis along these

lines will be presented in [22]. Finally, we should warn that Lie

algebraic conditions do not always present the whole picture; as

discussed in [20], one must essentially be able to "integrate"

the abstract Lie algebra representations obtained in order to

actually construct the estimator, and this is not always possible

(see [23] for one further class of systems for which this is

possible).
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APPENDIX.

DERIVATION OF FINITE DIMENSIONAL ESTIMATOR.

First we note [6, Appendix B] that if x = [x1 
... x

k
] is

a Gaussian random vector with mean m and covariance P, then

(A.1)

• • xk] = xk]Ej ... xk_ + E Pka E[x xa.
a =1 1 a2 k-1

1

• 
m1 

E P m • m

(
a
kal a2 a3

+ E P P m • m +
k(a

1
,a
2
,a
3'
a
4
) 1a2 a3a4 a5

. 21

where each set 
{a,
. i = 1,...,k} is a permutation of {1,...,k1
1 

and the sums in (A.1) are over all possible combinations of pairs of

the {a.}. Now, x in the problem (12) - (13) is conditionally Gaussian

with conditional cross-covariance defined by (for a 
' 

a
2 

<
l--

P(a,a2,t) = EI(x -x 
` 
1,)(xa -X0.

al all 2 21

Izt],

where X 
CTIt 

= E[x
a
lz
t
]; using the results of [6, section 2] it can be shown

that

d
dt ‘arc12

= -P(a ,t,t)P(a2,t,t)

P(a,t,t) = K(t,a)Pt

-s1--K(t,a) = -P-1K(t,a) • K(a a)
dt t "

where P
t 
= P(t,t,t) is the solution of the Riccati equation (16).

The conditional mean 9
t 
satisfies equation (2) in Ito form:

(A.5) d9
t 

E
t
[x

2
]dt + {E [ y x]- X }[ dz dt]

t t t t t



2 _2
But E

t 
[ x

t
] = x + P , and using (A.1), A.3)„ and (A.4),

t t .

E
t[ y

t
xt] - 9tiit = f (E x.sxt] - 

x1
t
X )ds

s 

= I 2P(s,t,t) ds
o s

where satisfies

= 2ZtPt

= x - ET -1 = 0t t Et , 0 •

Thus the Kalman filter for the system with, states x and

observations z computes R, Z, and 9 is computed according to (A.5),

thus yielding the first three equations in (15) and P, P
12 

in (16)

(once they have been converted to Fisk-Stratonovich form).
2 - 2

Furthermore, since dy
t 
= 2y dy = 2y x dt, equation (2)

t t t t
yields

2-
(A.6) dyt = 2:Et[ytx2t]dt + f t[y2txt] - y

t
x
t
}(dz dt).

Using (A.1

Et[ y
t 
x2] =I Et[ x2x2-ids
t t

2-R
t
y
t

Also, (A.1) - (4.4) imply that

t 2 2-
E ytxt] _ y

txt

t 2
= 4 1 fP(s,t,t)Exx]dsdT

t
P + 4R

t
E
t
P + 2 P

12
.

22

o o
t t

= 4 f 13(s,t,t)[Xs I TEt[4] + 2p(s,T, t]cisdT
O 0

= 4{( I P(s,t,t)Rsitds)9t + 2Etl[f p(s,t,t)(f p(s,T,t)x dT)ds]}
0 0 0

4(Zt9J 4" 2 t 1")
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where 0
t 
satisfies

-1

t 
= P

12
x
tt

(P-PP
12
)- Pe; 0 = 0o

The Kalman-Bucy filter for the state eqtZions of x, E, and 0 with
2 

observation z computes R
t
,

t' et, 
and y i

t 
s computed according to

(A.6). After correction terms are added, these result in the first

five equations in (15), and the first three in (16). The third

moment y
3 
(and higher moments) are computed in a similar manner..
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In this paper we present an exact and an approximate realization

theory for 'estimation and model filters of second order, stationary

stochastic sequences. We use the properties of J-lossless matrices

as a unifying framework. We deduce necessary and sufficient conditions

f3r the realization of an estimator and a model filter as a submatrix

of a J-lossless system. We show next that an extension of the so called

Schur-algorithm provides for approximate J-lossless realizations based

on partial past information about the process. We study the geometric

properties of such partial realizations and their convergence. Finally,

we make connections with the Nevanlinna-Pick problem, and we show how

the techniques presented constitute a generalization of many aspects

of the Levinson-Szeg3 theory of partial realizations. As a consequence

generalized recursive formulas for reproducing kernels and Christoffel-

Darboux formulas are obtained. The paper considers only the scalar case

for easy readability. However, the matrix case may be obtained without

much more difficulty.

• INTRODUCTION

Let x(t), t = 0, + 1, denote a real, stationary, zero mean

scalar stochastic sequence with covariance function

r(k) = E x(t)x(t-k)

= e
1k0

W(e
i0
)de

2ff _Tr

and spectral density W.

A shaping (or modeling) filter for this stochastic process is a

linear, time invariant, causal, filter which, when driven by white

noise, produces an output with covariance equal to r(k). An innovations

filter is the inverse of a shaping filter. It produces white noise

when it is driven by the given stochastic sequence. In practice it is
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of interest to establish recursive procedures for computing approximate

shaping and innovations filters and thus avoid having to recompute the

whole filter each time the permitted complexity is increased: the

additional improvement should be achieved by adding sections without

changing the existing structure. The same philosophy underlies both

the "ladder structure" used in modern digital filter design and the

theory of expanding in terms of orthonormal functions: the initial

coefficients f. = (f,y of f with respect to an orthonormal set of

functions (1)j, j = 1, n, in a Hilbert space with inner product

( , ) do not have to be recomputed as the size of the set changes.

Levinson established a recursive procedure for computing a

sequence of approximate autoregressive (AR) shaping filters from the

covariance data which, under mild conditions, converge to the exact

shaping filter. The theory of these filters is intimitely connected

with the theory of polynomials on the unit circle which are orthogonal

with respect to the spectral density of the underlying stochastic

sequence. In the paper of DeWilde, Vieira, and Kailath it was shown

that the Levinson procedure could be viewed as a special case of

an algorithm for coprime factorization. In the present paper we exploit

the greater flexibility afforded by the Schur algorithm to construct a

recursive sequence of autoregressive moving average (ARMA) approximate

filters. We shall show that the approximate filter produced are optimal

ma least squares sense and shall derive explicit formulas for the

approximation error. Moreover we shall show that under appropriate

conditions the approximate filters converge in a strong sense to the

exact filter. Finally we deduce generalized Christoffel-Darboux formulas

for the appropriate reproducing kernels. The theory associated with

the Levinson procedure will emerge as a special case.

The paper is organized as follows: in the next section we summarize

the relevant material from the theory of J-lossless matrices and discuss

the natural correspondence which exists between these matrices and a class

of suitably restricted spectral densities W. The theorem (2.2) which is

proved there is somewhat more general than is needed in the sequel but,

we think, adds a certain amount of perspective to the ensuing discussion.

The basic strategy is to approximate the given W by an appropriately

chosen sequence Wn of spectral density with associated J-lossless matrices

and then to allow n 00. The actual procedure followed, however, is quite
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concrete and is based on a recursive algorithm due to Schur which is

explained in section 3. Applications to various cases are then made

in sections 4 and 6. Section 5 contains a short discussion of the

Adamyan-Arov-Krein representation formula.

The full paper will be publishiad in the Trans IEEE on Information

theory. Meanwhile it is available as preprint no 92 (1979), Dept.

Electrical Engineering, Delft Technological University, Delft,

The Netherlands.
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The purpose of this paper is to give a brief exposition of the stochas-

tic filtering problem in the case of point process observations. Some exam-

ples sr these problems will be presented. We discuss the modelling of point

processes and formulate the associated stochastic dynamical systems. Two

methods to resolve the stochastic filtering problem will be given, namely

the semimartingale representation method and the measure transformation

method. For several examples the solution to the stochastic filtering prob-

lem will be given. Some open questions are mentioned.

KEY WORDS & PHRASES: Point processes, Marked point processes, stochastic

analysis, stochastic dynamical systems, stochastic

filtering problems.

*) This report will appear in the Proceedings of the meeting on "New Trends

in Filtering and Identification of Stochastic Systems", held on January

23, 1980, at the Erasmus University, Rotterdam, The Netherlands.

Not for review.
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1. INTRODUCTION

The purpose of this paper is to give a brief exposition of the stochas-

tic filtering problem for point process observations. No proofs and few de-

tails will be presented. However, references to the literature have been

provided.

For many practical filtering problems the observations are not contin-

uous processes, but point processes or marked point processes. Examples of

such problems arise in the areas of optical communication, nuclear medicine,

urban traffic control, and operations research. Many questions in these

areas may be formulated as stochastic filtering problems or stochastic con-

trol problems.

What results have been obtained for these problems? Representations for

point processes have been obtained using concepts from the theory of stochas-

tic processes. These representations may be considered to be stochastic dy-

namical systems. For the stochastic filtering problem for these systems two

methods have been developed. Both of these methods yield general representa-

tion results that have to be applied to specific models. For several models

filtering algorithms have been obtained. A brief summary of these results

is presented below.

For the material on point processes we refer to the books [167.18, 24],

and for application oriented books we suggest [21, 35].

2. MOTIVATING EXAMPLES

Some examples of stochastic filtering problems with point process ob-

servations are presented below.

EXAMPLE .2. 1. Optical Communication

The physical model is as follows. A signal modulates an optical source,

which in turn generates an optical beam. The beam, after travelling a cer-

tain distance, is incident on a detector. The optimal detector produces an

electric current which we regard as the observed process.

The problem then is to estimate the signal on the basis of the observed
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process.

Particular cases of the above problem occur in:

1) experiments in nuclear physics;

2) light scattering studies;

3) optical communication with lasers.

For references on these problems see [19, 20, 22, 331.

EXAMPLE 2.2. An Industrial Problem

The model is that of a machine that irregularly produces unit products.

Initially the machine operates at full capacity. At some point in time the

machine breaks down partially, with the effect that it yields output at a

lower rate. One may then associate a cost function with this model, such

that under normal conditions a profit is made and a loss when the machine

is partially defective.

Then problem is then:

1) to estimate when the machine breaks down partially on the basis of the

production data only;

2) to resolve the stochastic control problem of when to shut down the ma-

chine so as to minimize the costs.

The first problem mentioned above is also known as the Poisson disorder

problem. For references see [12, 401.

EXAMPLE 2.3. Traffic Estimation

The model is that of an urban traffic network. Information on the traf-

fic flow is obtained from detection lines. The ultimate objective is com-

puter control of urban traffic.

The problem here is to estimate and to predict traffic intensities.

For some references on this problem see El, 2, 361.

EXAMPLE 2.4. The Firefly Model

The model is for a swarm of flireflies. Each of the fireflies irregular-

ly produces flashes of light. One assumes that the swarm has a Gaussian
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density, and that the mean of this density moves around according to a Gauss-

Markov process. The authors of this model leave it to the imagination of the

reader to think of other applications of this model.

The problem is to estimate the mean of the density on the basis of the

observations of the light flashes [41].

EXAMPLE 2.5. Filtering in Queueing Problems

Consider a model for a waiting line, in which we distinguish an arrival

and a- departure process, and the queue process. One may also consider a net-

work of queues.

The problemis to estimate the queue process on the basis of the de—

parture process. The theory of stochastic filtering is also used to prove

a certain result for so-called Jackson networks.

For references on the application of. stochastic filtering to queueing•

problems see [7, 9].

EXAMPLE 2.6. A Miscellaneous Model

We finally mention a model that has been addressed in the li-Eerature.

Here the signal process x is a finite state or denumerable state Markov pro-

cess. The observed process y is denumerably valued and related to x by the

equation yt = h(t,xt).

The problem then is to estimate the signal process given past observa-

tions. For references on this problem see [25, 26]. In this paper we will

not discuss this model any further.

3. MODELLING OF JUMP PROCESSES

In this section we answer the question: How to model a jump process?

In the sequel we limit attention tocontinuoustimeprocesses. We assume given

a complete probability space (0,F,P). In this paper we will not be very de-

tailed about technical conditions. The reader is referred to the references

[3, 10, 13, 18, 21, 23] for definitions and results.
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3.1. Single Unit Jump Case

We start the modelling of jump processes with a rather elementary case.

Let x: 0><T-->. R, onT= R+, beaprocess withasingle unit jump, with

x
0 
= 0. Define the jump time as

infft E Tlx
t
(w) 

[ 

x
0 
(w)1, 

+03 if x
t 
(w) = x

0 
(w) for all w E Q,

and the jump distribution function as f (t) = P ( {T ... t } ) .

We then have the following characterization.

THEOREM 3.1.

(a) Given the single unit jump process described above. Then there exists

an unique process x: 0 R
+ 
such that

x = x + m (*)

where (In
t
,F
t
,t€T) E M

1' 
meaning it is a martingale. Actually x is given

by

x
t
= [1 f(u-) ]lf(du)

(0,tAT]

Here (F
t
,t€T) is an increasing a-algebra family.

(b) The process x uniquely characterizes the measure P. [11, 18:1111.

The decomposition (*) above is called the special semimartingale de-

composition. This decomposition will play a fundamental role throughout this

discussion.

To further clarify jump processes with a single unit jump, we illustrate

the classification of jump times, as introduced in [13], with some examples.

1. Totally inaccessible jump times. Example: f(t) = 1 - exp(-t). Here the

distribution of the jump is diffuse on R.

2. Predictable jump times. Example: Jump distribution f(t) = I
[c,00)

(t),

for some c E R
+. 

Intuitively this jump can be predicted with certainty.
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3. Accessible jump times. Example: Jump distribution f(t) = E:=1 akIEuk,o3)(t)

with 0<u
1 
<u

2 
< ...< u

n
<°3/ and a

k 
e R with E

k=1 
a
k 
= 1. In this case the

jump is not predictable but can only occur at certain time moments.

From the above classification one may deduce that in general one uses

totally inaccessible jump times.

3.2. The Counting Process Case

The modelling of jump processes introduced above may be extended to

counting processes. A stochastic process is a counting process if it starts

at time zero, is piecewise constant, and has positive unit jumps. By conven-

tion it is taken to be right continuous. A counting process is also called

a point process.

THEOREM 3.2.1. Given a counting process (nt,Ft,tET) .

(a) There exists an unique increasing predictable process a: OxT.± R+

such that

n = a + m (*)

with (mt,FetET) E M1u1
oc, 

meaning m is a local martingale [23].

(b) If there exists a process X: 0 x F .÷R such that

a
t 
= X

s
ds

0

then we call X the rate process associated with n
t
,tET In this

case we obtain the representation

dnt = Xtdt + dmt, n
0 
= O. **

(c) The process a characterizes uniquely the measure P with respect to the

counting process n.

References [11, 18]. The decomposition and (**) above are called

special semimartingale decompositions.
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EXAMPLE 3.2.2. Let : QxT->. R, X: 1xT4-R be processes such that

E[exp(iv(nt-n5)) IF: V FA] = exp((eiv-1)( TdT)).co

X
Thus, conditioned on F., n is a Poisson process with rate X. Such a process

is called a doubly stochastic Poisson process. This description is equiva-

lent with the description

dn
t 
= X

t
dt + dm

' 
no = 0,

t 

with (m ,F
n

 FA, t E T) E M
1u
1
oc.t t

3.3. Arbitrary Jump Processes

We first mention several descriptions of jump processes.

1. The marked point process description: given {x
n
,s
n
,nE Z+}, where s

n 
re-

presents the interarrival time between the n-1 and the n-th jump, and x
n

the value or mark at the n-th jump. Let To =-: 0, andfornE Z4. Tn=
n
-k=1 ski

to be called the n-th jump time.

2. The jump process description: given the process x: RxT-5-Rstich that

x
t 
=XxI

n (T ...t<T
n-1
).nEZ

+

3. The jump measure description: given the random measure p: R><BT0B 4- R+,

p(w,A) = IA(Tn(w),xn(W)).
nEZ

+

The above descriptions can be shown to be equivalent. The sought for

characterization reads then as follows.

THEOREM 3.3.1. Given a jump measure p: XB
T
OB ±R

+
.

(a) There exists an unique predictable random measure p: QxB OB R
+ 
such

that

p(w,dtxdz) = p(w,dtxdz) + q(w,dtxdz)
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with (q(w, 0,t]><A),Ft 
tErr)E

M1uloc 
for allAE B.

'
(b) The random measure p uniquely characterizes the measure P.

[18:III].

3.4. Modelling of the Rate Process

Consider a counting process n which admits a rate process X, say with

representation

dnt = Xtdt + drat, no = 0.

The question then is how to model the rate process. We present several models

for the rate process that are used in the literature.

1. The constant rate process: Xt 
= X for all t E T, with some distribution

0

for X
0 

specified.

2. The rate process as a finite or denumerable state Markov process.

2
3. The energy model: At = po + pl xt with po,pi E (0,00) and x a Gauss-Markov

or a diffusion process.

4. The linear model: X
t 
= p

0 
+ 

p1xt' 
with p 

c'1 
E (0,03), and x a diffusion 

1

process. The problem with this model is that the rate process has to be

stopped if it becomes negative; hence it is not a useful model.

As an illustration we present one example of a model for a counting

process.

EXAMPLE 3.4.1. The Poisson-FSMP Model. Given the process, n: X T.± R, with

n
0 
= 0,

E[exp(iv(n -ns)) I F
n 

V F
X
] = exp((e

iv
-1)( dT)),

S C°

for all t > s, v E R,

X
Markov process on (X

t 
,F

n 
v F

t' 
t E T). Under certain differentiability con-

ditions on the semigroup of the Markov process we may represent these pro-

cesses as

and the process A: QxT -± X := r ,r
2 

1 c (0,c0) which is a finite state
m
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dz
t 
= A(t)z

t
dt + (1)(t,0)dm z

1t' 0'

dnt = D ztdt + dmt, n
o 
=0,

X
t 
= D z

t
,

z: XT -± Rm, zt (X =r
t i

, lxm mxm
D := (r

1
r
2
...r

m
) E R , T -->- R ,

:= E[zizj]/EEzji, if E[z] > 0, s t,
4)13 t s

0, otherwise,

A(t) := lim Ecb(t,$) -Iii(t-s)
a±t

n n X
(mt,Ft v F

X
t, tET) E M

1uloc' 
Cm
it'

F
t
vF

t'
tET EM1.

3.5. Stochastic Dynamical Systems

The preceding representations of jump processes may be considered as

stochastic dynamical systems. The concept of a stochastic dynamical system

we define below. For a discussion of this notion and a formulation of the

stochastic realization problem see [37].

DEFINITION 3.5.1. A stochastic dynamical system (in continuous time) is a

collection

,Y,X,B
y—x

where {Q,F,P} is a complete probability space, T C R an interval, {Y,B } a

measurable space with Y a vector space, Y C fy: T Yl, {X,B
x
1 a measurable

space, such that if x: S2x T -3- X, y: QXT Y are stochastic processes then



( F
Ay 

F
x
, F

xt
,F
xy 

E CI
t t

for all t E T; equivalently, if

x
t,

A
1

EEI 
IA
2 

I Fx v FY = E I

A1

I

A2  
t

for all 
A1 t 

E FAY, A2 E 
t
F
x
, t E T. Here

xt
F
x 
= V F

xs
F = a({x }), F

x 
= v F 

s
,

t s5..t s>t

t
F
Ay 

=

F'=
ys

V F .
t st

t
,Vs > tl),

38

NOTATIONS. (0,F,P,T1Y,B 
y 
,Y,X,B

x 
E ES, and we call x the state process and

y the output process.

In the sequel we assume that Y = R
k

X = R
n
, and B

x 
= B

n
.

The above definition expresses that the distribution of a future state

and a future output increment conditioned on past states and past outputs,

depends only on the current state. This property is the characteristic of

a stochastic dynamical systems. An immediate consequence of this definition

is that the state process is a Markov process. For a stochastic dynamical

system one may also formulate the concepts of stochastic observability and

stochastic reconstructability, see [37]. However for a number of concepts

related to a stochastic dynamical system precise formulations are not yet

clear.

4. THE STOCHASTIC FILTERING PROBLEM

B = B the Borel a-algebra on Y,
y k

DEFINITION 4.1. Given a stochastic dynamical system,

(Q,F,P,T,Y,B ,Y,X,B ) E ES.
x

•
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(a) The stochastic filtering problem for this system is to determine

E[exp(iutxt) I Fyt]

for all u e R
n
, t E T.

(b) A past output based filter system for the stochastic filtering problem

defined above is a stochastic dynamical system

(Q,F,P,T,Y,B 
y 
,Y,Z,B 

z
) E ES

such that if y: OXT Y, z: 2xT Z are the underlying processes then
zt
F FY for all t E T.

In part (a) above to determine the conditional characteristic function

means to exhibit the analytic form of the map

1EO,t1 
-± E[exp(iuix ) I FYt t

A filter system always exists, because we can take Z = Y. It is therefore

of interest to find a filter state space Z which is in some sense. minimal.

The concept of the dimension of such a state space is not yet clear. For a

stochastic filtering problem with continuous observations it has been sug-

gested to relate the dimension of a filter system to the dimension of the

Lie algebra associated with the operators occurring in the equation for the

conditional density. For this issue there still are many open questions.

How to resolve the stochastic filtering problem? The general procedure

is to derive an equation for E[exp(iu'x ) 1FY], and to solve this equation.
t t

We present two methods to effect this program.

5. THE SEMIMARTINGALE REPRESENTATION METHOD

In this section we present the semimartingale representation method

to resolve the stochastic filtering problem. Initially we do not work with

the state process but with an arbitrary special semimartingale process. The

problem we then consider is to find the special semimartingale decomposition
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of the projection of this process on the a-algebra family generated by the 

observations. For specific stochastic dynamical systems this abstract re-

presentation can be applied to yield a partial stochastic diffei.ential equa-

tion for the conditional characteristic function. Below we first state two

abstract representation results, and subsequently show how these results

are applied to obtain filtering algorithms.

5.1. The Counting Process Case

271

We summarize the main result. For a precise statement see the refer-

ences mentioned below.

MODEL 5.1.1. Given a counting process model

dx
t 
= f

t
dt + dm

1t'

dn
t 
= X

t
dt + dm

t'

d<in >
1 '""

ni
 t =,'4)st

dt,

•

• 5 •

where n represents a ,countingproce8s, assumed to have totally- inaccessible

jump times, Xtthe rate process, and x is a semimartingale with the indicated

decomposition. 

PROBLEM 5.1.2. To obtain the special semimartingale representation of the

projection of .the process x on the a-algebra family (F
n
, t€T). For the pro-

jection we take the so-called optional projection [13], which we denote by

(X
t 

tE T) . Then it follows tha.L = E[x 1Fn] a.s. for all t E T.t- t

RESULT 5.1.3. The solution to the above formulated problem is given by

dX = dt+ EixX + ]-1(dn - dt),
, 

t t 
0 I 1., .

xX

E
t 

= EC (x
t 
- x ) j(A

t 
- X ). F

t
J.

t t

.5 •
. 5

References [6,

1

, 27, 29, 30,31, 38, 39].

x
0 
= E(x )

„

•
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5.2. The Jump Process Case

MODEL 5.2.1. Given the processes

x =x
0 
+a+ m

p(w,dtxdz) = h(w,t,z)p(w,dtxdz) +q(w,dtxdz),

d<m,q(w,(0,t]x A)>t = ip(w,s,z)p(w,dtxdz),

A

where x is a semimartingale, the second line a jump measure description of

a jump process, and the third line represents the relation between the jump

process and the semimartingale. We assume that the jump times are totally

inaccessible.

PROBLEM 5.2.2. To determine the semimartingale representation of the projec-

tion of the process x on the a-algebra family generated by the jump process.

RESULT 5.2.3. The solution to the above formulated problem is given by the

representation

t
- - -
x = x + a + f .1 i (w, s- z)q (w,dsxdz) ,t t

0 R

cl(w,dtxdz) = p(w,dtxdz) - h(w,s,z)p(w,dtxdz

i(w,t,z) = [E[(x -X
t
)(h(w,t,z) - h(w,t,z))

+ EDp(w,t,z)h(w,t,z) IFY]]S-1(w,t,z).

For a precise statement of this result see [3]. Related references are

[8, 17, 41].

5.3. Examples

We present the solutions to stochastic filtering problems for certain

examples.
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EXAMPLE 5.3.1. The Poisson-FSMP model. This model has been formulated in

3.4.1 and reads as follows,

dz
t 
= A(t)z

t
dt + Ot,O)dm , zo,

it

dnt = D ztdt + dmt, n
0 
= O.

t 
= D z

t
.

The solution to the stochastic filtering problem for this model is

E[exp(iuXt) 1F] - exp(iu.r.);it
3 3 t'

J=1

d2
t 
= A(t)Z

t
dt + K(2

t-
)(D2

t- 
( n -Dz

t
dt), z

0 
= E(z),

oft

K z )

t.

A A.

diagonal(zt) - ztz D',

Reference [28]. The above result can be extended• to the case where A

is a denumerable state Markov process. An application of this model is in

the estimation problem for the industrial model formulated in (2.2).

EXAMPLE 5.3.2. The Poisson-Gamma model. This model is rather elementary. We

use it to illustrate the solution procedure for the stochastic filtering

problem by the semimartingale representation method. The model is specified

by

dx
t 
= ax dt, xo,

dn
t 
= x

t
dt + dm

t'
n
0 
= 0

where n is a counting process, x its associated rate process, a E (- ,0),

X
0.

Q 4- R
+ 
a random variable with a Gamma distribution function, with dens-

ity function p (v) = v e /r (r) , r, /3 E (0,03) . Of course x
t 
= exp (at) x

0



Then

We sketch the solution procedure. Set

c: OxTxR

c
t
(u) := exp (iuxt

) .

t(u) = ivaxt
(u)dt, c

0 
(u).
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Applying the semimartingale representation result to the process c(u) we

obtain

dC
t 
(u) = uacTh (u) dt + (u) + (0)C (u) ](-i_Cl (0) ) -1t- t- t-

-
c (u) = E[exp(iux )] = (1 -iui3)

r

c(u) =
t 
(u) .

(dn
t 
+ 

t-
' (0) dt) ,

This is a partial stochastic differential equation, driven by a counting

process.

The solution to the stochastic filtering problem for the above model

then is

E[exp(iux ) IF

'6.(t) = a(t)

Then it follows that

X
t =

- (n +r)

- (1 - iuf3 (t) )

i3 (0) = 1.

satisfies the stochastic differential equation,
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dX = acc
t
dt + P,(t)(dn

t 
-,x dt), x = r.

0

References [15, 27].

EXAMPLE 5.3.3. The firefly model: according to (2.4) we have

dx
t 
= ax

t
dt + P.dv

t' xo,

p(w,dtxdz) = (27ra(t)
2
)-12exp(-(z-xt) 

2
/2a(t)

2
)dtdz+q(co,dtxdz),

whereaER, ER, visastandard Brownian motion process, x0: 0-->-R is

a random variable with a Gaussian distribution. The solution to the stoch-

astic filtering problem is

E[exp(iuxt) I F
- 1 2; N,

= exp (iuxt - -2- u

-
dx
t 
=

t
dt + k

t- 
(z-ii

t-
)i(w,dtxdz

R
- -2 - -di = Dar
t 
+ 

2 
- r

t
(a(t)

2 
+ i

t
)
-1
]dt + 

ktt
r q(w,dtxdz),
- -

- -q(w,dtxdz) = p(w,dtxdz) - (27r(a(t)
2 
+r
t)) x.P(-(z-xt)

2 
/

/(27r(a (t) 2 + ) ))dtdz,

- -
k
t 
= r(a(t)

2 
+r)

1 
.

Reference [41]. The Gaussian density and the Gaussian distributions

are essential here. The filter system has some analogy with the Kalman-Bucy

filter system. It differs from this filter system in that the equation for

the conditional covariance depends directly on the observations. A serious

difficulty is the integration over the jump measures.

EXAMPLE 5.3.4. A model for optical communication:

dx
t 
= ax

t
dt + P.dv

t'
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2
dnt = 111xt) dmt' 

no = 01

2

At = (110+111xt)'

where v is a standard Brownian motion process, and xo: R is a Gaussian

distributed random variable. The solution to the stochastic filtering prob-

lem for this model is only known locally, between jump times,

E[exp(iuXt) Fn]I
t (T

kk+1
)

k

o
) / ak. (t) [1 -iug(t)]-3-2/[ ak.(t)],

j=0 3 j=0 3

where (akj(t), Ft' 
t€T) are adapted stochastic processes for which equa-

tions are known, and g: T R is a determinstic function. Reference [4].

The characteristic function above is locally a convex combination of char-

acteristic functions of gamma type. The resulting filter system does not

seem to be finite dimensional. Aprpoximations to the solution may be at-

tempted.

6. THE MEASURE TRANSFORMATION METHOD

6.1. Introduction

A second method to resolve the stochastic filtering problem is the

measure transformation method. To introduce this method we first consider

an elementary example.

EXAMPLE 6.1.1. Consider the model with random variables n: 04-R
+' 

A:

such that

E[exp(iun) I FA] = exp(X(eiu-1)) ,

A has a Gamma distribution, with density function p(v) 
=-rvr+1

eMr),

with (3,r E (0,03). Thus conditioned on A, n has a Poisson distribution. The

problem is to determine
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E[exp(iuX) I Fn.].

We sketch the method. Let p = Xnexp(-X+1). Define a new measure Po on (0,F)

by P
0 
(A) = E[I

A
p
-1
]. Then it can be shown that: L P

0 
is absolute continuous

with respect to the original measure P; 2. Ejexp(iun)] = exp(eiu-1); 3.

(F
n
,F

X
) e 

I(P0' 
), or Fn, FA are independent under P

0' 
• 4. P

0 
= P

1 
on F

X 
;5.

E[exp(iuX) I Fn] = [exp(iuX)p I Fri]/E0[P I Fri]

=(1-  iur3/ (1') .

The above procedure may be considered as a measure theoretic formula-

tion of the Bayes method. The calculation in point five above is straight-

forward because under 
P0' 

F
n 
and FX are independent.

We can now formulate the measure transformation method to resolve the

stochastic filtering problem. It consists of the steps:

1. to perform a measure tranformation such that under the new measure the

state process and the observed process are independent;

2. to obtain a semimartingale representation for the unnormalized condi-

tional characteristic function with respect to the new measure. This re-

presentation will be in the form of a partial stochastic differential

equation.

The advantage of this method is that the calculations under the new

measure are easier than under the old measure. Below we briefly sketch the

measure transformation method for the case of counting process observations.

6.2. The Counting Process Case

THEOREM 6.2.1. Given the processes, with respect to a measure Pl,

x: XT -)-R,

dn
t 
= X(x) dt+ dmt' 

no = 0,



where n is a counting process.

(a) Then there exists a probability measure Po on (0,F) such that:

1. P
1 

<< P
0 

with 
Pt 

:= E
0 
[dP

1 
/dP

0 
IFn V Fx] =
t 03

= exo(f
t 
tn(X(x_))dn. - f

t 
[X(x ) - lids) ;0 s s 0

2. under P
0' 

n is a standard Poisson process;

x
3. (F

n 
,F)E (P

0 
-co co '

4. P
I 
= P

0 
on F

x
;

5. E
1 
[exp (iux

t
)

n
Fnt] = Eo[exp(iuxt)Pt I Fnt]/E0[Pt I Ft]

(b) If in addition x has the representation

dx
t 
= f(x )dt + dm

it' 
xo,

d<m m > = 
t
dt,

1' t 
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(*)

with (m
it
,F
t' 

t€T) E M
1 
and suitable conditions on x

0' 
f, (I), then we

have the partial stochastic differential equation

dE
o
[exp(iux )p IFn]

t t t

n
= E

0
aup

t
f(x )exp(iux ) u

2
p exp(iuxt) IFt]dt

t 2 t t

+ EoEptE X (x ) - nexp (iuxt) I (dnt - dt) , Eo[exp (iuxo) 1.

References [3, 5]. We call the process Eo[exp(iuxt)pt lFrit] the unnor-

malized conditional characteristic function. Note that if it is known, then

by setting u = 0 one obtains the denumerator in ( ), and thus the desired

expression via again (*)

7. OPEN QUESTIONS

We mention some open questions for the stochastic filtering problem in

the case of jump process observations.
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1. Which stochastic dynamical systens lead to stochastic filter systems

which are, in some sense, finite dimensional? One difficulty is that the

concept of finite dimensionality is not yet clear. However the examples

of 5.3 indicate what is understood by this term. The importance of the

finite dimensionality of a filter system is clear from the viewpoint of

applications. One would hope to obtain sufficient conditions for a sto-

chastic dynamical system such that the associated filter system is finite

dimensional. It is possible that differential geometric concepts play a

role in answering this question.

2. Can stochastic realization be useful in resolving the stochastic.filter-

ing problem? For second order processes stochastic realization theory

has provided new insights for the stochastic filtering problem. For jump

processes this approach is still undeveloped.

3. How useful is the approximation of a rate process by a finite state

Markov process? From a viewpoint of applications the most useful result

is the filtering algorithm 5.3.1, for the case where the state process

is a finite state Markov process. For the application of this result to

concrete problems there are several questions of modelling and implement-

ation.
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Smooth Representati n of Systems with
Differentiated Inputs

M. I. FREEDMAN AND JAN C. WILLEMS, MEMBER, IEEE

Abstract—Conditions are derived under which the nonlinear input-out-
put system .)•=f(y,u,ii) can be represented in the form =g(z,u); y=
h(z,u). Various implications of the results to stochastic differential equa-
tions are considered.

I. INTRODUCTION

N THIS PAPER we will derive conditions under which
1 the system described by the vector differential equation
=j- (x, a), where u denotes the input, can be represented

by a system of the form i =g(z,u); x= h(z,u) which does
not contain the derivative of the input. As we will see,
necessary and sufficient conditions for this to be possible
are that i): f(cr1,a2) is affine in a2, i.e., f(x,a)= a(x)+
b(x)a,, and ii): the vector fields defined by the columns of
b commute (if bi denotes the ith column of b then this
requites that (abk/ax)bi=(0b,/ ax)bk for all k, I).
It is a well known basic result of linear "realization
theory" (see, for example [1]) that for P (s)= s' +
Pn_ isn-1 + • • • + Po and Q (s)= Qs" + • • • + Q0 given
matrix polynomials in s, the linear system y(")+ Pn_ i
*Y(n-1)+ • • • +P0y= Qnu(")+ Qu(n-D+ • • • + Qou
(with u the input and y the output) can always be repre-
sented by a system of the type I =Ax+ Bu; y = Cx+ Du.
The problem treated in the present paper may be seen as a
first step in obtaining an analogous theory for nonlinear
systems of the type y(") = f(y(n-1), • • • ,y, On),
u(n-1),• • • ,u). In fact, we treat the case j =f (y, u, a). It
turns out that such a representation is only possible pro-
vided f (y, u, = a(y, u) + b(y, u)ii and b satisfies
(abk/au,)+(abk/ay)k=(abiRuk)+(abday)bk for all k, 1.
An interesting application of the problem treated in this

paper is the sample pathwise interpretation of stochastic
differential equations. Recently some interesting results in
this direction have been obtained by Sussmann [2], [3] and
our conditions are in fact identical to his. However, the
approach taken by Sussmann is quite different: he is, in
essence, looking for a smoothness result and we are look-
ing for a specific representation. These issues are, of
course, very much related but since our results are more
specific they admit in the end stronger smoothness- claims
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than those which have been obtained or, for that matter,
considered in [2], [3]. Specifically, whereas Sussmann
proves a certain map to be continuous in the 0-topology,
our results imply that that same map is also continuous in
the es-topologies for 1 4 p < oo. The resulting system thus
admits input spaces which are closed under concatena-
tion.
The final problem considered in this paper is to find

conditions on a given Markov process x(t) such that it
can be represented as the output of a differential dynami-
cal system which has, as its input, a Wiener process. We
will show that this requires a particular Riemannian met-
ric to be "flat" (i.e., of curvature zero) which contains as a
special case all Markov process described by stochastic
differential equations of the type dx = a (x) dt + b (x) dw
provided b satisfies the commutation conditions men-
tioned above.

II. SMOOTH REPRESENTATION OF SYSTEMS WITH

DIFFERENTIATED INPUTS

The natural definition of equivalent systems which is
used in system theory is basically the following: Consider
the systems Ei: y = gi(xi,u) with state spaces
Xi, i= 1,2. Then E/ and E2 are said to be equivalent if
there exists a bijection r: X1—>X2 such that for all inputs
there holds

i) x/(t) satisfies 11(t)=f1(x/(t),u(t)) if and only if x2(t)
= r(xl(t)) satisfies .Z2(t) =f2(x2(t), u(t)),

ii) g1(x1,u)=g2(r(x/),u).
This implies their input/output behavior to be the same.
In the problem considered here we will, in addition to
adding some smoothness requirements, specialize this def-
inition to the systems:

.i=f(x,u,v), v; y= x, and

2: = g(z,u), v; y = h(x,u).

Throughout the paper smooth will mean Cc° and uni-
formly Lipschitz (thus C' with bounded first derivatives).
The formal definition of equivalent systems which is na-
tural to the problem under consideration is thus the
following.

Definition I: The systems El: I =f(x,u,ti) and 2.2: I =
g(z,u); x= h(z,u), with f, g, and h smooth, and x E
uERm, are said to be equivalent if there exists a smooth
C '-diffeomorphism r:Ir x x R'n with r(x,u)=
(r i(x , u), u) such that E1(x0, uo) = E2(r(x0, uo)) for all (xo, us)

•-••••••,-



ER" x Rm. Here Il(x0, u0) denotes the map which takes'
v(•) E eioc to x(•) via si=f(x,u,v), ii=v; x(0)= xo, u(0)=

uo and E2(z0,u0) is similarly defined by i = g(z, u), ü =
z(0) = z0, u(0) = u0.
In the remainder of the paper we will only consider
systems of the form .i=f(x,u). It is easily verified that
this constitutes no loss of generality since .i=f(x,u,ti)
may always be written this form by augmenting x to
(x, u).

In order to express the conditions of Theorem 1
succinctly we introduce now the following standard con-
cept [4].

Definition 2: Let r,s:Rn---*Rn, i= 1,2, be smooth. Then
the vector fields X = E7= iri(x)0/0xi and X, =
E7.= isi(x)a/axi are said to commute if [X„ Xj= 0.
Here [X,, X](x) denotes the Lie bracket

• (ri(x)3si/a.),(x) si(x)ari/axi(x))a/axi. The require-
ment is thus that (8r/ ax)s =(8s/ 3x)r which may be
viewed simply as a condition on the first partials of r and
s which admits a differential geometric interpretation.

The main result of the paper is the following.
Theorem 1: There exists a system i= g(z,u); x= h(z,u)

with g,h smooth which is equivalent to the given system
f (x,U) with f smooth if and only if.

i) f(x,a) is affine in t, i.e., there exist a,b such that
f(x,U)= a(x)+ b(x)6;
and

ii) The in vector fields defined by the columns of b
commute pairwise.

Proof: The proof of this result is based on the follow-
ing lemma which is of some interest in its own right:
Lemma 1: Consider the system of partial differential

equations:(0h/8u)(z, u)= b(h(z,u)), with2 b : R"
eurz,wn) smooth. Then there exists a smooth solution
h : R" X IV —>Rn such that fi: (z , u)--->(h (z ,u),u) is a smooth
C'-diffeomorphism if and only if the vector fields Xi=
/7= ibii (x) a/ axi, i= 1,2, • • • , m commute pairwise.

Proof: see Appendix.
Proof of Theorem 1: Let i =g(z,u); x=h(z,u)

be the equivalent representation. Thus (ah/az)(z,u)i+
(ah/au)(z,uyi=si=f(h(z,u), Thus, f is affine in ü and
(ah/au)(z,u)= b(h(r,u)). This implies by Lemma 1 that
the vector fields defined by the columns of b commute
pairwise.

Let h be the solution of (8h/8u)(z,u)= b(h(z,u))
as given by Lemma 1, and define g by g(z,u)=
((ahlaz)(z,u)r la(h(z,u)). It is now easily verified that
the map r:(x,u)—>(z,u) with z such that x=h(z,u) estab-
lishes the equivalence of di = a(x)+ b(x)ti and i =g(z,u);
x=h(z,u).
Some consequences of Theorem 1 are:
Corollary, " 1: Consider tile system I =- a(x)+b(x)ii with

a,b smooth and u scalar valued (thus in= 1). Then there
exists an equivalent .9.,stem 1 = g(z,u); x= h(z,u).

IP.ioc denotes the functions integrable on finite intervals.
2E(R",11') denotes the real (in X n) matrices.
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Proof: see Theorem 1: there is only one vector field.

• Corollaiy 2: Consider the system I = a(x)+b(x)ti where

a, b satisfy the conditions of Theorem 1. Let F be defined on

C1[0, T] as the map which takes u(•) to x(•) defined by this
differential equation with fixed initial condition x(0) = x.
Then F is Lipschitz continuous in the C°[0, T] topology and
in the ep [0, 7] topology for 1 <p <oo. Thus F admits
continuous extensions to C°[0, T] and ep [0, 7].

Proof: This follows from the equivalent representa-
tion derived in Theorem 1 and from standard properties
of the dependence of the solution of a differential equa-
tion on its right hand side. .

Corollary 2 constitutes a sharpening of Sussmann's re-
sults. In particular it shows that the system can always be
extended by continuity to include other than inputs,
also C° inputs (this is already known from [2,3])
and—important in applications—piecewise continuous in-
puts. In fact, the closure of the input space under con-
catenation is often an axiom on the very definition of a
dynamical system and the extension to co alone leaves
one with this inconvenience, which is bypassed in our
approach.

Examples:

1) The system x= a(x)+ bei with b constant obviously
always satisfies the conditions of Theorem 1. In fact if
there exists a smooth bijective map m:IV2-4R" such that
xi = m(x2) takes I, = al(x1)+ bl(xi)ü into 12 = a2(x2)+ b2ti
with b2 constant then the first system will satisfy condition
ii) of Theorem I. The conditions on bl are however not
equivalent to this condition although they are locally
equivalent [4]. Presumably the conditions are in fact
equivalent if bi(x) has constant rank.

It is easy to see which transformation will do the job for
the system di = a(x)+ NI. Indeed, by letting z=-- x— bu, we
obtain i = a(z + bu); x= z+ bu which is the desired repre-
sentation. The result of Theorem 1 is less obvious when
b(x)constant.
2) Assume that cp is differentiable and in e(0, co). Con-

sider the differential equation iN = a(xN)+ b(xN)cp(Nt)
with xN(0)= xo. Then limm xN(0= x(t) for all t >0 with
x(t) the solution of I = a(x), x(0)= x0, provided b(x)
satisfies the condition of Theorem 1. That the commuta-
tion of the vector fields is essential may be seen by
considering instead the system = 62, and ex-
amining the response with ul(t)= sin Ni and u2(t)=cosNt.

It is easily derived from Theorem 1 that .); =f(y,u,ti)

may be represented m the form i = g(z,u); y= h(z,u)

provided f (y, u; = a (y , u) + b(y, u)ii and b satisfies

(abk/au1)+(abk/ay)b,=(abdauk)+(abday)bk for all k, I.

III. STOCHASTIC DIFFERENTIAL EQUATIONS

Consider the Ito differential equation for t >0: dx=
a(x)dt+ b(x)dw, x(0) = x0 with w(t) a Wiener process
having w(0)=0 defined on a suitable probability space

to, e,P). The solution process x(t) is defined as a
limit-in-the-mean and, although this produces a nonantic-
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ipating map F: w()—>x(), this map is constructed by
considering the ensemble properties of the Wiener pro-
cess. The question thus arises whether it is not possible to
give a specific representation of this map for example as a
differential dynamical system which accepts as its inputs
the realizations w„, of the Wiener process and produces as
its outputs the corresponding realizations x,,, of the
Markov diffusion process generated by the Ito equation.
Whatever be the merit or the physical basis of obtaining

such an interpretation of the random phenomenon mod-
eled by the stochastic differential equation in question, it
is of interest to identify the situations in which it is
possible to do this. We show that Theorem 1 gives indeed
one such result. It gives a sample pathwise interpretation
of some stochastic differential equations as differential
systems in which only the input is a function of the basic
randomness expressed by its dependence on the chance
variable co.

Theorem 2: Assume that a and b are smooth and that b
satisfies condition ii) of Theorem 1. Then there exists a
C'-diffeomoiphisin which is a unique solution of the partial
differential equation oh/ 8uxz,i0= b(h(z,u)) with h(z,0)
= z. Let

rn

g(z,u)=(2-(z,u)) 1(a—

Then the solution of the deterministic differential system

with stochastic inputs i = g(z,w), with z(0) such that xo=

h(z(0),0) satisfies h(z(.),w(•))= x(•) almost surely.

Proof: see Appendix.
The point of Theorem 2 is that, since w(-) is with

probability one continuous, it gives a sample path inter-
pretation on how to integrate the stochastic differential
equation provided, however, the condition on b is satis-
fied. If this condition is not satisfied then, in view of the
fact that the map F: w (•)- x (•) may then not be continu-
ous in the C°-topology, there is no hope of obtaining such
a result.

Remarks:

1) If the stochastic integral involved in the definition of
the solution process of the stochastic differential equation
is interpreted in the sense of Stratonovich, then the result
of Theorem 2 need only be modified by choosing g(z,u)=
((ail/ a z)(z , u))-1a(h(z, u)), i.e., without the notorious
"correction term".

2) A great deal has been written on the question of the
approximation of Ito differential equations, i.e., on the
question in what sense the solution of the ordinary dif-
ferential equation: = a(x)+ xn(0)= xo, ap-
proaches the solution of the Ito differential equation:
dx = (a — Er_ i(abi/ ax)bi(x))dt+ b(x)dw, x(0)= x0) when
w -->w in some sense. In fact, the situation is pretty much
settled in the case m= 1 whereas in the case m> 1 no clear
picture. on this approximation problem has yet emerged.
Theorems 1 and 2 shed light on this problem. For in-

stance, if condition ii) of Theorem I is satisfied (and
hence whenever m = 1), and if wn is family of piecewise
differentiable stochastic processes satisfying for some 1 <
p < co

IIIV„(0— W(011Pdtn

for almost all co, then Theorem 2 shows that

-10
'kJ° — X(t)IIP dt 0

n--÷co

for almost all co. All sorts of other approximations are
easily obtained from Theorem 1. These conditions appear
to be a bit simpler than what is available in the literature
[5]. It would also appear that if b does not satisfy the
commutation condition ii) of Theorem 1 that in view of
the potential smoothness of the map w-->x there is not
much hope in obtaining strong approximation results (see
also Remark 5).
3) Theorem 2 also shows how one could interpret the

class of stochastic differential equations when b satisfies
the commutation conditions of Theorem 1 but when w is
not necessarily a Wiener process. The only requirement is
that the input stochastic process w(-) is locally integrable
for almost all co. This includes, among many others, Pois-
son jump process.
4) Theorem 2 is close to giving a necessary condition as

well. In order to do that, one needs to require that the
map h(• ,w) should be a bijection and that the measure
induced by x(t) should be absolutely continuous with
respect to Lebesgue measure.
5) Let x be defined by the stochastic differential equa-

tion dx= a(x)dt+ b(x)dw but assume that b does not
satisfy condition ii) of Theorem 1. Then x„(-) is still
defined as a nonanticipating map from w(•). Whether this
map, viewed as a map from C° (C° is the support of
Wiener measure) into C° is continuous in the C°-topology
is unclear. What we do know is that it is not the continu-
ous extension of the map = a(x)+ b(x)ti (defined on Cl)
to C°, because this map is then not continuous in the
0-topology. This remark is obviously relevant to the
discussion of how and when to interpret Ito differential
equations "physically".

IV. REPRESENTATIONS OF DIFFUSION PROCESSES

In this section we will consider the problems of when a
given Markov process can be represented (in a sense to be
defined instantly) as the output of a deterministic dif-
ferential system driven by a Wiener process. We will
consider the following class of Markov processes.

Definition 3: Let x(t) > 0) be an n-dimensional
Markov process with .(stationary) transition function
p(y,t,B)= P(x(s+ t)EBlx(s)=y) for 1,s> 0, y ER" and
B cit" Borel. Then x(t) is called a diffusion process if:

i) for all e.> 0 and x E R"
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h—)0+
lim (x,h,dz)=0,

and
ii) there exists a :Rn —>1.1" and p :R"--->e(Rn ,Rn) such

that

lim —1 (z x)P (x,h,dz)= a (x)
h--)0+ h e

and lirn —1 (z — x)(z — x)T P (x,t,dz)= p(x).
h

The vector a is called the local drift and p is called the
local covariance.

It is well known [6] that the solution of the Ito differen-
tial equation dx= a(x)dt+ b(x)dw; x(0)= x0, defines a
diffusion with local drift a and local covariance bbT We
will use the following notion of equivalence for diffusions.

Definition 4: Let xi, i= 1,2, be diffusion processes with
local drifts ai and local covariances pi. Then they are said
to be equivalent if al = a2 and pi =p2.
Two equivalent diffusion processes have the same

finite-dimensional distributions P (xi(t 1), x1(t2), • • • ,xi(t„)).
Thus, for many applications, we do not need to dis-
tinguish between them.
In view of the previous comments the following defini-

tion is a natural one.
Definition 5: Let x(t) be a diffusion with local drift a

and local covariance p. Assume that x(0)= xo. Then it is
said to be represented by the deterministic differential
system with stochastic inputs: i = g(z ,w); = h(z ,w), z(0)
= zo if there exists a zo such that for w(t) a Wiener process
with w(0)=0 the process 17(0 thus obtained is a diffusion
process equivalent to x(t).
The problem which we consider in this section is to

derive conditions such that a diffusion process can. be
represented by a differential system with a Wiener process
as input as defined in Definition 5. The following lemma.
shows that the problem is one of representing the diffu-
sion process by a special type of stochastic differential
equation (the problem of what diffusion processes may be
represented by Ito equations is treated, e.g., m [7]; our
problem requires a representation as in Definition 5).
Lemma 2: Let x(t) be a diffusion process with local

drift a and local covariance p and with x, (0)= xo. Assume
that a is smooth. Then x(t) may be represented by de-
terministic differential system as in Definition 5 with g,h
smooth if there exists b :R"--*E(Rn ,Rn), b smooth, such
that:

i) bbT =p,
and

ii) the n vector fields defined by the columns of b
commute pairwise.

Proof: This follows immediately from Theorem L 0
As shown in Lemma 2 the representation problem of

Definition 5. reduces to a factorization problem on the
local covariance matrix p: It is easily seen that such a
factorization is unique up to right multiplication of b(x) A large class of Markov processes described by
by an orthogonal matrix-valued function s(x). We are stochastic differential equations may be viewed as the
thus looking for a matrix s(x) such that ss T(x)= I and output of a system described by an ordinary differential

such that b=Nri; s satisfies condition ii) of Lemma 2.
Interestingly enough this question admits an answer in
terms of some standard concepts from differential geome-
try.

Definition 6: Let M:R"--->e(Rn, It") be C and M(x)
= MT(x)>0. Then M is said to define a C'-Riemannian
metric on Rn (given by the 2-form <dx, M (x)dx>

_ iM u(x)dxi dxj). A C"-Riemannian metric is said to
be flat (or to have zero curvature) if there exists, locally
around every point, a C'-diffeomorphism r:Rn--->Rn such
that the induced 2-form

<ry(y)dy,M (Ary(y)dy> equals <dy,dy>= (dyi)2.
i-1

The main theorem of this section shows what diffusion
processes can be represented as the output of a differen-
tial equation by a Wiener process:

Theorem 3: Let x(t) be a diffusion process with local
drift a and local covariance p and with x(0) = xo. Assume
that a is smooth, that p is C°°, and 'that there exists E >0,
such that p(x)> Eir. Then a necessaiy condition for b as
defined in Lemma 2 to exist is that the Riemannian metric
defined by the 2-form <dx,(p(x))-1.dx> be flat.

Proof: see Appendix.

Remarks:

6) It is plausible that one could actually make a some-
what stronger claim, namely, that given the diffusion
process x(t) then there will exist, under the conditions of
Theorem 3, a Wiener process w(t) with w(0)= 0, smooth
functions g,h and a z0 ER such that, for almost all (.4),x(t)
is given through i = g (z ,w), x = h(z ,w).
7) The converse of Lemma 2 and Theorem 3 leads to

the considerations indicated in Remark 4.
8) Even though Theorem 3 only ensures the existence

of a local change of variables there are many situations in
which it also works global, as the following example
shows.
Example 3: Consider the diffusion process defined by

dx = a (x,y) dt + a (x,y) dW x(0) = xo

dy = a2(x,y)dt + a (x,y) dW2 y(0) =Yo

with al, a2 and a smooth. We have:
Theorem 4: Consider the diffusion process defined by the

above differential equation. Then it satisfies the conditions of
Lemma 2 if and only if log al is a harmonic function.
Consequently, if log Jet is harmonic this diffusion process
may be represented by a deterministic differential system as
in Definition 5.

Proof: see Appendix.

V. CONCLUSIONS



equation with a Wiener process as input. This has to do
with the commutation of the vector fields defined by the
columns of the input matrix of the noise terms. In such
systems, which include many of those encountered in
practice, a stochastic calculus is hardly necessary. The
resulting processes are diffusion processes in which the
inverse of the local covariance matrix defines a flat
Riemannian metric. It appears in fact that this property
gives exactly the class of diffusion processes which may be
interpreted in this way.

APPENDIX

Proof of Lemma 1: Let h be the solution of
(0h/ au)(r,u)= b(h(z,u)). A simple calculation shows that
this implies E.'b. bjk(h (z, u))(abid axi)(h.(z, u))=
(a/ auiyahd ato(z, u). Let X1 denote the vector field de-
fined by the ith column of b. Then a/auk ahdaut
= a / au, ahii au, and the above equality yield
[Xk,X/](h(z,u))=0 for all z, u. Bit h is surjective. Hence,
[Xk, Xi]= 0 as claimed.

This part of the proof is "constructive". We will
show that the required solution h may be constructed as
follows: Consider the differential equation 1 = b(r)u, with
r(0)= z. Take the solution at t = 1. Obviously this element
depends on z and u. Denote this function by h(z,u). We
will now show that this is the function which we are
looking for. To show that (0h/0u)(z,u)=. b(h(z,u)) we
will prove that the solution of m = b(r) (t); r (0) = z at t = 1
depends on the values taken on by f(t) at 1=0 and t= 1
only. From there it follows, by considering f's of the type
f(t)=col(111,• • - ,u;_ i,uit,ui+1,- • • ,u„,), that (0h/811)(z, u)
= bi(h(z,u)). To prove this path independence, take
fo(t),A(t) with f0(0)=f1(0)= 0 and f0(1)=A(1)= u, and
consider the linear homotopy fa.= (1 — cx)fo+ afi. Let ra(t)
be defined by ia = b(ra)((l — a) fo+ WO, ra(0)= Z. Let sa =
dra/ da. We will have the path independence if we demon-
strate that sa (1) = 0. Clearly Sa = Dit_ lab/ ax,(ra)(s.) i[(1
a) jo+ afj+ b(ra)(11 — jo) with sc,(0)=0. A straightforward
but involved calculation using the commutation of the
vector fields shows that sa = b(ra)(fi —fo) is the unique
solution of this differential equation. Hence, sa(1)= 0
which was to be proven. The fact that (z,u)---->(h(z,u),u) is
smooth and has a smooth inverse follows from standard
properties of the solutions of the differential equation
(which defines h) on the parameters u. We omit these
details.

Proof of Theorem 2: The existence of h and g follows
from Lemma 1. Let x be defined by i = g(z,w), x=
h(z,w), and z(0) such that xo= h(z(0),0). Then, by

Ito's differentiation rule, dx = (0h/az)(z, w) dz +
(0h/ az)(z, w)dw + -}(ET_ I a 2h/ 0 2wixz,w)dt. By the defi-
nition of h this last term equals fET_ (0b1/Ox
bi)(h(z,w))dt so that dx indeed satisfies dx= a(x)dt +
b(x)dlii with x(0)= xo, as required.
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Proof of Theorem 3: Assume b exists. Then using the
full rank condition in an argument very similar to the one
used in the proof of Lemma 1 it follows that there exists a
C'-diffeomorphism x= r(z) satisfying Or/ Oz = b(r) and
r(0) = 0. Thus' Or / az)-1 b(r)= I and consequently
(8r/ 0z)' b(r) br(r) ((ar /az)-1)T = I. Thus the condi-
tions of Theorem 3 assure the existence of a change of
variables such that Or / az)-1 p(r) ((Or / az)-1)T = I. It is
easily seen from here that this r is the change of variable
which shows flatness.

Proof of Theorem 4: by computing the curvature
using the formulas from differential geometry [4] it
follows that log lal is harmonic. We omit the explicit
calculation.

It is well-known that log I al harmonic implies the
existence of a harmonic function 0 (x,y) such that ô = eel°
is analytic as a function of z = x + my. • -

Consequently, the process defined by:

dx= al(x,y)dt + a (x,y)(cos 0 (x,y) dw sin° (x,y) dw2)

dy = a2 (x,y)dt + a (x,y)(sin 0 (x,y) dwi + cos 0 (x,y)dw2)

defines an equivalent diffusion process. This process may
be written in complex variable notation as

dz=a(z,i)dt+o(z)dw

where 2.= x — iy, a= al + ia2, and w = Iv! + 1w2. The
analytic transformation z = r(s) with dr/ cis= (r) trans-
forms the above system into the equivalent one of the
form:

ds= a*(s,i)dt + dw; z = r(s).

Letting s w= v we obtain the desired representation

13=a*(v+w,i5+17), z=r(v+w).

It is obvious how this can be transformed into a real
variable equation.
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RICCATI EQUATIONS AND LAGRANGIAN MANIFOLDS

by

Clyde Martin*
Case Institute of Technology

Case Western Reserve University
Cleveland, Ohio 44106

This paper is essentially the content of a lecture presented at

"Filterdag Rotterdam, 1980." The work reported here is partially joint

work with Robert Hermann and a complete joint paper will appear else-

where. The main purpose of this paper is to announce the following

theorem.

Theorem 1. Let M be the class of linear symplectic vector field on

the manifold of Lagrangian subspaces of 'dim n in 11 The subclass

M
o 

of Morse-Smale vectors fields is dense in M.

The matrix Riccati differential equation arises in many contexts,

and has been widely studied in the control theory literature. Recall

that it arises in control theory in the following way. Let a linear

controllable system be given by

= Ax Bu x(0) = xo (1)

and a quadratic integral performance index be given by

J(u) = )1 x'Qx + s Ru. R> (2)

*Supported in part by NASA Grant #2384. The author wises to express his
appreciation to Erasmus University for their hospitality while this
paper was being written.
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A standard calculus of variations argument reduces the minimization to

the solution of the two point boundary value problem

A -BR 11 [xl x(0) = xo

[x -Q -A' A X(T) = 0
(3)

The two point boundary value problem can be reduced by the trans-

formation A = P(t)x to the nonlinear differential equation

P(t) = AIP(t) + P(t)A - PMBR-161P(t) +
(4)

P(T) = 0 .

It is well known that this equation describes in local coordinates

the flow generated by a one parameter subgroup of the symplectic group

acting on the Grassmannian manifold of n planes in el (HE]. If we

choose the standard symplectic two form on Win,

{-I

0

(5)

the manifold LGOR
2n
) is invariant with respect to e

Ht
. (It is, of

course, actually a homogeneous space of the symplectic group). We can

realize LGCR
2n 
) as a compactification of the space of symmetric

matrices which is justification for studying the Riccati equation of

optimal control in this context.

We recall the following theorem [MA 1].

Theorem 2: .The suhspace X is an equilibrium point of the e
Ht iff

HX c X.

This theorem reduces the study of equilibrium solutions to a

study of invariant subspaces. The invariant subspace problem is greatly
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simplified by the following assumption:

o The eigenvalues of H are distinct.

Throughout this paper we will work under that assumption, even though

there will be times when it can be ignored or relaxed. We will use the

notation e(X) for an eigenvector associated with the eigenvalue X.

Every equilibrium point has a basis of eigenvectors. Recall that if X

is eigenvalue of H then so is X, -X and -X. We are interested in

real Lagrangian equilibria. The following theorem describes this class.

Theorem 3: The subspace X spanned by (e(Xi):i = 1,...,n1 is real

and Lagrangian iff

) e(Xi) E X .> e(X) E X

2) e(X.),e(X0 ) E X X. + X. t 0j

Let X be a real Lagrangian equilibrium point for eHt. Con-

struct Y be letting Y be spanned by the n-eigenvectors not in X.

Note that xED Y .1R2n and hence a canonical chart for LG(1112n) is

defined and with respect to this chart, H is block diagonal. Since

X and Y are symplectic H is symplectic with respect to this decom-

position and, hence, H has the form

[H
1

0
1

Note that the Riccati equation so defined is given by

15(t) = HP(t) +

(7)

(8)
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which is linear. The stable and unstable manifold of the equilibrium

point X with respect to eHt are completely described by stable and

unstable manifold of 0 with respect to the linear equation (8).

The eigenvalues of the linear operator in (8) are constructed by

addition from the eigenvalues of H. But since X is invariant with

respect to H, the eigenvalues are given by X1,...,An where the Xi

satisfy the conditions of Theorem 3. The following theorem is thus

obtained.

Theorem 4: The operator of equation 8 has no zero eigenvalues. The

stable and unstable submanifolds of X with respect to e
Ht are trans-

versal iff for all i and j, A. A. is not pure imaginary.

Thus the Riccati equations are well behaved with respect to equi-

librium points. It was observed in [MA 2] that for n=2 Riccati equa-

tions can be periodic solutions. The construction presented did not

generalize nor did the one communicated to the author by Professor Jan

Willems generalize. The following construction is due in principle

(but not in detail) to Robert Hermann.

Let H have a complex eigenvalue A (not pure imaginary). A
At

simple evaluation shows that there is a smallest positive to such e
At Xt -At,

is real. If e is real, then so is e 0, e and e -. Let X

be an equilibrium point in LG(1R2n) that contains e(X) and e(X).

Let R(X) = e(X) + e(X) and I(A) = i(e(X)-e(X)) and let X be

spanned by <e(X1),...,e(Xn_2),i(X),R(X)>. Define X(0,y) to be the

space spanned by <e(X1),...,e(An_2),coseR(x) + sine I(A),sin e I(-A)

+ cos 0 R(-A)>. Now note that



Ht
X( 0,y) = X(e,y)
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for all 8 and y. Now eHt X(0,y) =Xey would imply that the space

spanned by

{cos e R(x) + sin e i(x), sin e i(-x) + cos e R(-x)}

is invariant for all t, which implies that there are two eigenvectors

in the space. It is easy to see that the eigenvectors must be either

e(X) and e() or e(-X) and e(4)--both impossibilities. Thus

X(0,y) is not invariant. However, the space spanned by R(X) and

I(X) is invariant as is the space spanned by R(-X) and I(-X) and

so the set of all X(13 y) is invariant. The set of all such X(e,y)

is obviously a simple two-dimensional torus in the Grassmannian manifold

of n-planes in Wn. Let T(X) denote this torus. Note that TM is

not in LG(1R2n) because gff/2,q2) is not in LGOR
2n
). The question

is: Does T(A) intersect LG(R2n) and does the intersection contain

an equilibrium point? To show that LGOR2n) n TM is not empty, it

is really only necessary to show that the corresponding three dimensional

Lagrangian manifold and the torus intersect in the four dimensional

Grassmannian manifold. Either topological or computational methods

work satisfactorily. The result is that LGOR
2n
) n T(X) clP1(1).

The intersection contains no equilibria since eHtX(0,y) X(e,y) and,

hence, the intersection must be a periodic orbit.

Now suppose there is a periodic orbit that contains the space X
o
.

Ht, Ht,
Then there is a smallest t

o 
such that e uX = XO. 

Suppose e u has
0 

Hto
distinct eigenvalues. Then X0 is spanned by eigenvectors of e

which are also eigenvectors of H and, hence, we have eHtX0 
= X0 

and



64

Hto
the orbit has only one point. Thus we can assume that has multiple

eigenvalues.

We make an assumption now on H. We assume that if A and y are

eigenvalues with equal real parts, then A = y or A = We've seen

in Theorem 4 that this assumption is necessary for transversality and so

is natural condition.
fito

Since e has multiple eigenvalues there is a A and y such
At yt,

that e ° = e ' and this implies that A = y or A = -3; by our assump-
Tt,

tion. Assume for the moment that e ' real implies that T is real

of T = A. If X0 contains the space spanned by R(X) and 1(A) then

X0 is an equilibrium point. Thus, there is a 6 such that cos e R(x)

+ sine 1(x) is in Xo. The other basis element for X0 must come from

the space spanned by R(-A) and I(-X) .and hence there is a y such that

cos R(-X) + sin I(-A) is in X
O. 

We have shown that X0 =
 X(0,y) for

some 6 and y and, hence, the periodic orbit is the same as the one

previously constructed.
Tt At

If there are distinct complex eigenvalues such that e 0 = e

and t
o 

is minimal for both then T = A or T = (under the assump-

tion of distinct real parts for nonconjugates). If period of the orbit

for T is less than A this can be constructed as before, but the

intersection will be a line that wraps around the torus a number of

times determined by the integer VT. This situation is somewhat more

detailed than the other so we exclude it for the purposes of this paper.

The above construction thus produces all periodic orbits under

the three assumptions:

I. H has distinct eigenvalues



II. A,y eigenvalues and real A = real )(.0A = y or A

At yt
X,y eigenvalues and e and e both real

implies t = 0, A=yor A = X.
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= 1

In order to determine the Morse-Smale systems we must calculate

the Poincard map of the periodic orbits. It suffices to consider the

case of n=2. In this the periodic orbit can be shown to have the form

-tan y 1 0

0 0 1 tan 1

where y ranges from 0 to 7r. A suitable two dimensional transversal

submanifold has coordinates

The Hamiltonian is block diagonal with respect to these coordinates and

let it have the form

IF 0

-F.1
Then coset -sinett

sinOt coset

eF
t = e

Xt

where A is the real part of the eigenvalue and 0 is the imaginary

part. A routine, but long calculation, shows that the first return
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occurs at t = (This is well defined since periodic orbits only

occur if 0 0.) Thus eHt reduces to

-exilleI o[

-e
-X7r/E)

I
I

Thus the Poincard map is linear with reciprocal eigenvalues unless

eX
Trip 

=1. Again this is an algebraic condition and so Theorem 1 is

proven.

REFERENCES

[HE] Hermann, Robert. Cartanian Geometry, Nonlinear Waves, and
Control Theory, Part A. Brookline, MA: Math Sci Press,
1979.

(141i1) Martin, Clyde. "Grassmann Manifolds and Global Properties of
the Riccati Equation," Proceedings of the International 
Symposium on Operator Theory of Networks and Systems, Vol. 2,
August 17-19, 1977, Lubbock, Texas, pp. 82-85.

[MA 2] Martin, Clyde. "Grassmannian Manifolds, Riccati Equations and
Feedback Invariants of Linear Systems," Proceedings of the NATO 
Advanced Study Institute and AMS Summer Seminar in Applied Mathe-
matics on Algebraic and Geometric Methods in Linear System 
Theory. To appear.



LIST OF REPORTS 1980

8000 "List of Reprints, nos 241-260, Abstracts of Reports Second Half 1979".

8001/0 "A Stochastic Method for Global Optimization", by C.G.E. Bender,

A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer.

8002/M "The General Linear Group of Polynomial Rings over Regular Rings",

by A.C.F. Vorst.

8003/0 "A Recursive Approach to the Implementation of Enumerative Methods",

by J.K. Lenstra and A.H.G. Rinnooy Kan.

8004/E "Linearization and Estimation of the Add. -Log Budget Allocation

Model", by P.M.C. de Boer and J. van Daal.

8005/0 "The Complexity of the Constrained Gradient Method for Linear

Programming", by J. TelRen.

8006/S "On Functions with Small Differences", by J.L. Geluk and L. de Haan.

8007/0 "Analytical Evaluation of Hierarchical Planning Systems", by

M.A.H. Dempster, M.L. Fisher, L. Jansen, B.J. Lageweg, J.K. Lenstra

and A.H.G. Rinnooy Kan.

9008/S "Looking at Multiway Tables (continued)", by A.P.J.. Abrahamse and

W.M. Lammerts van Bueren.

8009/0 "An Introduction to Multiprocessor Scheduling", by J.K. Lenstra and

A.H.G. Rinnooy Kan.

8010/M "On Families of Systems: Pointwise-Local-Global Isomorphism Problems,

by M. Hazewinkel and A.M. Perdon.

8011/M "Proceedings Filter-Day Rotterdam 1980 (New Trends in Filtering and

Identification of Stochastic Systems, 23 jan. 1980), by M. Hazewinkel (ed).






