
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

ECONOMETRIC INSTITUTE

AN INTRODUCTION TO

MULTIPROCESSOR SCHEDULING

J.K. LENSTRA and A.H.G. RINNOOY KAN

GIANNINI ilDATION CY,7
AGRICULTURAL ONOMICCL

E.'

'V/fr •JAN 21 1981

REPORT 8009/0

ERASMUS UNIVERSITY Rat itNuAM P.O. BOX 173a 3000 DR. ROTTERDAM. THE NETHERLANDS.

AN INTRODUCTION TO MULTIPROCESSOR SCHEDULING

J.K. L[NSTRA

Mathematisch Centrum, Amsterdam

A.H.G. RI NNOOY KAN

Erasmus University, Rotterdam

.ABSTRACT

This is a tutorial survey of recent results in the area of multiprocessor
scheduling. Computational complexity theory provides the framework in which
these results are presented. They involve on one hand the development of new
polynomial optimization algorithms, and on the other hand the application of
the concept of NP-hardness as well as the analysis of approximation algo-
rithms.

KEY WORDS & PHRASES: parallel machines, jobs, precedence constraints,

preemption, maximum completion time, total completion time, computational

complexity, polynomial algorithm, NP-hardness, optimization, approximation.

NOTE: This report will appear in the proceedings of a conference.

1

1. INTRODUCTION

Throughout recent years, the theory of multiprocessor scheduling has been

in rapid development. This is partly due to the spectacular success of

computational complexity theory. Application of this theory has established

a sharp borderline between two classes of scheduling problems: the well-

solved problems, for which polynomial-time algorithms exist, and the NP-hard

problems, which are probably intractable in the sense that the existence of

polynomial algorithms is very unlikely. The former class has been contin-

ually expanded by the development of new polynomial optimization algorithms.

At the same time, for problems in the latter class many approximation

algorithms have been analyzed.

The outline of the paper is as follows. Section 2 gives a short intro-

duction to the theory of the computational complexity of combinatorial

problems; a more detailed treatment can be found in [Karp 1972, 1975; Garey

& Johnson 1979; Lenstra & Rinnooy Kan 1979]. The next three sections provide

a brief survey of the results available for multiprocessor scheduling

problems. Section 3 deals with a number of basic models for scheduling jobs

on parallel machines. Section 4 considers the special case of unit process-

ing times and the influence of precedence constraints between the jobs.

Section 5 is devoted to the case in which preemption (job splitting) is

allowed and varying job release dates may be specified. Section 6 contains

some concluding remarks.

. COMPUTATIONAL COMPLEXITY OF COMBINATORIAL PROBLEMS

The inherent computational complexity of a combinatorial problem obviously
has to be related to the computational behavior of algorithms designed for
its solution. This behavior is usually measured by the running time of the
algorithm (i.e. the number of elementary operations such as additions and
comparisons) as related to the size of the problem (i.e., the number of bits
occupied by the data).

If a problem of size n can be solved by an algorithm with running time
0(p(n)) where p is a polynomial function, then the algorithm may be called
good and the problem well solved. These notions were introduced by Edmonds
[Edmonds 1965] in the context of the matching problem; his algorithm can be
implemented to run in 0(n3) time on graphs with n vertices. Polynomial'
algorithms have been developed for a wide variety of combinatorial optimiza-
tion problems [Lawler 1976]. On the other hand, many such problems can only
be solved by enumerative methods which may require exponential time.

When encountering a combinatorial problem, one would naturally like to
know if a polynomial algorithm exists or if, on the contrary, any solution
method must require exponential time in the worst case. Results of the lat-
ter type are still rare, but it is often possible to show that the existence
of a polynomial algorithm is at the very least extremely unlikely. One may
arrive at such a result by proving that the problem in question is NP-complete
[Cook 1971; Karp 1972]. According to the formal definition given below, the
NP-complete problems are equivalent in the sense that none of them has been
well solved and that, if one of them would be well solved, then the same
would be strue'for all of ,them. Since all the classical problems that are
notorious for their. computational intractability, such as traveling sales-
man, job shop scheduling and integer programming problems, are known to be
NP-complete, the polynomial-time solution of such a problem would be very sur-
prising indeed. For practical purposes, this implies that in solving those
problems one may just as well accept the inevitability of a bad (superpoly-
nomial) optimization algorithm or resort to using . a good (polynomial) ap-

proximation algorithm.

The notation "q (n) = 0(p(n))" means that there exists a constant c 0

such that ig(n) I c-p(n) for all n > 0.

The theory of NP-completeness deals primarily with recognition prob-

lems, which require a yes/no answer. An example of a recognition problem

is the following:

PARTITION:

instance: positive integers a
1
,...,a ,b with a = 2b;

j=1 j
question: does there exist a subset S C {1,...,t} such that a. = b?

eS 3

-PARTITION can be solved by complete enumeration in 0(2
t1

) time or by dynam-

ic programming in 0(tb) time [Bellman & Dreyfus 1962], but both running

times are exponential in the problem size, which is Oft log b).

An instance of a recognition problem is feasible if the question can

be answered affirmatively. Feasibility is usually equivalent to the exist-

ence of an associated structure which satisfies a certain property.

A recognition problem belongs to the class P if, for any instance of
the problem, its feasibility or infeasibility can be determined by a poly-

nomial algorithm. It belongs to the class NP if, for any instance, one can
determine in polynomial time whether a given structure affirms its feasibil-

ity. For example, PARTITION is a member of NP, since for any S c
one can test whether a = b in 0(t) time. It is obvious that P c NP.jES j ••••••••

• Problem P' is said to be reducible to problem P (notation: P' P) if

for any instance of P' an instance of P can be constructed in polynomial

time such that solving the instance of P will solve the instance of P' as

well. Informally, the reducibility of P' to P implies that P' can be con-
sidered as a special case of P, so that P is at least as hard as P'.

P is called NP-hard if P' cc P for every P' E NP. In that case, P is
at least as hard as any problem in NP. P is called NP-complete if P is NP-
hard and P e NP. Thus, the NP-complete problems are the most difficult prob-
lems in NP.

A polynomial algorithm for an NP-complete problem P could be used to
solve all problems in NP in polynomial time, since for any instance of such
a problem the construction of the corresponding instance of P and its solu-
tion can be both effected in polynomial time. We note the following two im-
portant consequences.

(i) It is very unlikely that P = NP, since NP contains many notorious corn-

binatorial problems, for which in spite of a considerable research effort

no polynomial algorithms have been found so far.

(ii) It is very unlikely that P P for any NP-complete P, since this would
imply that P = NP by the earlier argument.

The first NP-completeness result is due to Cook [Cook 1971]. He design-

ed a "master reduction" to prove that every problem in NP is reducible to
the so-called SATISFIABILITY problem. Starting from this result, Karp [Karp

1972] and many others (see, e.g., [Karp 1975; Garey & Johnson 1979; Lenstra

& Rinnooy Kan 1979]) identified a large number of NP-complete problems in

the following way. One can establish NP-completeness of some P e NP by
specifying a reduction P' cc P with P' already known to be NP-complete: for

every P" E NP, P" cc P' and P' cc P then imply that P" cc P as well. In this

way, PARTITION has been proved to be NP-complete [Karp 1972].

As far as optimization problems are concerned, one usually reformu-

lates, say, a minimization problem as a recognition problem by asking for

the existence of a feasible solution with value at most equal to a given

threshold. When this recognition problem can be proved to be NP-complete,

the corresponding optimization problem might be called NP-hard in the sense

that the existence of a polynomial algorithm for its solution would imply

that P = NP.

5

3. SOME BASIC MODELS

Suppose that n jobs or tasks (j = ,...,n) have to be processed on m
Jj

parana/ machines ,or processors M. (i = 1,...,m). Each machine can handle
at most one job at a time; each job can be executed on any one of the ma-
chines. The problem types that will be dealt with in this survey are charac-
terized by a three-field classification aWy [Graham et al. 19791.

The first field a = a a specifies the machine environment. Let p..2
pijdenote denote the time required to process J. on M.. Three possible values of a

1will be considered:

P (identical machines): p = p, i.e., the processing time of J, onij j
7M is equal to the execution requirement Pi of J, for all M.;j

uniformnochines):pij =rysi,i.e,theprocessingtimeofJ.on
7M. is equal to the execution requirement p of J divided by the speedj

s of M
i
;

R (unrelated machines): p is arbitrary.
ij

If a2 is a positive integer, then m is constant and equal to a ; if a2 is
empty, then m is variable.

The second field f3 indicates certain job characteristics In this sec-
tion, P. will be empty, which implies the following:

all Pij (or p,) are arbitrary nonnegative integers;
no precedence constraints between the jobs are specified;
no preemption (job splitting) is allowed;
all jobs become available for processing at time 0.

The notation to indicate which of these assumptions are not met will be
defined in later sections.

The third field y corresponds to the optimality criterion chosen. Any
feasible schedule defines a completion time C of J (j = 1,...,n). We willj
consider the minimization of two criteria:

maximum completion time C = max{C ...,C };max 1'
total completion time XC. = C +...+C .3 1 n

The optimal value of y will be denoted by y , the value produced by an
(approximation) algorithm A by y(A).

Examples 1, 2 and 3 illustrate this problem classification. Gantt
charts are used to represent schedules in an obvious way.

Example 1. P21 C.
3

problem: minimize total completion time on two identical machines.
instance: n = 6;.

optimal optimal schedule:

M
2

(j = 1,...,6).

J
1 3

J
5

;
2 4

12 C. = 34
3

Example 2. Q3I1C
•max

problem: minimize maximum completion time on three uniform machines.

instance: s
1
= 4, s

2
= 2, s

3
= 1; n = 7; p

j
4 (j = 1,...,7).

optimal schedule:

J
1 2 3

134

5
J
6

137

± pis
3 1

Pj/ 2 =
2

p.3 -5
/s, = 4

C =4
max

Example 3. RIIC
max

problem: minimize maximum completion time on m unrelated machines.

instance:n1=3;r1=8;p411=1, Plj =

p
21

= 1, p =
2j

p = 1, p =
31 3j

optimal schedule:

1 (j = 2,...,7), p18 = 8,

2 (j = 2,...,7), P28
=9,

3 (j = 2,...,7), P38 = 9.

J
2

J
3

J4 135

J
6 7

•
C =8
max

Let us survey the results available for these basic models. It will turn

out that the C. problems are quite easy, while the C
max

problems are very

difficult.

The shortest processing time (SPT) rule solves PliXC. in 0(n log n) time
in the following way [Conway et al. 1967]. Assume that n = km (dummy jobs
with zero processing times are added if not), renumber the jobs such that
p
1

... p and schedule the m jobs J
(k-1)m+1 (k-l)m+2'

...,J
km

in then
k-th position on the m machines (k = 1,...,k). Example 1 illustrates this
rule.Anoptimalityproofisstraightforward:inthecriterionvalueXC.,the
processing time of a job in the k-th position on a machine is counted 2,+1-k
times, and hence is equal to the inner product of two n-vectors (Z, ,2,
k-1, ,k-1,..,1,.. ,1) and (p1, ,p) since the multipliers in the former
vector are nonincreasing,Cj is minimal if the processing times in the lat-
ter one are nondecreasing.

This algorithm has been generalized to solve QIICX in 0(n log n) timej
as well [Conway et al. 1967; Horowitz & Sahni 1976].

The most general case RII1C. can be formulated and solved as an mxn
linear transportation problem in 0(n3) time [Horn 1973; Bruno et a/. 1974].
Let

ijk

if J. is in the k-th last position on M.,3 i .

otherwise.

Then the problem is to minimize

subject to

7n 7n
Lj=1Lk=

kp..x..
13 13k

ç
m n
.i=1

x.
k=1 ijk

7n

Lj=1 xijk 1

3c. ?-
i3k

= . ,n) ,

(i= ,...,m; k=

(i

•

,...,n; k =

Thus, the minimization of C. requires polynomial time, even on m.3
unrelated machines. In contrast, the minimization of C is NP-hard, evenmax
on two identical machines.

The NP-hardness proof for P211Cmax is trivial. Given any instance of
PARTITION, defined by positive integers a ...,a ,b (see Section 2), we con-
struct an instance of P21 1C by defining n = t and p = aj = 1,...,n).max

Clearly, there exists a subset S c {1,..,t} with X
jES

a = b if and only ifj
there exists a schedule with C b. It follows that PARTITION is reduciblemax
to P2IIC , and since PARTITION is NP-complete [Karp 1972], P2IIC is NP-max max
hard. This implies that all generalizations of P2I1Cmax, such as P3 IC

1I c 'Q21 IC ,...,RIIC , are NP-hard as well.max max max
As a consequence, it seems unavoidable that optimization algorithms for

these problems will be of an enumerative nature. A general dynamic programming

scheme [Rothkopf 1966; Lawler & Moore 1969] has wide applicability. For

PI1Cmax,

with

the scheme is as follows. Let

B.(t ...,t
3 1' m

[true if J1,..,Jj can be scheduled on M1,.. .,M

= such that Mi is busy from 0 to ti (i=1,...

false otherwise,

,...,tm) =
If

true if ti = 0 (i = 1,...,m

false otherwise.

Then the recursive equation is

B (t It m) = v. B
j 1' 1=1 j- 1""•' -liti-Pj'ti+1'•.

.,t .

Let C be an upper bound on the optimal value C . For j = 0,1,...,n, computemax
B.(t

1
) for t. = 0,1,...,C (i = 1,...,m), and determine3 m

C
max

= minfmax{t .,tm}IB
n(
t
1m

) = true}.

This procedure solves PI 1C in 0(nC
m
) time. For large values of C, amax

branch-and-bound method may be preferable. All these optimization methods,

however, require prohibitive running times in the worst case.

As argued before, the NP-hardness of
PI1Cmax

also justifies the use of

fast approximation algorithms. It has become fashionable to subject such an

algorithm to a worst-case analysis in order to derive a guarantee on its

relative performance. One of the earliest results of this type concerns the

solution of PI IC by list scheduling (LS), whereby a priority list of themax
jobs is given and at each step the first available machine is selected to

9

process the first available job on the list [Graham 1966]:

C (LS)/C* 5 2 - 1%
max max

For the longest processing time (LPT) rule, whereby the list contains the jobs

in order of nonincreasing
p,

the bound improves considerably [Graham 1969]:j

4 1
C (LPT)/C

*
5

max max 3 3m.

Examples 4 and 5 demonstrate that these bounds are the best possible ones.

Example 4. PlICmax(LS)

worst problem instance:

n = (11-1)m+1;

(1,...,1,m).

approximate schedule:

1 5 9
J
1•

2
J
6

LT
10

3
J7
j11

;
J
8

J
12

0 1 2 3

C (LS) = 2m-1max

optimal schedule:

M
4

JJJJ
1 4 7 10

JJJJ
2 5 8 11

J
3

J
6

J
9

J
12

,
J
13

0

C =m
max

Example 5. P[ICmax(LPT)

worst problem instance:

n = 2m+1;

(pi, . ,pn) = (2m-1,2m-1,2m-2,2m-2,...,m+1,m+1,m,m,m).
approximate schedule: optimal schedule:

J
1 7

J
9

2
J
8 M

2

3
135

3

4
J
6 4

• • *

0 67

C (LPT) = 4m-
max

• • • • .
11 15 0

J
1

J
5

J
2

_

J
6_

J
3,

_

J
4

137 J
8 .

J
9

C* =3m
max

6 7 8 12

10

4. UNIT PROCESSING TIMES AND THE INFLUENCE OF PRECEDENCE CONSTRAINTS

The results of Section 3 suggest that additional simplifying assumptions are
necessary to solve P

Ilcmax
optimally in polynomial time. In this section, we

assume that all jobs have unit processing times, which will be indicated in
the second field of our problem classification by pl. This assumption also
allows us to investigate the influence of precedence constraints between the
jobs. It turns out to be useful to distinguish'between two types of precedence
constraints:

prec (arbitrary precedence constraints): a directed acyclic graph G with
vertices 1,...,n is given; if G contains a directed path from j to k,

we write J J
j

and require that J
j
is completed before J

k
can start; k

tree (tree-like precedence constraints): G is a rooted tree with outde-

gree at most one for each vertex.

Examples 6 and 7 below will illustrate these concepts.

One of the oldest results in this problem category is the solution of

Pitree,p =1IC in 0(n) time [Hu 1961]. Hu's algorithm involves criticalj max
path scheduling: define the level of as the number of vertices on theZi Jj

unique path from j to the root of the tree, and apply list scheduling to a

list which contains the jobs in order of nonincreasing . Example 6 illus-
trates this algorithm.

Example 6. Pitree,p =1IC
j max

instance: m = 2; n = 6; G:

optimal schedule:

J
2 4

C =4
max

j 1 2 34 5 6

Z. 3 3 2

The second basic result is the solution of P21prec,p =1IC
max

in polynomial
3

time. An 0(n) algorithm [Fujii et a/. 1969,1971] is as follows: construct

11

an undirected graph H with vertices 1,..,n and edges {j,k} whenever neither
J
j

J
k

nor J J and derive an optimal schedule from a maximum cardinalitv
matching (i.e, a set of vertex-disjoint edges) in H. Example 7 illustrates
this algorithm. We note that the problem can still be solved in 0(n

3
) time

if, in addition, each job is constrained to be processed between its release
date and its due date [Garey & Johnson 1977].

Example 7. P2Iprec,p.= IC
max

instance: n = 6; G:

optimal schedule:

1

2

J
3

J
5

J
4

J
6

C =3
max

For any constant m ?_ 3, the complexity of Pmiprec,p
j
=1

1Cmax
is an open ques-

tion. However,
Plprec,pj =1ICmax is known to be NP-hard [Ullman 1975; Lenstra

& Rinnooy Kan 1978]. The latter proof implies that no polynomial approximation
algorithm for

Plprec,pj =11Cmax
could ever achieve a worst-case bound better4

than
'

unless P = NP. For critical path scheduling (CP), it has been shown3
[Chen 1975; Chen & Liu 1975] that

4

*c(CP)/C
max max

12
1

m-1
for m 3,

and these bounds are tight.

for m = 2,

12

5. PREEMPTION AND THE INFLUENCE OF RELEASE DATES

We now consider a second modification of the multiprocessor scheduling models
that will lead to several polynomial optimization algorithms. More specifi-
cally, we assume that unlimited preemption is allowed: the processing of any
job may arbitrarily often be interrupted and resumed at the same time on a
different machine or at a later time on any machine. This will be indicated
in the second field of our problem classification by pmtn.

It has been shown that for PIpmtnIXC there is no advantage to preemption
at all [McNaughton 19591. Hence, the nonpreemptive SPT rule of Section 3 can
be applied to solve the problem in 0(n log n) time.

A preemptive version of the SPT rule solves QipmtnIXC in 0(n log n + mn)
time [Gonzalez 19771: place the jobs in SPT order, and schedule each successive
job preemptively so as to minimize its completion time. The resulting schedule
contains at most (m-1) (n-) preemptions. Example 8 illustrates this rule.

Very little is known about RIpmtnIXC.,. This is one of the more intriguing
open problems in the area of multiprocessor scheduling.

Example 8. QipmtnlIC

instance: m = 3; =
1

optimal schedule:

, s = ; n = 4;

J
1

J2
•

J2 3 4
3 4

3 4
XC*. = 143

' P2 = P3 = , p4 = 10.

PlpmtnIC and QipmtnIC
max

are distinguished because in both cases there ismax
a simple closed form expression which is an obvious lower bound on Cmax where-

as a schedule meeting this bound can be constructed in polynomial time. For
PlpmtnICmax, we have

P14--4-PnC = maxipi,...,pn,max
J.

The wrap-around rule solves the problem in 0(n) time [McNaughton 19591: fill

the machines successively, scheduling the jobs in any order and splitting a

13

job whenever the above time bound is met. There will be at most m-1 preemp-
tions. Example 9 illustrates this rule.

Example 9. PJpmtnC
max

instance: m = 3; n = 6; p, =
3

optimal schedule:

1

M
2

3

j =

J
1

J
2

J
3

J
4

4
J
5

5
J
6

•
4

*

ax
1,...,6) C

m
= max 6,7- 7.

For Q pmtnIC , we have
max

p
1
+...+p* fP1 P 413 m-1 C = maxl-s---, ,...,
1 1
 ,max L

1
s
1
+s
2

s +...+s 's
1
+...+s

m- m

where s1

s
m
and p

1
?_ ... ?_. p

n.
If the machines and jobs are ordered

in this way, a complicated algorithm solves the problem in Q(n) time [Gonza-
lez & Sahni 1978]. It generates at most 2(m-1) preemptions.

RipmtniCmax can be formulated as a linear programming problem [Lawler &
Labetoulle 1978]. Let

x = time spent by J on M.ij

Then the problem is to minimize

subject to

max

vm
Li=1 /Pij =

Ym x.. < C
i=1 13 max
vn
Lj=1 xij Cmax

x.

(j =

(j =

(i = 1,...,m),

0 (i = 1,...,m; j = 1,...,n).

Khachian has shown that linear programs can be solved in polynomial time

Elthachial11-9793•GiverlasolutionOV, a feasible schedule can be con-

14

structed in polynomial time as well [Gonzalez & Sahni 1976]. There will be
72

no more than about -m preemptions.2

We may extend the preemptive scheduling models by assuming that J. becomes
available for processing at a given integer release date r, (j = 1,...,n).

3
This will be indicated in the second field of the classification by r.. The

3resulting models are far from trivial, and we restrict ourselves to mention-
ing the most important results.

When scheduling subject to release dates, one can distinguish between
three types of algorithms. An algorithm is on-line if at any time only in-
formation about the available jobs is required. It is nearly on-line if in

'addition the next release date has to be known. It is off-line if all infor-

mation is available in advance.

Pipmtn,r IIC and Qlpmtn,r IYC are very much open. All we know about

these problems is that no on-line algorithm exists, even for the case of two

identical machines [Labetoulle et al. 1979].

Pipmtn,r
j
IC can be solved by an 0(mn) on-line algorithm [Horn 1974;max

Gonzalez & Johnson 1977], and Qipmtn,r ICmax by an 0(n
2
) nearly on-linej

algorithm [Sahni & Cho 1979; Labetoulle et al. 1979].

Finally, we assume that in addition J has to be completed not laterj

than a given due date d (j = 1,...,n), and we replace the objective of

minimizing Cmax by testing for the existence of a feasible preemptive sched-

ule with respect to release dates and due dates. It has been shown that no

nearly on-line algorithm exists, even for the case of two identical machines

[Sahni 1979]. However, off-line algorithms are still available: Plpmtn,r ,d 1-
i

is solvable by an 0(n3) network flow computation [Horn 1974], and

Qipmtn,r ,d.1- by means of an 0
(
n
6
) "generalized" network flow model [MartelJ

1979].

15

6. CONCLUDING REMARKS

We have surveyed a few of the many recent results in the area of multipro-

cessor scheduling. There are several topics that we have not dealt with; in

particular, we mention the extension of the model to include additional

resource constraints, for which many results are now available [Graham

et a/. 1979; Blazewicz et a/. 1980]. The development of increasingly

sophisticated algorithmic techniques combined with a further application

of the tools from computational complexity theory should continue to render

the area of multiprocessor scheduling an interesting one to theoreticians

and practitioners alike.

ACKNOWLEDGMENT

This research was partially supported by NATO Special Research Grant 9.2.02

(SRG.7).

16

REFERENCES

R.E. BELLMAN, S.E. DREYFUS (1962) Applied Dynamic Programming, Princeton
University Press, Princeton, N.J.

J. BLAZEWICZ, J.K. LENSTRA, A.H.G. RINNOOY KAN (1980) Scheduling subject to
resource constraints: classification and complexity. Report,
Mathematisch Centrum, Amsterdam.

J. BRUNO, E.G. COFFMAN, JR., R. SETHI (1974) Scheduling independent tasks to
reduce mean finishing time. Comm. ACM 17,382-387.

N.-F. CHEN (1975) An analysis of scheduling algorithms in multiprocessing
computing systems. Technical Report UIUCDCS-R-75-724, Department of
Computer Science, University of Illinois at Urbana-Champaign.

N.-F. CHEN, C.L. LIU (1975) On a class of scheduling algorithms for
multiprocessors computing systems. In: T.-Y. FENG (ed.) (1975)
Parallel Processing, Lecture Notes in Computer Science 24, Springer,
Berlin, 1-16.

R.W. CONWAY, W.L. MAXWELL, L.W. MILLER (1967) Theory of Scheduling, Addison-
Wesley, Reading, Mass.

S.A. COOK (1971) The complexity of theorem-proving procedures. Proc. 3rd
Annual ACM Symp. Theory of Computing, 151-158.

J. EDMONDS (1965) Paths, trees, and flowers. Canad. J. Math. 17,449-467.
M. FUJII, T. KASAMI, K. NINOMIYA (1969,1971) Optimal sequencing of two

equivalent processors. SIAM J. Appl. Math. 17,784-789; Erratum. 20,141.
M.R. GAREY, D.S. JOHNSON (1977) Two-processor scheduling with start-times

and deadlines. SIAM J. Comput. 6,416-426.

M.R. GAREY, D.S. JOHNSON (1979) Computers and Intractability a Guide to the
Theory of NP-Completeness, Freeman, San Francisco.

T. GONZALEZ (1977) Optimal mean finish time preemptive schedules. Technical
Report 220, Computer Science Department, Pennsylvania State University.

• T. GONZALEZ, D.B. JOHNSON (1977) A new algorithm for preemptive scheduling
of trees. Technical Report 222, Computer Science Department,
Pennsylvania State University.

T. GONZALEZ, S. SAHNI (1976) Open shop scheduling to minimize finish time.
J. Assoc. Comput. Mach. 23,665-679.

T. GONZALEZ, S. SAHNI (1978) Preemptive scheduling of uniform processor

17

systems. J. Assoc. Comput. Mach. 25,92-101.

R.L. GRAHAM (1966) Bounds for certain multiprocessing anomalies. Bell System

Tech. J. 45,1536-1581.

R.L. GRAHAM (1969) Bounds on multiprocessing timing anomalies. SIAM J. Appl.

Math. 17,263-269.

R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)

Optimization and approximation in deterministic sequencing and

scheduling: a survey. Ann. Discrete Math. 5,287-326.

W.A. HORN (1973) Minimizing average flow time with parallel machines.

Operations Res. 21,846-847.

W.A. HORN (1974) Some simple scheduling algorithms. Naval Res. Logist. Quart.

21,177-185.

E. HOROWITZ, S. SAHNI (1976) Exact and approximate algorithms for scheduling

nonidentical processors. J. Assoc. Comput. Mach. 23,317-327.

T.C. HU (1961) Parallel sequencing and assembly line problems. Operations

Res. 9,841-848.

R.M. KARP (1972) Reducibility among combinatorial problems. In: R.E. MILLER,

J.W. THATCHER (eds.) (1972) Complexity of Computer Computations, Plenum

Press, New York, 85-103.

R.M. KARP (1975) On the computational complexity of combinatorial problems.'

Networks 5,45-68.

L.G. KHACHIAN (1979) A polynomial algorithm in linear programming. Soviet

Math. Dokl. 20,191-194.

J. LABETOULLE, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)

Preemptive scheduling of uniform machines subject to release dates.

Report BW 99, Mathematisch Centrum, Amsterdam.

E.L. LAWLER (1976) Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart and Winston, New York.

E.L. LAWLER, J. LABETOULLE (1978) On preemptive scheduling of unrelated

parallel processors by linear programming. J. Assoc. Comput. Mach.

25,612-619.

E.L. LAWLER, J.M. MOORE (1969) A functional equation and its application to

resource allocation and sequencing problems. Management Sci. 15,77-84.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1978) Complexity of scheduling under

precedence constraints. Operations Res. 26,22-35.

18

J.K. LENSTRA, A.H.G. RINNOOY KAN (1979) Computational complexity of discrete

optimization problems. Ann. Discrete Math. 4,121-140.

C. MARTEL (1979) Generalized network flows with an application to multi-

processor scheduling. Computer Science Division, University of

California, Berkeley.

R. McNAUGHTON (1959) Scheduling with deadlines and loss functions.

Management Sci. 6,1-12.

M.H. ROTHKOPF (1966) Scheduling independent tasks on parallel processors.

Management Sci. 12,437-447.

S. SAHNI (1979) Preemptive scheduling with due dates. Operations Res.

27,925-934.

SAHNI, Y. CHO (1979) Nearly on line scheduling of a uniform processor

system with release times. SIAM J. Comput. 8,275-285.

J.D. ULLMAN (1975) NP-complete scheduling problems. J. Comput. System Sci.

10,384-393.

LIST OF REPORTS 1980

8000 "List of Reprints, nos 241-260, Abstracts of Reports Second Half 1979".

8001/0 "A Stochastic Method for Global Optimization", by C.G.E. Boender,

A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer.

8002/M "The General Linear Group of Polynomial Rings over Regular Rings",

by A.C.F. Vorst.

8003/0 "A Recursive Approach to the Implementation of Enumerative Methods",

by J.K. Lenstra and A.H.G. Rinnooy Kan.

8004/E "Linearization and Estimation of the Addi-Log Budget Allocation Model",

by P.M.C. de Boer and J. van Daal.

8005/0 "The Complexity of the Constrained Gradient Method for Linear

Programming", by J. Telgen.

8006/E "On Functions with Small Differences", by J.L. Geluk and L. de Haan.

8007/0 "Analytical Evaluation of Hierarchical Planning Systems", by

M.A.H. Dempster, M.L. Fisher, L. Jansen, B.J. Lageweg, J.K. Lenstra

and A.H.G. Rinnooy Kan.

8008/S "Looking at Multiway Tables (continued), by A.P.J. Abrahamse and

W.M. Lammerts van Bueren.

8009/0 "An Introduction to Multiprocessor Scheduling", by J.K. Lenstra and

A.H.G. Rinnooy Kan.

