%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

AN INTRODUCTION TO MULTIPROCESSOR SCHEDUL ING

J.K. LUNSTRA

Mathematisch Centrum,‘Amsterdam

A.H.G. RINNOOY. KAN

Erasmus University, Rotterdam

‘ABSTRACT

This is a tutorial survey of recent results in the area of multlprocessor
schedullng. Computatlonal complex1ty theory prov1des the framework in which
these results are presented They involve on one hand the development of new
polynomlal optlmlzatlon algorlthms, and on the other hand the appllcatlon of

the concept of NP-hardness as well as the analysis. of approx1matlon algo-

rlthms..b

KEY WORDS & PHRASES: parallel machines, jobs, precedence conStrainté,
breemption, maximum completion time, total completion time,'computational
complexity, polynomial algorithm, NP-hardness, optimization, approximation.

NOTE: This report will appear in the proceedings of a conference.

1. INTRODUCTION

Throughout recent years, the theory of’multiprocessor scheduling has been

in rapid development. This is partly due to the spectacular success of
computational complexity theory. Applicatioq of this theory has established
a sharp borderline between two classes of seheduling problems: the well-
solved problems) for which polynomial-time algorithms exist, and the NP-hard
problems, which are probably intractable in the sense that the existence of
polynomial algorithms is very unlikely. The former class has been contin-
ually expanded by the development of new polynomial optimization algorithms.
Aﬁ the same’time, for problems in the latter class many approximation
~algorithms have been analyzed.

The Qutline of the paper is as follows. Section 2 gives a short intro-
duction to the theory of the computational complexitybof combinatorial
problems; a more detailed treatment can be found in [Kafp 1972, 1975; Garey
& Johneon'1979;'Lenstra & Rinnooy Kan 1979]. The next three sections provide
a brief survey of the results available for multiprocessor scheduling
problems.lsection'3 deals with a number of basic models for scheduling jobs
on parallel machines. Section 4 considers the speciai case of unit process-
ing times and the influence of precedence constraints between the jobs.

Section 5 is'devoted to the case in which preemption (job splitting) is

allowed and varying job release dates may be specified. Section 6 contains

some concluding remarks.

2. COMPUTATIONAL COMPLEXITY OF COMBINATORIAL PROBLEMS

The inherent computational complexity of a combinatorial problem obviously
has to be related to the computational behavior of algorithms designed for
its solution. This behavior is usually measured by the running time of the
algorithm (i.e., the number of elementary operations such as additions and
.comparisons) as related to the size of the problem (i.e., the number of bits
occupied by the data). _

If a problem of size n can be solved by an algorithm with running time
O(p(n))*.where p is a polynomial function, then the algorithm may be called
good and the problém well solved. These notions were introduced by Edmonds
[Edmonds 1965] in the context of the matching problem; his algorithm can be
implemented to run in O(n3) time on graphs with n vertices. Polynomial
algorithms have been developed for a wide variety of combinatorial optimiza-
tion problems [Lawler 1976]. On the other hand, many such problems can only
be solved by énumerative methods which may require exponential time.

When encountering a combinatorial problem, one would naturally like to
know if a polynomial algorithm exists or if, on the contrary, any solution
method must require exponential time in the worst case. Results of the lat-
ter type are still rare, but it is often possible to show that the existence
of a polynomial algorithm is at the very least extremely unlikely. One may
arrive at such a result by proving that the problem in question is NP-complete
[cook 1971; Karp 1972]. According to the formal definition given below, the
NP-complete problems are equivalent in the sense that none of them has been
well solved and. that, if one of them would be well solved, then the same
would be‘true~for all of them. Since all the classical problems that are
notorious for their. computational intractability, such as traveling sales-
man, job shop scheduling and. integer programming problems, are known to be
NP-complete, the polynomial-time solution of such a problem would be very sur-
prising indeed. For practical purposes, this implies that in solving those
problems one may just as well accept the inevitability of a bad (superpoly-
nomial) optimization algorithm or resort to using a good (polynomial) ap-

proximation algorithm. .

The notation "g(n) = O(p(n))" means that there exists a constant ¢ =2 0

such that |q(n) | < cep(n) for all n > O.

The theory of NP-completeness deals primarily with recognitionbprob—
lems, which require a yes/no answer. An example of a recognition problem

is the following:

PARTITION:
-1 aj = 2b;
question: does there exist a subset S c {1,...,t} such that Zjes a.j = b?

Cps . t
instance: positive integers al,...,at,b with Ej

PARTITION can be solved by complete enumeration in O(2t-1) time or by dynam-
ic programming in O(tb) time [Bellman & Dreyfus 1962], but both running
times are exponential in the problem size, which is O(t log b) .-

An instance of a recognition problem is feasible if the question can
be answered affirmatively. Feasibility is usually equivalent to the exist-
ence of an associated structure which safisfies a cerfain property.

A recognition problem belongs to the class P if, for any instance of
the problem, its feasibility or infeasibility can be determined by a poly-
nomial algorithm. It belongs to the class NP if, for any instance, one can
determine in polynomial time whether a given structure affirms its feasibil-
ity. For example, PARTITION is a member of NP, since for any S c {1,...,t}
oné can test whether zjes aj = b in O(t) time. It is obvious that P < NP.

Problem P' is said to be reducible to problem P (notation: P' « P) if
for any instance of P' an instance of P can be constructed in polynomial
time such that solving the instance of P will solve the instance of P' as
well. Informally, the reducibility of P' to P implies that P' can be con-
sidered as a special case of P, so that P is at least as hard as P'.

P is called NP-hard if P' « P for every P' ¢ NP, In that case, P is
at least as hard as any problem in NP. P is called NP-complete if P is NP-
hard and P ¢ NP. Thus, the NP-complete problems are the most difficult prob-
lems in NP.

A polynomial algorithm for an NP-complete problem P could be used to
solve all problems in NP in polynomial time, since for any instance of such
a problem the construction of the corresponding instance of P and its solu-
tion can be both effected in polynomial time. We note the following two im-

portant consequences.

{1} It is very unlikely that P = NP, since NP contains many notorious com-

binatorial problems, for which in spite of a considerable research effort

no polynomial algorithms have been found so far.

(ii) It is very unlikely that P € P for any NP-complete P, since this would

imply that P = NP by the earlier argument.

The first NP-completeness result is due to Cook [Cook 1971]. He design-
ed a "master reduction" to prove that every problem in NP is reducible to
the so-called SATISFIABILITY problem. Starting from this result, Karp [Karp
1972] and many others (see, e.g., [Karp 1975; Garey & Johnson 1979; Lenstra
& Rinnooy Kan 1979]) identified a large number of NP-complete problems in
the following way. One can establish NP—completehess of some P ¢ NP by
specifying a reduction P' « P with P' already known to be NP-complete: for
every P" ¢ NP, P" « P' and P' « P then imply that P" « P as well. In this
way, PARTITION has been proved to be NP-complete [Karp 1972].

As far as optimization problems are concerned, one usually reformu-
lates, say, a minimization problem as a recognition problem by asking for
the existence of a feasible solution with value at most equal to a given
threshold. When this recognition problem can be proved to be NP-complete,
the corresponding optimization problem might be called NP-hard in the sense
that the existence of a polynomial algorithm for its solution would imply
that P = NP, |

3. SOME BASIC MODELS
Suppose that n jobs or tasks Jj (J = 1,...,n) have to be processed on m
parallel machines or processors Mi (i =1,...,m). Each machine can handle
at most one job at a time; each job can be exXecuted on any one of the ma-
chines. The problem types that will be dealt w1th in this survey are charac-
terized by a three- -field classification a|B|y [Graham et al. 1979].

The first field o = aa, specifies the machine environment. Let p

denote the time required to process JJ on M . Three possible values of al

will be considered:

- P (identical machines) : 1j pJ, i.e., the pProcessing time of JJ ‘on
Mi is equal to the execution requirement pJ of JJ, for all M
Q (uniform mach1nes)~ 1j = p. /sl, i.e., the processing time of JJ on
Mi is equal to the execution requirement pJ of J:J divided by the speed
s; of Mi;
- R (unrelated machines) : pij is arbitrary.
If o, is a positive integer, then m is constant and equal to a2; if a2 is
empty, then m is variable.
The second field B indicates certain job characterlstlcs. In this sec-
tion, B w1ll be empty, which implies the following:
- all pij (oxr pj) are arbitrary nonnegative integers;
no precedence constraints between the jobs are specified;
no preemption (job splitting) is allowed;
- all jobs become available for processing at time O.
The notation to indicate which of these assumptions are not met will be

defined in later sections.

The third field Y corresponds to the optimality criterion chosen. Any

feasible schedule defines a completion time Cj of Jj (3 =1,...,n). We will

consider the minimization of two criteria:
= ‘maximum completion time Cmax = max{Cl,...,Cn};
- total completion time ZCJ = C1+...+C .
The optlmal value of y will be denoted by y + the value produced by an
(approximation) algorithm A by y(a).
Examples 1, 2 and 3 illustrate this problem classification. Gantt

charts are used to represent schedules in an obvious way.

Example 1. PZIIZCj

problem: minimize total completion time on two identical machines.

instance: n = 6; pj =j (j=1,...,6).

optimal schedule:

M9y J3

M2 J2

. 0

0 1

Example 2. Q3[lcmax
problem: minimize maximum completion time on three uniform machines.
instance: s, = 4, s, = 2, S3 = 1; n=17; pj =4 (J=1,...,7).

optimal schedule:

Iy J2 + pj/s1

Example 3. Rllcmax
problem: minimize maximum completion time on m unrelated machines.
instance: m = 3; n = 8; Py = =1 (=2,...,7), Pig = 8,
. =) = 2,...,7), =.9,

=3 =2,...,7), =9,

Pog
P3g

Py =
optimal schedule:

Let us survey the results available for these basic models. It will turn
out that the ZCj problems are quite easy, while the Cmax problems are very

difficult.

The shortest processing ‘time (SPT) rule solves PI[ZC in O(n log n) time
in the following way [Conway et al. 1967]. Assume that n = ¢m (dummy jobs
with zero processing times are added if not), renumber the jobs such that
pl < ... £ pn' and schedule the m jobs J(k—l)m+1'J(k—1)m+2""'ka in the
k-th position on the m machines (k = 1,...,2). Example 1 illustrates this
rule. An optimality prqof is straightforward: in the criterion value ch, the
processing time of a job in the k-th position on a machine is counted 9+1-k
times, and hence ZCj is equal to the inner product of two n-vectors (R,e..,2,
=1,000,8~1,...,1,...,1) and (pl,...,pn); since the multipliers in the former
vector are nonincreasing, ZCj is minimal if the pProcessing times in the lat-
ter one are nondecreasing.

This algorithm has been generalized to solve QI]ZC in O(n log n) time
as well [Conway et al. 1967; Horowitz & Sahni 1976].

The most general case R||2Cj can be formulated and solved as an mxn
linear transportation problem in O(n3) time [Horn 1973; Bruno et al. 1974].

Let

{1 if Jj is in the k-th last position on Mi'

0 otherwise.

Then the problem is to minimize

m n n
Vimilyailimy o

j=1 13%i5k

subject to
m vn _ .
VimBees i3k T Lreeem),

. *i9k = 1 L=1,...m; k=1,...,n),

1,.0m; 3 =1,...,n; k = 1,...,n).

Thus, the minimization of ZC. requires polynomial time, even on m .
unrelated machines. In contrast, the minimization of C nax is NP-hard, even

on two identical machines.
The NP-hardness proof for lelcmax is trivial. Given any instance of
PARTITION, defined by positive integers al,...,at,b (see Section 2), we con-

struct an instance of lelcmax by defining n = t and Py = ay (3 =1,...,n).

Clearly, there exists a subset S c {1,...,t} with Zj s @ = b if and only if
€ J
there exists a schedule with Cmax < b. It follows that PARTITION is reducible
to P2||c__ , and since PARTITION is NP-complete [Karp 1972], P2||c is NP-
max max

hard. This implies that all generalizations of P2||c ; such as P3]IC ’
max max

....P||c o 2lle oo iRl[c__ ., are NP-hard as well.

a

As 2 consequence, it seems unavoidable that optimization algorithms for
these problems will be of an enumerative nature. A general dynamic programming
scheme [Rothkopf 1966; Lawler & Moore 1969] has wide applicability. For
P,lcmax' the scheme is as follows. Let

{true if Jl""'Jj can be scheduled on Ml""’Mm

Bj (tl"“'tm) = such that Mi is busy from 0 to ti (i=1,...,m),

Ifalse otherwise,

true 1if ti =0(i=1,...,m,
Bo(tllf--,tm) {

false otherwise.

Then the recursive equation is

m
e = B R o £.-p. . oo .
Bj(tl' ’tm) Vi=1 j—1(t1' Ci-1v%y pj'tl+1' 'tm)

*
Let C be an upper bound on the optimal value Cmax' For j = 0,1,...,n, compute

Bj(tl""'tm) for ti =0,1,...,C (i =1,...,m), and determine

« .
= mi .o B e = .
Clax mln{max{tl, ,tm}l o (v it) true}

This procedure solves PI]Cmax in O(nCm) time. For large values of C, a
branch-and-bound method may be preferable. All these optimization methods,
however, require prohibitive running times in the worst case.

As argued before, the NP-hardness of P]lcmax also justifies the use of
fast apprbximation algorithms. It has become fashionable to subject such an
algorithm to a worst-case analysis in order to derive a guarantee on its
relative performance. One of the earliest results of this type concerns the
solution of Pllcmax by list scheduling (LS), whereby a priority list of the

jobs is given and at each step the first available machine is selected to

process the first available job on the list [Graham 1966]:
c syt <2 -i
max max m

For the longest processing time (LPT) rule, whereby the list contains the jobs

in order of nonincreasing p., the bound improves considerably [Graham 1969]:
H

*
Cmax (LPT) /Cmax

- L
3m*°

Examples 4 and 5 demonstrate that these bounds are the best possible ones.

Example 4. PIIC (LS)
_— max
.worst problem instance:

n = (m-1)m+1;

(Plr---lpn) = (1,...,1,m).

approximate schedule: - optimal schedule:

J9

Ji0

J11

Jio

- -

0 1 3

C (Ls) = 2m-1
max

xample 5 PI]Cmax(LPT)
worst problem instance:
n = 2m+1;
(pl,...,pn) = (2m-1,2m-1,2m-2,2m-2,...,m+1,m+1,m,m,m) .

approximate schedule: ‘ optimal schedule:

6 7
C (LPT) = 4m-1
max .

4. UNIT PROCESSING TIMES AND THE INFLUENCE OF PRECEDENCE CONSTRAINTS

The results of Section 3 suggest that additional simplifying essumptions are
necessary to solve Pllcmax optimally in polynomial time. In this section, we
assume that all jobs have unit processing times, which will be indicated in
the second field of our problem cla531f1catlon by p =1. This assumption also
allows us to investigate the influence of precedence constraints: between the
jobs. It turns out to be useful to distinguish between two types of precedence
constraints:
- prec (arbitrary precedence constraints): a directed acyclic graph G with
vertices 1,...,n is given; if G contains a directed path from j to k,
we write Jj > Jk and‘require that Jj is completed before Jk can start;
.tree (tree-like precedence constraints): G is a rooted tree with outde-
gree at most one for each vertex.
Examples 6 and 7 below will illustrate these concepts.
One of the oldest results in this problem category is the solution of
P tree,pj=1 Cméx‘in O(n) time [Hu 1961]. Hu's algorithm involves critical
path scheduling: define the level lj of Jj as the number of vertices on the
unique path from j to the root of the tree, and apply list scheduling»to a
list which contains the jobs in order of nonincreasing lj. Example 6 illus-

' trates this algorithm.

Example 6. P tree,pj=1lc

max
instance: m = 2; n = 6; G:

optimal schedule:

Myl 9y

M2 J2

0

The second bas1c result is the solution of P2|prec,p =1 max in polynomial

time. An O(n) algorlthm [Fujii et al. 1969,1971] is as follows: construct

11

an undirected graph H with vertices 1,...,n and edges {j,k} whenever neither
Jj -> Jk nor Jk > Jj' and derive an optimal schedule from a maximum cardinality
matching (i.e., a set of vertex-disjoint edges) in H. Example 7 illustrates
this algorithm. We note that the problem can still be solved in O(n3) time

if, in addition, each job is constrained to be processed between its release

date and its due date [Garey & Johnson 1977].

Example 7. P2|prec,pj=1[CmaX

instance: n = 6; G:

M

M,

is an open ques-
max p k!

is known to be NP-hard [Ullman 1975; Lenstra

For any constant m > 3, the complexity of Pm prec,pj=1|C

i . However, P =
tion e . [prec,pJ 1|Cmax

& Rinnooy Kan 1978]. The latter proof implies that no polynomial approximation

algorithm for Plprec,pj=1lcmax could ever achieve a worst-case bound better
4 .
than 3 unless P = NP. For critical path scheduling (CP), it has been shown

[Chen 1975; Chen & Liu 1975] that

f% for m
C (CP)/C* < 3
max max 1

2_mT1— for m

and these bounds are tight.

5. PREEMPTION AND THE INFLUENCE OF RELEASE DATES

We now consider a second modification of the multiprocessor scheduling models
that will lead to several polynomial optimization algorithms. More specifi-
cally, we assume that unlimited preemption is allowed: the processing of any
job may arbitrarily often be interrupted and resumed at the same time on a
different machine or at a later time on any machine. This will be indicated
in the second field of our problem classification by pmtn.

It has been shown that for P]pmtanc there is no advantage to Preemption
at all [McNaughton 1959]. Hence, the nonpreemptlve SPT rule of Section 3.can
be applied to solve the problem in O(n log n) time.

A preemptlve version of the SPT rule solves QIpmtanC in O(n log n + mn)
time [Gonzalez 1977]: place the jobs in SPT order, and schedule each successive
job preemptively so as to minimize its completion time. The resulting schedule
contains at most (m—l)(n—T) preemptions. Example 8 illustrates this rule.

Very little is known about RlpmtnIXC - This is one of the more intriguing

open problems in the area of multlprocessor scheduling.

Examplé 8. QIpmtanCj

instance: m = 3; s, = ; = 4; p, = 3, p, =

optimal schedule:

P]pmtnlcmax and lemtnlcmax are distinguished because in both cases there is
a simple closed form expression which is an obvious lower bound on C;ax where-
as a schedule meeting this bound can be constructed in polynomial time. For

P[pmtnlcmax, we have

N |
Cmax - maxlpl,...,pn,

p1+. . .+pnl

n J

The wrap-around rule solves the problem in O(n) time [McNaughton 1959]: fill

the machines successively, scheduling the jobs in any order and splitting a

13

job whenever the above time bound is met. There will be at most m-1 preemp-

tions. Example 9 illustrates this rule.
Example 9. PIpmtnIC

max N
instance: m = 3; n = 6; pj =3 (3 1,...,6) = Cm

optimal schedule:

I s

For lemtnlcmax, we have

% Ipl p1+p2 p1+...+pm_1 p1+...+pn
C maxy—, e
151 s, +s_’ "s.t..+ !

7
178, 1 Syt...ts

Sm—1 1 m

where Sy 2 ...02 sm and p1 2 L. 2 pn. If the machines and jobs are ordered
in this way, a complicated algorithm solves the problem in QO(n) time [Gonza-
lez & Sahni 1978]. It generates at mdst 2(m-1) preemptions.

R[pmtnlcmax can be formulated as a linear programming problem [Lawler &
Labetoulle 1978]. Let

X.. = time spent by J. on M
13 P Y i

Then the problem is to minimize
C

subject to

m .

licy X4/Pii =1 (G =1,...,n),

Viey X.. < (3=1,...,n),

Z?_ X,., < (i 1,...,m),

J_

(i =1,..0m; j=1,...,n).

X, .
1]

Khachian has shown that linear programs can be solved in polynomial time

[Khachian 1979]. Given a solution (xzi), a feasible schedule can be con-

structed in polynomial time as well [Gonzalez & Sahni 1976]. There will be
no more than about %mz preemptions.

We may extend the preemptive scheduling models by assuming that J. becomes
available for pfocessing at a given integer release date rj (3 = g,...,n).
This will be.indicated in the second field of the classification by rj. The
resulting models are far from trivial, and we restrict ourselves to mention-
ing the most important results. '

.When scheduling subject to release dates, one can distinguish between
three types of algorithms. An algorithm is on-line if at any time only in-
formation about the available jobs is required. It is nearly on-line if in
‘addition the next release date has to be known. It is off-line if all infor-
mation is available in advance.

? pmtn,rjIZCj and lemtn,rjIZCj are very much open. All we know about
these problems is that no on-line algorithm exists, even for the case of two
identical machines [Labetoulle et al. 1979].

PIpmtn,rjICmax can be solved by an O(mn).on—line algorithm [Horn 1974;
Gonzalez & Johnson 1977], and lemtn;rjlcmax by an O(n2) nearly on-line
algorithm [Sahni & Cho 1979; Labetoulle et al. 1979].

Finally, we assume that in addition Jj has to be completed not later
than a given due date dj (3 =1,...,n), apd we replace the objective of
minimizing Cnlax by testing for the existence of a feasible preemptive sched-
ule with respect to release dates and due dates. It has been shown that no
nearly on-line algorithm exists, even for the case of two identical machines
[sahni 1979]. However, off-line algorithms are still available: Plpmtn,rj,dj -

is solvable by an O(n3) network flow computation [Horn 1974], and

Q]pmtn,rj,djl— by means of an O(n6) "generalized" network flow model [Martel
19791].

6. CONCLUDING REMARKS

We have surveyed a few of the many recent results in the area of multipro-
cessor scheduling. There are several topics that we have not dealt with; in
- particular, we mention the extension of the model to include additional
resource constraints, for which many results are now available [Graham

et al. 1979; Blazewicz et al. 1980]. The development of increasingly

sophisticated algorithmic techniques combined with a further application

of the tools from'computational complexity theory should continue to render

the area of multiprocessor scheduling an interesting one to theoreticians

~and practitioners alike.
ACKNOWLEDGMENT

This research was partially supported by NATO Special Research Grant 9.2.02
(SRG.7).

REFERENCES

R.E. BELLMAN, S.E. DREYFUS (1962) Applied Dynamic Programming, Princeton

University Press, Princeton, N.J.

J. BLAZEWICZ, J.K. LENSTRA, A.H.G. RINNOOY KAN (1980) Séheduling subject to
resource constraints: classification and complexity. Report,
Mathemati;ch Centrum, Amsterdam.

J. BRUNO, E.G. COFFMAN,'JR;, R. SETHI (1974) Scheduling independent tasks to

v reduce mean finishing time. Comm. ACM 17,382-387. '

N.-F. CHEN (1975) aAn analysis of scheduling algorithms in multiprocessing
computing systems. Technical Report UIUCDCS-R-75-724, Department of
Computer Science, University of Illinois at Urbana-Champaign.

CHEN, C.L. LIU (1975) On a class of scheduling algorithms for-
multipfocessors computing systems. In: T.-Y. FENG (ed.) (1975)
Parallel Processing, Lecture Notes in Computer Science 24, Springer,
Berlin, 1-16. ‘

CONWAY, W.L. MAXWELL, L.W. MILLER (1967) Theory of Scheduling, Addison-
Wesley, Reading, Mass.

COOK (1971) The complexity of theorem-proving procedures. Proc. 3rd
Annuél ACM Symp. Theory of Computing, 151-158.

~J. EDMONDS (1965) Paths, tress, and flowers. Canad. J. Math. 17,449-467.

M. FUJII, T. KASAMI, K. NINOMIYA (1969,1971) Optimal sequencing of two
equivalent processors. SIAM J. Appl. Math. 17,784-789; Erratum. 20,141.

M.R. GAREY, D.S. JOHNSON (1977) Two-processor scheduling with start-times
and deadlines. STIAM J. Comput. 6,416-426.

M.R. GAREY, D.S. JOHNSON (1979) Computers and Intractability: a Guide to the
Theory of NP-Completeness, Freeman, San Francisco.

T. GONZALEZ (1977) Optimal mean finish time preemptive schedules. Technical
Réport 220, Computef Science Department, Pennsylvania State University.

- T. GONZALEZ, D.B. JOHNSON (1977) A new algorithm for preemptive scheduling
of trees. Technical Report 222, Computer Science Department,
Pennsylvania State University.

T. GONZALEZ, S. SAHNI (1976) Open shop scheduling to minimize finish time.
J. Assoc. Comput. Mach. 23,665-679.

T. GONZALEZ, S. SAHNI (1978) Preemptive scheduling of uniform processor

systems. J. Assoc. Comput. Mach. 25,92-101.

GRAHAM (1966) Bounds for certain multiprocessing anomalies. Bell System
Tech. J. 45,1536-1581.

GRAHAM (1969) Bounds'on multiprocessing timing anomalies. SIAM J. Appl.
Math. 17,263-269.

GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)
Optimization and approximation in deterministic sequencing and
scheduling: a survey. Ann. Discrete Math. 5,287-326.

HORN (1973) Minimiziﬁg average flow time with parallel machines.
Operations Res. 21,846-847.

- HORN (1974) Some simple scheduling algorithms. Naval Res. Logist. Quart.
21,177-185.

E. HOROWITZ, S. SAHNI (1976) Exact and approximate algorithms for schednling

nonidentical‘processors. J. Assoc. Comput. Mach. 23,317-327.

. HU (1961) Parallel sequencing and assembly line problems. Operations
Res. 9,841-848. '
KARP (1972) Reducibility among combinatorial problems. In: R.E. MILLER,
J.W. THATCHER (eds.) (1972) Complexity of Computer Computations, Plenum
Press, New York, 85-103.

- KARP (1975) On the computational complexity of combinatorial probleﬁs.’
Networks 5,45-68.
KHACHIAN (1979) A polynomial algorithm in linear programming. Soviet
Math. Dokl. 20,191-194.

J. LABETOULLE, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)
Preemptive scheduling of uniform machines subject to release dates.
Report BW 99, Mathematisch Centrum, Amsterdam.

LAWLER (1976) Combinatorial Optimization: Networks and Matr01ds, Holt,
Rinehart and Winston, New York.

LAWLER, J. LABETOULLE (1978) On preemptive scheduling of unrelated
parallel processors by linear programming. J. Assoc. Comput. Mach.
25,612-619.

LAWLER, J.M. MOORE (1969) A functional equation and its application to
resource allocation and sequencing problems. Management Sci. 1C,77-84.
LENSTRA, A.H.G. RINNOOY KAN (1978) Complexity of scheduling under

precedence constraints. Operations Res. 26,22-35.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1979) Computational complexity of discrete
optimization problems. Ann. Discrete Math. 4,121-140.

. MARTEL (1979) Generalized network flows with an application to multi-
processor scheduling. Computer Science Division, University of
California, Berkeley.

R. McNAUGHTON (1959) Scheduling with deadlines and loss functions.

Management Sci. 6,1-12.

-H. ROTHKOPF (1966) Scheduling independent tasks on parallel processors.

- Management Sci. 12,437-447. _

SAHNI (1979) Preemptive scheduling with due dates. Operations Res.
27,925-934.

SAHNI, Y. CHO (1979) Nearly on line scheduling of a uniform processor
system with release times. SIAM J. Comput. 8,275-285.

ULLMAN (1975) NP-complete scheduling problems. J. Comput. System Sci.
10,384-393.

