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On functions with small differences.

J.L. Geluk and L. de Haan.

1. Introduction.

We prove an Abel-Tauber theorem that complements a well known result.

It is shown that this provides simple proofs for some results by

de Bruijn en van Lint [2] on multiplicative arithmetic functions.

The theorem also provides an easy proof of an earlier result by Wirsing [12]

on multiplicative arithmetic functions.

2. Abel-Tauber theorem.

Theorem 1. Suppose L is a measurable slowly varying function and U is such
co

its Laplace transform U(A) = f e-xx U(x) dx exists for all A > 0. We
0

also require that U(0+) = 0 and U is locally bounded.

a. If for all x > 0

then

. U(tx) U(t
11M

t±c° ( t )

lim
0(i/t) - u(t)

t-±00 L(t) •

b. If U is non-decreasing and for all A > 0

l 
3(Xt) 5(t) 

=im 0
L(1/t)

then (2) holds.

5

( 2 )

( 3 )

Remark. It is clear that (1) & (2) imply (3) and that (2) & (3) imply (1).

Remark. This is an analogue of the main theorem of [7]. It is a

generalisation of theorem 2 of Feller [4] which in turn contains theorem

3h, Ch. 5 in Widder [10] as a special case (note that the condition of

slow variation of U in Feller's article in unnecessary). We shall make the

connection with Feller's theorem after the proof.
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Lemma 1. Suppose L is a slowly varying function and V: TR E is locally+ +
bounded. If for some > 0

v(t) •lim
t-400 t L(t)

then locally uniformly in x E[0,00)

v(tx) 0.
t÷.0. t L(t)
lim

Proof. Take any sequences x -±xE[0,00) and t 00. If t x I bounded
nn

the result holds since t IL(t ) -+ c°.n n -13 - , ,,-1,If t x m we write V(t
n
x
n
) t

n 
L

1 
(t) 

n 
= [V(t x x ) L(t )1 .1n n nn nn nn

(4)

r
x )/L(t )}± Osince the first factor tends to zero and the othern nn n

one is bounded.

Lemma 2. Suppose L and V are as in Lemma 1 and moreover the Laplace
CO

J 
,-XXtransform V(A) =A j e V(x) dx exists for all A > O. Let be a

0
non-negative parameter.

a. If

then

.  V(t) 
lim   = 0

a L(t)

= 0.lim  
ta L(t)

(5)

(6)

b. Conversely, if V is non-decreasing, V(0+) = 0 and (6) holds then (5) is
true.

Proof. a) For 0 < E < 1

(1/t)  = e-u (ut)E V(ut) du 4.

t L(t) 0 if ta+E L(t)

00

-u V(ut)

(ut)a L(ut

a L(ut) 
u du.

L(t)

The first term tends to zero by Lemma 1 and for sufficiently large t the

second term is bounded by



-u a L(ut) 
e u 

L(t) du

co
r - awhich by e.g. the representation ofLtends to eje

u 
 udu ast -+ co.

1

b) Define Wt 
a
L(t)

( ):
v(tx)

. According to (6) lim W (A) = 0 for A > 0.
t-±03 tt 

It follows from the extended continuity theorem for Laplace transforms

(Feller [5]) that lim W (x) = 0 for x > 0 i.e. (5) holds.
t-->co t

Proof of theorem 1. It is well known (cf.

to

lim
X-->oo

x
U(x) x f u(t) dt

0

L(x)

[3]) that (1) is equivalent

(7)

Define V(x) = x U(x) U(t) dt. Note that x-1 V(x) is locally bounded
0 x -2

on x > 0 and that conversely U(x) = x
-1 

V(x) +5 t V(t) dt (cf. de Haan [8]).

a. Writing U in terms of V as above we get

u(t)
Co 

- u(t)v(t) 
1 -s

r -s  V(ts)  , f 1-e  V(ts) 
L(t) t e ts L(t)

0 0 
s ts L(t)

co -s
e V(ts) 
s ts L(t) 

ds.

ds +

The second term tends to zero by Lemma 2 (for a = 0) and the remaining

terms by similar arguments.

b. Now V is positive and non-decreasing and

U 2
—1

— U(t) _
L(t)

r ir(st-1)
t L(t)

2
-1

-1 - -1
2 V(t )

Hence (3) implies (6); this in turn implies (5) which is (7) and we have
already seen that (7) is equivalent to (1).

Remark. Feller's [4] result is obtained if we take L constant and use the

fact that (1) and (7) are equivalent.

We close this section with the following comments.



t-->co

t-*00

with Z

Comparing theorem 1 of [7] and the present theorem 1 we see that the latter

holds with the righthand sides of (1), (2) and (3) replaced by (respectively)

c log x (c > 0), - c y (Euler's constant) and - c log X. It is clear from

(7) that (1) implies

z(tx) - z(t) 
lim = 0

L(t)

l x
x J U(t) dx. We prove two results concerning Z.

0

Lemma 3. a. If Z satisfies (8),

u(t ) z(t) 
lim - 0

L(t)

b. If 11 satisfies (3) and Z is monotone, then (8) holds.

Proof. Analogous to part of the proof of theorem 1 in Geluk [6] (take

=

(8)

(9)

1 and his U the integral of ours).Z satisfies (8) if and only if the

function

11(x):=
x t

dtt dZ(t) = f U(t) dt - U(s) ds
0 00

is o(x L(x)) for x -± Now

H(1/t) = t 0(-tit) _ t

If Z satisfies (8), by lemma 2 il(l/t) = o(t L(t)); by theorem 1 then

2(1/t) - Z(t) = Q(L(t)) hence (9) holds.

Conversely suppose Z is monotone and U satisfies (3). From (3) it follows

t 11(1/t) ± 5.0(1/s) ds = o(t L(t)).
0

t
Now f u( us) ds = t 2( i/t) hence 11(1/t) = o(t L(t)) and by Lemma 2

0
H(x) = cx L(x)) i.e. Z satisfies (8).



Lemma 4, if 8) holds and U is non-decreasing, then (1) is true.

Proof. It is easily verified that

-1 r -2x UCG dt = J t v(t) dt
0 0

so that for x > 1

(tx) -1
U ds - t U(s) ds

L(t)
- I V(ts) ds V(t) 1

t L(t) 
s
2 —

> 
tj • (1 - x-)•1

Hence (7) is true which is equivalent to (1).

Remark. A result like that of lemma 4 can be proved is a similar way in
the situation mentioned above where the limits are non zero.

3. Arithmetic functions.

Next we show how the above results can be used to get r-...sults on the

asymptotic behaviour of multiplicative arithmetic functions. The first part

of the following result (with slightly different conditions and a different
proof) is well-known (see de Bruin and van Lint [2]).

Theorem 2. Suppose A is a real-valued multiplicative arithmetic function
(i.e. X(m.n) = X(m) .A( ) for (m,n) = 1) with X(n) > 0 for n > 1,

and

< co

X(ID ) < w.
p,k>2

If for x > 0

A(p) = (b + o(1)) log x (t ÷ 00)
t
<p<

e
e t

x

with b > 0, then

io) •

(12)
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e
-by

=  o(1)) e—A(P) (1 + X(pE A(n) 
n<x F (b+1

where y is Euler's constant

Moreover

11 0 x(p) x(p2) ...) ,J eb

P‹x

If for x > 0

X(p) L(t) log x
t
<
p
<e 

x
e 

with L(t) cc then

log E X(n) = E X(P)
x 1/s

n<e p<e

where x co5 s 0 and xs L(1/s)

Proof. First we prove (13).

-Y

E

X(P2) ...)]

.p)

(13)

r(b x( (1)4)
n<x

(t co) (15)

L(1/s) + L(1/s)) (16)

Since E A(p) = (b + 0(1)) log x (t ÷co) we get
t
<p<ee 

tx

X(P)
A(P) E —T7R = YID + 0(1)

p<e
x pp

For b > 0 this result is well-known (see [6]); in case b = 0 it follows by

application of theorem 1. co k
Next we define the function g(p,$) E x(p ) where s > 0 and p denotes a prime.

k=1 p
ks --

Then we have for s > 0

A(n) 
2

log E = log II (1 + X(P) + A(P ) + ...) = E log (1 + g(p,$))
n n

s 2s

the convergence of the last series being implied by (11) and (12).

This can be seen as follows. First we have g(p,$) -- 0 (p -->- co) for s > 0 since



k

IX 
r \ 

X(P ')I < 1 X A(Pk)1ksk>2 p k>2

and this tends to zero if p -÷ 00 by (11). Moreover we have X(P) ± 0

since X(p) is bounded. Now log(1 + g(p,$)) ep,$)(p co) and

X(p) (ID )E g(p,$) = + X  
by (11) and (12).

P P p,k>2 p
ks

This implies

, X n
log L

ns
= g

•X(p)= E + c + o(1)• s

where c = E
p,k>2

1 ,2z f g(p,$) (1-t) 
0 dt

p 0 [1 + t g(p,$)]-

A(p
k
) - E g(p,0

0 [

(s + 0)

1-t

= E [log {1 + E A(pk)} x(p)].
k>1

t g(p,0)]
2 dt

(18)

X(n)Now (18) implies regular variation at zero with exponent -b of E
n nssince exp E 

X(p
is regularly varying at zero with exponent -b.p ps

Application of a well-known theorem of Karamata (see [8] theorem 2.3) now
yields

log X(n) - log E X(n

n< e
x n r7.17X

- log F(b+1) (19)

Combination of the results (17), (18) and (19) gives the expression for E X(n).
/ \Similarly we find log II (1 + X(p) + X(p
2 
) ...)

p<x

= Z A(p) + c + o(1) (x 00) and 14) follows.
p<x

In order to prove (16) we proceed similarly. (17) is replaced by

p< 
ex

A(P) - E L42 = (y + 0(1)) L(x)p p1/x

= E log(1 + g(p,0)) =
p<x

(20)
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The proof of (18) is unchanged.
A(n)In this case the regular variation of U(s): = E   at zero is replaced by

n n
s

( Nys) 
)-1/L(1/s)

(s 0) for y > 0

which is a consequence of 15), (18) and (20).

Now application of theorem 1 i [1] gives

log E X(n) - log E 
X(n

n<e ns

L(1/s)

where s 0 and t 00 are related by st L(1/s).

Combination of (18), 20) and (22) now gives (16).

Next we apply the above results to prove the following theorem (compare

Wirsing (11) and (12)).

Theorem 3. If f(n) > 0 = 1, 2, ...) is a multiplicative arithmetic

function,

then

f(p) log p = (T 0(1)) log x
p<x

f( k)
f(P)

2
P  < 00   < 00

p,k>2 p
k 2

P P

n<x

f(n) e-IT

NT) + °(1)) 11 [e
P

where y is Euler's constant.

Proof. We define A(x): =
p<x

f(P)

(1 + f(P) f(P2)
2

f(p) log p _
+ o(1)) log x.

(21)

(22)

(25)

f(P) 1 
x 

Then E = d A(t) = T ± o(1)f t(u) du where lim t u = T.
1
log t 

1 
u log u u-*cop<x 
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x 
f(p

This gives E = 
t(ev) 

f
v
  dv T 1) hence condition (12) in

p<ex P 0

f(p)theorem 2 is satisfied (with X(p) = ).

f(n
It is possible to give the behaviour of E

tends to infinity more quickly.

in case E

P‹x

f(p) log p

Theorem 4. Under the assumptions of theorem 3 with (23) replaced by

p<x

with L(x)

f(p) log p = L(log x) . log x (x

00 slowly varying we have

(26)

f ( ) 7 f(p)log 
x 

E - y + 0(1)) L(1/s) (27)
n<e n p<e 

1/s p

with x co, s 0 and xs --L(1/s).
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