

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

ECONOMETRIC INSTITUTE

A RECURSIVE APPROACH TO THE

IMPLEMENTATION OF ENUMERATIVE METHODS

--U;iDATION OF

1101 er—
EC71,,Ai,-AGGICULT L

J.K. LENSTRA and A.H.G. RINNOOY KAN

REPORT 8003 /0

ERASMUS UNIVERSITY ROTTERDAM. P.O. BOX 1738. ROTTERDAM THE NETHERLANDS

A RECURSIVE APPROACH TO THE IMPLEMENTATION OF ENUMERATIVE METHODS

J.K. LENSTRA

Mathematisch Centrum, Amsterdam

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam

ABSTRACT

Algorithms for generating permutations by means of both lexicographic and

minimum-change methods are presented. A recursive approach to their imple-

mentation leads to transparent procedures that are easily proved correct;

moreover, they turn out to be no less efficient than previous iterative

generators. Some applications of explicit enumeration to combinatorial op-

timization problems, exploiting the minimum-change property, are indicated.

Finally, a recursive approach to implicit enumeration is discussed.

KEY WORDS & PHRASES: enumerative methods, recursive implementation, genera-

tion of permutations, lexicographic generator, minimum-change generator,

combinatorial optimization, explicit enumeration, implicit enumeration,

branch-and-bound.

NOTE: This report is not for review; it will be published in the Proceedings

of the School on Analysis and Design of Algorithms in Combinatorial Optimi-

zation, 'Udine, Italy, September 10-21, 1979.

1. INTRODUCTION

The analysis of the inherent computational complexity of combinatorial prob-

lems indicates that for many of those problems a polynomial-time algorithm

is not likely to exist. It appears that with respect to these problems we

have to settle for some form of enumeration of the solution set whereby the

feasible solutions are identified and an optimal one is obtained. For all

but the smallest problems the number of feasible solutions is so large that

the use of a computer for the actual computations is unavoidable. Thus, the

computational performance of any enumerative method not only depends on al-

gorithmic details but also on the computer implementation. The latter topic

forms the subject of this paper.

More specifically, the paper will be devoted to a discussion of a recur-

sive approach to the implementation of enumerative methods. We hope to dem-

onstrate that such an approach leads to procedures that are elegant, easy

to understand, easily programmed and easily proved correct. While these

positive aspects will probably be recognized by most programmers, a familiar

argument against recursive procedures suggests that none the less they re-

quire inordinate running times. Thus, ironically i many recursive approaches

advocated in the literature are implemented after complicated manipulations

in an iterative fashion [Barth 1968; Bitner et a/. 1976; Gries 19751: We

will demonstrate on a simple example that with respect to efficiency a re-

cursive implementation need certainly not be inferior to an iterative one;

this remains true even if we consider a measure of efficiency that is com-

puter and compiler independent.

2

The example referred to above is closely related to many combinatorial

problems and involves the generation of all permutations of a finite set.

In Section 2 we discuss various types of recursive permutation generators

and present some results concerning their efficiency relative to iterative

generators.

Since feasible solutions of many combinatorial problems are character-

ized by permutations, generators of permutations can be used in a straight-

forward way to solve such problems by explicit enumeration of all feasible

solutions. We give some examples in Section 3, but it should be clear that

this approach will solve only relatively small problems.

However, the advantages of a recursive approach carry through to forms

of implicit enumeration as well. We illustrate this in Section 4 by pre-

senting general frameworks for a popular type of implicit enumeration meth-

od known as branch-and-bound, in which again recursion plays a crucial role.

The material presented in this paper is adapted from ELenstra & Rinnooy

Kan 1975; Lenstra 19771.

2. GENERATION OF PERMUTATIONS

Methods for generating combinatorial configurations can often be classified

as either lexicographic or minimum-change methods. The first mentioned type

of method generates the configurations in a "dictionary" order, whereas the

second type produces a sequence in which successive configurations differ

as little as possible. The relative advantages of minimum-change methods

have been discussed in the literature: the entire sequence is generated ef-

ficiently, each configuration being derived from its predecessor by a sim-

ple change; moreover, a minimum-change generator "may permit the value of

the current arrangement to be obtained by a small correction to the immedi-

ate previous value" [Ord-Smith 19711.

The very "cleanliness" ELehmer 19641 of these combinatorial methods

allows a proper demonstration of what we believe to be the advantages of a

recursive approach to the implementation of enumerative methods.

The algorithms which are to be presented in this section are defined

as ALGOL 60 procedures. They contain no labels and generate the entire se-

quence of configurations after one call. Each time a new configuration has

been obtained, a call of a procedure "problem" is made. Parameters of this

procedure are the configuration and, for minimum-change algorithms, the

positions in which it differs from its predecessor. The actual procedure

corresponding to "problem" has to be defined by the user to handle each

configuration in the desired way.

Previously published iterative generators usually have been organized

in such a way that each call generates one configuration from its predeces-

sor only. This necessitates continual recomputation of the information that

is needed to find the next configuration in the sequence. A mechanism for

performing this kind of computations efficiently has been described in

[Ehrlich 1973A]. We do feel, however, that much of the clarity of essential-

ly recursive algorithms is lost within any iterative implemenation.

For generators of various types of combinatorial configurations such

as subsets, combinations and permutations, we refer to [Wells 1971; Ehrlich

1973A; Even 1973; Lenstra & Rinnooy Kan 1975; Reingold et al. 19771. Permu-

tation generators have been surveyed in [Lehmer 1964; Ord-Smith 1970, 1971;

Sedgewick 19771.

In Section 2.1 a minimum-change generator of permutations is presented.

It produces a sequence in which each permutation is derived from its prede-

cessor by transposing two adjacent elements. Its basic principles have been

discovered by Steinhaus [Gardner 1974] and were rediscovered independently

in [Trotter 1962] and [Johnson 1963]. Trotter's iterative algorithm was for

a number of years the fastest permutation generator. A more efficient itera-

tive implementation has been presented in [Ehrlich 1973B]; see also [Gries

1975; Dershowitz 1975].

The lexicographic generator of permutations in Section 2.2 produces all

permutations 7 of the set {1,...,n} in such a way that 7(n)7(n-1)...71-(1) is

an increasing n-ary number.

In Section 2.3 our recursive generators are compared to previously

published procedures.

2.1. A minimum-change generator

Given a set 7 (1),...,7 (n)}, we define an undirected graph G(n) whose

vertices are given by the n! n-permutations of this set; (7,p) is an edge

{k if 7 (i) moves rightwards,

of G(n) if and only if 7 and p differ only in two neighboring components. A

hamiltonian path in G(n) corresponds to a sequence of permutations in which

each permutation is derived from its predecessor by transposing two adjacent

elements.

According to Steinhaus's method, we may construct such a sequence in-

ductively as follows. For n = 1, it consists of the 1-permutation. Let the

sequence of (n-1)-permutations be given. Placing 71. (n) at the right of the

first (n-1)-permutation, we obtain the first n-permutation. The n-1 next

ones are obtained by successively interchanging 7 (n) with its left-hand

neighbor. After that, 7 (n) is found at the left of the first (n-1)-permu-

tation. Replacing this (n-1)-permutation by its successor in the (n-1)-se-

quence gives us the (n+1)-st n-permutation, and the n-1 next ones arise

from successive transpositions of 7 (n) with its right-hand neighbor. Then

7 (n) is found at the right of the second (n-1)-permutation, which is now

replaced by the third one, and the process starts all over again. It is

easily seen that the first and last permutations in the sequence are given

by 7
*
= (7 (n)) and p = (7 (2),Tr (1),7 (3),...,7 (n)) respective-

ly; they are adjacent and thus we have found a hamiltonian circuit in G(n).

Steinhaus's method can be described more formally by a sequence S(2)

of n!-1 transpositions. Denoting the transposition of 7 (i) and the h-th

element in the current permutation of {71. (1),...,7 (i-1)1 by i+-+h, we

define the transposition sequence S(i) recursively by

S(i) = S(i+1),i±h
1
,S(i+1),i±-±h

2
„S(i+1),i h. ,S(i+1)

where.

h
k
=

*
if 'it (i) moves leftwards,

and S(n+1) is empty. Figure 1 and Table 1(mc) show the graphs G(n) for

n 4 and the sequence for n = 4. Note that G(4) is the edge graph of a

solid truncated octahedron, replicas of which fill entire 3-space. Similar

statements of this remarkable property hold for all n [Lenstra Jr. 19731.

The following minimum-change generator of permutations produces the

sequence described above.

6

TABLE 1. PERMUTATION SEQUENCES

MC lex

1 1234 4321

2 1243 3421
3 1423 4231

4 4123 2431
5 4132 3241

6 1432 2341
7 1342 4312
8 1324 3412
9 3124 4132

10 3142 1432

11 3412 3142

12 4312 1342
13 4321 4213

14 3421 2413

15 3241 4123

16 3214 1423

17 2314 2143

18 2341 1243

19 2431 3214

20 4231 2314

21 4213 3124

22 2413 1324

23 2143 2134

24 2134 1234

procedure pm mc (problem,n,pi); value n,pi;

integer n; array pi; procedure problem;

begin real pin; integer k,q; boolean array r[1:n];

procedure rite(i); value i; integer i;

if i < n then

begin boolean rj; real pii; integer ti,j;

pii:= pi[q]; j:= i+1;

q:= q-1;

rj:= r[j]; if rj then rite(j) else left (j);

for ti: = 2 step 1 until i do

begin k:= q+i;

pi[k-1]:= pi[k]; pi[k]:= pii; problem(pi,k-1);

rj:= 71rj; if rj then rite(j) else left(j)

end;

r[j]:= 71rj

end else

begin q:= 0;

for k:= 2 step 1 until n do

begin pi[k-1]:= pi[k]; plik]:= pin; problem(pi,k-1)

end

end;

procedure left(i); value i; integer i;

if i < n then

begin boolean rj; real pii; integer ti,j;

pii:= pi[q+i]; j:= i+1;

rj:= r[j]; if rj then rite(j) else left(j);

for ti: = i-1 step -1 until 1 do

begin k:= q+ti;

pi[k+1]:= pi[k]; pi[k]:= pii; problem(pi,k

rj:= 7Irj; if rj then rite(j) else left(j)

end;

rEj]:= Tirj;

q:= q+1

end else

begin for k:= n-1 step -1 until 1 do

end;

begin pi[k+1]:= pi[k]; pi[k]:= pin; problem(pi,k)

end;

q:= 1

• pin:= pi[n]; q:= 0; for k:= 2 step 1 until n do r[k]:= false;

problem(pi3O); if n > 1 then left(2)

end pm mc.

A call "pm mc (problem,n,7)" has the following effect:

if n = 1, then a call "problem(.1T ,0)" is made; else

a hamiltonian path in G(n) from 7. to p
*
= (Tr

*
(2),Ir (1),Tr
**

(n))

is traversed;

- in vertex Tr a call "problemOr
*
,0)" is made;

- in each vertex Tr, reached by transposition of the elements in positions

k and k+1, a call "problem(ff,k)" is made.

The latter two assertions are clear from inspection. To prove the first one,

we note that a call "rite(i)" ("left(i)") performs a series of i-1 transpo-

sitions of Tr (i) with its right (left) neighbor, where the predicate r(i)

indicates which direction has to be chosen. By induction on i we can show

that a call "rite(i)" or "left(i)" generates all permutations in which the

current order of Tr (i-1) is preserved, only transposing adjacent

elements, whereas just before such a call and immediately after its execu-

tion, Tr and q have the following property:

the indices (i,...,n) can be rearranged as (j1,...,jci,jci+i,...,jn)

with j1 > > jci+i < < j
n
, such that Tr(k) = e(jk) for

k = 1,...,q,q+i,...,n.

The first assertion now corresponds to the effect of a call "left(2)", which

indeed activates the whole process. This completes the proof.

Using the integer q to determine the place of the transpositions is

easier and more efficient than keeping track of the inverse permutation for

that purpose, as is done in [Ehrlich 1973A; Ehrlich 1973B1.

In order to add to the transparency and efficiency of the procedure,

two simple constructions have been applied. First, we have distinguished

between the leftward and rightward moves of the elements by means of two

procedures calling themselves and one another. Further, the deepest level

of the recursion has been written out explicitly. This device clearly re-

duces the number of checks to see if the bottom of the recursion has been

reached already; it enables us also to deal separately with the n-th ele-

ment, which is involved in (n-1)/n of the transpositions.

We make one final remark on minimum-change sequences of permutations.

Given an undirected graph H(n) on - n vertices, we define an undirected graph

G
H
(n) on the set of n-permutations; (71-,p) is an edge of G

H
(n) if and only

if Tr can be obtained from p by a single transposition of the elements in

positions k and i, where (k,k) is an edge of H(n). One [Lenstra Jr. 1973]

can prove that GH(n) contains a hamiltonian circuit if and only if H(n)

contains a spanning tree, The "only if"-part is obvious; the "if"-part

follows by an inductive argument. Note that the transposition graph H(n) of

Steinhaus's method is a tree with edge set Ok,k+1)1k = 1,...,n-11.

9

2.2. A lexicographic generator

As mentioned before, the permutations 1t of the set {1,...,n} are ordered

lexicographically when Tr(n)w(n-1)...7.(1) is an increasing n-ary number.

Table 1(lex) shows the sequence for n = 4.

Our lexicographic generator of permutations is given below. At each

level of the recursion exactly one component of w is defined, and at the

bottom a call "problem(w)" is made.

procedure pm lex (problem,n); value n;

integer n; procedure problem;

begin integer h; integer array pi[1:n ;

procedure node(n); value n; integer n;

if n = 1 then problem(pi) else

begin integer k,m,pin;

m:= n-1; pin:= pi[n];

node (m);

for k:= m step -1 until 1 do

end;

begin pi[n]:= h:= pi[k]; pi[k]:= pin; pin:= h;

node (m)

end;

for k:= n step -i until 2 do pi[k]:= pirk-11; pi[1]:= pin

for h:= n step -1 until 1 do piCh]:=

node (n)

end pm lex.

A call "pm lex (problem,n)" has the following effect:

- all permutations w of {1,...,n} are generated in lexicographic order;

- for each permutation 7 a call "problem(w)" is made.

To prove the first assertion, let us assume that, given a permutation 7r, a

call "node(k)" is made. It is easily checked that just before the St calls

"node(9,-1)" on the next level of the recursion, the then current permutation

p is given by

10

= (1) , . . . , (k-1) , Tr (k+1) , Tr (k+ 2) , , Tr () (k) (2+1) , (n)) ,

for k = 9,9-1,...,1. By induction on k it can be shown that a call "node(k)"

generates all permutations ir in which Tr(k+1),...,ff(n) remain unchanged, in

increasing order, whereas just before such a call and immediately after its

execution, ir satisfies Tr(1) > ff(2) > > Tr(k). The observation that the

effect of a call "node(n)" corresponds to the first assertion completes the

proof.

2.3. Computational experience

The algorithms presented in Sections 2.1 and 2.2 have been compared to ALGOL

60 versions of two minimum-change generators, mentioned in the introduction

to Section 2.

Table 2 shows the result of the comparison. The running times have

been measured during one uninterrupted run on the Electrologica X8 computer

of the Mathematisch Centrum; a procedure with an empty body was chosen for

the actual parameter "problem". Our minimum-change algorithm turns out to

be faster than corresponding previously published procedures. Although the

time differences are not spectacular, a recursive approach should certainly

not be rejected on grounds of computational inefficiency a priori.

Results like the above ones unavoidably remain computer and compiler

dependent. It is of interest to note in this context that some experiments

using PASCAL on the Control Data Cyber 73-28 of the SARA Computing Centre

in Amsterdam instead of ALGOL 60 on the Electrologica X8 showed a nineteen-

fold increase in speed for a recursive subset generator and a fourteen-fold

increase for an iterative one. On the other hand, the running times of the

iterative generators may be reduced by up to twenty percent by a different

transformation of these generators into PASCAL procedures producing all con-

figurations at one call.

In order to develop a computer independent measure of efficiency, let

us define

number of array subscript evaluationsa = l•
number

number of generated configurations

11

array access being a dominant factor in this type of ALGOL 60 procedure

[Ord-Smith 1971]. For recursive algorithms, evaluation of a is accomplished

by the solution of recursive expressions. For Trotter's iterative algorithm

only a lower bound can be given; it is not clear if a finite limit exists.

TABLE 2. COMPARISON OF FOUR PERMUTATION GENERATORS

generator restrictions time a

[Trotter 1962; Ord-Smith 1971] n __ 2 91.3 ?_7

[Ehrlich

pm mc

1973B] n .?,_.

n

3,

1

n 4 58.1

42.9

3

3

pm lex n 1 92.4 6.44

time : CPU seconds on an Electrologica X8 for n = 8.

• average array access (in the limit).

3. EXPLICIT ENUMERATION

Generators of combinatorial configurations can be used to solve many combi-

natorial optimization problems through enumeration and evaluation of all

feasible solutions. Needless to say, only very small problems can be solved

by such a brute force approach, even if the minimum-change property of the

generators is exploited. However, they can be applied to validate more com-

plicated solution methods by checking their results on small problems.

An an illustration we will show how generators of permutations can be

used to solve sequencing problems P of the form

min If ('ir)/
p

where Tr runs over all permutations of {1,...,n}. This formulation includes

several well-known combinatorial optimization problems. Recall that the

criterion function of the quadratic assignment problem (QAP) is given by

f or) = vn vn

QAP Li=1 Lj=1 71.(i)ff(j)dij

where (c..) and (d) are nonnegative nxn-matrices. If we take d. 1 for
1j ij 1j

> j, ,d.
j
= 0 otherwise, we obtain the acyclic sub graph problem (ASP).

i

12

Analogously, the choice d = d = = d = d
n1

= 1, d = 0 other-
12 23 n ijn-1,

wise, leads to the traveling salesman problem (TSP), that is called symmetric

if c =c..for all i,j.
ij
If we define the reflection of 7 by 7ri: = (7(n),...,7(1)), it is obvious

that f (7) =
cij

() for the ASP and fTsp(7)
= fTSP(Tr)

for the
ASP /ij fASP'ff"

symmetric TSP. It follows that for these two problems it suffices to enumer-

ate a reflection-free set of permutations. Further, since,

f ,7(n),7(1),...,7(k))) = f (7) for any k, we may fix one
TSP TSP
of the components of 7 when solving a TSP. The (n-1):/2 solutions to a sym-

metric TSP are the hamiltonian circuits in a complete undirected graph;

they are called rosary permutations CHarada 1971; Read 1972; Roy 19731.

In the minimum-change generator of permutations, discussed in Section

2.1, the elements 7 (1) and 7 (2) are transposed half-way. If a permutation

7 is generated before this transposition, then its reflection 7 occurs

thereafter. Hence the first n!/2 permutations form a relection-free set (cf.

[Roy 1973]). Generally, the n!/m: permutations preserving the original or-

der of 7
*(

1),.. ,7
*
(m) can be generated by a simple adaptation of "pm mc":

procedure pp mc problem,n,m,pi); ...;

begin

.' ; if n > m then left(m+1)•

end pp mc1.

The above sequencing problems may now be solved by calls

pm mc (qap,n,7),

pp mc (asp,n,2,7),

pp mc (tsp,n-1,if symmetric then 2 else 1,7),

where "qap", "asp" and "tsp" are procedures which compute the changes occur-

ring in the criterion functions of these problems.

4. IMPLICIT ENUMERATION

The permutation generator presented in Section 2.2 can easily be adapted

to be used for implicit enumeration purposes by adding a lower bound calcu-

lation on all possible completions of a partial configuration. In the early

3

fifties, Lehmer used such an approach to solve the linear assignment problem

(!) [Tompkins 19561. The fact that our recursive generators coupled with a

simple lower bound may well outperform sophisticated implicit enumeration

algorithms that suffer from a large computational overhead plinnooy Kan et

al. 19751 underlines the applicability of recursive programming to implicit

enumeration methods of the branch-and-bound type in general.

In this section we present a quasi-ALGOL description of branch-and-bound

procedures, indicating in which case a recursive approach might be suitable.

For a formal characterization of branch-and-bound procedures, we refer to

the axiomatic framework in [Mitten 19701 and its correction in Dlinnooy Kan

19761; see also [Agin 1966; Balas 1968] for analyses of the case in which

the set of feasible solutions is finite and [Kohler & Steiglitz 1974] for

the case of permutation problems. Some standard examples of branch-and-bound

methods have been surveyed in [Lawler & Wood 19661.

Suppose then, that a set X of feasible solutions and a criterion function

f: X -± 1R are given, and define the set X* of optimal solutions by

= {x lx e X, f(x*) = min{f(x)Ix e X}1.

A branch-and-bound procedure to find an element of X can be characterized

as follows.

Throughout the execution of the procedure, the best solution x found

so far provides an upper bound f(x
*
) on the value of the optimal solu-

tion.

A branching ru/ebassociates toYcXafamily b(Y) of subsets such

that U Y'nx = Ynx ; the subsets Y' are the descendants of the
Y'Eb(Y)

parent subset Y. This rule only has to be defined on a class X with

X E X and b(Y) c X for any Y E X.

A bounding rule lb : X -* IR provides a lower bound lb(Y) 5_ f(x)for all

XEYEX. Elimination ofYoccurs if lb(Y) f(x*).

A predicate E: X -4- {true,false} indicates if during the examination of

Y (e.g. during the calculation of lb(Y)) a feasible solution x(Y) is

generated which has to be evaluated. Improvement of x occurs if

f(x) > f(x(Y)).

14

- A search strategy chooses a subset from the collection of generated

subsets which have so far neither been eliminated nor led to branching.

It turns out that, of the three search disciplines that have been used most

frequently, two are suitable for recursive implementation. To illustrate

this point, we shall now present three general procedures:

- "bb jumptrack" implements a breadth-first search where a subset with

minimal lower bound is selected for examination; this type of tree

search is known as frontier search;

- "bb backtrack1" implements a depth-first search where the descendants

of a parent subset are examined in an arbitrary order; this type is

known as newest active node search;

- "bb backtrack2" implements a depth-first search where the descendants

are chosen in order of nondecreasing lower bounds; this type is some-

times called restricted flooding.

During the tree search, the parameters na and nb count the numbers of subsets

that are eliminated and that lead to branching respectively. We define the

operation ":zE" in the statement "s:zE S" to mean that s:= s with z(s) =

minfz(s)Is E Sl; hence, ":E" indicates an arbitrary choice.

,
procedure bb jumptrack (X,f,x

*
,10,1b,,na,nb);

begin local Y'Y',13 c X, Y,Y' E X, LB: X -* IR;

na:= nb:= 0; Y:= 0;

LB(X):= lb(X); if X) then x
*
:f€ : {x*U ,x(X)};

if LB(X) f(x) then na:= 1 else Y:= {x};

while Y 0 do

begin Y:LBE Y;

nb:= nb+1; B:= b(Y); := (Y-{Y})a;

while B 0 do

begin Y':E B; B:= B-{y'};

end

LB(Y'):= lb(Y'); if E(Y') then x :fE {x*,x(Y')}

end;

Y':= {Y'1Y' E Y, LB(Y') f(x*)};

na:= na+IYI Y:= V-V'

end bb jumptrack.

procedure bb backtrackl (X,f,x*,b,lb,C,na,nb);

begin local Y' E X;

procedure node(Y

begin local B c X, LB E IR;

LB:= lb(Y); if C(Y) then x :fE fx ,x(Y)1;

if LB f(x) then na:= na+1 else

begin nb:= nb+1; 13:= b(Y);

while 8 0 do

begin Y':E B; B:= B-Y'};

if LB < f(x) then node(Y')

end

end;

end

na:= nb:= 0;

node (X)

end bb backtrackl.

procedure bb backtrack2 (X,f,x*,b,lb,,na,nb

begin local B c X, Y' E X, LB: X -± IR;

procedure node(Y);

begin local Y c X;

end;

nb:= nb+1; Y:= 13= b(Y);

while B 0 do

begin Y':E B; B:= B-{Y'};

LB(Y'):= lb(Y 1); if CW then x : X ,x(V)1

end;

while Y 74 0 do

begin Y':LBE Y; Y:= Y-{v};

if LB(Y 1) f(x) then na:= na+1 else node(Y')

end

15

16

na:= nb:= 0;

LB(X):=.1b(X); if UX) then x :fE {x ,x(X)};

if LB(X) f(x) then na:= 1 else node(X)

end bb backtrack2.

Anyone familiar with branch-and-bound will have noticed that the above

descriptions provide only a minimal algorithmic framework. Numerous problem-

dependent variations may be included in an actual procedure. For instance,

elimination of Y may be possible already during the calculation of lb(Y) or

may be due to elimination criteria based on dominance rules or feasibility

considerations. In a minor (and in our experience quite successful)variation

on "bb backtrack1", the descendants Y' •of a parent subset Y are not chosen

arbitrarily, but according to some heuristic, e.g. preliminary lower bounds

lb'(Y') with lb(Y) lb'. (Y') lb(Y'). Many similar variations are possible

but do not affect the basic mechanisms outlined above.

A main characteristic of many branch-and-bound procedures is the unpre-

dictability of their computational behavior. Their worst-case performance

may be close to explicit enumeration, and no satisfying analyses of average-

case behavior have been presented up to now [Karp 1976; Lenstra & Rinnooy

Kan 1978]. Extensive computational experience seems to be the only way to

test their quality. Branch-and-bound should not be used before one feels

sure that the complexity of the problem is such that no better approach can

'be found. However, this is often the case, and methods of branch-and-bound

are widely used for solving combinatorial optimization problems.

From our experience with the implementation of branch-and-bound algo-

rithms we may conclude that again the recursive approach produces transpar-

ent procedures, in which much administrative work is taken over by the com-

piler without a noticeable negative effect on overall efficiency.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the valuable help and suggestions from

J.D. Alanen, P. van Emde Boas, J.S. Folkers, B.J. Lageweg, H.W. Lenstra, Jr.,

G.K. Manacher and I. Pohl.

17

REFERENCES

N. AGIN (1966) Optimum seeking with branch-and-bound. Management Sci. 13,

B176-185.

E. BALAS (1968) A note on the branch-and-bound principle. Operations Res.

16,442-445,886.

W. BARTH (1968) Ein ALGOL 60 Programm zur Lasung des traveling Salesman

Problems. Ablauf- und Planungsforschung 9,99-105.

J.R. BITNER, G. EHRLICH, E.M. REINGOLD (1976) Efficient generation of the

binary reflected Gray code and its applications. Caturi. ACM 19,517-521.

N. DERSHOWITZ (1975) A simplified loop-free algorithm for generating permu-

tations. BIT 15,158-164.

G. EHRLICH (1973A) Loopless algorithms for generating permutations, combina-

tions and other combinatorial configurations. J. Assoc. Comput. Mach.

20,500-513.

G. EHRLICH (1973B) Algorithm 466, Four combinatorial algorithms. Comm: ACM

16,690-691.

S. EVEN (1973) Algorithmic Combinatorics, Macmillan, London.

M. GARDNER (1974) Some new and dramatic demonstrations of number theorems

with playing cards. Sci. Amer. 231,122-125.

D. GRIES (1975) Recursion as a programming tool. Technical Report 234,

Department of Computer Science, Cornell University, Ithaca.

K. HARADA (1971) Generation of rosary permutations expressed in hamiltonian

circuits. Comm. ACM 14,373-379.

S.M. JOHNSON (1963) Generation of permutations by adjacent transposition.

Math. Comp. 17,282-285.

R.M. KARP (1976) The probabilistic analysis of some combinatorial search

algorithms. In: J.F. TRAUB (ed.) (1976) Algorithms and Complexity: New

Directions and Recent Results, Academic Press, New York, 1-19.

W.H. KOHLER, K. STEIGLITZ (1974) Characterization and theoretical properties

of branch-and-bound algorithms for permutation problems. J. Assoc.

Comput. Mach. 21,140-156.

E.L. LAWLER, D.E. WOOD (1966) Branch-and-bound methods: a survey. Operations

Res. 14,699-719.

D.H. LEHMER (1964) The machine tool of combinatorics. : E.F. BECKENBACH

18

(ed.) (1964) Applied Combinatorial Mathematics, Wiley, New York, 5-31.

H.W. LENSTRA, JR. (1973) Private communications.

J.K. LENSTRA (1977) Sequencing by Enumerative Methods, Mathematical Centre

Tracts 69, Mathematisch Centrum, Amsterdam.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1975) A recursive approach to the genera-

tion of combinatorial configurations. Report BW50, Mathematisch Centrum,

Amsterdam.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1978) On the expected performance of

branch-and-bound algorithms. Operations Res. 26,347-349.

L.G. MITTEN (1970) Branch-and-bound methods: general formulation and proper-

ties. Operations Res. 18,24-34.

R.J. ORD-SMITH (1970) Generation of permutation sequences: part 1. Comput. J.

13,12-155.

R.J. ORD-SMITH (1971) Generation of permutation sequences: part 2. Comput. J.

14,136-139.

R.C. READ (1972) A note on the generation of rosary permutations. Comm. ACM

15,775.

E.M. REINGOLD, J. NIEVERGELT, N. DEO (1977) Combinatorial Algorithms: Theory

and Practice, Prentice-Hall, Englewood Cliffs, N.J.

A.H.G. RINNOOY KAN (1976) On Mitten's axioms for branch-and-bound. Operations

Res. 24,1176-1178.

A.H.G. RINNOOY KAN, B.J. LAGEWEG, J.K. LENSTRA (1975) Minimizing total costs

in one-machine scheduling. Operations Res. 23,908-927.

M.K. ROY (1973) Reflection-free permutations, rosary permutations, and

adjacent transposition algorithms. Comm. ACM 16,312-313.

R. SEDGEWICK (1977) Permutation generation methods. Comput. Surveys

137-164,314.

C. TOMPKINS (1956) Machine attacks on problems whose variables are permuta-

tions. Proc. Sympos. Appl. Math. 6, Amer. Math. Soc., Providence,

195-211.

H.F. TROTTER (1962) Algorithm 115, Perm. Comm. ACM 5,434-435.

M.B. WELLS (1971) Elements of Combinatorial Computing, Pergamon, Oxford.

LIST OF REPORTS 1980

8000 "List of Reprints, nos 241-260, Abstracts of Reports Second Half 1979".

8001/0 "A Stochastic Method for Global Optimization", by C.G.E. Boender,

A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer.

8002/M "The General Linear Group of Polynomial Rings over Regular Rings",

by A.C.F. Vorst.

8003/0 "A Recursive Approach to the Implementation of Enumerative Methods",

by J.K. Lenstra and A.H.G. Rinnooy Kan.

