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Summary.

Suppose A = 1 X 1,X...}is a given set of real numbers such that

< X <
1 • • •

Let n(u) = E land P(u) the number of solutions of n X +n u in
<u
—

integersintegers ni > 0.

An Abel-Tauber theorem concerning •n(u) and log P(u) is proved for the case

where n(tx)-TETT ÷I (t -a) for x > 0.
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Introduction

Suppose A =

Let 0 = v < v
o I

is a given set of real numbers such that 0 <

the elements of the additive semigroup generated by A.

Consider the weighted partition function p(%) defined by the generating function

ii (1-e
t=I

= e
s 
dP(u) : = P(s)

where P( u) = E p(v) and * is a given sequence with non-negative terms
v.<u
r=

We assume the X and * are such that the product for P(s) is (absolutely) convergent Xr r

for s > 0.

Letting n(u) = * we have the following theorem.

;XOP/

Main theorem

Let c be a constant, 0 < < co .

Under the above assumptions the following statements are equivalent.

n(tx)and 
-5-

I (t op) for all x > 017"rt
(i) lim n(t) =

t-44,3

(ii) there exists a non-decreasing function a(t) on (0,co) with lim a(t) = c such
t co

that for all x > 0

/a(t)

If c < co then

r n(t)
t g P(x) log r(l+c)

If c = ao then

log P(y) = f 
n(t) 

dt + n(x) + o(n(x))
0

where x,y -+ co and y xn(x) xa(y)

If c=00 and the function n satisfies the relation n(xn(x)) n(x) then n(x) rt, a
x f

and f n(s) d - log P( x) n(x) log n(x) (x-*co)0 s



In order to prove the main theorem we use the Lambert transform n of n which is

defined by
co

n(s) f   n(u)du, supposed the integral exists.0 eus_i

This transform arises naturally since
c° -As co

-us
log P(s) = -E *(r)log (1-e r ) = - f log ( -e dn(u) = n(s)

r=1 0

by integration by parts.

We use Abelian and Tauberian theorems connected with the theory of regular

variation. Earlier results in this direction were given by Kohlbecker for

regularly varying functions and by Parameswaran for slowly varying functions.

Our main theorem can be seen as a refinement of Parameswaran's work.

The main part of the proof is to show the equivalence of the statements (i) n

is slowly varying,

(ii) (1/x) = log P(1/x) is an element of the class IT,

(iii) log (P-1) is an element of the class IT

(iv) log P is in H. Precise conditions are given in the lemmas.

Results

Definition: Afunctionf : R 
+ 

is said to be slowly varying if it is

measurable and lim 
f(tx) 

= 1 for x > 0
f( t)t+.=

In this paper we use propezties of a subclass of the slowly varying functions.This

subclass is defined as follows:

Definition: A non-decreasing function U : R
+ 

R is said to belong to the class IT

(notation: U(.) c 11) if there exists an auxiliary function a : R R

such that

U(tx)-U(t) 
lim - lgxforx> 0 (1)

a(t)
t4co

The function a is (of course) determined up to asymptotic equivalence. It is

possible to show that each function U(x) c H with lim sup U(x) = m can be represented

as

U(x) =f L(u) du +

where L is slowly varying.

(L(x)) (x co) 2)



Conversely each function U of the form (2) satisfies (1). The functions a, L

1
and U are related by L(x) a(x) f tdU(t) (x co).

1

For proofs and properties of regular variation and the class IT see (1), ), (15).
x

1 x L(t)
Lemma 1 Suppose E --n(---) = f dt + o(L(x)) (x -+ co)

k<x k k
1 

t

where L is slowly varying, bounded on finite intervals and sup L(y)

y.5...x
0(L(x)) (x+(*).

If xn(x) is non-decreasing for x > I then n(x) L(x) (x co) and

n(t)-L(t)
  dt = -?L(x) + o (L() ) co)

where y is Euler's constant.

p(k)
Proof We define I(x) = E n(li) ; N(x) = E

kix k

7 n( lx
t) .t

A(x) = n(x) d and a(x) = f A(t) dt
t 

1

where p is the Miibius function.

MObius inversion in the first formula and partial integration in the

third gives
x

1
n(x) E -- I tdA(t)

kix 1

Substituting this we get
x 
I(x/u)N(u) , , T(x/u) p(k)

x
au - j  

U U 
F. 

k
k<u1

p(k) 
x/k

k_sx 1

1

k

x x , ‘
du

U u
......... = f I n(:i-c- 

u
) = fa I . .- 2 - - ' ' - du = a(x)

u
1 1

Now for A > 1 fixed the function 
I(Xx)-I(x) 

is bounded for x > 0
L(x)

and tends to log for x -9- co.

Substituting the expression for a(x) then gives

• 
I(Xx/u)-I(x/u) L(x/u)) N(u) du I(A/u)N(xu) du

L(x/u) 14(x) u r
1

and the term between brackets in the first integral is bounded for

uel,x) by assumption.



co
N(u

As I
1

u is absolutely convergent by a classical result of Landau we get

a(Xx)-a(x) by dominated convergence
L(x)

log A.

Since xn(x) = I tdA(t) is non-decreasing, A is non-decreasing.
1

x
This implies that AO with auxiliary function L(x) --I tdA(t) n x by thex
main theorem in M.

Since n is slowly varying we can apply theorem 2 in (5) to get
x 

I(x) 
f

f dt = (y o(1))n(x) (x 0.)

L(t)Combination with I(x) = I dt + o(L( )) then gives the desired result.t

Remark 1. This theorem is an extension of earlier results in (5), (7), (12), (13

(14). Remark that the conditions (see (7))

(i) for some real r, xg'(x) (log x)-r is non-increasing for x > x0

(ii) for some real s, xg'(x) (log x)s is non-decreasing for x > x

imply that xg'(x) is slowly varying and so g(x)ell with auxiliary

function xg'(x).

2. If L(x) M(x) ( ) where M(x) is non-decreasing, then the condition

sup L(y)

YIX

This is trivial, since EfL‹ max(A,(1+c)M(x)) <
L(x) -= L(x)

0(L(x)) holds.

for all y < x, where L(x) < (1+0 M(x) (x > x),

sup L(x) and c is a constant.
x5x0

This condition is sufficient to prove the main theorem.

1

For a slowly varying function n the following result gives the relation between

n and n. For a proof see (5).

(*)(preprint) TI-regular variation



Lemma 2 Suppose n is slowly varying,

of R
+
. Then ri(1/x) cli

and il(1/x) - I n(t )/t dt = o(n(x)) (x c°)
0

n(x)
is integrable on finite subintervals

A converse statement is given in the next theorem.

Lemma 3 Suppose n : R
+ R+ 

and n(x)/x is integrable on 0,R for R > 0,

n(x) is non-decreasing for x > 0 and

L(u)
f du + o(L(x)) (x

u

with L slowly varying and asymptotic to a non-decreasing function,

then n(x) L(x) and 
f n(t) dt f L(u) du 

+ o(L( )) (x 4- 03)
0

x
Proof Since E 

1 
—n(--) is non-decreasing, we have
m m

m<x

i;(1/x)61 with auxiliary function L iff E n(-1)01 with

k k
auxiliary function L. 

kx

'Proof

See corollary 1 in (5).
1

1 ?i, L f
Moreover E T,E n(ti) =

_ n(t)
X t 

dt + yL(x) + o(L(x))
ksic 0

x 
L(u)

Substitution o ;Irt)(1/x) = f du + o(L(10) in the expression for
U

1 
(
x,
--) shows that there exists an L L such that

k<x 
k k

1
E

k<x

x L (t)
= f dt + L(x)) x 03)

t

1
since lim sup E T7 n(x/k) = m.

k<x

Application of lemma 1 now gives the desired result.

(of the main theorem).

Suppose n is slowly varying. Application of lemma 2 now gives

u ft,
log f e x 

-- dP(u) (1/x)01 with auxiliary function n(x). To apply

0

theorem I in (2) we take Po(y) = - + P(y).



Then P
o

 (0+) = 0 and log P cIT iff log Po 0

since log P(y) - log Po(y) 0 = o (auxiliary function)

and the auxiliary function tends to c > 0.

For c < co we get log Pell with auxiliary function 4, C.

For c = co the result is log P(y) 0 with auxiliary function sx, a(y) n(x)

where x,y -* co are related by y xn(x) xa(y).

For the converse statement we replace lemma 2 by lemma 3. All regularity conditions

are satisfied since n and P are as mentioned in the introduction.

n(t)In case c < co we combine n(1/x) = I dt + o(n(x)) with formula (1.3) in (2).
0

The case . co is treated similarly with (1.5) in (2).

Now suppose n(xn(x)) (x co)

Then n (y) 1/n(y) (y 4' co) where n
* 

is the conjugate function in the sense of

de Bruijn (see (3)).

Since y 4 xn(x) xa(y) we get x yn (y) yia(y) and so n(x) a(x).

This implies that log P(t) 0 with auxiliary function n(t) satisfying n(tx) n(t)

for t co' uniformly in xe [1,n(t)] since n is non-decreasing.

Application of theorem 13 in (2) now gives
.0.16

log P(1/0 - log P(t) n(t) log n(t) and the final result follows since

log P(1/0
t

= = 111-22-ds
0 8

This finishes the proof.

+ o(n(0) t oo

Remark 1. The function n satisfies the condition n(xn(x)) n(x) if

n(2t) - 1 = 0 (1/log p(t)) for t co.n(t)

2. An application to Mahler's partition problem (see (4), (10)) where

A = {1,r,r2,...} and tpr = 1 gives

[log u +11 log u
log r j log r

(u co)



7

Application of the main theorem to this case gives

1 log P(u) 2 log r
log2u (1+0(1)) log u.loglog u

log r

3. If in the case c = co and n(xn(x)) n(x) there exists a slowly

varying function L such that L(x)/x is convex and

log P(x) = f 
L(t) 

dt o(1), then we have0 t

• L(t)
n ( )+ L(t) - log P(t) - 7 log 27TL(t) -3- 0 t 9- co)

by theorem 15 in (2) (in this case L n).

This stronger result is not very useful however, since log P is

expressed in terms of n and not in terms of n.
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