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AN ABEL-TAUBER THEOREM FOR PARTITIONS

by

J.L. Geluk

Summary.

Suppose A = {AI,AZ,...} is a given set of real numbers such that

0 < A] < xz < 4e

Let n(u) = £ 1 and P(u) the number of solutions of nlkl+n2A2+...; u in
Ak;u

integers n, > 0.

An Abel-Tauber theorem concerning n(u) and log P(u) is proved for the case

n(tx)

YO) + 1 (t»») for x > 0,

where
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Introduction

Suppose A = {AI,AZ,...} is a given set of real numbers.such that 0 < Al Xz <

Let 0 = V< vy <. be the elements of the additive semigroup generated by A.
Consider the weighted partition function p(vm) defined by the generating function

o -er - - -
(1-e ) T =7 e dP(u) : = P(s)
t=1

where P(u) = I p(vi) and v is a given sequence with non-negative terms

v.<u
i=

We assume the Ar and wr are such that the product for P(s) is (absolutely) convergent A

for s > 0.

Letting n(u) = r wk we have the following theorem.
’ {k;Ak;p} :

Main theorem

Let ¢ be a constant, 0 < ¢ < =,

Under the above assumptions the following statements are equivalent.

(i) lim n(t) = ¢ and Eﬁ%ﬁ% + 1 (t>+> o) for all x> 0

oo
(ii) there exists a non-decreasing function a(t) on (0,») with 1im a(t) = ¢ such

t—e

that for all x > 0

+* x

P(tx) \ 1/2(8)
I0)

If ¢ < = then
dt - log P(x) » log I'(1+c) (x+)

If ¢ = @ then

n(t)

log P(y) = S + 4t + n(x) + o(n(x))

0
where x,y + @ and y v~ xn(x) v xa(y)

If c== and the function n satisfies the relation n(xn(x)) ~ n(x) then n(x) ~ a(x)
x

and f Eéﬁl ds - log P(x) ~ n(x) log n(x) (x>e)
0




. ' v e 1.
In order to prove the main theorem we use the Lambert transform n of n which is

defined by

m . . .
g(s) = [ ——;3—— n(u)du, supposed the integral exists.
0e -1 ' :

This transform arises naturally.since

\ r -us v
log P(s) = =T ¢(r)log (l-e ) =-S log (1-e “)dnfu) = n(s)

r=1 0

by integration by parts.
We use Abelian and Tauberian theorems connected with the theory of regular
variation. Earlier results in this direction were given by Kohlbecker for
regularly varying functions and by Parameswaran for slowly varying functions.
Our main theorem can be seen as a refinement of Parameswaran's work.
The main part of the proof is to show the equivalence of the statements (i) n

is slowly varying,

(ii) g(l/x) = log ;(l/x) is an element of the class T,

(iii) log (P-1) is an element of the class T

(iv) log P is in M. Precise conditions are given in the lemmas.
Results

o oL . + . . ' o e
Definition: A function f : R =~ R+ is said to be sleowly varying if
meéasurable and lim fé%%% =1 for x >0
t-+oo
In this paper we use properties of a subclass of the slowly varying functions.This

subclass is defined as folliows:

. . + + . .
Definition: A non-decreasing function U : R + R is said to helong to the class I
' . ey ' . + +
(notation: U(,) € M) if there exists an auxiliary function a : R + R
such that

U(tx)—U(f)

lim 2(0)

£

= log x for x > 0 (n

The function a is (of course) determined up to asymptotic equivalence. It is
possible ta show that each function U(x) € T with 1im sup U(x) = = can be represented

as X
U(x) = f
1

L(u)

o du + o(L(x)) (x> ew) : (2)

where L is slowly varying.




Conversely each function U of the form (2) satisfies (1). The functions a, L
x .
and U are related by L(x) ~ a(x) m~% S tdu(t) (x » 9).
' 1

For proofs and properties of regular variation and the class T see (1), (6), (15).

1 L

Lemma | Suppose I . n(%) = f —?T—-dt + o(L(x)) (x + =)
1

k<x

where L is slowly varying, bounded on finite intervals and sup L(y) =

‘ y<x
O0(L(x)) (x> =).

If xn(x) is non-decreasing for x > 1 then n(x) ~ L(x) (x + «) and

X .
r n(t);L(tl dt = —yL(x) + o (L(x)) (x + =)
1

where vy is Fuler's constant.

u(k)

S = _I.. 5 . = :
We define I(x) = I ” n(k) 3 N(x) m H

X
k<x

x o v .
A(x) = n(x) + /2 == dt and a(x) = A(t) dt
: 1

where 1 is the Mobius function.

Mobius inversion in the first formula and partial integration in the
third gives

i k

n(x) = T E(—).. I(is.) =

" tdA(t)
k<x

1
X
Substituting this we get

TIG/ON@) LT I/, u)

k

du =

% n(u)
n(ﬁ) du={1.‘-‘-l-“—-du=a(x)

I(Ax)-I(x)

. >0
L% is bounded for x

Now for A > | fixed the function

and tends to log }» for x + =,

Substituting the expression for a(x) then gives

. ? T(A /u)N(xu) du

u ] u

L(x S

! L(x/u) ' L(x)

a(ix)-a(x) - X ( IO x/u)-1(x/u) L(x/u)) N(u) du

and the term between brackets in the first integral is bounded for

ue(l,x) by assumption.




(-]
As ﬁé&l du is absolutely convergent by a classical result of Landau, we get

1
a(Ak)4a(x)

L(x) =+ log A.

by dominated convergence

x v .
Since xn(x) = / tdA(t) is non-decreasing, A is non-decreasing.
1
This implies that Aell with auxiliary function L(x) ~ y [ tdA(t) v~ n(x) by the

main theorem in (%). - !

Since n is slowly varying we can apply theorem 2 in (5) to get

7 n(e)
I(x) - / B2 de = (yro(IIn(x)  (x » =)
1v

Combination with I(x) = Eﬁ%l dt + o(L(x)) then gives the desired result,

Remark 1. This theorem is an extension of earlier results in (5), (7), (12), (13),

(14). Remark that the conditions (see (7))
(i) for some real r, xg'(x) (log x) T is non-increasing for x > %5
(ii) for some real s, xg'(x) (log x)° is non4decreasing for x > X,

imply that xg'(x) is slowly varying and so g(x)ell with auxiliary

function xg'(x).
If L(x) v M(x) (x + =) where M(x) is non-decreasing, then the condition

sup L(y) = 0(L(x)) holds.
y<x

L(y) _ max(A, (1+e)M(x))
LX) = L(x) < e

This is trivial, since

for all y < x, where L(x) < (1+e) M(x) (% 2 %),

A= sup L(x) and ¢ is a constant,
x;go V

This condition is sufficient to prove the main theorem,

For a slowly varying function n the following result gives the relation between

n and n. For a proof see (5).

(%) (preprint) N-regular variation




(x)

Lemma 2 Suppose n is slewly varying, -

is integrable on finite subintervals

of R'. Then n(1/x) el
X .

and n(1/x) - £ n(t )/t dt = o(n(x)) (x > )
A ,

A converse statement is given in the next theorem.
+ + ..
Lemma 3 Suppose n : R -+ R ‘and n(x)/x is integrable on (O,R) for R > O,
n(x) is non—decreasiﬁg for x > 0 and

N(1/x) = L‘“’ du + o(L(x))  (x + ®)
l

with L slowly varying and asymptotic to a non-decreasing function,

X
then n(x) v L(x) and f 2{E at f%”du+uum> (x » =)
0 1
Since I 1 n(X) is non-decreasing, we have
m;xm m .

N ) B .

n(1/x)ell with auxiliary function L iff I % n(%)eﬂ with
eqs . k<x

auxiliary function L. =

See corollary 1 in (5).

. 1
Moreover I % n(%) = 3(10 - f n(t) dt + yL(x) + o(L(x))
. k< X t

<X 0

Substitution of«g(l/x) = Léu) du + o(L(x)) in the expression for

X n(%) shows that there exists an L* v L osuch that

x L, (t)
%n(ztk-) !l' : dt + o(L (x)) (x> =)

since lim sup I % n(x/k) = =,
k<x

Application of lemma | now gives the desired result,

(of the main theorem).

Suppose n is slowly varying. Application of lemma 2 now gives

o
log [ e u/x

0
theorem 1 in (2) we take Po(y) = -1 + P(y).

dP(u) = g(l/x)eﬂ with auxiliary function n(x). To apply




Then P°(0+) = 0 and log P ell iff log Po ell

since log P(y) - log Po(y)‘+ 0 = o (auxiliary function)

and the auxiliary function tends to ¢ > 0.

For ¢ < » we get log Pell with auxiliary function ~ c.

For ¢ = «» the result is log P(y) ell with auxiliary function ~ a(y) v on(x)

where x,y + = are related by y v xn(x) ~ xa(y).

For the converse statement we replace lemma 2 by lemma 3. All regularity conditions
are satisfied since n and P are as mentioned in the‘introduction.

x
" In.case ¢ < ® we combine g(l/x) = [ E%El dt + o(n(x)) with formula (1.3) in (2).
0

The case ¢ = « is treated similarly with (1.5) in (2).

Now suppose n(xn(x)) v n(x) (x + @)

Then n*(y)'N 1/n(y) (y + «) where n* is the conjugate function in the sense of
de Bruijn (see (3)).

Since y v xn(x) Vv xa(y) we get x yn*(y) " y/a(y) and so n(x) v a(x).

This iﬁplies that log P(t) el with auxiliary function n(t) satisfying n(tx) ~ n(t)
for t » o uniformly in =xe [l,n(t)] since n is non-decreasing.

Application of théorem 13 in (2) now gives

log P(1/t) - log P(t) ~ n(%) log n(t) and the final resuit follows since

-~ t
log P(1/t) = n (1/t) = f -'-'-éﬂ ds + o(n(t)) (t + =)

0

This finishes the proof.

Remark 1. The function n satisfies the condition n(xn(x)) ~ n(x) if

n(2t) _

o)~ | =2 (1/1og () for t » =

2. An application to Mahler's partition problem (see (4), (10)) where

A= {1,r,r%,...} and b =1 gives

n(u): [1—og_£+]]l\, E)_u (u-)oo)

log r log r




Application of the main theorem to this case gives

log P(u) = 3-T%§__ log2u - (1+0(1)) log u.ig:l:g u

If in the case ¢ = and n(xn(x)) ~ n(x) there exists a slowly
varying function L such that L(x)/x is convex and

*L(y)
log P(x) = [ ;Eh— dt + o(1), then we have
0

n (L—Ei)—)-t- L(t) - log P(t) - -;' log 2nL(t) + 0 (t + =)

by theorem 15 in (2) (in this case L ~ n).

This stronger result is not very useful however, since log P is

. . ' N S,
expressed in terms of n and not in terms of n.
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