

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

STAT.

Netherlands school of economics
ECONOMETRIC INSTITUTE

AN ABEL-TAUBER THEOREM FOR PARTITIONS

GIANNINI FOUNDATION
AGRICULTURAL ECONOMICS
LIBRARY
ERASMUS

APR 18 1980

J.L. GELUK

Erasmus

REPORT 7928/S

AN ABEL-TAUBER THEOREM FOR PARTITIONS

by

J.L. Geluk

Summary.

Suppose $\Lambda = \{\lambda_1, \lambda_2, \dots\}$ is a given set of real numbers such that

$$0 < \lambda_1 < \lambda_2 < \dots$$

Let $n(u) = \sum_{\substack{\lambda_k \leq u}} 1$ and $P(u)$ the number of solutions of $n_1 \lambda_1 + n_2 \lambda_2 + \dots \leq u$ in

integers $n_i \geq 0$.

An Abel-Tauber theorem concerning $n(u)$ and $\log P(u)$ is proved for the case

where $\frac{n(tx)}{n(t)} \rightarrow 1$ ($t \rightarrow \infty$) for $x > 0$.

Keywords and phrases:

Abel-Tauber theorems, Regular variation, Partition function

AMS subject classification 40 E05, 26 A 12.

Introduction

Suppose $\Lambda = \{\lambda_1, \lambda_2, \dots\}$ is a given set of real numbers such that $0 < \lambda_1 < \lambda_2 < \dots$

Let $0 = v_0 < v_1 < \dots$ be the elements of the additive semigroup generated by Λ .

Consider the weighted partition function $p(v_m)$ defined by the generating function

$$\prod_{r=1}^{\infty} (1 - e^{-\lambda_r s})^{-\psi_r} = \sum_{u=0}^{\infty} e^{-us} dP(u) := \hat{P}(s)$$

where $P(u) = \sum_{v_i \leq u} p(v_i)$ and ψ_r is a given sequence with non-negative terms

We assume the λ_r and ψ_r are such that the product for $P(s)$ is (absolutely) convergent for $s > 0$.

Letting $n(u) = \sum_{\{k; \lambda_k \leq u\}} \psi_k$ we have the following theorem.

Main theorem

Let c be a constant, $0 < c \leq \infty$.

Under the above assumptions the following statements are equivalent.

(i) $\lim_{t \rightarrow \infty} n(t) = c$ and $\frac{n(tx)}{n(t)} \rightarrow 1$ ($t \rightarrow \infty$) for all $x > 0$

(ii) there exists a non-decreasing function $a(t)$ on $(0, \infty)$ with $\lim_{t \rightarrow \infty} a(t) = c$ such that for all $x > 0$

$$\left(\frac{P(tx)}{P(t)} \right)^{1/a(t)} \rightarrow x \quad (t \rightarrow \infty)$$

If $c < \infty$ then

$$\int_0^x \frac{n(t)}{t} dt = \log P(x) + \log \Gamma(1+c) \quad (x \rightarrow \infty)$$

If $c = \infty$ then

$$\log P(y) = \int_0^y \frac{n(t)}{t} dt + n(x) + o(n(x))$$

where $x, y \rightarrow \infty$ and $y \sim xn(x) \sim xa(y)$

If $c = \infty$ and the function n satisfies the relation $n(xn(x)) \sim n(x)$ then $n(x) \sim a(x)$

$$\text{and } \int_0^x \frac{n(s)}{s} ds = \log P(x) \sim n(x) \log n(x) \quad (x \rightarrow \infty)$$

In order to prove the main theorem we use the Lambert transform \tilde{n} of n which is defined by

$$\tilde{n}(s) = \int_0^\infty \frac{s}{e^{us} - 1} n(u) du, \text{ supposed the integral exists.}$$

This transform arises naturally since

$$\log \hat{P}(s) = -\sum_{r=1}^{\infty} \psi(r) \log (1 - e^{-rs}) = - \int_0^\infty \log (1 - e^{-us}) dn(u) = \tilde{n}(s)$$

by integration by parts.

We use Abelian and Tauberian theorems connected with the theory of regular variation. Earlier results in this direction were given by Kohlbecker for regularly varying functions and by Parameswaran for slowly varying functions. Our main theorem can be seen as a refinement of Parameswaran's work.

The main part of the proof is to show the equivalence of the statements (i) n is slowly varying,

(ii) $\tilde{n}(1/x) = \log \hat{P}(1/x)$ is an element of the class Π ,

(iii) $\log (P-1)$ is an element of the class Π

(iv) $\log P$ is in Π . Precise conditions are given in the lemmas.

Results

Definition: A function $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is said to be slowly varying if it is

$$\text{measurable and } \lim_{t \rightarrow \infty} \frac{f(tx)}{f(t)} = 1 \text{ for } x > 0$$

In this paper we use properties of a subclass of the slowly varying functions. This subclass is defined as follows:

Definition: A non-decreasing function $U : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is said to belong to the class Π (notation: $U(\cdot) \in \Pi$) if there exists an auxiliary function $a : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that

$$\lim_{t \rightarrow \infty} \frac{U(tx) - U(t)}{a(t)} = \log x \text{ for } x > 0 \quad (1)$$

The function a is (of course) determined up to asymptotic equivalence. It is possible to show that each function $U(x) \in \Pi$ with $\limsup U(x) = \infty$ can be represented as

$$U(x) = \int_1^x \frac{L(u)}{u} du + o(L(x)) \quad (x \rightarrow \infty) \quad (2)$$

where L is slowly varying.

Conversely each function U of the form (2) satisfies (1). The functions a , L and U are related by $L(x) \sim a(x) \sim \frac{1}{x} \int_1^x t dU(t) \quad (x \rightarrow \infty)$.

For proofs and properties of regular variation and the class Π see (1), (6), (15).

Lemma 1 Suppose $\sum_{k \leq x} \frac{1}{k} n\left(\frac{x}{k}\right) = \int_1^x \frac{L(t)}{t} dt + o(L(x)) \quad (x \rightarrow \infty)$

where L is slowly varying, bounded on finite intervals and $\sup_{y \leq x} L(y) = O(L(x)) \quad (x \rightarrow \infty)$.

If $xn(x)$ is non-decreasing for $x > 1$ then $n(x) \sim L(x) \quad (x \rightarrow \infty)$ and

$$\int_1^x \frac{n(t) - L(t)}{t} dt = -\gamma L(x) + o(L(x)) \quad (x \rightarrow \infty)$$

where γ is Euler's constant.

Proof We define $I(x) = \sum_{k \leq x} \frac{1}{k} n\left(\frac{x}{k}\right)$; $N(x) = \sum_{k \leq x} \frac{\mu(k)}{k}$;

$$A(x) = n(x) + \int_1^x \frac{n(t)}{t} dt \quad \text{and} \quad a(x) = \frac{1}{x} \int_1^x A(t) dt$$

where μ is the Möbius function.

Möbius inversion in the first formula and partial integration in the third gives

$$n(x) = \sum_{k \leq x} \frac{\mu(k)}{k} I\left(\frac{x}{k}\right) = \frac{1}{x} \int_1^x t dA(t)$$

Substituting this we get

$$\begin{aligned} \int_1^x \frac{I(x/u)N(u)}{u} du &= \int_1^x \frac{I(x/u)}{u} \sum_{k \leq u} \frac{\mu(k)}{k} du = \\ &= \sum_{k \leq x} \frac{\mu(k)}{k} \int_1^{x/k} I\left(\frac{x}{ku}\right) \frac{du}{u} = \int_1^x \frac{1}{u} n\left(\frac{x}{u}\right) du = \int_1^x \frac{n(u)}{u} du = a(x) \end{aligned}$$

Now for $\lambda > 1$ fixed the function $\frac{I(\lambda x) - I(x)}{L(x)}$ is bounded for $x > 0$

and tends to $\log \lambda$ for $x \rightarrow \infty$.

Substituting the expression for $a(x)$ then gives

$$\frac{a(\lambda x) - a(x)}{L(x)} = \int_1^x \left(\frac{I(\lambda x/u) - I(x/u)}{L(x/u)} \cdot \frac{L(x/u)}{L(x)} \right) \frac{N(u)}{u} du + \int_1^x \frac{\lambda}{u} \frac{I(\lambda/u)N(xu)}{u} du$$

and the term between brackets in the first integral is bounded for $u \in (1, x)$ by assumption.

As $\int_1^\infty \frac{N(u)}{u} du$ is absolutely convergent by a classical result of Landau, we get

by dominated convergence $\frac{a(\lambda x) - a(x)}{L(x)} \rightarrow \log \lambda$.

Since $xn(x) = \int_1^x t dA(t)$ is non-decreasing, A is non-decreasing.

This implies that $A \in \mathbb{II}$ with auxiliary function $L(x) \sim \frac{1}{x} \int_1^x t dA(t) \sim n(x)$ by the main theorem in (*).

Since n is slowly varying we can apply theorem 2 in (5) to get

$$I(x) - \int_1^x \frac{n(t)}{t} dt = (\gamma + o(1))n(x) \quad (x \rightarrow \infty)$$

Combination with $I(x) = \int_1^x \frac{L(t)}{t} dt + o(L(x))$ then gives the desired result.

Remark 1. This theorem is an extension of earlier results in (5), (7), (12), (13), (14). Remark that the conditions (see (7))

(i) for some real r , $xg'(x)(\log x)^{-r}$ is non-increasing for $x > x_0$

(ii) for some real s , $xg'(x)(\log x)^s$ is non-decreasing for $x > x_1$

imply that $xg'(x)$ is slowly varying and so $g(x) \in \mathbb{II}$ with auxiliary function $xg'(x)$.

2. If $L(x) \sim M(x)$ ($x \rightarrow \infty$) where $M(x)$ is non-decreasing, then the condition

$$\sup_{y \leq x} L(y) = O(L(x)) \text{ holds.}$$

This is trivial, since $\frac{L(y)}{L(x)} \leq \frac{\max(A, (1+\epsilon)M(x))}{L(x)} < c$

for all $y \leq x$, where $L(x) \leq (1+\epsilon)M(x)$ ($x \geq x_0$),

$$A = \sup_{x \leq x_0} L(x) \text{ and } c \text{ is a constant.}$$

This condition is sufficient to prove the main theorem.

For a slowly varying function n the following result gives the relation between n and \tilde{n} . For a proof see (5).

Lemma 2 Suppose n is slowly varying, $\frac{n(x)}{x}$ is integrable on finite subintervals of \mathbb{R}^+ . Then $\tilde{n}(1/x) \in \mathbb{II}$

$$\text{and } \tilde{n}(1/x) - \int_0^x \frac{n(t)}{t} dt = o(n(x)) \quad (x \rightarrow \infty)$$

A converse statement is given in the next theorem.

Lemma 3 Suppose $n : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ and $n(x)/x$ is integrable on $(0, R)$ for $R > 0$,

$n(x)$ is non-decreasing for $x > 0$ and

$$\tilde{n}(1/x) = \int_1^x \frac{L(u)}{u} du + o(L(x)) \quad (x \rightarrow \infty)$$

with L slowly varying and asymptotic to a non-decreasing function,

$$\text{then } n(x) \sim L(x) \text{ and } \int_0^x \frac{n(t)}{t} dt = \int_1^x \frac{L(u)}{u} du + o(L(x)) \quad (x \rightarrow \infty)$$

Proof Since $\sum_{m \leq x} \frac{1}{m} n(\frac{x}{m})$ is non-decreasing, we have

$\tilde{n}(1/x) \in \mathbb{II}$ with auxiliary function L iff $\sum_{k \leq x} \frac{1}{k} n(\frac{x}{k}) \in \mathbb{II}$ with auxiliary function L .

See corollary 1 in (5).

$$\text{Moreover } \sum_{k \leq x} \frac{1}{k} n(\frac{x}{k}) = \tilde{n}(\frac{1}{x}) - \int_0^{\frac{1}{x}} \frac{n(t)}{t} dt + o(L(x)) + o(L(x))$$

Substitution of $\tilde{n}(1/x) = \int_1^x \frac{L(u)}{u} du + o(L(x))$ in the expression for

$\sum_{k \leq x} \frac{1}{k} n(\frac{x}{k})$ shows that there exists an $L_* \sim L$ such that

$$\sum_{k \leq x} \frac{1}{k} n(\frac{x}{k}) = \int_1^x \frac{L_*(t)}{t} dt + o(L_*(x)) \quad (x \rightarrow \infty)$$

$$\text{since } \limsup_{k \leq x} \sum_{k \leq x} \frac{1}{k} n(x/k) = \infty.$$

Application of lemma 1 now gives the desired result.

Proof (of the main theorem).

Suppose n is slowly varying. Application of lemma 2 now gives

$$\log \int_0^\infty e^{-u/x} dP(u) = \tilde{n}(1/x) \in \mathbb{II} \text{ with auxiliary function } n(x). \text{ To apply}$$

theorem 1 in (2) we take $P_0(y) = -1 + P(y)$.

Then $P_0(0+) = 0$ and $\log P \in \mathbb{II}$ iff $\log P_0 \in \mathbb{II}$

since $\log P(y) - \log P_0(y) \rightarrow 0 = 0$ (auxiliary function)

and the auxiliary function tends to $c > 0$.

For $c < \infty$ we get $\log P \in \mathbb{II}$ with auxiliary function $\sim c$.

For $c = \infty$ the result is $\log P(y) \in \mathbb{II}$ with auxiliary function $\sim a(y) \sim n(x)$

where $x, y \rightarrow \infty$ are related by $y \sim xn(x) \sim xa(y)$.

For the converse statement we replace lemma 2 by lemma 3. All regularity conditions are satisfied since n and P are as mentioned in the introduction.

In case $c < \infty$ we combine $\hat{n}(1/x) = \int_0^x \frac{n(t)}{t} dt + o(n(x))$ with formula (1.3) in (2).

The case $c = \infty$ is treated similarly with (1.5) in (2).

Now suppose $n(xn(x)) \sim n(x)$ ($x \rightarrow \infty$)

Then $n^*(y) \sim 1/n(y)$ ($y \rightarrow \infty$) where n^* is the conjugate function in the sense of de Bruijn (see (3)).

Since $y \sim xn(x) \sim xa(y)$ we get $x \sim yn^*(y) \sim y/a(y)$ and so $n(x) \sim a(x)$.

This implies that $\log P(t) \in \mathbb{II}$ with auxiliary function $n(t)$ satisfying $n(tx) \sim n(t)$ for $t \rightarrow \infty$ uniformly in $x \in [1, n(t)]$ since n is non-decreasing.

Application of theorem 1.3 in (2) now gives

$\hat{\log P}(1/t) - \log P(t) \sim n(t) \log n(t)$ and the final result follows since

$$\hat{\log P}(1/t) = \hat{n}(1/t) = \int_0^t \frac{n(s)}{s} ds + o(n(t)) \quad (t \rightarrow \infty)$$

This finishes the proof.

Remark 1. The function n satisfies the condition $n(xn(x)) \sim n(x)$ if

$$\frac{n(2t)}{n(t)} - 1 = o(1/\log n(t)) \text{ for } t \rightarrow \infty.$$

2. An application to Mahler's partition problem (see (4), (10)) where

$\Lambda = \{1, r, r^2, \dots\}$ and $\psi_r = 1$ gives

$$n(u) = \left[\frac{\log u}{\log r} + 1 \right] \sim \frac{\log u}{\log r} \quad (u \rightarrow \infty)$$

Application of the main theorem to this case gives

$$\log P(u) = \frac{1}{2 \log r} \log^2 u - (1+o(1)) \frac{\log u \cdot \log \log u}{\log r}$$

3. If in the case $c = \infty$ and $n(xn(x)) \sim n(x)$ there exists a slowly varying function L such that $L(x)/x$ is convex and

$$\log P(x) = \int_0^x \frac{L(t)}{t} dt + o(1), \text{ then we have}$$

$$\tilde{n} \left(\frac{L(t)}{t} \right) + L(t) - \log P(t) - \frac{1}{2} \log 2\pi L(t) \rightarrow 0 \quad (t \rightarrow \infty)$$

by theorem 15 in (2) (in this case $L \sim n$).

This stronger result is not very useful however, since $\log P$ is expressed in terms of \tilde{n} and not in terms of n .

References.

1. Balkema, A.A.: Monotone transformations and limit laws.
Math. Centre tracts 45, Amsterdam 1973.
2. Balkema, A.A., Geluk, J.L. and Haan, L. de: An extension of Karamata's Tauberian theorem and its connection with complementary convex functions.
Qu. J. Math (1979).
3. Bruyn, N.G. de: Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace transform.
Nw Arch. Wisk (3) VII, 20-26 (1959).
4. Bruyn, N.G. de: On Mahler's partition problem,
Ned. Ak. Wet. Indag. Math 10 (1948), 210-220.
5. Geluk, J.L.: On convolutions with the Möbius function,
Proc. Am. Math. Soc (1979).
6. Haan, L. de: On regular variation and its application to the weak convergence of sample extremes.
Math. Centre tracts 32, Amsterdam (1970).
7. Jukes, K.A.: Tauberian theorems of Landau-Ingham type.
J. London Math. Soc (2) 8 (1974) 570-576.
8. Kohlbecker, E.E.: Weak asymptotic properties of partitions.
Trans. Amer. Math. Soc 88 (1958), 346-365.
9. Landau, E.G.H.: Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig-Berlin, 1909, reprint, Chelsea, New York, 1953.
10. Mahler, K.: On a special functional equation.
J. Lond. Math. Soc vol 15 (1940) pp. 115-123.
11. Parameswaran, S.: Partition functions whose logarithms are slowly oscillating.
Trans. Am. Math. Soc 100 (1961) 217-240.
12. Segal, S.L.: On convolutions with the Möbius function.
Proc. Amer. Math Soc 34 (1972) 365-372.
13. Segal, S.L.: A general Tauberian theorem of Landau-Ingham type.
Math. Z 111 (1969) 159-167.
14. Segal, S.L. Addendum to Jukes' paper on Tauberian theorems of Landau-Ingham type.
J. Lond. Math Soc 9 (1974) p. 360-362.
15. Seneta, E.: Regularly varying functions, Lecture notes in Math vol 508,
Springer-Verlag, Berlin, New York, 1976.

LIST OF REPORTS 1979

7900 "List of Reprints, nos 220-230; Abstracts of Reports Second Half 1978".

7901/S "Motorists and Accidents (An Empirical Study)", by B.S. van der Laan.

7902/S "Estimation of the Minimum of a Function Using Order Statistics", by L. de Haan.

7903/S "An Abel and Tauber Theorem Related to Stochastic Compactness", by L. de Haan.

7904/E "Effects of Relative Price Changes on Input-Output Ratios - An Empirical Study for the Netherlands", by P.M.C. de Boer.

7905/0 "Preemptive Scheduling of Uniform Machines Subject to Release Dates", by J. Labetoulle, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan.

7906/S "II-Regular Variation", by J.L. Geluk.

7907/0 "Complexity Results for Scheduling Chains on a Single Machine", by J.K. Lenstra and A.H.G. Rinnooy Kan.

7908/E "Input-Output and Macroeconomic Forecasting Through the Generalized Inverse", by K.P. Vishwakarma.

7909/E "An Application of the Generalized Inverse in Input-Output and Macroeconomic Analysis", by K.P. Vishwakarma.

7910/0 "A Numerical Comparison of Self Scaling Variable Metric Algorithms", by G. van der Hoek and M.W. Dijkshoorn.

7911/E "A Quadratic Engel Curve Demand Model (squaring with the representative consumer)", by J. van Daal and A.S. Louter.

7912/E "On Generalized Linear Demand Systems", by A.C.F. Vorst and J. van Daal.

7913/M "A Partial Survey of the Use of Algebraic Geometry in Systems and Control Theory", by M. Hazewinkel.

7914/M "(Fine) Moduli (Spaces) for Linear Systems: What are they and what are they good for", by M. Hazewinkel.

7915/S "A Simple Asymptotic Estimate for the Index of a Stable Distribution", by L. de Haan and S.I. Resnick.

7916/0 "A Machine Maintenance Model with Application to Linear Programming", by A.H.G. Rinnooy Kan and J. Telgen.

7917/E "Inferential Procedures in Stable Distributions for Class Frequency Data on Incomes", by H.K. van Dijk and T. Kloek.

7918/M "On Families of Linear Systems: Degenerating Phenomena", by M. Hazewinkel.

7919/0 "Complexity of Vehicle Routing and Scheduling Problems", by J.K. Lenstra and A.H.G. Rinnooy Kan.

7920 "List of Reprints, nos 231-240; Abstracts of Reports First Half 1979".

7921/E "Minimization by the Method of Conjugate Gradients", by V. Stern;

7922/S "Local Limit Theorems for Sample Extremes", by L. de Haan and S.I. Resnick

7923/O "The Optimal Selection of Small Portfolios", by B. Blog, G.v.d. Hoek,
A.H.G. Rinnooy Kan and G. Timmer.

7924/E "OLS Estimation in a Model where a Microvariable is Explained by
Aggregates and Contemporaneous Disturbances are Equicorrelated", by
T. Kloek

7925/E "A Multi Period Revealed Preference Approach to Estimating Preference
Functions under Rational Random Behaviour", by S. Schim van der Loeff
and R. Harkema.

7926/S "On the Observation Closest to the Origin", by L. de Haan and S.I. Resnick.

7927/O "Minimizing Maximum Lateness in a Two-Machine Open Shop", by
E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan.

7928/S "An Abel-Tauber Theorem for Partitions", J.L. Geluk.