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ABSTRACT

Out of n i.i.d. random vectors in TR(1 let X* be the one closest to the

origin. We show that X* has a nondegenerate limit distribution if and

only if the common probability distribution satisfies a condition of

multidimensional regular variation.

We apply the result to a problem of density estimation.
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. Introduction.

Suppose X1, ..., X are i.i.d. observations in a Euclidean space
2which for convenience we take to be the plane R . The polar coordinates

of X. are denoted by (1X.1, 0(x.)). Call the observation with minimumf-a
modulus X*. if more than one observation has modulus equal to A Ix.1-a

i=choose X* from the tied observations by randomization.
As n-4-00 X* will converge to 0 but it may be possible to normalize X* so(-on
that a non-trivial limiting distribution exists.
So we ask: when do there exist constants c

n' 
0 < c

n 
0 such that

(1) c X*
n

where the limit vector Y is finite and 1Y1 non-degenerate. Here the

5

arrow "...-0P indicates weak convergence.

In section 2 we show that the necessary and sufficient condition for
(1) is multivariate regular variation at 0 of the distribution of X1
Also the polar coordinates of Y are independent random variables.

In the latter section of the paper we examine a related density
estimation problem.

2. Multivariate Regular Variation and the Observation closest to 0.

The condition that the distribution of X be regularly varying at
0 can conveniently be expressed either in terms of vague convergence
of measures or, a regular variation property in terms of the distribution
of (1X1 1, 0(X1)) and the following are equivalent:

(i) There exist constants c
n' 

0 < c
n 

-4- 0 and a limit measure v•2
on R which is finite on bounded neighbourhoods of 0 such that

n P[c-
n v

("-1- denotes vague convergence). This sequential form of the condition
is the same as saying there exist; a necessarily regularly varying)
function U: R such that

P[x E t.(.)]/U(t) v as t+0.



(ii) There exist constants c , < c
n 

4.

measure S on B([0,21) such that

p[e-1 I x
n --

This is the same as

P[ X I < r, 0(x1)

00c1 LT- ra s([00] ).

poxi i tj
ra S([0,0])

, and a probability

as t+0. Cf. Stam (1977), de Haan and Resnick (1977). We remark that the
constants {c} in (i) and (ii) need not be the same; their quotient
tends to a positive constant.

Theorem 1.

There exists a sequence of positive constants {c} such that
c
-1 

X* converges in distribution to a finite limit vector Y with 11Yn
non-degenerate iff the distribution of X is regularly varying at 0 as1 adescribed in (i) or (ii) above. In this *case P[IYI > r, 0(Y) < e] = suo,ene-r ,
with 0 < a < co so that IYI and 0(Y) are independent.

Proof:

We first prove the theorem under the added assumption that 
1Z1

has a contimous distribution. This assumption is removed at the end.
With this added assumption, it is easy to derive the distribution of X*:
by symmetry X* could be any one of the Xi

 
's with equal probability.

n , „If X* = X, then A (X.) > IX I. Thus we get^Jn. ^di i=2

[1c X*I < r, 0(X*)n

_
1= p[ A c . I >u]

0 1=2
E du, 0(Xi

n „ccSupposing (ii) holds we easily get P[i% cn > u] --e uniformly.
Assume S{e} = 0 and write the integral in (2) as

r n
f{P[ A C-
O i=2 n

I 1
a

- e
-u ,

/ n Pr% I IE du,0(X1

a
f e-u n P
0

ca-ril I E du, 0(41)



,4

The first term goes to zero by uniform convergence. The second term

is seen to converge vaguely in the usual way by appealing to the

Helly-Bray lemma (Loeve, 1963, p. 180) and so

-1
P[c I I < r 0(X*) <- 2

lyl <r, 0(Y) <

r a
f e-u du S([0,0])
0

• For the converse suppose there exists c ,0 < c 0, and :Y with
P[Y = 0] < 1 such that c-1 X* =0 Y. Then c- ' IX-I = I.11•n n i=1 -a n ^Jr)Since the only normalization necessary here for convergence of the
minima is scaling, we can easily identify the distribution of IYI to

xabe .the extreme value distribution POYI > x] = e-k , x > 0 for some
0 < a < ,• k > 0. Without loss of generality, suppose k = 1.

an _1 „ -uThis distribution is continuous so P[ A c IX.' > u] e uniformly.
i=2 nTo deal with the rest of the integral in the right side of (2) we use

-1 the selection theorem: Since n P[cn IX i i < u, 0(X1) < 61 < n P[c
1
 IX I < u]

- log FOY' > u] = ua as n4.00 (an easy consequence of
, , n =1

we have for each u,6 that n P[c IX' . < u, 0(X1) < 61 is
i 
a boundedn

sequence.

Thus we are assuredarthe existence of a vaguely convergent subsequence
n' and a vague limit '+' (du, de) such that

n'Pic 
-1 
, IX E du, o(x1) E do] T(du, d6).n f 

As in the first half of the proof the uniform convergence of

P[A IX.I >c .u] gives as n'-÷00
2 "1 n

Pi 0(X* ) < Y)- f du x[0,0]

If along another subsequence n"

n"P —1
e
n
" I E du, 00(1

0

E de] (du,de)

then the measures determined by the distribution functions
r a r CL
f e-U T(du x [0,01) f e-u T

1
 (du x [0,6]) and P[IYI < r, 0(Y0 0

are all equal.

Since 
e-ua .

is non-vanishing, it is easy to see T = . Therefore• the

vague limit of n P[c;/ IX I < r, 0(x1) < 01 exists.„.1

This is equivalent to our first definition (i) of multivariate

regular variation.



We now remove the assumption that IX 1 has a continuous
distribution thus allowing more than one observation to achieve
minimum modulus. Formula (2) must be modified. As before, by
symmetry X* could be any one of the X.'s with equal probability
so that

(3

P[c;1 I < r, o(x*) < (3]
n -

= n P 
cn

Write X* = X ]
I'Vn

I <r, )

n-1
= U A

k 
where A

k 
is the event that k observations

k=0
from X-2, . X have moduli equal to 1X1 1, n-k-1 observations have
moduli > IX I and the randomization procedure selects X from among-1 

-,1
those k+1 observations with minimum modulus.

Then (3) becomes

nf

IL < r 0(x
P cn ,Xn* =

e}

= flf 11-E1 1 (n-1 p

k=0 k+ 
c IXn

-1
P[c X E dx]n

) f P[c-1 E k+1 k n0 k=0

r n-1 
n-

n P

1 =

c -1

P c-1 I
n I

-1
P cn "i1

-1 1
c IX du, O(X ) <
n •

-
P[c

1
 X E (ix]

-k-1
ul

in -k -1.

Note the k=0 term (no ties) corresponds to the rightside of 2).
For proving either necessity or sufficiency in this theorem, we have
at our disposal the condition

(4) P[A IX.1 > c u] = P[1X I > cn u] e
1 

f-a n

for some a. We now. show (4) implies

n-1
I ():=

1 
( 
n- k n-k-E ) pn k+ kk=1

• --0

-1as n±400 uniformly in u E 0,r where p = p( u) = P cn
g = g u) = P[c.171,1 L1I > u].



k:(n-k-1): P g

k n-k=n E (
k
) p g

k=2

If p=0, 1(u) = so

I (u

This then shows that P[cni < r, 0(X*) < 0] equals the righthandside

of (2) plus o(1); the case where the df of 1X1 1 is not continuous

can then be reduced to the continuous case.

Rewrite I
n
(u) as

•

(n-1): k n-k-

E 
la!  k n-k

k=2 n k:(n-k)! P g

P = [(134-g)n -

[(p+g) g npgn n n- linp

npg
n-

1/np

where the right side is interpreted as 0 if p=0.

To help us check In(u) ± 0 uniformly for u E [0,r] we write

down the following facts:

a) g 1 as n-±00 uniformly on [ , ]
-1 1This is simply because g = P[cn IX1 1 > u] > P[c- X I > r].

n
b) n pn(u) -÷ 0 uniformly since for any given c > 0

a
< 

n 
n [c

-1 
v+6)] e

-u
n

and the last convergence is uniform.

c) As a consequence of (a) and b we have np/g ÷ 0 uniformly on

[O, r].

Finally we have

0 < (u) = g [(1+p/g)n - 11/

= n[exp {n log (1

n-1
P g

p/g)} p
n--1

Since p/g ± 0, n log(1+p/g) np/g ÷ 0 by (c) and therefore

exp {n log(1+p/e} - 1 log(1+p/g) ,--np/g as n+.0. Thus given

E > 0, for n sufficiently large we have uniformly

g (1+0 (np/g)/np -
n-1

(1+0 gn-1 = n-1
g <C

and this suffices for the desired result.



Remark

Under the regular variation conditions, the point process
-1

{c x} 
k1 

converges weakly to a Poisson point process withn =
mean measure v. Applying the functional which maps point processes

to the point closest to 0 gives via the continuous mapping theorem

the sufficiency half of the theorem.

Example

If X is uniformly distributed on the unit disc then picking

c = (2n)-2 gives c
-1 

X* Y = (Y
1' 

Y
2 
) i.i.d. N(0, 1). To checkn 

this one observes that for 0 < r < 1, 0 < 6 <

PI r, 0(X ) <
2

2Tr

-1and hence 2n Tr P{c X c -} converges to Lebesgue measure. Noten -d
that the convergence to the normal distribution is no longer true in

lik with k 2.

Example 

Then

2 _3Suppose Xi has a bivariate Cauchy density t. 1+x + x
1

P[IX I <r, 0 X

Since PO t
2

lim n PDX I < c
n 
r, 0(X1

n-+co

1+r2)-2 6/ 2.

as t+0 we may set

= 2r
2 

0/ 2ff

= n-2 and

2
arr.

so that cx = 2, S([0,0]) =e/ 2Tr. As before Y = (
' 

Y
2 

is N(0,1)

and v(dx
l' 

dx
2 

= dx  
1 2 

/ 2

Remark

In both previous examples we had a = 2. This is due to the fact

that in both cases Xi has a continuous density which is positive at p„.

Cf. section 3 below. An example where this is not the case is the

following:

Example 

2Suppose X has a bivariate gamma density concentrated on R:



4

) = e x x e 
x1

, -x A x2\;
5 

-( , x
2 

> 0'  --

(Johnson  and Kotz 1972, p. 218). As x 0, x2 4* 0

f(x x2) A x2.

Since f(t, t) = t, we have for x = (x1, 
x

P[xl

1 2

I I 1
0 0

x1 x2 f(t

= f f f(t, t)0 0

dy dy2 v([0,x1]

5

as t+0 (cf. de Haan and Resnick, 1979, Theorem 1) and we have
verified that the regular variation condition (i) holds.

Hence a = 3. To find S observe for 6
0 

e

v{x • < r f I
r<r

o 
e<0— 

00
= r f cos e A sin 0) de3 0

(r cos 6 A r sin 6) r dr dO

so that (note that v is specified only up to a multiplicative constant)

S (Coo]) = {

3. Density Estimation

- cos 0

1 - + sin 0

• 0 1.< 0< Tr/4

Tr/4 < 0 < Tr 2.

Suppose Y. are i.i.d. random vectors in IR with distribution
function F. Suppose F has a positive derivative F' at some point x
in the sense that for every rectangle I with one endpoint in the origin

(5) lim P[Yi E ten/ t 1
t40

=F"(

where III is Lebesgue measure of I (cf. Saks, 196)4).

This condition is satisfied for instance if F has a density continuous

aadpositive at xo. We are going to estimate F'(x0) using the Y-observations.



Translating xo to the origin by setting X. = Y. - shows that

(5) is the regular variation condition (i) of section 2 and

v(dx1' 2 
) = l(x

0 
)dx 

dx1 2 
Since S is the uniform distribution on

[0, 27t3, the problem is really one-dimensional and we may as well

work with {IX.I i < n}. Sincee-da.

2
n P[c

n 
ix I

—

with c
n

(nirF T(x0))-2 the point process on R with points

{Ie-da.
X.I/c 

n
, i < n} converges weakly to a Poisson process on R+ with mean

measures on [0,x] = x2.

So the order statistics c-1 IX(i)n f%in 
-1, i < n} from {c IX.1, i < n} form
n (-a

asymptotically a Poisson process and we base our estimate on the kt
(k)

smallest X where k = k(n) co and k/n 0. The law of large numbers

then will give weak consistency.

It is convenient to use the Renyi representation for order statistics
()(Z(1) Z(2) ▪ Zn
n 
) from the exponential distribution (Feller, 1971,n n

chapter 1): If El, E2, . • . are i.i.d. P[E. > x] = e-x, then the kth

f E
kk) d 

E
1 2

smallest Z = + +
n n-1

Z
2

• • •

Z
k +  )

n-k+1

n -k+1
. If k = k(n) co, k/n -4- 0 then

We now use a probability integral transformation:

Let T(x) = - log P[IX.1 1 > x]. Fromthe regular variation condition we
-1have lim'i'(t)/t2 = F'(x )ff and so for the inverse function T we have

t+0

lim T-1(t)/t2 = (F (x )70-2
t+0 

z ° ZWI d ...-1, 1 .Since IX 1- T k-- + .. . + 
k
) it follows^la n n-k+1

(n)2
‘17/. qc:i[c

T
-1

/ F x )ff

So our estimate of F'

k/(n. 
(k

)( k  )1)
/‘1T + 

n-k+ "

Acknowledgement.

The occurrence of the normal distribution p.s a limit distribution
has been noticed by A.A. Balkema.



References.

1. Feller, W. (1971). An Introduction to Probability Theory and its

Applications, Vol. II, 2nd edition, Wiley, New York.

2. Haan, L. de and S.I. Resnick (1977). Limit theory for multivariate

sample extremes. Z. Wahrscheinlichkeitstheorie, 40, 317-337.

. Haan, L. de and S.I. Resnick (1977). Derivatives of regularly

varying functions in R
d 
and domains of attraction of stable

distributions. T. Stochastic Processes and their Applications,

8, 349-356.

4. Johnson, J.L. and S. Kotz (1972). Distributions in Statistics:

Continuous Multivariate Distributions. Wiley, New York.

5. Love, M. (1963). Probability Theory. Third edition, Van Nostrand,

Princeton, New Yersey.

6. Saks, S. (1964). Theory of the Integral. Dover, New York.

. Stain, A.J. (1977). Regular variation in Rd and the Abel-Tauber

theorem. Pre-print, Rijksuniversiteit Groningen.



LIST OF REPORTS 1979

7900 "List of Reprints, nos 220-230; Abstracts of Reports Second Half 1978".

7901/s "Motorists and Accidents (An Empirical Study)", by B.S. van der Laan.

7902/S "Estimation of the Minimum of a Function Using Order Statistics", by

L. de Haan.

7903/S "An Abel and Tauber Theorem Related to Stochastic Compactness", by

L. de Haan.

7904/E "Effects of Relative Price Changes on Input-Output Ratios - An

Empirical Study for the Netherlands", by P.M.C. de Boer.

7905/0 "Preemptive Scheduling of Uniform Machines Subject to Release Dates",

by J. Labetoulle, E.L. Lawler, J.K. Lenstra and A.H.G, Rinnooy Kan.

7906/S TT-Regular Variation", by J.L. Geluk.

7907/0 "Complexity Results for Scheduling Chains on a Single Machine", by

J.K. Lenstra and A.H.G. Rinnooy Kan.

7908/E "Input-Output and Macroeconomic Forecasting Through the Generalized

Inverse", by K.P. Vishwakarma.

7909/E "An Application of the Generalized Inverse in Input-Output and

Macroeconomic Analysis", by K.P. Vishwakarma.

7910/0 "A Numerical Comparison of Self Scaling Variable Metric Algorithms",

by G. van der Hoek and M.W. Dijkshoorn.

7911/E "A Quadratic Engel Curve Demand Model (squaring with the representative

consumer)", by J. van Daal and A.S. Louter.

7912/E "On Generalized Linear Demand Systems", by A.C.F. Vorst and J. van Daal.

7913/M "A Partial Survey of the Use of Algebraic Geometry in Systems and

Control Theory", by M. Hazewinkel.

7914/M "(Fine) Moduli (Spaces) for Linear Systems: What are they and what

.are they good for", by M. Hazewinkel.

7915/s "A Simple Asymptotic Estimate for the Index of a Stable Distribution",

by L. de Haan and S.I. Resnick.

79I6/0 "A Machine Maintenance Model with Application to Linear Programming",
by A.H.G. Rinnooy Kan and J. Telgen.

7917/E "Inferential Procedures in Stable Distributions for Class Frequency

Data on Incomes", by H.K. van Dijk and T. Kloek.

7918/m "On Families of Linear Systems: Degenerating Phenomena", by
M. Hazewinkel.

7919/0 "Complexity of Vehicle Routing and Scheduling Problems", by J.K. Lenstra
and A.H.G. Rinnooy Kan.



7920 "List of Reprints, nos 231-240; Abstracts of Reports First Half 1979".

7921/E "Minimization by the Method of Conjugate Gradients", by V. Stern;

7922/S "Local Limit Theorems for Sample Extremes", by L. de Haan and S.I. Resnick

7923/0 "The Optimal Selection of Small Portfolios", by B. Blog, G.v.d. Hoek,

A.H.G. Rinnooy Kan and G. Timmer.

7924/E "OLS Estimation in a Model where a Microvariable is Explained by

Aggregates and Contemporaneous Disturbances are Equicorrelated", by

T. Kloek

7925/E "A Multi Period Revealed Preference Approach to Estimating Preference

Functions under Rational Random Behaviour", by S. Schim van der Loeff

and R. Harkema.

7926/S "On the Observation Closest to the Origin", by L. de Haan and S.I. Resnick.




