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On the Observation closest to the Origin

L. de Haan®* and S.I. Resnick®*

Erasmus University and Colorado State University

ABSTRACT

Out of n i.i.d. random vectors in RY let'zz be the one closest to the
origin. We show that 5; has a nondegeneraﬁe limit distribution if and
only if the common probability distribution satisfies a condition of
multidimensional regular variation.

We apply the result to a problem of density estimation.
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1. Introduction.

~ Suppose 51, cees Zﬁ are i.i.d. observation; in a Euclidean space
which for convenience we take to be the plane R”. The polar coordinates
of X. are denoted by IX |, l)). Call the observation with minimum
modulus X*, if more than one observation has modulus equal to A [§i|,
choose X* from the tied observations by randomization. i=1
‘As n-o X* w1ll converge to O but it may be possible to normalize X* 1o}
that a non-tr1v1al limiting distribution exists.

So we ask: when do there exist constants cn, 0 < cn -+ 0 such that

where the limit vector Y is finite and IEI non-degenerate. Here the

arrow "=" indicates weak convergence.

In section 2 we show that the necessary and. sufflclent condition for
(1) is multivariate regular variation at Q of the distribution of X,
Also the polar coordinates of Y are independent random variables.

In the latter section of the baper we examine a related density
estimation problem. '

2. Multivariate.Regular Variation and the Observation closest to 0.

The condltlon that the distribution of X be regularly varying at
O can convenlently be expressed either in terms of vague convergence

of measures Oor, a regular variation property in terms of the distribution

(x,, X;)) and the following are equivalent:

(i) There exist constants c » 0 < c, 0 and ‘a limit measure v

2
on R whlch is finite on bounded nelghbourhoods of 0 such that

-1 v
nP[Cn 2(’16.]+v

("3 Genotes vague convergence). This sequential form of the condition

is the same as. saying there exists a (necessarlly regularly varying)
function U: R+ > R+ such that

CPIX, € £.()]/u(t) ¥




(ii) There exist constants o 0 < c *> 0, @ >0, and a probability
measure S on B([0,27]) such that A

nPle;! X)) <7, 0(x)) < 0] ¥ 1% 5([0,0]).

This is the same as

P[|X,| < tr, e(x1) < 8] “ 5(10.01)

P[[X1| < t]

as t+0. Cf. Stam (1977), de Haan and Resnick (1977). We remark that the
‘constants {c } in (i) and (11) need not be the same; their quotlent

tends to a pos1t1ve constant.

Theorem 1.

There exists a sequence of positive constants {c } such that
0;1 X* converges in distribution to a finite limit vector Y with |Y]
non-degenerate iff the distribution of X1 is regularly varying at 0 as o
described in (i) or (ii) above. In this case P|Y| > r, o(Y) < 8] = 5([0,68] )" R

with 0 < o < » so that lY| and e(Y) are independent.

Proof:
We first prove the theorem under the added assumption that IX |

has a contlxnousdlstrlbutlon This assumptlon is removed at the end.

With this added assumption, it is easy to derive the distribution of X*

by symmetry X* could be any one of the X 's with equal probability.

Ie Xk = x, then A (x;) > |X | . Thus we get

, -1
(2) Plle, XX <r, o(x*) < o] =

-1
IZSJ_I >ul n P[cn I’}$1|€ du, 6(2(,1) < 0]

[o]
Supposing (ii) holds we easily get P[A c IX | > u] > et uniformly.

Assume S{0} = 0 and write the 1ntegral in (2) as

I{P[ A 0;1 |§i| >u] - e } n P[c |X le du,O(X < 6]
0 i=2

a
-1
n Ple " X, € du, 0(X,) < o]




The first term goes to zero by uniform convergence. The second term
is seen to converge vaguely in the usual way by appealing to the
Helly-Bray lemma (Loeve, 1963, p. 180) and so

. a
%] < v, 0(x¥) <01 3 [ ™ au® s([0,6])

= P[]Y| < r, o(Y) < 6l.

For the converse suppose there exists c »0 < c. >0, and 4 with

P[Y = 0] < 1 such that c;l1 X* = Y. Then °r-11 A
1=
Since the only normalization necessary here for convergence of the

%0 =o' Ixx] -
1T~
‘minima is scaling, we can ea31ly identify the distribution of IYI to

—lxO
be the extreme value distribution P[|Y| > x] = kx s X > 0 for some

0 <a<», k >0, Without loss of generality, suppose k = 1.

This distribution is continuous so P[1§2 ;1 IX | > u] > e_ua uniformly.

To deal with the rest of the 1ntegral in the right side of (2) we use

the selection theorem: Since n P[c |X | < u, O(X ) < 8] <n P[c |X l < u] >
- log P[IY[ >u] = u® as n+e (an easy consequence of ch [X [ ='|Y|

we have for each u,6 that n P[cn Izﬁl < u, 9(%1) < 8] 1sla bounded

sequence.

Thus we are assured of the existence of a vaguely convergent subsequence

n' and a vague limit ¥(du, d6) such that

n'P[c“1 |X,] € au, o o(X,) € de] ¥ v(au, ds).

As in the first half of the proof the uniform convergence of

P[A IX I >c .u] gives as n'-ow

-1 e
Plegs X ] <ry0(xx) <01 ¥ [ ™ v(auxb,e])

If along another subsequence n"

-1 .
n"Ple w |X,] € au, o(x,)€a0] ¥ ¥ (du,ae)

then the measures determined by the distribution functions
u® o

fe ¥(du x [0,0]), je (qu x [0,6]) and P[|Y| < r, 0(Y) < 6]
are all equal.
—u
Since ™% is non-vanishing, it is easy to see ¥ = ¥'. Therefore the
vague limit of n P[c;1 |£1| <r, O(ﬁq) < 0] exists.
This is equivalent to our first definition (i) of multivariate

regular variation.




‘We now remove the assumption that IX ! has a continuous
dlstrlbutlon thus allowing more than one observatlon to achieve
minimum modulus. Formule, (2) must be modified. As before, by
symmetry z; could be any one of the ﬁi's with equal probability
so that

-1 * *
Ple '3%1] =1, o(x¥) ;e]

(3)

=n P[cr_l1 |;5'1] <r, o(x,) <6, X

= Y%
~1 ~1 En]'

n-1

Write [X* = X 1 = U A where A is the event that k observations
~n ~] k=0 k k
from ze, cey zn have moduli equal to [§1|, n-k-1 observations have

moduli > |§1l and the randomization procedure selects X. from among

~1
those k+1 observations with minimum modulus.

Then (3) becomes

' -1
x1] P[cn X, € dx]

I’}Sl ]n—k—1 .

= u]k P[cr_l1 Izl > u]n—k—1.

-1 .
n Ple ' |X.| € au, o(x,) < el.
Note the k=0 term (no ties) corresponds to the rightside of (2).

For proving either necessity or sufficiency in this theorem, we have

at our disposal the condition

n «
(4) P[? ]zil > c, u] = P[|51[ > e u]n - e

for some a. We now show (4) implies

n-1
1 n-1 k n-k-1
I o= .
alw)s o, Gl p e

as n-owo uniformly inu € [0 ,r'], where p ='pn(u‘ P[c

g = gn(u) P[C |X I > u]




This then shows that P[c;1 |§;l <r, e(g;) < 6] equals the righthandside
of (2) plus o(1); the case where the df of |§1| is not continuous
can then be reduced to the continuous case.

Rewrite In(u) as

n-1 1 (n-1)! k

DR e p
To-k-1)!
woq EFT KI(nk=1

n k n-k
()p &

K /p

k=2

If p=0, In(u) = 0 so
I (u) = [(p+e)"” - &" - npg” '] /np

where the right side is interpreted as 0 if p=0.

To help us' check In(u) + 0 uniformly for u € [0,r] we write
down the following facts:

a) g > 1 as n> uniformly on [0,r].
This is simply because g = P[c;1 |§1| > u] > P[cr_l1 |§1| > r].

b) n Pn(u) -+ 0 uniformly singe for any given € > 0

-1 -ua —(V+€)a
np, <nPlc 151|€ (v, v+e)] » e -e

and the last convergence is uniform.

c) As a consequence of (a) and (b) we have np/g -~ 0 uniformly on
[o,r].

Finally we have
0<I(u)=g" [(1+p/g)® = 11/np - &'
_ n ' -1,
= g [exp {n log (1+p/g)} - 11/np - "
Since p/g + 0, n log(1+p/g) ~ np/g + 0 by (c) and therefore
exp {n log(1+p/g)} - 1 ~n log(1+p/g) ~ np/g as n+». Thus given
€ > 0, for n sufficiently large we have uniformly
. -1
< I(u) < g"(1+e) (np/g)/np - g"
1 n-1

(14e) g™ - g

suffices for the desired result.




Remark

Under the regular variation conditions, the point process
{c;1 zx} k21 convergés weaklybto a Poisson point process with
mean measure v. Applying the functional which maps point processes
to the point closest to O gives via the contihuous mapping theorem

the sufficiency half of the theorem.

Example
If X, is uniformly distributed on the unit dise then picking
- -5 . -1 ox _ .. :
c (2n)72 gives c, Xr=>x-= (Y1, Y2) i.i.d. N(0, 1). To check
this one observes that for 0 < r < 1, 0 <6< 2n
r26
PLIX | <5 0(X)) < 0]= 51—

and hence 2n 7 P{c;1

§1 € * } converges to Lebesgue measure. Note
that the convergence to the normal distribution is no longer true in

]Rk with k # 2.

Example
Suppose")\i‘1 has a bivariate Cauchy densityv(1+x? + xg)_3/2/ am.

Then

PLIX, | <7, 0(X,) < 6] = (1-(14x%)72) o/ 2.

Since P[|§1|_5 t]nvta/2 as t40 we may set c =

- limn P[|X1l <c_ r, o(X,) < 8] = 1% 9/ 2n
n-e ~ n ~

S0 that a =2, 5([0,6]) =6/ 2r. As bvefore ¥ = (Y, Y,) is i.i.d. N(0,1)
and v(ax,, dx,) = dx,dx,/ 2m.
Remark :

In both previous examples we had o = 2. This is due to the fact
that in both cases £1 has a continuous density which is positive at Q.
Cf. section 3 below. An example where this is not the case is the

following:

Example

.2
Suppose §1 has a bivariate gamma density concentrated on R, :




£(x,, x,) = o=(x1 + %) (1 - ¥ A %2y, X5 Xy >

2) 2

.

(Johnson and Kotz, 1972, p. 218). As Xy >0, x, >0

)NX AN X5,

£(xy, x, 1A%

2'

Since f(t, t) = t, we have for x = (x1, x,) € (0,»)

2

as t+0 (cf. de Haan and Resnick, 1979, Theorem 1) and we have
verified that the regular variation condition (i) holds.

Hence a = 3. To find S observe for 60 e [0,w/2]:

vix ¢ |x] <1 0(x) < 05} = J f (r cos 8 A r sin 8) r dr a8

rﬁ;o 6590

%

=13 J (cos 8 A sin 8) ae
3 0

so thatr(note that v is specified only up to a multiplicative constant)

1 - cos 6 "0 <6 <a/k

(2 - /2) s ([0,0]) ={

1 -2 + sin o /b < 6 < w/2.

3. Density Estimation

Suppose zi are i.i.d. random vectors in IR2 with distribution
function F. Suppose F has a positive derivative F' at some point X
in the sense that for every rectangle I with one endpoint in the origin

(5) im Py, - x € .11/ 4% |1] = F'(g,)
t-+0
where |I| is Lebesgue measure of I (cf. Saks, 1964).
This condition is satisfied for instance if F has a density continuous

and positive at Xq- We are going to estimate F'(xo) using the z}observations.




Translating %0 to the origin by setting zi = Y. - x. shows that

~1  ~0
(5) is the regular variation condition (i) of section 2 and

v(dx1, dxp) = F'(xo)dx1 dx,, . Since S is the uniform distribution on
[0, 2n], the problem is really one-dimensional and we may as well

work with {Izil, i < n}. Since

n P[c;1 |X.| <r]l >r

1

1
with c = (n’TF'(ED))_Z’ the point process on R,_ with points

{Izil/cn, 1 < n} converges weakly to a Poisson process on R+ with mean
measures on [0,x] = x2.
So the order statistics {c;1 Izél)l, i < n} from {c;l1 [§i|, i < n} form

asymptotically a Poisson process and we base our estimate on the kth

()
~n
then will give weak consistency.

smallest where k = k(n) + « and k/n -+ 0. Thé law of large numbers

It is convenient to use the Renyi representation for order statistics

(Z£1), Z(e) zé?)) from the exponential distribution (Feller, 1971,

n
chapter 1): If E,, E,, ... are i.i.d., P[Ei > x] = e, then the kB

E E
: (k) ' -k
smallest Z, et T
?2 + ...+ _EE—-) 2
n * n-k+1

9 e e ey

. If ¥ = k(n) » », k/n - 0 then
+

We now use a probability integral transformation:

Let ¥(x) = - log P[l§1| > x]. From the regular variation condition we

have %ig.w(t)/tz = F'(zo)n and so for the inverse function W_1 we have
1
2

lim ‘1(t)/t
t

+0
Since | (k)|g Tf1( . L

R S
gn n_k”) it follows

(k) 4
(E) Izﬁ | = E n

~(DF /) B (F ()R

So our estimate of F'(ﬁo) is

k/(n [x8)]2).
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