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ON FAMILIES OF LINEAR SYSTEMS: DEGENERATION PHENOMENA

by

Michiel Hazewinkel

. INTRODUCTION.

This paper is concerned with an aspect of the theory of families

of linear dynamical systems rather than single systems, viz degeneration

phenomena. As such it is part of a general program (briefly discussed

in [Haz 31) which consists of trying to carry through for families of

systems (and hence systems over rings) all the nice results and

constructions which one has for single systems over fields (or finding

out how and why these results and constructions break down in this more

general setting). This includes a systematic investigation of which

constructions are continuous in the system parameters; that is, which

constructions and calculations are stable (more or less) with respect to small

perturbations or errors in the system parameters, a topic which obviously

deserves at least some attention in a world full of uncertain measurements.

And in turn this topic includes trying to find out what may happen to

systems and associated objects when certain parameters go to zero

(or infinity, or ...), which is the topic of this paper.

Still more motivation for studying families rather than single systems

can be found in [Haz 3] and some results concerning other aspects of the

theory of families (than the degeneration phenomena discussed below) can be

found in [Haz 4] (fine moduli spaces, continuous canonical forms) and

[HP] (pointwise-local-global isomorphism problems).

Here we discuss degeneration phenomena. That is suppose there is

given a family of systems

E(c) = Fx +-Gu, y = Hx + Ju

where the matrices F G, H, J depend on a parameter c. What can be said

• •
about the limit as c 00. For example let V be the input/output operator

of E(c)

-
y t f HetT

F
Gu(T)dT



andsupposethatasc4.00theoperatorsVconverge in some suitable

sense) to some operator V. What can be said about V? E.g. can V still be

viewed as the input/output operator of some sort of processing device?

There are a number of reasons for being interested in such

degeneration phenomena, some of which can be characterized by the key

words or phrases: identification, high-gain feedback, almost F mod G

invariant subspaces (and almost disturbance decoupling), dynamic

observers (and invertability).

1.3. Identification. Suppose we have given some sort of input/output

device which is to be modelled "as best as possible" by means of a

linear dynamical system (1.1) of dimension n. Now if S E GL OR), then

a system E = (F,G,H,J) and E = (SFS ,SG,HS 1,J) have the same input/outnut

operator. Let M be the space of orbits of this action of GL OR) on the

space L of all n-dimensional systems (with a given number of inputs and

outputs). The best we can do on the basis of input/output data alone

is to identify the orbit of E (and even that is not true if E is not

completely observable and completely reachable, a fact which can be

expected to cause a fair amount of extra trouble). Thus we are trying

to identify a point of M and we can picture identification as finding

(or guessing at) a sequence of points in M representing better and better

identifications as More and more data come in. From this point of view

the question naturally arises. Does a "converging" sequence of points

in M necessarily have a limit in M. The answer is no. It is perfectly

possible for a sequence of linear dynamical systems (1.1) to have a

limiting input/output behaviour which is not the input/output behaviour

of any system like (1.1) as the following example shows

-c -c 1 2

0 
-c)x + )u, y = ,0

(one input/one output, dimension 2). Let U be a smooth bounded 
function

on1R with compact support in (0,00), then ify =Vc
ualittle partial

c 
, d

integration shows that lim y (t) = u(t), uniformly in t on bounded

c400

t intervals, and cannot possibly be the input/output operator o
dt

system (1.1), (e.g. because TE is not bounded on smooth bounded

functions in [0,1] while all the V are bounded operators).



The presence of these holes is by no means the only difficulty

in identification caused by the nontrivial topology and geometry of M.

For some more remarks concerning this topic cf. [Haz. 2] (though the

point of view I took there is still a good deal too optimistic) and

also [BK]

1.5. High-gain feedback. Consider a system with output feedback loop

(1.6 = Fx + Gu, x, u = Ly

What happens when L or certain entries of L go to infinity? For instance

in [YKU] it is shown in the case of a large scalar gain factor L =g
and under some additional hypothesis the system (1.6) can be transformed

into the standard singular perturbation framework

.7) = F11
 
x1 + F12x2, x2 = + F x

22 2'

(with F21 = 0 in the case considered in [YKU], so that there is a

separation of slow and fast modes; more precisely there is a fast

subsystem which in the setting of [YKU] is asymptotically stable

(if p is small enough) feeding into a slow system). Of course setting

p = 0 in (1.7) yields little information about (1.7) for small p and

the idea is rather to study (1.7) and (1.6) as perturbations of the

limit behaviour as p goes to zero or various coefficients of L go to

infinity. In the setting of [YKU] the limit input/output operator

is the zero operator, but in general this need not be the case, and

one may hope that on the basis of some knowledge about what limit

operators can arise it will prove possible to obtain some results

on the lines of [YKU] and related papers in more general situations.

For some motivation for studying (very) high gain feedback cf.

[Ymu] and some of the references therein, cf also below in 1.8.

1.8. Almost F mod G invariant subspaces and almost disturbance decoupling.

An F mod G invariant subspace for ic = Fx + Gu is a subspace V of the

state space such that one is in it one can stay in it. As is wellknown

(cf.[ Won]) these subspaces "solve" the disturbance decoupling problem.

An almost F mod G invariant subspace is one such that once one is in it

one can stay arbitrarily close to it, and these spaces "solve" an

almost disturbance decoupling problem, which turns out to be important

especially when the disturbances (partly) come in on the same cbannels



as the inputs (cf. [Will, Wi12]).

A subspace V of dimension r is almost F and G invariant if and

only if there is for every 6 > 0 a feedback matrix K6 guch that

(F+Gc V is within 6 of V (in a suitable sense), and if V is almost

F mod G invariant but not F mod G invariantp K6 will not remain finite

as 6 -+ 0. Thus implementing a decoupling by means of an almost F mod G

invariant subspace will give rise to a family of systems.

(1.9) F+GK )x + Cu + G'v,
6

= Hx

where K does not necessarily remain finite as C + 0.
6

1.10. Dynamic observers. In [BM1], [BM2] Basile and Marro consider

the problem of constructing observers for the state of a system (1.1)

when the inputs are unkown. For this it is advantagous to have

differential operators (cf loc cit) and these, as is suggested

by the example (1.4), may be approximated by systems (1.1) (of

comparable rank), thus giving us arbitrarily good approximate

observers of the form (1.1).

1.11. As we shall see the limit operators as c co of the input/output

operators Vc of a family of systems E(c) are necessarily of the form

V
E 
+ L(D), where E is a system (1.2) (and V

E 
its input/output operator)

and where L(D) is a polynomial matrix (with constant coefficients) in

the differentiation operator D 
= 

I.e. the possible limit operatorsdt.
are the input/output operators of systems of the type

(1.12 x = Fx + u, = Hx + J(D)u

where J(s) is a matrix of polynomials, argueing that this wider class

of systems is in some ways a more natural class to study then the

class of systems (1.1), cf. also [Rosl,Ros2].

2. STATEMENT OF THE THEOREMS.

The first thing to do is to specify in what sense we shall understand

the phrase "the family of input/output operators Lc converges to the

operator L as c co". And, in turn, this means that we must describe

the spaces of functions between which these operators act.



-1-) and2.1. The spaces (°)ORr 9g ORr). The elements of e(°)OIRr) are

all smooth functions z:M4-11
ro
 with support in (0,00) and of no more

than exponential growth. Here the support of a function z is as usual

defined as the closure of the set of all t EIR where z(t) 0 0. Thus

z E cf.(°)ORT) iff there are an 6 > 0, an M > 0, and b > 0 such that

z(t) = 0 for t < c and

(2.2)
i l -bte z(t

M for all t

(Both 6 and b may depend on the function z). This class of functions

includes the smooth functions of slow growth with support in (0,00)

(cf. [Ze, chapter III]), which space in turn contains the subspace

9ZORr) of smooth functions with compact support in (0,00).

A sequence of funtions z 
ET(o) r aR ) is said to converge to

(o) r
)if there is a b such that

(2.3) lim sup Ile- t(zc(t)-z(t))11
t

Note that (2.3) in any case implies that the functions z ( )

converge to z(t) uniformly in t on bounded t intervals.

This defines a topology on cf( 
)OR), which is in fact the inductive

limit topology defined by the inductive system of normal topological

vector spaces

2.4 To)(IR )' 
ib,

where fora given b EIR

(2.5) GF(0) Era =
b

>b

E 4F(°)ORI.)1 suplle-btz(t) II =: IlzIlb

with the norm lizilbs and where ib,b 
, is defined by z(01-+

<00

e(131-b)tz(t).

r
The space 1- aR ) tries hard to be complete in the sense of the

following lemma.

2.6. Lemma. Let fl > 0 and let z
c 
€( 0)& be a sequence of

functions with support in [71,00) for all c. Suppose that there is a b EIR

such that for all 6 > 0 there is a co such that
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(2.7) sup
t
(z t -z

c 
011< 6 for all c,c > c

o

Then the z
c 

converge to a function z E 
4F(o)oRr) 

with support in

as c co (where the convergence is in the sense of (2.3)).

Proof. Let z(t) be the pointwise limit of zc(t) as t -+ co (Which clearly

exists by (2.7). Then supp z(t) c: [,co) and z (t) converges to z(t)

uniformly on bounded t intervals (again by (2.7)). It follows that

z(t) is smooth. Take = 1 and let cl be such that (2.7) holds for this
()e ,

6 with c
o 
= c

1
. Let z 

ETo rior). 
We can assume b

1 
> b. Then,

b
1

using b 1 >

-b

lizc(t)11 
e-bt l i z (t)_z ,(0 11 e-btliz ,m_z(011

I 
' 1 c

1 
II C

Choosing c' depending on t such that Ilz ,(0-z(t)11 < 1 it follows
Ecio) oRr) c= cF.,(o)

that z(t) (JE. ), proving the lemma.
1

Just what b EM is used i (2.3) is largely irrelevant. Firstly if

(2.3) holds for a given b then it still holds with b replaced by b' > b.

(
Secondly if (2.3) holds and z ET

(o)
b, a

r
R ) then zc 

o) r 
) for all

large enough c where b" = max(b,b 1). The converse of this:

"if
c 
(t) EqF vi( ) for all large enough c then z(t) E5:1 °)OR ) with

b'

b" = max(13,13')" follows as in the lemma. Thirdly and lastly it does not

really matter if one uses "too big a b" in (2.3). Indeed, z(t) as the

pointwise limit of the z (t) is of course independant of b. What (2.3)

does is to require a certain mild uniformity about the way the limit

is approached. (It is, incidentally, perfectly possible for a sequence
()

of functions z
c
(t) 

o
aR
r 
) to converge to zero when considered as

(o) 
elements of91 aR

r 
) for b' > b while not converging when considered

b'
as a sequence in 'W(°)(ir ; take for examp1.1 z(t) = 0 for t < c,

bt bc
z (t) = e e for t> c, suitably smoothed.)

2.8. The spaces cFqkr). For the purposes below the spaces$0)(RT)

are still too big to be suitable as input spaces (essentially because we

shall want differentiation" to be a continuous operator). On the other

hand eF aR ), while eminently suitable as an input function space is not

large enough to accommodate output functions. As we shall need to be able

to use the outputs of one dynamical system as the inputs of another,



we need an intermediate space. A suitable one is

(2.9) itm af mr) cFE(o)r) for all k = 0,

(k)
where z denotes the k-th derivative of z. We give( 1R') the

(k) (k)topology determined by zc z as c 00 iff z
c 

z for all

k = 0,1,2, • • ir)*0)(1111.1). Thus the family z
c 
converges to z as c ± co

iff there are real numbers b ,b ,... such that for all k

lim sup e
c-K° t

I Izc()(t)

When dealing with systems of dimension < n onlytone can also

mr) . z E4p(o) 0R) z (k) E cp(o)work with cF(n) ) k = 0,1, .,n+11.

2.10. Convergence of input/output operators. Now let E = (F,G,H,J)

be a linear dynamical system with direct feed through term

(2.11 = Hx + Ju, x E IRn  yE IRP ,

where F, G, H, J are real matrices of the appropriate dimensions

(independent of t). Then the associated input/output operator is defined

by

(2.12) u(t)t-+ y(t) = -
t + J 

HeF(tT
G (T)dT

Let It= '''01e1), li.cFoRP), tt = clz oRm), tt oRP) Then Vo o 'o o E
is a continuous linear operator it 4 • Indeed if u E U is such that

Ilull < 00 and if b' > max{ReA,0} where A runs through the eigenvalues

of F then IIV (u)II < co
E b+b'

Thus for every b > 0 there is a b' > 0, usually necessarily larger

than b, such that VE maps IF1(0)005 into ('R1), with b' depending on E.b'
Thus, when dealing with families of systems one is practically forced

° ni° .\ • 4-FM OR'to use the union of the all the P
I P) and if onerb Y" 

would like differential operators to be continuous one is almost obliged

to work with 'REP) and 'Fe). From now on we fix the dimensions m,n,p

of the systems (2.11) which we are considering. Let L denote the space

of all systems (2.11). I.e. L is the space of all real quadruples of

matrices (F,G,H,J) of the dimensions n x n, n x m, p x n, p x m

respectively.



behaviour to the operator V: ti -÷

co cr co,crWe shall use L , L , L to denote the subspaces of

completely observable, (abbreviated co), resp completely reachable

(cr), resp completely reachable and completely observable systems.

We now define

2.13. Definition. The family of systems E( ) c:L converges in input/output

behaviour to an operator V iff for all u E U the functions VE
(c)

converge to Vu in y as c -›- 00.

Let supp(u) c: [,o0) (such an n necessarily exists because
supp(u) c: (0,00) and supp(u) is closed by definition). Then supp VE(c)(u)

c {,co)  It follows by lemma 2.6 that one can decide whether the family

(E(c)) converges without mentioning (or knowing) the limit operator V.

The family (E(c))c converges in input/output behaviour iff there are

for everyuEUasequence of numbers bo,b 1,b2,... such that for every

> 0,k = 0,1,2, there is a c(c,k) such that

(2.14) sup{
E(c T )II} < 6 

if c,c' > c(k,c)

where D is the differentiation operator D
dt. 

Thus if (E )) converges

in input/output behaviour (in the sense that (2.14) holds) then there

is a well-defined limit operator V. (This uses of course (cf. (2.14))
that D is a continuous operator V. lt ). Whether this limit operator
V is continuous is unclear at this stage. (It is though, as will be

shown below in section 5).

2.15. Differential operators. Let and y. be as above. Then a (matrix)
differential operator (in this paper) is an operator of the form

Ii(t) y(t Y.(t3 .E v..(D)u
1=1 31 / i

t)

where v. (D) is a polynomial with constant real coefficients in D =
Ji dt

Every polynomial V(s) (of size p X ) thus defines a continuous linear

operator 1.4.
2.16. The scalar case. If m = 1 = p, i.e. if we are dealing with one input

and one output the main theorem of this paper says that

2.17. Theorem. Let (Z(c)) be a family of one input/one output linear

dynamical systems (2.11) of dimension <n converging in input/output

. Then there exist a system E

and a polynomial L(s) such that V = + L(D), where moreover



dim(E) + degree L(s) < n. It follows in particular that the limit

operator V is continuous.. Inversely, if V is an operator of the form

V = V + L(D) where L(s) is a polynomial of degree < n - dim(), then
cr

there exists a family (E(c)) c:L
co, 

such that E(c) converges in

input/output behaviour to V.

In case one wants to restrict oneself to systems (2.11) with J = 0

the theorem remains essentially the same except that the essential

inequality dim(E) + degree(L(s)) < n gets replaced by dim(E) +

degree(L(s)) < n-1 (where by definition degree(0) = -1). This is

stated and proved (more or less) in [Haz 1] and the proof readily

adapts to a proof of the present theorem In section 5 below a

different proof of theorem 2.17 is given which also covers the

multivariable case.

2.18. Degree of a matrix polynomial (differential operator).

Obviously if E(c) is a family of systems of dimension < n

which converges to the p x m matrix differential operator L(D) then

all the entries of L(s) have degree < n (by the result in the scalar

case). One might think that inversely every such operator arises

as a limit of systems < n. This ,however, is not the case as the

example.

(2.19) L(D) =

shows. One shows readily by explicit calcula.zion that the operator

(2.19) cannot arise as a limit of one-dimensional systems. A more

sensitive definition of "degree" is needed.

2.19. Definition. Let L(s) be a matrix polynomial. Then we define

(2.20) deg L(s) = max(degree(M))

where M runs over all the minors of L. This agrees with the MacMillan

degree of a polynomial matrix, (lemma 4.10, or cf. [A14, section 3.6,

properties 5 and 10).

2.21. The multivariable case. In the case of more inputs more outputs

the main theorem now is precisely analogous to theorem 2.17. I.e.
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2.22. Theorem. Let E(c) be a family of n dimensional systems with m

inputs and p outputs. Suppose that E(c) converges in input/output

behaviour to the operator V: tt-+.1i, as c 00. Then there exist

a systemEandapxmmatrix polynomial L(s) such that

V = V + L(D) (so that V is continuous) and moreover dim(E) degree L(s) < n.
Inversely if V is an operator of the form V + L(D) with

dim(E) + degree L(s) < n, then there exists a family of completely

observable and completely reachable systems E(c) of dimension < n

which converges in input/output behaviour to V as c 03.

The proof of the first half of the theorem uses the continuity

(in this case) of the Laplace transforms and the upper semicontinuity

of the MacMillan degree (theorem 4.16) and thus gives us (besides

lemma 4.10) yet another characterization of the MacMillan degree of

a matrix of rational functions.

2.23. Theorem. Let L(s) be a matrix of rational functions. Then the

MacMillan degree of L(s) is < n iff there exists a sequence Lc(s) of

proper rational function matrices such that L
c
(s) converges to L(s)

for c pointwise in s for infinitely many values of s. Moreover

one can see to it that the poles of Lc(s) fall into two sets one

equal (together with multiplicities) to the set of poles co of L(s)

while the remaining poles of Lc(s) all go to -00 as c co.

It is not true, however, that one can always obtain L(s) as a

limit of the L (s) in the sense of the mappings on the Riemann sphere

that these matrices of rational functions define. This in fact only

happens when L(s) is itself proper:

To prove theorem 2.23 without the extra requirement that the

remaining poles of L
c
(s) go to -co as c goes to 00 is quite easy

(Proposition 4.18). Theextra requirement complicates things considerably

and I know of no direct proof except for certain special, albeit

generic, cases. (Like "the matrix of coefficients of

maximal powers of s in each row is of maximal rank"). Another

corollary of the proof of the second half of theorem 2.22 is

2.24. Corollary. Let L(s) be a polynomial matrix of size p x m. Then

L(s) has degree,< n if and only if it can be obtained from the zero

matrix by means of the operations.



(i) addition of a matrix of constants

(ii) multiplication on the left by a nonsingular polynomial p x p

matrix of degree 1

(iii) multiplication on the right by a nonsingular m x m matrix of

constants

where one uses at most n times an operation of type (ii).
There is of course an analogous statement with right instead

of left in (ii) and left instead of right in (iii), and also an

analogous statement where in both (ii) and (iii) multiplications

on both sides are allowed.

, ON LIMITS OF RATIONAL FUNCTIONS.

The degree of a rational function T(s) = q(s)-1p(s),

p(s), q(s) E k[s] with no common factors is equal to 6(T) = max0(p),6(0)

where the degree of a polynomial is defined as usual. We shall need

the following intuitively obvious fact.

3.1. Proposition. Let T(s) be a sequence of rational functions of

degree < n. Suppose that lim T(s) exists (and is finite) for
-÷00infinitely many s. Then 
c 

there exists a rational function T(s)

of degree <n such that lim T(s) = T(s) for all but finitely many s

(and if the T (s) and c T(s) are interpreted as functions T -±1P 1(l)

then T (s) converges to T(s) in the compact open topology).

Proof. Write

(3 . 2 T ( ) -
c

s)
n
(c)s +a (c) n- +...+a (c)s+a

o
( )

n-

qc s)
+...+b

n-1 )s+bo(c)

and associate to T (s) the point tP(c) 
E]p2n+1(m) 

with the homogeneous

coordinates (an,...,a0,bn, .,b ). Note that this is well defined

because the coefficients of p (s) and q (s) are well defined up to

a common scalar factor. (This map is not continuous if the space

of all rational functions of degree < n is given the compact open

topology of maps T -*1P 1(C); but it is continuous on the open subspace

of function of degree n, and on the subspaces of functions of fixed

degree i).

Let M (a-1P
2n+1 

(C) be the subspace of all points (xn,...,x0,yn,..
ip2n+1

0 
,_,
4 such that at least one yi is unequal to zero. Because

IP
2n+1(

(E) is compact the sequence {IP(c)} has limit points.



3.3. Lemma. If lim T
c
(s) exists for infinitely many s then all limit

c400

points of the sequence {(c)} are in M.

Proof. Suppose that lim T
c(
s) = T(s) E C, and suppose that -NA

c-÷00
2n+1has a limit point in1P (C) N. Let this limit point be

)}

x = (a ,. 
' a.1+1' 1" 

0 . .,0). Taking a subsequence we can assume that

{IP( )} converges to x. For large enough c we then have a4(c) 0 0

and multiplying both p (s) and q (s) with a.(c)
1
 we can assume that

a(c) = 1 for all c. We then have for all c

(3.4)

with

(3.5)

• • •

= T

lim b ( ) =
c-*00

a. c)si
+ 
+s +

s)(b(c)sn +

, j =0, .

lim a4(c) = 0, j = 0,
c.+00

lim a (c) =
c-->00

±-1(

c ) )

12

)s + a (c) =

Taking the limit as c 4- 00 in (3.4) and using the relations 3.5 one

finds because lim T
c400

(3.6)

= T(s) Co

a s
n 
+...+a.+s 0

i+ i 
=

1+

and there are only finitely many s for which this can hold. Thus there
2n+1

can be no limit points of {11)(c)} in1P (M) M if lim T (s) exists
c-+00 c

(and is finite) for infinitely many s.

The proof of proposition now continues as follows. Let x E 
Mcip2n+1(

x = (x ,y ,y ). Because at least one of the yi 0 0 the
o n

expression

(3.7) T(s) -
x s

n
+ ...+ x s+x

y s + • s+y
o
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is well-defined for all but finitely many s. Now let x E M be a

limit point of {11)(c)}. Let i be the largest index such that yi 0.
-Multiplying all coordinates with y

1
i 

if necessary, we can assume

y. = 1. Take a subsequence of {i,(c)} which converges to x. For large enough

c we then have b (c) 0. Multiplying both p(s) and q
c
(s) with

bi(c - we then obtain sequence of rational functions.

(3.8) T (s) =
)s + ...+ si ...+ b

1 
(c)s+b (c)

a
n
(c)s 

s
n 
+ + a

1 
(c)s+a (c)

such that as c 4. co.

(3.9 a..(c) x., . -±
J J

= 0,1, .

It follows that lim T (s) = T
x
(s) for all but fnitely many s, where the

c.400
limit is a priori over the subsequence. In turn this says that

lim T (s) = T(s) for all but finitely many s of the infinitely
c+00

many s

to exist.

for which lim T
c
(s) was assumed

This holds for all limit points of {i(O}, hence if x' is a second

limit point of {iJ(c)} then Tx(s) = Tx,(s) for infinitely many s so

that T(s) = T ,(s) if both x,x' are limit points of {tp(c)}, and this

in turn says that lim T (s) = T(s) for all but finitely many s, where
c400

now we are dealing with the original sequence {Tc(s)}. This concludes

the proof of the proposition (except for the last statement between

brackets which is easy because by the above the convergence

T
c
(s) T(s) really means that the coefficients, suitably normalized,

converge).

3.10. Corollary. (of the proof). Let Tc(s) T(s) as c -›-co and let
-1 -1T (s) = q

c
(s) p

c
(s), T(s) = q(s) p(s) with no common factors.

Suppose that degree p (s) < n' for all c. Then degree p(s) < n'.
c

This follows immediately because (using the notations of the proof)

after a suitable normalization and for c large enough the coefficients

of pc(s) converge to the coefficients of px(s) where p(s) is the

numerator of (3.7), and because q(s) 1p(s)

where q(s) is the denominator of (3.7).

T(s) = T(s) = q (s) p (s)
x x x

So degree p(s) < degree pc(s)

for all large enough c. (Of course p(s) and q(s) may have common
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factors so that degree p may be smaller than lim inf(degree(p (s)))).
c.+00

4. ON THE DEGREE OF RATIONAL MATRICES.

Recall that the MacMillan degree 6(T) of a matrix of rational

functions T(s) can be defined in a variety of ways ([Ka], [AV, section 3.6],

[Ros, section 3.4]). First let T(s) be proper, i.e. lim T(s) exists,
s-÷00

then 6(T) = NAT), which is by definition the minimal dimension of a

realization (F,G,H,J) of T(s). If T(s) is not proper write

(4.1) T(s) = T_(s) + T 1s + T7s2 + Tr
, s V • •

where T (s) is the proper part of T(s). Then V(s) is also proper (in fact

strictly proper, meaning that lim V(s) = 0) and we define

4.2 6(T) = T ) v(V)

This definition shows that if T(s)

proper and T+(s) is polynomial then

(4.3) 6(T) = 6(T) 6(T

+ T(s), where T(s) is

(It does not matter how the "constant part" of T is split up

between T and T+)

Another way to obtain 6(T) goes as follows. (cf. [Kal]). Let T(s)

beapxmmatrix of rational functions. For eachmxpmatrix of

constants K write

(4.4) det(I + KT(s)) = ) la

where I is the m x m identity matrix and a (s),

without common factors. Let

4.5 ,(T) = degree(a•( ))

Then one has the proposition (cf. [K 1])

are polynomials

(4.6 6 (T) = max 6 (T)
K, K
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We shall need a few elementary properties of 6(T). If A and B are
matrices of constants such that AT(s)B is defined then (cf.tAV,(3.6.6)]

(4.7) 6(ATB) < 6(T)

(which is also immediately obvious from definition 4.2.
Now let T (s) be obtained from T(s) by augmenting T(s) with

some rows and columns of constants. Then

(4.8) 6(T') = 6(T)

This is seen as follows. Let T(s) and V(s) be as in (3.1) and let
Ti(s) and VI(s) be the analogous matrices for 1"(s). Then if (F,G,H,J)
realizes T(s) a realization for TI(s) is obtained by adding some
zero columns to G, some zero rows to H and by augmenting J with the
same rows and columns of constants as were used to obtain T' (s)
from T(s). Similarly a realization (F1,G1 ,11 1,J1) for V(s) can be
changed in a realization of the same dimension for V (s) by augmenting
G with zero columns, H1 with zero rows and J. with both zero rows and1 

1
zero columns. This shows that 6(T') < 6(T). The opposite inequality
follows from (4.7) because T(s) is a submatrix of '1'1(s).

A third result we need is. Let T(s) be square such that
det(T(s))

(4.9)

0. Then (cf. e.g. [Rosl, theorem 7.2 on page 135)]

6(T') = 6(T)

As an application of (4.8) and (4.9) we show (using a few tricks
which will also be useful further on).

4.10. Lemma. Let T(s) be a matrix of polynomials. Then

(4.11) 6(T) = max fdegree(d t(M(s))1
M(s)

where M(s) runs through all square submatrices of T(s).
Proof. Define 6'(T) as being equal to the right hand side of (4.11).
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Then we have to prove that o(T) = 6' T . Then the analogues of

(4.7) and (4.8) also hold for (S', i.e.

(4.12) V(ATB) < ó'(T), 6'(T') =

To see this recall that a minor of a product of matrices is a sum

of products of minors (of the same size) of the factors (cf. e.g.

[Rosi t thin 1.3, page 5) and that a minor of a matrix T' obtained by adding

a row of constants or column of constants to T is either a minor of T

or a sum of minors (of one size smaller) of T with constant coefficients.

This proves (4.12).

It follows that if A and B are invertible then 61(ATB) =
So by taking A and B to be suitable permutation matrices we can assume

that T is of the form

T) 
T
11 12

with deg(det(Ti d) = AT). Let the dimensions of T T
11' 12' 21' 22

be respectively r x r, r x (m-r), (p-r) x r, (p-r) x (m-r). Let

r(s) be the matrix

T' (s) =

T T
11 12

T
21 

T
22

where I is the (p-r) x (p-r) unit matrix and the (m-r) x (11-i)

unit matrix. Then by (4.12)

(4.13) (S t(T') = S'(T)

Also d t(T') = det(TI",) so that degree det(T') > degree(M) for all

minors M of T'. It follows that T' (s)' is proper so that

(4.14) S(T'( )-) = v(T'

At this stage we need one more property of the degree function

which is essentially proved in[ Rosi]i cf. thm 4.3 on page 115,

cf. also [NH, section 2]. Viz.
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4.15. Lemma. Let T(s) beapxmproper matrix of rational functions.

Then there are polynomial matrices N(s), D(s), of sizes p x in, in x m

such that

(i) T() = N(s)D(s)-1

(ii) N(s) and D(s) are right coprime, which means that there are

polynomial matrices X(s), Y(s) such that X(s)N(s) + Y(s)D(s)

Moreover N(s) and D(s) are unique up to a common unimodular right

factor and v(T(s)) = deg(det D(s)).

(The last statement of the lemma is more usually stated for strictly

proper T(s), i.e. matrices of rational functions T(s) such that

lim T(s) = 0; the slight extension is immediate; indeed if T(s) is

proper and T(s) = J + T(s), with T(s) strictly proper,

T(s) = Fl(s)15(s)-1. Then T(s) = N(s)D(s)-1 with N(s) = JD

D(s) = D(s), and if R(s)R(s) + 7i(s)E(s) = Ile then

X(s)N(s) + Y(s)D(s) 1m, with X(s) = i(s), Y(s) =

+R(s

- X(s)J).

Continuing with the proof of lemma 4.10. Applying lemma 4.15 to T t(s)

we find

(4.16

So combining (4.

6(T)

v(T T(s) 1) = degree t(T T(s)))

.9), (4.12) - (4,14), (4.15) we have

6(T') = (SUT')- ) =

degree(det(T')) = degree(det(Til

= V(T)

which concludes the proof of lemma 4.10.

4.17. Theorem. (upper semicontinuity of (VT)). Let Tc(s) be a
sequence of matrices of rational functions of s. Suppose that the sequence

converges to matrix of rational functions T(s) as c 00 and suppose

that 6(Tc(s)) < n for all large enough c. Then (S(T) < n.

Here a sequence of matrices of rational functions is said to

converge iff the sequences of entries converge in the sense of

section 3 above; i.e. T (s) converges as c co iff lim T (s) exists
c-K0
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for infinitely many s and then the limit is necessarily a matrix .

of rational functions T(s) and lim 
Tc
(s) = T(s) for all but finitely

c-÷00many s.

The proof of the theorem is easy. We have for each m x n matrix

of constants K that

lim det(I +KT (s)) = d t(I +KT(s))
c-+°°

Hence using proposition 3.1 (which among other things contains the

scalar case of theorem (4.16)), or rather using corollary 3.10, and

using the second definition of the degree of a rational matrix

discussed above (cf. (4.4) - (4.6), we have for large enough c

(which may depend on K)

where

6„(T = degree(a,(s)) < degree(a(s)) = K 
(T

c 
< n

,c 

a,(s) aK,c(s)
b (s) - det(I +KT(s)), . 

b 0 (m d t(I +KT (s))m c

(without common factors). It follows that 6(T) = maxl6 (T)1 <
K

It is now not difficult to prove theorem 2.23 without the extra

requirement that the poles of Lc(s) unequal to the finite poles of L(s)

go to -co as c co. Indeed the upper semicontinuity property of theorem

4.17 takes care of the "if" part. So let L(s) be of degree n. Write

L(s) = A(s) + T(s), where T(s) is proper and A(s) is polynomial.

Then 6(L) = (S(T) + 6(A). So if A(s) = lim T (s), with T (s) proper
n4.00 n

and 6(T (s)) < 6(A(s)) we will be done.
n --

4.18. Proposition. Let A(s) be a polynomial matrix of degree 6. Then

there exist a sequence of proper rational matrices T(s) of degree <

such that lim T(s) = A(s).
n->co

• Proof. By multiplying A(s) on the left and on the right with suitable

invertible matrices we can assume that A is 'of the form
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with d g(det(A ))
11 . As above let

IA
11 

A
12

A' =A A
21 22

o

Then = 6(A') = degree det(A'). Now let

1"(s) = nA T(nI+A')

(Note that (nI+A .. 
s)i exists if we assume, as we can, that (S > 0).

Then claerly for a fixed s, lim T'(s) = A'(s). We claim that 1"(s)
11400 n

is proper for all but finitely many n. Indeed for a fixed n

-(4.19) T.'11 = nAt(nI+A) 1

= ((A') +n-li

= nAl(A')

Now because 6(A') = deg(det(A')) we know that (A')-1 is proper.

Let J = lim (A')- . Then if -n
_1 

is not an eigenvalue of -J it follows
s-÷00

from (4.19) that lim r(s) exists, proving that T'(s) is proper for all
s->co

but finitely many n.

Finally, by lemma (4.15), if T'(s) is proper,

(4.20) v(T:1(s)) < deg(det(nI+A'))

Now det(nI+A') is a polynomial in n whose coefficients are sums

of minors of A'. Hence deg(det(nI+A')) < max deg(M) = 6(A') =

where M runs through the minors of A'.

Now let T (s) be obtained from T'(s) be removing the appropriate

columns and rows. Then lim T
n
(s) = A(s), T (s) is proper if r(s) is

114,00
proper and 6(T) < 6(T') proving proposition 4.18.n n



. PROOF OF THE MAIN THEOREM.

5.1. First half of the proof of theorem .2.22. Let Z(c) c:L be a

20

family of systems of dimension n and suppose they converge in

input/output behaviour. This means (cf. 2.10) that for every u E U

the sequence of functions

(5.2) v
z c Y

converges. In turn this means (as in the proof of lemma 2.6) that there

is a b such that for all sufficiently large c

(5.3)

If z E 71L(b° ORP), then sup

b
file- t 

1)-z(t)lidt < m

m so that

which implies (cf. [Doe] or [Zem]) that z(t) is Laplace transformable

and that (Ez)(s) is defined for Re(s)> b+1.

Applying this to the V 
) 
u we see that their Laplace transformsE(c 

are well defined for s > b+1. This gives us a sequence of functions

(5.4)T(s)U(s)

where Y s) is the Laplace transform of V(c)u. 
u T

c 
s) is the transfer.E 

function of E(c) and U(s) is the Laplace transform of u(t).

The Laplace transform £ is continuous when considered as an

operator on the normed spaceT
+1 

ORP) consisting of all locally
b 

integrable functions such that

(5.5) 711 -(b 1)t
Olidt < 00

equipped with the norm defined by the integral (5.5), cf [Doe, Kap.III, §8].() p (,, p
As 

0
Tb aR ) c: ) is a continuous embedding it follows that the

sequence (5.4) converges for Re(s) > b+1 as c 00 . Choosing various

u E U judiciously this implies that the family of rational matrix

functions T(s) converges for infinitely many values of s. According
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to section 4 above this means that there is a rational matrix function

T(8) such that

(5.6) lim T(s) = T(s)
c÷co

and moreover 6(T) < n by the upper semicontinuity theorem 4.17. Write

(5.7) T( s) = T' s)

where T (s) is proper and where L(s) is polynomial. Let E be a co and

cr realization of T' (s) Consider the operator

(5.8) V = + L(D)

Applying this• operator toauEUand taking the :Laplace transform

of the result (which can be done because Vu Elk and all functions

in Vare Laplace transformable) we find (for Re(s) > b' 1, for some

b' > b)

(EVu)(s) = T'( )U + L(s)U(s) = lim T(s)U(s) = lim Yc(s) =
c-co c-÷03

(E(lim y ))(
04,m

where yc = VE(c)u, and where we have again used the same continuity property

of the Laplace transform. The Laplace transform being injective on the

space of functions under consideration it follows that

= lim
E(c)

u
c400

for all u E U. Thus the limit operator is indeed of the form

V = V + L(D) with dim(E) + degree L(s) = 6(T) < n, which finishes

the proof of the first half of theorem 2.22.

To prove the second half we need some lemma's. If A is any matrix

we use the following notation for its various minors:

1"."-r

, • •
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denotes the determinant of the submatrix of A obtained by removing

all rows except those with the indices i • • • i and all columns

except those with the indices j1, jr. Recall that the minors

of a product matrix are given by

(5.9) (AB) = E A

• ,

• k
r

• •

5.10. Lemma. Let L(s) be a polynomial matrix of size p x m. Suppose

that for a certain 1 < r < min(p,m)

(5.11) deg L(s)
, • •

, • •

> deg L(s) r+

Then there exists an invertible p x p matrix of constants A such that

(5.12
1,...

deg (AL(s)) > deg (AL(s)) = r+
1,.

Proof. Let E(c) = E, j E {r+1, ,p} be the matrix with l's on the3
diagonal, a c in spot (j,1) and zero's elsewhere. Then as is easily

checked

and for k j, k E r+

while

, • • • ,

2,...,r,k

•

2,...,r,j

if

1 if

0

1, • • •

otherwise

1 , • 

••

otherwise

{1„r}

,r,

• j:_orc .,ir} = {1,...,r}if {ii,.

0

1

otherwise

if {1 1,...,ir} = 12, ,r,j}

It now follows from the minor product rule (5.9) that

• • • ,p



2,.
(Et)

,r,k

2,. •,r,j

if k = 1

if k E

• ,r

fj}

if k = j
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It follows that (5.12) holds if we take for A a suitable product

of matrices E.(c).

5.13. Lemma. Let L(s) be a polynomial p x m matrix without constant

terms of degree n. Suppose that for a certain r all minors of size

< r have degree < n and that

1,...,r 2,..
5.14) deg(L = n > deg(L

1,.

,r,j

= r+

Let d(s) be the diagonal matrix with diagonal entries (s,1,. .,1)

and let Lt(s) = d(s) L(s). Then Lt(s) is polynomial (because the

first row of L(s) has no constant terms) and deg(L' (s)) = n - 1.

Proof. Because deg(d( )) = 1 and deg L(s) < deg(d(s)) + deg(L (s))

we must have deg(Lt(s)) > n-1. It remains to show that deg(M(s)) < n- .

Let L(s) be the square matrix

where L=

L
11 

Ll
2

L
2

1 L
22

I 1 1 L12
L 
21 

L22

\O I

where L
11 

is the top-left r x r submatrix of E

and where the I's are the appropriate unit matrices. Then

(5.15) deg(L)= deg(E) = deg(d t(L
1 

= d g(det(E)) = n

which implies that E-1 is proper. We claim that the first column

of L 
1
consists of strictly proper rational functions. Indeed the

entries of the first column are the functions



(5.16)

Now if j = 1,

det 1
m+p-r

L, is the determinant of a (r-1) x (
3

24

submatrix of L
11 

and hence deg()) < n by hypothesis. If j = r+ , m

then L. = 0 and finally if j = m + k, k = 1, p-r then

_1 2,...,r,r+k-
L. = L

1 ,...,r
= m + k

which by hypothesis is of degree < n = deg det(L) . This proves

the claim.

Now let d' (s) be the (m+p-r) x (m+p-r) diagonal matrix with

entries (s,1,...,1), and let E' = d'(s)-1E. Then L' is the p x m
top left submatrix of 1' and hence

5.17) degree(L') < degree(E')

On the other hand (E')-1 = (L) d'(s) is still proper because the
--

first column of L
1 
consists of strictly proper rational functions.

Hence (cf. lemma 4.15)

5.18 deg(') =dg((L')-1) < deg(det(E )) =

= deg(det(d 1(s))-1det(E))

= deg(s-idet(L i d) = n -

because L
11 

has no constants. Combining (5.18) and (5.17) we see that

indeed deg(L') < n-1, proving the lemma. (NB it is not true as a rule

that (L')-1 is proper).

Note that lemma 5.13 and 5.10 combine tp give a proof of corollary

2.24.

5.19. Proposition. Let L(s) be a polynomial matrix of degree n. Then

there exists a family of n-dimensional systems E(c) such that the E(c)

converge in input/output behaviour to L(D) : U,-*11, as c ÷00 and such

that moreover the poles of (the transfer functions of) the E(c) all

go t as c

• .4



Proof. This is proved by induction, the case n = 0 being trivial
because L(s) has degree zero iff it is a matrix of constants. The
first thing to do next is to obtain the scalar operator

D:9ROR) $010 as a limit of input/output operators of one
dimensional systems. To this end let E(c), c =

be the family of systems

1,2,... (or C E IR)

(5.20) E(c) = (Fc,Gc = = c, G = -c

The associated input/output operator of E(c) is V : TOR) -3- 12.01c0c

t
(5.21) Vc u t 

Yc(t) 
cu(t) f -c2e-c(t-T T)dT/-+ 

By partial integration (twice) we see that

(5.22) t) = -c-t) - f 
e(tT ( 2 ) T

dT

25

Let b be such that u 2( 1 ° OR) (i.e. sup e-ht i 2) Then if ;() 

= (2)11 
, we have

(5.23) e
- t-T)

(T)dTI < f e-c
T

e M < b+ Me
-1 bt

and it it follows that the y (t) converge to u (0 in OR). More
(i) ( cr(precisely if b is such u , u

2) 
are both in

o) 
OR) then()

° OR) and the (t) converge to u(t) in1F1(3°)OR).
yc(t) 

EF0 

b Yc

Now suppose with induction that the proposition has been proved
for all polynomial matrices of degree < n-1.

Let L(s) be a polynomial matrix of degree n. First note that if
P,Q are invertible matrices of constants then L(D) is the limit of
a family as in the statement of the theorem if and only if PL(D)Q i
Also adding a matrix of constants makes no difference. Removing
the constants and multiplying L(s) on the left and on the right
with suitable invertible matrices of constants we can therefore assume that
for a certain minimal r E1N the topleft r x r minor of L(s) is of degree

n. Using lemma 5.10 and lemma 5.13 we see that after a further

multiplication on the left by an invertible matrix of constants L

factorizes as



1,(s

(0s
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with L (s) polynomial of degree n - I. By induction we have that

there exists a family of (n-1)-dimensional systems

E l(c) = (Ftc,Gfc,Wc,Jd such that the poles of E'(c) go to -co as

c co (if n-I > 0, if n = 1,L'(s) is constant and one takes

E 1(c) = (0,0,0,L')) and such that V

behaviour to L'(s).

Now let E(c) be the composed system

(5.24) E t(c)

E t( )
converges in input/output

where E"(c) is the m input/m output one dimensional system given by

the matrices

F" = -c, G" = , H" =

ic
0

10/

(c
0

•
0 •

I.e. if E t(c) = F',G',11',J' then E(c is given by the matricesc c cc

G"

(5.25) = (J'cH 
c c

, = J'J"
cc

GTH" G' J"
cc a cc

(if n > 1;, if n = 1, Fc = -c, Cc = (-c,0,...,0), Hc = Jc = L'Hp.

Then the E(c) converge in input/output behaviour to L(D). Moreover

(as follows from (5.25)) the poles of (c) go to - as c -÷ because

F" = -c and because the poles of E' (c) go to -co as c -÷ if n > 1.

This proves the proposition.

We can be somewhat more precise about how well the E(c) converge

in input/output behaviour to L(D). Indeed one has

5.26. Corollary. Let L(D) and (E(c)) be as above in the proof of

proposition 5.19. Let b > 0 be such that u, u(1), u

Then there is a constant M such that

n+1)



(5.27) 11 E(c)u - L(D)uII < c- 
ebt

27

In particular if u E Ills of compact support or, more generally if
(n+1)u, u , u are all bounded, we can take b = 0 and for

such input functions u V
E( 

u converges uniformly in t to L(D)u.
c)

This follows readily by induction from the proof of proposition

5.19 above, (5.22), and the estimate (5.23), because L'(D)u is a

uvector of linear combination of the u,u(1) 
(n-1)

,

5.28. Proof of the second half of theorem 2.22. Now let

V: 1A-4- 1ibe an operator of the form V = L(D) + VE with dim(E) + deg(L ) < n.
Let E(c) be a sequence of deg(L(s))-dimensional systems converging

to L(D) in input/output behaviour as in proposition 5.19. Then if

E t(c) is the sum system of E(c) and E, the family E'(c) converges in

input/output behaviour to V. More precisely if E = (F,G,H,J),

E(c) = (Fe,Gc,Hc,Jc) then E t(c) is given by the matrices

Ft
FO G

, G' = , H' = (H H
c 
,

F G
c

= Jc

Because the co and cr systems are open and dense in L we can perturb

each ET(c) slightly to a E"(c) which is co,cr such that E"(c) still

converges to V in input/output behaviour as c 00 , and such that the

behaviour of the poles of the E"(c) as c 4 W is like that of the E t(c)

as c co . This finishes the proof of theorem 2.22.

5.29. Remark. One has of course in the setting of 5.28 above also an

estimate like (5.27) for I1VE (c)u - Vull.

5.30. Remark. If E(c) is e.g. the family of (5.20) above, the Markov

parameters of the .familyJ,HG,HFG,HF2G ... definitely doc cc.ccc cc c'
not converge as c 4 W.

One can of course examine what the possible limits are of families

of systems E(c) of dimension n which converge in input/output operators

and such that moreover the Markov parameters converge as well (or more

generally such that the Markov parameters remain bounded) as c

The answer is simple: the limit operator is then necessarily of the

form V where E is a possibly lower dimensional system. Inversely every

V with dim(E) < n can arise a limit of input/output operators of co

and cr systems of dimension n, cf. Diaz 21.



28

5.31. Approximation by systems with J = 0. Let T(s) be a matrix of

rational functions. Write

(5.32) T(s) - (s) L_

with T (s) strictly proper and L(s) polynomial. Define

nr(T) = dim of theIR-vectorspace spanned by the rows of L(s)

0.33) nc(T) = dim of theR-vectorspace spanned by the columns of L

q(T) = minfn (T), nc(T)1.

E.g. if T(s) = L(s) =

T(s) = L
2 2

( s ), n (T)

1
, then nr(T)

, n (T) = 1.

, nc(T) = 3 and if

Let E realize T (s). Then the operator V + L(D) is the limit in

input/output behaviour of a family of (deg(T(s)) + q(T(s))) - dimensional

systems.

This can be seen as follows. Because T(s) is strictly proper it_

suffices to see that L(D) can be obtained as the limit of the input/

output operators of a family of deg(L(s)) + q(L(s)) dimensional systems.

Assume for definitiveness that q(T) = nc(T). Then we can factorize L(s)

as

• LT(s) 0)Q

where Q is a square invertible matrix of constrnts and L'(s) has q(T)

columns. It now clearly suffices to obtain L' (D) as a limit of

deg(L) + q(L) dimensional systems. To this end let E( ) be a family

of systems converging to L(D) of dimension deg(L) and let E'(c) be a

q = q(L)-dimensional family of systems with J = 0 for all c with limit

input/output operator equal to I, the q x q identity matrix. Such a

family is e.g. given by the matrices

(c) 
=0

0 c 
.• %.
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Let T4 (s) be the transfer function matrix of E'(c) and T(s) that of

E(c). Then the (q+deg(L))-dimensional system E"(c) obtained by applying

first Z/(c) and then E(c) has transfer function matrix Tc(s)n(s),

which is strictly proper, and the E"(c) converge in input/output

behaviour to L' (s)

This result is optimal if p = 1 or m = 1, but, though definitely

generically best possible (meaning that for almost all T(s) with given

q(T) = q, deg(T) + q is the best one can do), it is not best possible

for every particular T(s). E.g. the factorization

L(s) =
152
\s

3.
s )

2 
(0 1) (

0)• s
1) k 0 0 )

shows that this L(s) can be obtained as the input/output limit of a

family of four dimensional systems with J = 0, although deg(L) = 3

and q(L) = 2.
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