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(FINE) MODULI (SPACES) FOR LINEAR SYSTEMS:
WHAT ARE THEY AND WHAT ARE THEY GOOD FOR.

‘Michiel Hazewinkel

Lectures given at the NATO-AMS Adv. Study Inst. and Summer
Sem. in Appl. Math. on Algebraic and Geometric Methods in

Linear System Theory (Harvard Univ., June, 1979).

ABSTRACT.

This tutorial and expository paper considers linear dynamical
systems x = Fx + Gu, y = Hx, or, x(t+l) = Fx(t) + Gu(t), y(t) = Hx(t);
more precisely it is really concerned with families of such, i.e.,
roughly speaking, with systems like the above where now the matrices
F,G,H depend on some extra’parameters 0. After discussing some
motivation for studying families (delay systems, systems over rings,

n-d systems, perturbed systems, identification, parameter uncertainty)

we discuss the classifying of families (fine moduli spaces). This is
followed by two straightforward applications: realization with parameters

and the nonexistence of global continuous canonical forms. More applications,
especially to feedback will be discussed in Chris Byrnes' talks at this
conference and similar problems as in these talks for networks will be
discussed by Tyrone Duncan. The classifying fine moduli space camnot

readily be extended and the concluding sections are devoted to this

observation and a few more related results.
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1. INTRODUCTION.

The basic object of study in these lectures (aé in many others at this
conference) is a constant linear dynamical system, that is a system of
equations
(r.ny x = Fx + Gu x(t+1) = Fx(t) + Gu(t)

y = Hx @) y(t) = Hx(t)

(a): continuous time (b): discrete time

with x € k" = space space, u € K= input or control space, y € kP = output-
space, and F,G,H matrices with cocefficients in k of the appropriate sizes;
that is, there are m inputs and p outputs and the dimension of the state
space, also called the dimension of the system ¥ and denoted dim(Z), is n.
Here k is an appropriate field (or possibly ring). In the continuous time
case of course k should be such that differentiation makés sense for (enough)
functions]R >k, e.g. k =R or L. Often one adds a direct feedthrough term
Ju, giving y = Hx + Ju in case (a) and y(t) = Hx(t) + Ju(t) in case (b)
instead of y = Hx and y(t) = Hx(t) respectivelys forthe mathematical problems
to be discussed below the presence or absence of J is essentially irrelevant.
" More precisely what we are really interested in are families of objects
(1.1), that is sets of equations (1.1) where now the matrices F,G,H depend
on some extra parameters o. As people have found out by now in virtually
all parts of mathematics and its applications, even if one is basically
interested only in single objects, it pays and is important to study families
of such objects depending on a small parameter € (deformation and perturbation
considerations). This could be already enough motivation to study families,
but, as it turns out, in the case of (linear) systems theory there are many
more circumstances where families turn up naturally. Some of these can be
briefly summed up as delay-differential systems, systems over rings, continuous
canonical forms, 2-d and n-d systems, parameter uncertainty, (singularly)
perturbed systems. We discuss these in some detail below in section 2.
To return to single systems for the moment. The equations (1.1) define
iqput/output maps fZ : u(t)— y(t) given respectively by
t

(1.2a) y(t) =/ H
o

eF(t—T)Gu(T)dT, ' t>0

(1.2b) y(t) R Agu(t-1-1), A,




where we have assumed that the system starts in x(0) = 0 at time 0. In both
cases the input/output operator is uniquely determined by the sequence of
matrices A], A2’ ... . Inversely, realization theory studies when a g%ven
1° A2, ... is such that there exist F,G,H such that Ai = HFl’JG

for all i. Realization with parameters is now the question: given a sequence

sequence A

of matrices A](O), AZ(G), A3(0), ... depending polynomially (resp. continuously,
resp. analytically, resp. ...) on parameters o, when do there exist matrices
F,G,H depending polynomially (resp. continuously, resp. analytically, resp....)
on the parameters o such that Ai(c) = H(O)Fi—](O)G(O) for all i. And to what
extend are such realizations unique? Which brings us to the next group of

questions one likes to answer for families.

A single system I given by the triple of matrices F,G,H is completely

reachable if the matrix R(F,G) consisting of the blocks G, FG, ..., F'e

(1.3) R(E) = R(F,G) = (G!FG!} ... | F°G)

§

has full rank n. (This means that any state x can besteered to any other
state x' by means of a suitable input). Dually the system L is said to be

completely observable if the matrix Q(F,G) consisting of the bloeks

H, HF, ..., HF"

H
’ HF
(1.4) QD) = QF,H) = |

HF®

has full rank n. (This means that two different states x(t) and x'(t) of the

system can be distinguished.'on the basis of the output y(1) for all T > t).

As is very well known if A,, A ... can be realized then it can be realized

1’ 2’
by a co and cr system and any two such realizations are the same up to
base change in state space. That is, if I = (F,G,H) and L'= (F',G',H') both

realize A], A2, ... and both are cr and co then dim(X) = dim(Z') = n and

there is an invertible n X n matrix S such that F' = SFS_I, G' = SG,

-1 . . . . .
H' = HS '. (It is obvious that if I and I' are related in this way then

they give the same input/output map). This transformation

1 1

S -— -—
(1.5) = (F,G,H)— I° = (F,G,H)> = (sFs™!,sc,us 1)
corresponds of course to the base change in state space x' = Sx. This argues
that at least one good notion of isomorphism of systems is: two systems I, L'

over k are isomorphic iff dim(Z) = dim(Z') and there is an S € GLn(k), the




group of invertible matrices with coefficients in k, such that %' = ZS

A corresponding notion of homomorphism is: a homomorphism from

% = (F,G,H), dimf = n, to &' = (F',G',H'), dimX = n', is an n x n' matrix
B (with coefficients in k) such that BG = G', BF = F'B, H'B = H. '

Or, in other words, it is a linear map from the state space of I to the

state space of L' such that the diagram below commutes.
F K"
—_—
&3
H 1
k

B

v

The obvious corresponding notion of isomorphism for families

2(0), Z'(0) is a family of matrices S(0) such that Z(O)S(O) = ¥'(0),

F'

B ——

where, of course, S(0) should depend polynomially, resp. continuously,
resp. analytically, resp.... on 0 if ¥ and L' are polynomial, resp.
continuous, resp. analytical, resp...,families. One way to look at the
results of section 3 below is as a classification result for families,
or, even, as the construction of canonical forms for families, under the
notion of isomorphism just described. As it happens ‘the classification
goes in terms of a universal family, that is, a family from which,
roughly speaking, all other families (up to isomorphism) can be uniquely
obtained via a transformation in the parameters.

Let Lm n p(k) be the space of all triples of matrices (F,G,H) of

> co,cr

dimensions nxn, nxm, pxn, and let L be the subspace of cr and co

sttty
triples. Then the parameter space for the universal family is the quotient

co
space L_ 2
m,n

C;(k)/GLn(k), which turns out to be a very nice space.
H .

The next question we shall take up is the existence or nonexistence
. . . . co,cr
of continuous canonical forms. A continuous canonical form on Lm ; 5
b b
is a continuous map (F,G,H)~ c(F,G,H) such that c(F,G,H) is isomorphic

to (F,G,H) for all (F,G,H) € L;O’c; and such that (F,G,H) and (F',G',H')
b b

are isomorphic if and only if c(F,G,H) = c(F',G',H') for all (F,G,H),

F',G',H') € LE°¢F
(F',6' 0 € L502T

get rid of superfluous parameters in an identification problem the

. Obviouslykif one wants to use canonical forms to

canonical form had better be continuous. This does not mean that
(discontinuous) canonical forms are not useful. On the contrary, witness
e.g. the Jordan canonical fofm for square matrices under similariby. On the
other hand, being discontinuous, it also has very seridus drawbacks; cf.

e.g. [GWi] for a discussion of some of these. In our case it turns out that
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co,cCr

there exists a continuous canonical form on all of L if and only if

’n’
m=1orp=1.

Now let, again, I be a single system. Then there is a canonical
subsystem Z(r) which is completely reachable and a canonical quotient
system £%° which is completely observable. Combining these two constructions
one finds a canonical subquotient (or quotient sub) which is both cr and
co. The question arises naturally whether (under some obvious necessary
conditions) these constructions can be carried out for families as well
and also for single time varying systems. This is very much related
to the question of whether these constructions are continuous. In the
last sections we discuss these questions and related topics like: given
two families ¥ and %' such that I(0) and I'(0) are isomorphic for all
(resp. almost all) values of the parameters o; what can be said about
the relation between £ and L' as families (resp. about Z(0) and X'(0)

for the remaining values of 0).

2. WHY SHOULD ONE STUDY FAMILIES OF SYSTEMS.

For the moment we shall keep to the intuitive first approximation of
a family of systems as a family of triples of matrices of fixed size
depending in some continuous manner on a parameter 0. This is the

definition which we also used in the introduction.

2.1. (Singular) perturbation, deformation, approximation.

This bit of motivation for studying families of objects, rather than
just the objects themselves, is almost as old as mathematics itself.
Certainly (singular) perturbations are a familiar topic in the theory
of boundary value problems for ordinary and partial differential equations
and more recently also in optimal control, cf. e.g. [OMal.

For instance in [OMal], chapter VI,0'Malley discusses the singularly
perturbed regulator problem which consists of the following sét of
equations, initial conditions and quadratic cost functional which is to be

minimized for a control which drives the state x = (Z) to zero at time t = 1.

§ = A[(E)y + Ay(©)z + By ()u y(0,) =y ()
(2.1.1) €5 = A%(e)y + A, (e)z + By()u 2(0,€) = z°(€)

J(e) = x (1,e)m(e)x(l,e) + } (xT(t,e)Q(e)x(t_,e) + uT(t,E:)R(E)u(t,e))dt
(o]

with positive definite R(e), and Q(g),m(g) positive semidefinite. Here the

upper T denotes transposes. The matrices Ai(s), i=1,2,3,4, Bi(E), i=1,2,




n(), Q(), R(e) may also depend on t. For fixed small ¢ > 0 there is a
unique optimal solution. Here one is interested, however, in the
asymptotic solution of the problem as € tends to zero, which is, still
quoting: from [OMa] a problem of considerable practical importance, in
particular in view of an example of Hadlock et al. [HJK] where the
asymptotic results are far superior to the physically unacceptable
results obtained by setting € = O directly.

Another interesting problem arises maybe when we have a system

(2.1.2) %X = Fx + G]u + G2v, y = Hx

where v is noise, and where F, G], GZ’H depend on a parameter €.

Suppose we can solve the disturbance decoupling problem for € = 0. I.e.

we can find a feedback matrix L such that in the system with state feedback

loop L

x = (F+GL)x + G]u + sz, y = Hx

\

the disturbances v do not show up any more in the output y, (for € = 0).
Is it possible to find a disturbance discoupler L(g) by "perturbation"
methods, i.e. as a power series in € which converges (uniformly) for ¢
small enough, and such that L(0) = L.

In this paper we shall not really pay much more attention to
singular perturbation phenomena. For some more systems oriented material

on singular perturbations cf. [KKU] and also [Haz 4].

2.2. Systems over rings.

Let R be an arbitrary commutative ring with unit element. A linear
system over R is simply a triple of matrices (F,G,H) of sizes n X n, n X m,
p x n respectively with coefficients in R. Such a triple defines a linear

machine

(2.2.1)  x(t+1) = Fx(t) + Gu(t), t = 0,1,2,..., x € R%, u € R©
y(t) = Hx(t), y € RP

which transformes input sequences (u(0),u(1),u(2),...) into output sequences
(y(l),y(Z),y(B),...)baccording to the convolution formula (1.2.b).
It is now absolutely standard algebraic geometry to consider these

data as a family over Spec(R), the space of all prime ideals of R with the




Zariski topology. This goes as follows. For each prime ideal p let
i? : R >~ Q(R/P) be the canonical map of R into the quotient field
Q(R/p} of the integral domain R/r). Let (F(T), G(p), H(P)) be the triple
of matrices_over Q(Rfr) obtained by applying i7° to the entries of
F,G,H. Then ZCP) = (F(F),G(P),H(r)) is a family of systems parametrized
by Spec(R). '

Let me stress that, mathematically, there is no difference between
a system’over R as in (2.2.1) and the family Z(r) . As far as intuition
goes there is quite a bit of difference, and the present author e.g.
has found it helpful to think about families of systems over Spec(R)
rather then single systems over R. Of course such families over Spec(R)
do not quite correspond to families as one intuitively thinks about them.
For instance if R = Z = the integers, then Spec(Z ) consists of (0)
and the prime ideals (p), p a ﬁrime number, so that a system over Z
gives rise to a certain collection of systems: one over ) = ratiohal
numbers, and one each over every finite fieldIFp = Z [(p). Still the
intuition one gleans from thinking about families as families parametrized

continuously by real numbers seems to work well also in these cases.

2.3. Delay-differential systems.

Consider for example the following delay-differential system

i](t) x](t-2) + x2(t-a) + u(t=1) + u(t)
(2.3.1) .iz(t)‘— x, () + x,(t=1) + u(t-0)

y(t) = x,(£) + x,(t-20)
where 0. 'is some real number incommensurable with 1. Introduce the delay

operators 0, 0, by G]B(t) = B(t-1), GZB(t) = B(t-0). Then we can rewrite
(2.3.1) formally as

(2.3.2) x(t) = Fx(t) + Gu(t), y(t) = Hx(t)

with

(2.3.3)




and, forgetting so to speak where (2.3.2), (2.3.3) came from, we can view
this set of equations as a linear dynamical system over the ring m[al,uz],
and then using 2.2 above also as a family of systems parametrized by the
(complex) parameters 015 0y 5 2 point of view which has proved fruitfull
e.g. in [By 4]. This idea has been around for some time now,

[ZW, An, Yo, RMY], though originally the tendemcy was to consider -these
systems as systems over the.fieldsIR(d],...,oz); the idea to consider

them over the ringsIR[Ol,...,OZ] instead is of more recent vintage([Mo,Kam]).

There are, as far as I know no relations between the solutions of
(2.3.1) and the solutions of the family of systems (2.3.2), (2.3.3). Stiil
many of the interesting properties and constructions for (2.3.1) have their
counterpart for (2.3.2), (2.3.3) and vice versa. For example to construct
a stabilizing state feedback loop for the family (2.3.2) - (2.3.3)
depending polynomially on the parameters 0,5 0, that is finding a

stabilizing state feedback loop for the system over]R[ol,oz],means finding

an m X n matrix L(ol,oz) with entries inﬁm[ol,cz] such that for all complex

0,50, det(s-(F+GL)) has its roots in the left half plane. Reinterpreting
9, and g, as delays so that L(cl,oz) becomes a feedback matrix with delays
one finds a stabilizing feedback loop for (the infinite dimensional)
system (2.3.1). (cf. [BC], cf. also [Kam ], which works out in some
detail some of the relations between (2.3.]) and (2.3.2) - (2.3.3) viewed
as a system over the ringimlcl,oz])

As another example a natural notion of isomorphism for systems
'Y = (F,G,H), ' = (F',G',H') over a ring R is: L and L' are isomorphic if
there exists an n x n matrix S over R, which is invertible over R, i.e.
such that det(S) is a unit of R, such that I' = 55, Taking R =IR[01,02]
and reinterpreting the o, as delays we see that the corresponding notion
for the delay-differential systems is coordinate transforma&tions with
time delayswhichis precisely the right notion of isomorphiém for studying
for instance degeneracy phgnomena, cf[Kap].

Finally applying the Laplace transform to (2.3.1) we find a transfer
function T(s,e_s,e_as), which is rational in s,e-S and e >5. It can also

be obtained by taking the family of transfer functions T 5 (s) =
1°72
: - . . . = 2 -
H(OI’OZ)(S—F(OI’GZ)) IG(OI’OZ) and then substituting e S for o, and e s
for Oy- Inversely given a transfer function T(s) which is rational in

=8~ =08 . . .
s,e ,e one way ask whether it can be realized as a system with delays

. . . -s ~0s
which are multiples of 1 and a. Because the functions s, e ', € are

algebraically independant (if o is incommensurable with 1), there is a unique




rational function %(3,01,02) such that T(é) = %(s,e-s,e-as) and the
realizability of T(s) by means of a delay system, say a system with trans-
mission lines, is now mathematically equivalent with realizing the two
parameter family of transfer functions T(s,ol,czl by a family of systems

which depends polynomally on O1s Ope
2.4, 2-d and n - d systems.
Consider a linear discrete time system with direct feed-through term
(2.4.1) x(t+l) = Fx(t) + Gu(t), y(t) = Hx(t) + Ju(t)
The associated input/output operator is a convolution operator, viz.
(cf.(1.2.b))
t

(2.4.2) y(8) = I Au(t-i), A= J, A; = gF G for i = 1,2,
i=o - :

Now there is . an obvious (north—east causal) more dimensional,

generalization of the convolution operator (2.4.2), viz.

h k
(2.4.3) y(h,k) = I I A, .u(bh-i,k-j), hk = 0,1,2,...
i=o j=o *?

A (Givone-Roesser) realization of such an operator is a '"2-d system"

x](h+l,k) = F ;% (k) + F (h,k) + G]u(h,k)

12%2
%X, (h,k+1) = F, x (h,k) + Fyox,(h,k) + Gyu(h,k)

y(h,k) = H x, (h,k) + Hyx,(h,k) + Ju(h,k)

which yields an input/output operator of the form (2.4.3) with the Ai 5
. B b
determined by the power series development of the 2-d transfer function

T(s],sz)

i - | Py Tl
(2.4.5) .Z.Ai,jsl Sy = T(s],sz) = (H] H2) : -

i2
0 |
19.] S I J
2'ny \Fy, F22’/

Gl\*rJ
el

Z

|
|
\

where Ir is the r x r unit matrix and n, and n, are the dimensions of the
state vectors xi and Xy There are obvious generalisations to n-d systems,
n > 3. The question now arises whether every proper 2-d matrix transfer
function can indeed be so realized. (cf.[ Eis] or [So2] for a definition

of proper. A way to approach this is to treat one of the s, as a parameter,




giving us a realization with parameters problem.

More precisely let Rg be the ring of all proper rational functions in
Sy In the 2-d case this is a principal ideal domain which simnlifies
things.considerably. Now consider T(sj,szl as a proper rational function
in Sy with coefficients in Rg' This transfer function can be realized
giving us a discrete time system over Rg defined by the quadruple of
matrices (F(Sl)’ G(s]), H(Sl)’ J(s])). Each of these matrices is proper
as a function of 8 and hence can be realized by a quadruple of constant

matrices. Suppose that

(FF7GF’HF’JF) realizes F(s])

(Fg,Gg,Hg,Jg) realizes G(Sl)

(F realizes H(s])

H’GH ’HH,JH)

(FJ,G JJ) realizes J(sl)

J’HJ’

Then, as is easily checked, a realization in the sense of (2.4.4) is defined

by

This is the procedure followed in [Eis] ; a somewhat different approach,
with essentially the same initial step (i.e. realization with parameters,

or realization over a ring) is followed in [So2].

2.5, Parameter Uncertainty.

Suppose that we have a system I = (F,G,H) but that we are uncertain about
some of its parameters, i.e. we are uncertain about the precise value of
some of the entries of F,G or H. That is,what we really have is a family of.
systems Z(B), where B runs through some set B of parameter values, which

we assume compact. For simplicity assume that we have a one input-one output

system. Let the transfer function of Z(B) be TB(S) = fB(S)/gB(S)- Now

suppose we want to stabilize I by a dynamic output feedback loop with
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~transfer function P(s) = $(s)/P(s), still being uncertain about the value of
B. The transferfunction of the resulting total gystem is T(s)/(1-T(s)P(s)).
So we shall have succeeded if we can find polynomials ¢(s) and {(8) such
that for all B € B all roots of

gB(S)w(S) + f6(8)¢(S)

are in the left halfplane, possibly with the extra requirement that P(s)
be also stable. The same mathematical question arises from what has been
named the blending problem, cf [Tal].It cannot always be solved. In the
special but important case where the uncertainty is just a gain factor,

i.e. in the case that B is an interval [bl’bz]’b > b, > 0 and

2

TB(s) = BT(s), where T(s) is a fixed transforfunction, the problem is

solved completely in [Tall.

3. THE CLASSIFICATION OF FAMILIES. FINE MODULI SPACES.

3.1. Introductory and Motivational Remarks.

(Why classifying families isvessentially more difficult than
classifying systems and why the set of isomorphism classes of (single)
systems should be topologized). ‘

Obviously the first thing to do when trying to classify fémilies up
to isomorphism is to obtain a good description of the set of isomorphism
classes of (single) systems over a field k, that is to obtain a good

d ipti f the set = i
escription o e sets Lm,n,p(k)/GLn(k) Mm n,p(k> and of the quotient

’

map Lm,n,p(k) -> Mm,n,p(k)’ This will be done below in section 3.2

for the subset of isomorphism classes (or sets of orbits) of completely
reachable systems. This is not particularly difficult (and also well known)
nor is it overly complicated to extend this to a description of all of

Mm,n,p(k) = Lm,n,p(k)/GLn(k)’ cf. [Haz6]. Though, as we shall see, there

are, for the moment, good mathematical reasons, to limit ourselves to

cr systems and families of cr systems, or,dually,to limit ourselves to co systems.
Now let us consider the classification problem for families of systems.

For definiteness sake suppose we are interested (cf. 2.1 and 2.3 above e.g.)

in real families of systems I(0) = (F(0), G(0), H(0)) which depend

continuously on a real parameter ¢ € R. The obvious, straightforward and

in fact right thing to do is to proceed as follows. For each ¢ € R we have




a system Z(0), and hence a point ¢(0) € Mm,n,pGR) = m n’p(lR)/GL @®),

the set of isomorphism classes or, equivalently, the set of orbits in

. S ) )
Lm,n’pGR) uhder the action (Z,8)+ L° of GLnGR) on Lm,n,pGR)‘ This defines

a map $(Z): R -+ Mm 0 pGR), and one's first guess would be that two families
9’ 5
Z,L' are isomorphic iff their associated maps ¢(Z), ¢$(X') are equal.
However, things are not that simple as the following example in L] 9 ]GR)
’ b

shows.

2@ = (', 9., a2,

1

2'.(0) = (( (]))’ ((l))’ (]920))

For each 0 € R, (o) and I'(o) are 1somorph1c via T(g) = ( 0 ) ifo#0
0 o

and via T(o) = (1 2) if 0 = 0. Yet they are not isomorphic as continuous

families, meaning that there exists no continuous map]R -+ GL GR),
o+ T(0), such that I'(o) = Z(G)T(O) for all o € R. One mlght guess that
part of the problem is topological. Indeed,it is in any case sort of

sty

Otherwise the map ¢$(Z): R - M.m n pCIR) does not tell us whether it could

obvious that one should give Mm n p(IR) as much structure as possible.

>,
have come.from a2 continuous family. (Of course if Z(0) is a continuous
fam11y over R giving rise to ¢(X) and S € GL GR) is such that Z(O) # Z(O)
then the discontinuous family I'(0), I'(0) = Z(G) for 0 # 0, £'(0) = Z(O)
gives rise to the same map). Similarly we would like to have ¢(Z) analytic
if T is an analyticAfamily, polynomial if I is polynomial, differentiable
if ¥ is differentiable, ... | ‘

One reason to limit oneselve to cr systems is now that the natural
topology (which is the quotient topology for m: Lm n,paR) - m n,pGR)) will
not be Hausdorff unless we limit ourselves to cr systems. (It is clear that
one wants to put in-at least all co,cr systems).

There are more reasons to topologize Mm,n,pGR) and more generally

Mm n p(k), where k is any field. For one thing it would be nice if
bR ]

n pGR) had a topology such that the isomorphism classes of two systems I |
b ’

and ' were close togéther if and only if their associated input/output maps

were close together (in some suitable operator topology; say the weak

topology), a requ1rement whlch is also relevant to the consistency
B
1

requlrement of max1mum 11ke1yhood 1dent1f1cat10n of systems 5 cf
ll:i

[ De,DDH,DH,DS Han] R : B




Jet topologizing M.m n p(]R) does not remove the problem posed by example
L] b

(3.1.1). Indeed, giving Mo pCIR) the quotient topology inhetrited from
’ b

n pGR) the maps defined by the families L and L' of example (3.1.1)
’ b

are both continuous.

Restricting ourselves to families consisting of cr systems (or dually
to families of co systems), however, will solve the problem posed by
example (3.1.1). This same restriction will also see to it that the
quotient topology is Hausdorff and it will turn out that M;fn’pGR)/GLnGR)
is naturally a smooth differentiable manifold. From the algebraic geometric
point of view we shall see that the quotient Lcrn /GL exists as a smooth
scheme defined over Z . It is also pleasant to ;o;ice that for pairs of
matrices (F,G) thebprestable ones (in the sense of [Mul) are precisely
the completely reachable ones ([Ta2]) and they are also the semi-stable
points of weight one, [Hil.

- Ideally it would also be true that every continuous, differentiable,
polynomial,... map ¢ : R ~ M;fn’pGR) comes from a continuous, differentiable,

polynomial,... family. This requires assigning to each point of M;rn pGR)
b L]

a system represented by that point and to do this in an analytic manner.
This now really requires a slightly more sophisticated definition of
family then we have used up to now, cf. 3.4. below. And indeed to obtain

e.g. all continuous maps of say the circle into M (R) as maps associated
b b

to a family one also needs the same more general conceptof families of system

over the circle.

2 . . . cr .
3 Description of the quotient set (or set of orbits) L o (k) /GL_ (k)

b ]

Let k be any field, and fix n,m,p € N. Let

(3.2.0) 3 = {0,1,00,2), L.ty (Oum; (1,1, e, (Tm)s el

(n,1)5 oees (n,m)};

lexicographically ordered (which is the order in which we have written down

the (n+1)m elements of Jn m). We use Jn to label the columns of the matrix
bl b

R(F,G), F € k™", ¢ € ™™, cf. 1.3  above, by éssigning the label (i,])
to the j-th column of. the block FiG.

A subset o = J is called nice if (i,j) € o = (i-1,j) €a or i =0
b . .
for all i,j. A nice subset with precisely n elements is called a nice selection.
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Given a nice selection 0, a successor index of o is an element (i,j) € Jn _—
9

such that o U {(i,j)} is nice. For every jo € {1,...,m} there is precisely

one successor index (i,j) of o with j = jo' This successor index will be
denoted s(a,jo).
Pictorially these definitions look as follows. We write down the

elements of Jn o in a square as follows (m=4,n=5)
b

(0,1) 1,1) (2,1) @G, 4,1) (5,1)
(0,2) 1,2) (2,2)  (3,2) (4,2) (5,2)
(0,3) (1,3) (2,3)  (3,3) (4,3) (5,3)
(0,4) (1,4) (2,4)  (3,4) (4,4) (5,4)
Using dots to represent elements of Jn o and x's to represent elements of

o the following pictures represent respectively a nice subset, a not nice

subset and a nice selection.

The successor indices of the nice selection o of the third picture above

are indicated by *'s in the picture below

We shall use Lm n(k) to denote the set of all pairs of matrices (F,G)

bl
. . . cr
over k of sizes n ¥ n and n x m respectively; Lm n
° E

completely reachaBle pairs (cf. 1.3 above). For each subset B € J

(k) denotes the subset of

n,m

and each (F,G) € Lm n(k) we shall use R(F,G)B to denote the matrix obtained
b

from R(F,G) by removing all columns whose index is not in B.

With this terminology and notation we have the following lemma,

3.2.3. Nice Selection Lemma.

Let (F,G) € L;rn(k). Then there is a nice selection o such that’
b

det(R(F,G)u) # 0.




Proof. Let o be a nice subset of Jn o such that the columms of R(F,G)a
5
are linearly independant and such that o is maximal with respect to this

property.
Let o = {(O,j])’ e o0y (i],j]); (Ojjz)’ e ey (izajz); e e ; (O’js)’ ooy (iS’jS)}.

By the maximality of o we know that the successor indices s(a,j), i=1, ..., m
are linearly dependant on the columns of R(F,G)a. I.e. the columns with

indices (ifﬂ,jl), cees (is+1,js) and (0,t), t € {1,...,m} ~ {jl""’js}

are linearly dependant on the columns of R(F,G)a. Suppose now that with
induction we have proved that all columns with indices (ir+2,jr), r=1,
and (2-1,t), t € {1,...,m} ~ {j]”"’js} are linearly dependant on the
columns of R(F,G)a, 2 > 1. This gives us certain relations
2-1 C i i i
F Gt = z a(i,j)F G., F G. = z b(1,3)F G.

(i,})€a ] It (i,))e ]

(where Gt denotes the t-th column of G). Multiplying on the left with F

we find expressions

9 s 1 +9+1 g
F s a@,prtle., FT ¢, = 3¢ bd,prtle,
t (i,3)€ j ir L ]
i,j)€a (i,i)e€o
3 ir+£+1
expressing F Gt and F Gj as linear combination of those columns of
r
R(F,G) whose indices are either in o or a successor index of a. The latter
are in turn linear combinations of the columns of R(F,G)a, so that we have
proved that all columns of R(F,G) are linear combinations of the columns
of R(F,G)a. Now (F,G) is cr so that rank(R(F,G)) = n, so that o must have had
n elements, proving the lemma.

For each nice selection o we define

(3.2.4) U, (k) = {(F,G,H) € Lm’n,p(k)ldet(R(F,G)a) # 0}

l,sc,Hs"l).

Recall that GLn(k) acts on Lm n p(k) by (F,G,H)S = (SFS_

3.2.5. Lemma. q} is stable under the action of GLn(k) under Lm (k). For

b b
each ¥ € (F,G,H) € Ua there is precisely one S € GLn(k) such that

S - | -
R(Z") = R(SFS I,SG)a = In’ the n x n identity matrix.

Proof. We have

1

(3.2.6) R(Z°) = R(sFS~!,SG) = SR(F,G) = S R(Z)




It follows that R(Zs)a = SR(Z)a, which proves the first statement. It also
follows that if we take S = R(F,G);] then R(Zs)a = In and this 1s also
the only S which does this because in the equation S R(Z)a = R(Zsla, R(Z)a has

rank n.

3.2.7. Lemma. Let x o X be an arbitrary m-tuple of n-vectors over k,

]’
and let o be a nice selection. Then there is precisely one pair (F,G) € L;rn(k)

b
such that R(F,G)u = In’ R(F,G) = Xj’ j=1, ..., m.

s(a,j)

Proof (by sufficiently complicated example). Suppose m = 4, n =5 and that
O is the nice selection of (3.2.2) above. Then we can simply read off the
desired F,G. In fact we find G] = X, G2 = e G3 = X5, G4 = ey, F1 = ej,
F2 = e F3 = Xg» F4 = eg, F5 = X,. Writing down a fully gene;al proof is a
bit tedious and notationally a bit cumbersome and it should now be trivial

exercise.

3.2.8. Corollary. The set of orbits Ua(k)/GLn(k) is in bijective correspondence

with K™ x kP, and Ua(k) i GLn(k) x (K"™xkP™) (as sets with GLn(k)-action,
where GLn(k) acts on GLn(k) X (knmxkpn) by multiplication on the left on the
first factor).

Proof. This follows immediately from lemma 3.2.5 together with lemma 3.2,6.
Indeed given I = (F,G,H) € U . Take S = R(F,G);l and let (F',G',H') = 1>,
Now define ¢ : Ua(k) - GLn(k) b (knmxkpn) by assigning to (F,G,H) the matrix

S-]; the m n-vectors R(ZS) =1, ..., mand the p x n matrix H'.

: “ s(a,3)7 7

Inversely given a T € GLn(k), m n-vectors xj, j=1, ..., mand a p x n

matrix y. Let (F',G') € L;rn(k) be the unique pair such that R(F',G’)a = In’
b

R(F',G'") X. j =1, ..., m. Take H' = y and define

sa,3) ~ *j
Vs GL (k) X (&™™KPT) > U (k) by B(T, (x,y)) = (F',6',H") . It is trivial

to check that Y¢ = id, ¢ = id. It is also easy to check that ¢ commutes with
the GLn(k)-actions.

3.2.9. The Cyy, (1ocai) canonical forms. For each L € Ua(k) we denote

with c#a(Z) the trlple:'
(3.2.10) c, (I) = £° with § = R(Z)_!
*ee fo a

i.e. c#a(Z) is the unique triple L' in the orbit of I such that




Proof. Let o be a nice subset of Jn n such that the columns of R(F,G)a
5
are linearly independant and such that o is maximal with respect to this

property.
Let o = {(O,j])’ * o0y (i],j]); (O’jz)’ e ey (izsjz); * o ; (O’js)’ L] (iS,jS)}.

By the maximality of o we know that the successor indices s(a,j), i=1, ..., m
are linearly dependant on the columns of R(F,G)a. I.e. the columns with

indices (ifd’jj)’ cees (is+l,js) and (0,t), t € {1,...,m} ~ {j]’°"’js}

are linearly dependant on the columns of R(F,G)a. Suppose now that with
induction we have proved that all columns with indices (ir+2,jr), r=1,
and (2-1,t), t € {1,...,m} ~ {j],...,js} are linearly dependant on the
columns of R(F,G)a, 2 > 1. This gives us certain relations

i +2

G = =% a(i,j)FIGj, F' 6. = 2 b(i,j)FlGj

t o, jea Ir  (i,))ea

2-1

(where G, denotes the t-th column of G). Multiplying on the left with F
we find expressions '
Ple, = & al,prle,, . b(i, HFT e,

(i,j)€a J It (i,j)ea ]

; 2 1 +2+1 »
expressing F Gt and F G.r as linear combination of those columns of
R(F,G) whose indices are either in o or a successor index of o. The latter
are in turn linear cpmbinations of the columns of R(F,G)a, so fhat we have
proved that all columns of R(F,G) are linear combinations of the columns
of R(F,G)a. Now (F,G) is cr so that rank(R(F,G)) = n, so that o must have had
n elements, proving the lemma.

For each nice selection o we define

(3.2.4) U, () = {(F,G,H) € Lm’n’P(k)ldet(R(F,G)a) # 0}

1 1

Recall that GLn(k) acts on Lm ,SG,HS- ).

S -
’n,p(k) by (F,G,H) = (SFS

3.2.5. Lemma. U is stable under the action of GL_ (k) under L (k). For
— OL‘ n m9n’p_
each ¥ € (F,G,H) € Ua there is precisely one S € GLn(k) such that

g - :
R(Z”) = R(SFS l,SG)a = In, the n x n identity matrix.

Proof. We have

1

(3.2.6) R(ZS) = R(SFS ',SG) = SR(F,G) = S R(X)




It follows that R(Zs)a = SR(Z)a, which proves the first statement. It also
follows that if we take S = R(F,G)&] then R(Zs)a = In and this is also
the only S which does this because in the equation S R(Z)a = R(Zs)a, R(Z)a has

rank n.

3.2.7. Lemma. Let x sy X be an arbitrary m-tuple of n-vectors over k,

]’
and let o be a nice selection. Then there is precisely one pair (F,G) € L;rn(k)
b

such that R(F,G)u = In’ R(F’G)s(a 3) = Xj’ j=1, ..., m.
b

Proof (by sufficiently complicated example). Suppose m = 4, n = 5 and that
o is the nice selection of (3.2.2) above. Then we can simply read off the
desired F,G. In fact we find Gl = X, G2 = e G3 = Xg, G4 = ey, F] = ey,
F2 = e F3 = Xg» F4 = e, FS = X,. Writing down a fully general proof is a
bit tedious and notationally a bit cumbersome and it should now be trivial

exercise.

3.2.8. Corollary. The set of orbits Ua(k)/GLn(k) is in bijective correspondence
with k™ x kpn, and Ud(k) 3 GLn(k) X (knmxkpn) (as sets with GLn(k)—action,
where GLn(k) acts on GLn(k) x (K"xkP™ by multiplication on the left on the

first factor).

Proof. This follows immediately from lemma 3.2.5 together with lemma 3.2,6.
Indeed given I = (F,G,H) € U, Take S = R(F,G);] and let (F',G',H') = zS.
Now define ¢ : Ua(k) - GLn(k) b (knmxkpn) by assigning to (F,G,H) the matrix

S_]; the m n-vectors R(ZS) =1, ..., m and the p x n matrix H'.

s(a,3)’ J

Inversely given a T € GLn(k), m n-vectors xj, j=1, ..., mand a p x n

matrix y. Let (F',G') € L;rn(k) be the unique pair such that R(F',G')a = In’
b4

R(F',G") X., j =1, ..., m. Take H' = y and define

S(a,j) - J
Vo 6L () % (K™P) > U (k) by ¥(T, (x,y)) = (F',6',HDT. It is trivial
to check that Y¢ = id, ¢¥ = id. It is also easy to check that ¢ commutes witi

the GLn(k)—actions.

3.2.9. The Cy,, (local) canonical forms. For each I € Ua(k) we denote

with c#a(Z) the triple:

(3.2.10) ¢, (T) = 55 with s = R(Z);l

i.e. c#a(Z) is the unique triple I' in the orbit of I such that




R(Z') = In. Further if z € k™" x knp, then we let (Fa(z), Gu(z), Ha(z))
be the triple w(In,z); that is if z = ((x], ey xm), y)
(Fa(z), Ga(z), Ha(z)) is the unique triple such that:

(3.2.11) R(Fu(z), Ga(z))a==1n, R(Fa(z), Ga(z)) X., Ha(z) =y

s(a,3) ~ %3

z € ((xl, ceesy xm), y) € K™ x kP

3.2.12. Remark. Let m : U_(k) > k™ x kP® be equal to Y: U, (k)

> GLn(k) x (K™ x kP™) followed by the projection on the second factor.
Then Ty 27 (Fa(Z), Ga(z), Ha(z)) is a section of L (meaning that
m.T = id), and g,(Ta) = Ty Of course, T induces a bijection

a o pn
Ua(k)/GLn(k) >k x k¥,

LY (k)/GL_(k). Order the
m,n,p n cr
set of all nice selections from J in some way. For each I € L

n,m m,n,p

let a(Z) be the first nice selection in this ordening. Now assign to % the

3.2.13. Description of the set of orbits

. . . cr .
triple c#a(Z)(Z)’ This assigns to each I € Lm,n,p(k)/GLn(k) one particular

well defined clement in its orbit and this hence gives complete

. . . cr
description of the set of orbltSLm’n’p(kyéLn(k).

.. cr Ly _ 4CE
3.3. Topologizing Lm,n,p(k)/GLn(k) =M

m,n,p

(k)

3.3.1. A more "homogeneous" description of MET (k) . The description of the
9 9

set of orbits of GL_(k) acting on LT (k) given in 2.3.13 is highly
n m,n,p

lopsized in the various possible nice selectionsd. A more symmetric
i . cr . . .
description of Mm n p(k) 1s obtained as follows. For each nice
s P C . .
selection a, let Va(k) = K™ x kP? and let for each second nice selection

B:

(3.3.2) Vo(k) = {z € Valdet(R(Fa(z), 6, (2))g) # 0}

8)
That is, under the section Tyt Va(k)* Ua(k) of 3.2 above which picks out
precisely one element of each orbit in Ua<k) VaB(k) corresponds to those
orbits which are also in UB(k); or, equivalently VaB(k) = ﬂa(Ua(k)’WUB(k))-
We now glue the Va(k)’ 0 nice ,together along the VaB(k) by means of the

identifications:




¢uB: VU.B(k) > VBU.(k)’ ¢(¥B(z) =2z
(3:3.3)

(Fy(2)5 642, By ()% = (Fg(2"), G4(z"), He(a'), § = R(E,(2),G, ()]

Then, as should be clear from the remarks made just above, M (k) is
,
the union of the V (k) with for each pair of nice selections

o, B, 0LB(k) 1dent1f1ed with VBa(k) according to (3.3.3).

3.3.4, The analytic varieties MeT (R) and M°T (C). Now let k =R or T
m,n — "m,n,p

b b
and give V (k) = for k™ x kP its usual (real) analytic structure. The

subsets V B(k) c V (k) are then open subsets and the o B(k) are analytic
diffeomorphisms. It follows that M (]R) and M n (IB) will be

m,n,p m,n,p
respectively a real analytic (hence certainly Cc-,-o) manifold and a complex

analytic manifold, provided we can show that they are Hausdorff.

First notice that if we give L (]R) and L (L) the topology of
9 9 m,n,p . m,n,p
y e 4 and " TOOWOP respectively and the open subsets U (k) and

cr
m,n,p

for Ty Uoc(k) ->V0L(k) is precisely the topology resulting from the

identification V (k) =~ k™ x &P?, 1t follows that the topology of
Mt (k) is the quotient topology of L (k)+L (k)/GL (k) = (k).
m n’ p ’n,p

Now let Gn,m(n+1)'(k) be the Grassmann variety of n—planes in m(n+1)-

(k), k =R, T the induced topology, then the quotient topology

space. For each (F, G), R(F,G) is an n x m(<n+l) matrix of rank n which
“1. s6) = sr(r, ©)

we have that (F, G) and (F, G) deflne the same point in Grassmann space.

hence defines a unique point of G (n+1)(k) Because R(SFS

It follows that by forgetting H we have defined a map:

(3.3.5) R: M ,n,p(k) > Gn,m(n+l

rows of R(F,G).

)(k), (F, G) v subspace spanned by the

2
In addition we let h: M;rn P(k) > DR L e map induced by:

b Bt ]

A,

(3.3.6) h(F,G,H) = . ; ev, 20+




It is not particularly difficult to show ([ Haz 1-3], cf. also the realization
algdrithm in 5.2 below) that the combined map (ﬁ,h):M;rn p(k) -+

(n+D)“mp . . . . . >
Gn,m(n+1)(k) x k is injective., By the quotient topology remarks

above it is then a topological embedding, proving that M;rn p(k) is a
b et ]
Hausdorff topological space. So we have:

(R) and MT
n,p m,n

%%y

3.3.7. Theorem. MeT (C) are smooth analytic manifolds.

’

c o

The sets M1 € (R) and .
m,n,p m,n,p

are the sets of orbits of the cr and co systems, or equivalently, the

. cr,co cr cr
images of L ? k) under m: L k) - M k k=R, TI.
g m’n,p( ) m’n’p( ) m,n’p( ), s )

(C) are analytic open sub-manifolds. (These

3.3.8. Remark. A completely different way of showing that the quotient

cr
space M

m’n’p
Krishnaprasad, [MK]. They show that with respect to a suitable invariant metric
on LET>C9(k), GL (k) acts properly discontinuously.

m’n’p n
3.3.9. The algebraic varieties M;rn (k). Now let k be any algebrai-
slly 2
n p(k) = OTRNP e Zariski topology

9ty
and Ua(k) the induced topology for each nice selection 0. Then Ua(k) o
GLn(k) x Va(k)’ Va(k) = k™ ,1s0 as algebraic varieties. The VaB(k)
are open subvarieties and the ¢a8(k): VdB(k) -+ VBa(k) are isomorphisms

of algebraic varieties. The map (R,h) is still injective and it follows

(R) is a differentiable manifold is due to Martin and

cally closed field. Giving Lm

cr . . .
that M (k) has a natural structure of a smooth algebraic variety, with

cr,co,’.?
M~? k) an open subvariety.
n,n,p ) P y

3.3.10. The scheme M°T D As a matter of fact, the defining pieces of

m,n,
the algebraic varieties M;rn p(k), that is the Va(k)’ and the glueing
3

b

isomorphisms ¢a8(k) are all defined over Z. So there exists a scheme
cr

m’n’p
are precisely the orbits of GLn(k) acting on L;rn p(k). For details
b

over Z such that for all fields k the rational points over k MeT

o
’ m,n,p(

]

cf. section 4 below.




3.4, A universal family of linear dynamical systems

3.4.1. As has been remarked above it would be nice if we could attach

in a continuous way to each point of Mm,n,p(k) a system over k represen-
ting that point. Also it would be pleasant if every appropriate map

from a parameter space V to Mcrn p came from a family over V. Recalling
from 2.2 above that systems’o;er a ring R can be reinterpreted as
families over Spec(R), this would mean that the isomorphism classes

of systems over R would correspond bijectively with the R-rational

points_Mcr (R) of the scheme M®F over Z, cf. 3.3.10.
m,n,p m,n,p

b A ]
Both wishes, if they are to be fulfilled require a slightly more

general definition of system then we have used up to now., In the case
of systems over a ring R the extra generality means thét instead of
considering three matrices F, G, H over R, that is three homomorphisms
G: R" » Rn, F: R" » Rn, H: R" + RP we now generalize to the definition:
a projective system over R consists of a projective module X as state
module together with three homomorphisms G: R" > X, F: X+ X, H: X » RP,
Thus the extra generality sits in the fact that the state R-module X

is not required to be free, but only projective. The geometric counter-
part of this is a vectorbundle, cf. below in 3.4.2 for the precise
definition of a family and the role the vectorbundle plays.

In some cifcumsténces it appears to be natural, in any case as an
intermediate step to consider even more general families. Thus over g4 ring
R it makes perfect sense to consider arbitrary modules as state modules,
and indeed these turn up naturally when doing "canonical" realization
theory, cf. [Eil, Ch. XVI], which in terms of families means that one
may need to consider more general fibrations by vector spaces théan

locally trivial ones.

3.4.2, Families of linear dynamical systems (over a topological space).

Let V be a topological space. A continuous family I of real linear
dynamical stystems over V (or parametrized by V) consists of:
(a) 'a vectorbundle E over V

(b) a vectorbundle endomorphism F: E -+ E

(c¢) a vectorbundle morphism G: V xR™ + E

(d) a vectorbundle morphism H: E > V x RP




For each v € V let E(v) be the fibre of E over v. Then we have homo-
morphisms of vector spaces G(v):{v}x R" + E(v), F(v): E(v) =+ E(v),
H(v): E(v) » {n} x RP. Thus choosing a basis in E(v), and taking
the obvious bases in {v} x R" and {v} x RP we find a triple of
matrices ﬁ(v), E(v), H(v). Thus the data listed above do define a
family over V in the sense that they assign to each v € V a linear
system. Note however that there is no natural basis for E(v) so that
the system is really only defined’up to base change, i.e. up to the

GLn(IO action, so that what the data (a)-(d) really do is assign a
point of M
m

p(]R) to each point v € V.

’n, .
As E is a vectorbundle we can find for each v € V an open neighbor-

hood W and n-sections Sys eees S 3 W E‘w such that sl(w), cees

sn(w) € E(w) are linearly independent for all w € W. Writing out
matrices for F(w), G(w), H(w) with respect to the basis

5;(W)s ety s (w) (and the obvious bases in {w} x R" and {w} x RP),

we see that over W the family X can indeed be described as a triple of
matrices depending continuously on parameters. Inversely if (F, G, H)
is a triple of matrices depending continuously on a parameter v € V,
then E = V x ng F(v,x) = (v, F(v)x), F(v,u) = (v,G(v)u),

H(v,x) = (v,H(v)x) define a family as described above. Thus locally the
new definition agrees (up to isomorphism) with the old intuitive one we
have been using up to now; globally ig does not.

Here the‘appropriate notion of isomorphism is of course: two families
Z=(E; F, G, H) and I' = (E'; F', G', H') over V are isomorphic if there
exists a vectorbundle isomorphism ¢: E - E' such that F'¢ = ¢F, ¢G = G',
H =H'¢.

3.4.3. Other kinds of families of systems. The appropriate definitions of

other kinds of families are obtained from the one above by means of minor
and obvious adjustments. For instance, if V is a differentiable (resp.

real analytic) manifold then a differentiable (resp. real analytic) family
of systems consists of a differentiable vector bundle E with differentiable
morphisms F, G, H (resp. ananalytic vectorbundle with analytic morphisms

F, G, H). And of course isomorphisms are supposed to be differentiable

(resp. analytic).




Similarly if V is a scheme (over k) then an algebraic family consists
of an algebraic vectorbundle E over V together with morphisms of
algebraic vectorbundles F: E~> E, G: vxa® > E, H:t E > V x AP,
where AT is the (vectorspace) scheme AF(R) = RF (with the obvious
R-module structure).

Still more variations are possible. E.g. a complex analytic family
(or holomorphic family) over a complex analytic space V would consist
of a complex analytic vectorbundle E with complex analytic vectorbundle

homomorphisms F: E -+ E, Gt V x " + E, H: E >V x TP,

3.4.4. Convention. From now one whenever we speak about a family of

systems it will be a family in the sense of (3.4.2) and (3.4.3) above.

3.4.5, The canonical bundle over Gn r(k). Let Gn r(k) be the Grassmann
b4 b4

manifold of n-planes in r-space (r > n). Let E(k) ~> Gn r(k) be the

?

fibre bundle whose fibre over x € Gn r(k) is the n-plane in k" represented
H

by the point x. If k = R or U this is an analytic vector bundle over
Gn;r(k)’ More generally this defines an algebraic vectorbundle E
over the scheme Gn;r

In terms of trivial pieces and gluelng data this bundle can be
described as follows. Let MpXr(k) be the space of all n x r matrices of
rank n and let T: M:e;(k) - n, (k) be the map which associates to each
n x r matrix of rank n, the n-space in k spanned by its row vectors.
Then the fibre over E(x) of E over xeG (k) is precxsely the vector
space of all linear combinatioms of any’element inm (x) From this
there results the following local pieces and glueing data description of

(k) and E(k). For each subset a of size n of {1,2, ..,, r} let U (k)

be the set of all n x r matrices A such that A is invertible, let
V (k) = (r n) and for each z € V k), z = (zl, cees 2o ), zg € k
1et A (z) be the unlque nxr matrlx such that (A (z)) ‘= I and
A (Z)t(J)
in the natural order, j =1, ..., T7D. Then G (k) consists of the
V (k) glued together along the V'B(k) = {z € V (k)‘A (z)B is invertible}

by means of the isomorphisms:

= zJ where t(j) runs through the elements of {1 2 veey, TI-O




-1

(3:4.7) ¢&B(k): v! B)

aB(k) - Véa(k), z <> 2! e»(Ad(z)

A (2) = AB(Z')

(Note how very similar this is to the pieces and patching data description

of MST (k) given in 3.,3.1 above; the reason is understandable if one

m,n,p cr nx (n+1)m
observes that the map R: Lm p(k) - Mreg
- ’ b = ;

R: M;rn p(k) - Gn (n+l)m(k)’ which is compatible with the local pieces
b bl 9

and patching data for the two spaces).

(k), induces a map

The bundle E(k) over Gn r(k) can now be described as follows. Over
9

each V&(k) c Gn r(k) we can trivialize E(k) as follows:

b

(3.4.8) V! (k) x & 3,E(k)h&(k), (z,x) = xTAa(g).

It follows that the bundle E(k) over Gn,r(k) admits the following local
pieces and patching data description which is compatible with the

local pleces and patchlng data description given above for Gn r(k).

The bundle E(k) consists of the local pieces Ea(k) V (k) «x k glued
together along the EuB(k) = V&B(k) x K" by means of the isomorphisms:
(3.4.9) 5&6: Vo) x K" 3 Vo, () x &7

(23 > (@12, (Aa(z)B)Tx)

The bundle which is really of interest to us is the dual bundle Ed to E
described by the local pieces Eg(k) = V&(k) x kK glued together by the
patching data:

(3.4.10) $§B: Vg x KN F v ) x K

(2,3) b (§15(2), (A, (2)) ')

(Note that the glueing isomorphisms @ B are compatible with the projections
E (k) - V (k) and the glueing isomorphisms ¢' for Gn r(k) note also
9

that all three sets of glueing data ¢'S, ¢! are transitive in the

8’¢8

are similarly for the o' and ¢').

~

d
sense that ¢B o ¢ oB ¢GY




3.4.11. The underlying vector bundle of the universal family over

cr nX (n+1)m .
Mm n,p(k) The map R: Lm (k) reg ) (k), (F,G,H) » R(F,G) induces
a map. :

= ,CTr
(3.4.12) R: Mm,n,p(k) - Gn,(n+l)m

(k)

(because R(Z®) = SR(Z), S € GL_(K)).
If k =R or T, (3.4.12) is a morphism between analytic manifolds. In

general (3.4.12) defines a morphism between the schemes M and

_ m,n,p
G . Now let EY = R Ed, the pullback by means of R of the
n, (n+1)m d
"canonical" bundle E- described above in (3.4.5).

Now recall that MST (k) was obtained by glueing the " various pieces
Va(k) = k™ .x kP togetﬁer, where o runs through‘ell nice selections
from Jn,m‘ In terms of this description EY(k) can be described as follows:
Eu(k) consists of pieces Eg(k) = Va(k) x k" = k™ x kPP x kn, one for
each nice selection o. For each pair of nice selections Ege(k) =

(k) x k" € V_(k) x k. Now for each pair of nice selections o, B

1et ¢ (k) E (k) - EB (k) be the isomorphism:
(3.4.13) $0‘B(k)‘ (2,3 = (6e(2), RE(2), 6,2 " x

where ¢ B' B(k) - V (k) is the isomorphism of 3.3 above (which

describes how the V (k) should be glued together to give Mm n (k), and
’ .

V (k) >~ U (k), z P (F (z), G (z), H (z)) is the section Ty, descrlbed
above in (3 2.12), Then,E (k) is obtalned by glueing together the E (k)
along the EaB(k) by means of the isomorphisms (3.4.13).

3.4,14, Construction of a universal family of cr systems. Let Eu(k) over
cr ‘

M
m,n,p

patching data (3.4.13). Recall also that, cf.(3.3.3) above:

(k) be the bundle described above and view it as obtained via the

(3.4.15) 94(2) = 2' & (F (2), Gy (2), H (2)° = (Fa(z"), 642", Hg(z"))

B _ -1
with § = R(Fa(z), Ga(z))B




For each nice selection 0 we now define a bundle endomorphism
Fu(k) of Eu(k) V (k) x k" and bundle morphisms ¢ (k)
V (k) x k™ > g (k), H (k): E (k) » V (k) x kP, These are defined as

follows

F;(k) (z,x) = (z, Fa(z)x)
(3.4.16) c;(k) (z,u) = (z, G (2)x)

Hy (k) (2,%) = (z, H_(2)x)

We now claim that these bundle morphisms are compatible with the glueing
isomorphisms (3.4.13), which means that we must prove the commutativity

of the diagram below for each pair of nice selections o, B.

P
quk
(3.4.17) xid

¢u8
HB P
_) vBaxk

where we have abbreviated various notations in obvious ways. Now

¢GBG (Z u) = ¢a8(z, Gd(z) u) by (3.4.16)

(445(2)> R(F,(2), G, (2" 6, (2) w) by (3.4.13)

= (94g(2), Gg(z") w) by (3.4.15)
= G (p g x id(z, W)

proving the commutativity of the left most square of (3 4,17). Similarly:
= ¢ B(z F (2) x) by (3.4.16)

= (¢ B(z), R(F (z), G (z)% F, (z) x) by (3.4.13)

= (¢u8(z) F (z ) R(F (z), G (z))B X) by (3.4.15)
= FB ¢GB(Z’X)

proving the commutativity of the middle square of (3.4.17). And finally,

and completely analogously:




= G (1) RO (), G () L by (3.4.173)

= (4,(2)5 Hy(@) REL(), G, (27" %) by (3.4.16)
(¢OLB(Z)’ HOL(Z) X) by (3.4.15)
(b * 1d) (H(z, ) |

proving the commutativity of the last square of (3.4.17).

Thus the Fu G;, Hg combine to define bundle morphisms FU(k): EV(k) »

EY(k), G": Mm NON K™ > E%(k), HY(k): EY(k)> M NOR kP,

If k = R or E ¢ k), ¢! k), g (k) are morphlsms of analytlc vector
bundles. Algebraically speaking the FU(k), c" k), 1Y (k) for varying k

are part of a morphism of algebraic vector bundles over the scheme
cr

M , which are defined over Z .
m,n,p :

3.4.18, The pullback construction. Let V be a topological space and
¢: V> m n p(IU a continuous map. Let Y= (Eu; Fu, Gu, Hu) be the
b

universal family of systems constructed above. Then associated to ¢

we have an induced family ¢!Zu over V (obtained by pullback). The precise
formulas are as follows:
¢ ok {(v,x) €V XE |¢(V) = m(x)}, where m: EY > Mm,n’p(EO is the
bundle projection; the bundle projection of ¢° Eu is defined by

(v,x) =~ v;
- ¢!Fu= (v,x) » (v, F'x) € ¢!Eu

- ¢!Gu= (V,u) ~ (v, G'u) € ¢!Eu

u o u !ocr | Py _ P
- ¢'8Y: (v,x) (v,Hx)Eqb(Mm,n’p(]R)X(]R) vV x R

Obivously ¢!Eu is (up to isomorphism) the family of systems over V such
that the system over v € V is (up to isomorphism) the system over o (v)
in the family IV, , "

I1f V and ¢ are differentiable (resp. real analytic) there results a
Qifferentiable (resp. real analytic) family over V. If ¢: V > M;fn,p(m)
is a morphism of complex analytic manifolds there results a complex
analytic family and on the algebraic-geometric side of things if
¢: V > m,n P is a morphism of schemes one finds thus an algebraic
family over the scheme V.




3,4.19. The topological fine moduli theorem. Let V be a topological space

and L a continuous family of completely reachable systems over V. Then

. . . cr .
there exists a unique continuous map ¢: V +'Mm n-p(ID such that I 1is
b b

)
. . el . . o . . .. .
isomorphic to ¢'L~ (as continuous families; i.e. there is a bijective
. cr . .
correspondence between continuous maps V - Mm 0 {R) and isomorphism classes

b bl
of continuous families over V).

3.4.20. The algebraic-geometric fine moduli theorem. Let V be a scheme

and Z an algebraic family of cr systems over V. Then there exists a unique

1
morphism of schemes ¢: V M;rn P such that I is isomorphic to ¢'Zu over V,
bl b .

3.4.21. On the proof of theorem 3.4.19., First consider the topological case. The map ¢

associated to ¥ is defined as follows. For each v € V we have a system
Z(v), which uniquely determines an isomorphism class of linear dynamical

systems (cf. (3.4.2)) ; that is,it uniquely defines a point ¢(v) of
cr

M
m,n’p . .
(of the dimensions under consideration). This ¢ is obviously continuous.

\]
Now Zu(z) for all z € M;r p(HU respresents z. So, by 3.4.18, I and ¢'Zu
b b

are two continuous families of cr systems over V such that for all v € V,

(R) which is the space of all isomorphism classes of cr systems

|
Z(v) and ¢'Zu(v) are isomorphic. It follows that the families I and

1
.u . . . eq . . .
L' = ¢°L are isomorphic as continuous families. The reason is the following

r
. . . . ’n’p
then the isomorphism is unique. Indeed, if S is an isomorphism then we must

have SR(F, G) = R(F', G') so that if o is a nice selection such that R(F,G) 1is

-1 . invertible, then
S = R(F', G')a (R(F, G)a) . The statement that % and L' over V are iso- ’

rigidity property: if (F, G, H), (F', G', H') € L; (R) are isomorphic

morphic if they are pointwise isomorphic results as follows. For every

v € V there is a V' 3 v such that the bundles E and E' of £ and L' are

trivial over V' so that over V' the families I and %' are simply (up to
isomorphism) continuously varying triples of matrices (F(v'), G(v'), H(v')),
(F'(v"), G'(v"), H'(v'),v' € V', Let o be a nice selection such that R(F(v),G(V)3u
is invertible. . Restricting V' a bit more if necessary we can assume

that R(F(v'),G(v'))u is invertible for all v' € V'. Then S(v') = R(F'(V')’G'(v'>)u
REF"), G(V'))a)_l is a continuous family of invertible matrices taking

Z(v') into Z(v') for all v' € V', Thus I and &' are isomorphic over some

small neighborhood of every point of V. The isomorphisms in question must

agree on the intersections of these neighborhood;, again by the rigidity

property. It follows that these local isomorphisms combine to define a

global isomorphism over all of V from I to I'.




A more formal and also more formuli basced version of this argument
cdan be found in [Hazl]. The scheme theoretic version (theorem 3.4.20)

is based on the same rigidity property, cf section 4 below for some details.

3.4.22. Remark. In [HK] I claimed that the underlying bundle E" of the
universal family ¥ was the pullback by means of R (cf. (3.3.5)) of the
bundle E over G whose fibre over z was the n-plane represented
n, (n+1)m , u

by z. As we have seen it is not; instead E- is the pullback of the dual
bundle Ed of E. Now the determinant bundle of Ed is a very ample line
bundle (rather then the determinant bundle of E) so that the argument

in [HK] to prove that Mm 0 is not quasi affine is correct modulo two

bl
errors which cancel each other,

4. THE CLASSIFYING "SPACE" MF IS DEFINED OVER Z

>0, P

AND CLASSIFIES OVER Z .

Mainly for completeness and tutorial reasons I give in this section

the details algebraic-geometric details of the remarks 3.3.10 and 3.4.20

. cr . ..
that there exists a scheme M over Z of which the varieties MeT k),
m,n, m,n,p

cf. 3.3.9,k an algebraically closed field, are obtained by base change

and that this scheme is classifying for algebraic families of cr systems,
and thus in particular classifying for crsystems over rings (with possibly
a prqjective module as state module).

 Those who are not particularly interested in the algebraic-geometric
details can skip this section without consequences for their understanding
of the remainder of this paper. There is in any case nothing difficult
about what follows below and anyone who has once seen, say, thé construction
of the Grassmann schemes cr projective spaces over Z , will have no difficulties
in supplying all details for himself from what has been said in section 3
above. All we are really doing below is rewriting a number of formulas of
section 3 above using capital letters instead of small omes. This does take
a certain number of pages, though. It seemed desirable to include these, as,
judging from the audience's remarks during the oral presentation of these
lectures, there is, perhaps rightly so, a distinct unwillingness in accepting
without further proof a statement on the part of the lecturer like "the

algebraic-geometric version of this theorem is proved similarly".




. e cr . .
4.1. Definition gi_the scheme M For each nice selection g c J

m,n,p’ n,m

let

o .
= Spec(Z [X?j,YrS; i=1,

1, «ccs5 Ps S

Let H (Y) be the p X n matrix (Y ), and let (F x), G (X)) be the unique

pair of matrices over ZZ[X ] such that

(4-]-2) R(Fa(x)’Ga(X))a = In, R(FG(X)’GU(X))S(G,j).=

(where the s(0,j) are the m successor indices of a, cf. 3.2). Finally

for each pair of nice selections 0,B let d, (X) € ZZ[X ] be the

element

(4.1.3) dyg(X) = det(R(F, (X),G, (X))

and let VuB be the open subscheme of Va obtained by localizing with
respect to daB(X),i.e.

4.1.4 v = o yo -1
( ) o8 Spec(Z[XlJ,YrS,duB

X 1

Now for each pair of nice selections a,B write down the formulas

-1
5407 F 08 0(0) = Fp(0)
(4.1.5)

..] _ _
S, (06,00 = 6(X) , B (NS () = H ()

(4.1.6 suB(X) = R(Fa(X),Ga(X))B

Because the entrles of F (X) and G (X) are equal to zero, 1 or XBJ

for some 1,j and because the (r, s) -th entry of HB(Y) is YB , the formulac

(4.1.5) provide us with certain expressions for the X%. and YE < in
b




terms of the Xii’ Yrs’ which by (4.1.6), (4.1.5) and (4.1.3) (and

the usual formula for matrix inversion) can be written as polynomials

] (o -1
in X?j’ Yrs’ daB(X) , say

B _ .. -1 B _ -1 0
4.7 X, o= ¢a8<1,3><x§j,d ® ), Yo = (r,s)<x?j,d x)7,¥%)

aB ¢d8 aB rs

Then

(4.1.8) : xfjH B0 (1> ), 8 By (F29) (%Y%)

*k
L
defines an isomorphism of rings.

a
rs’

B B

-1, . o -1
ZZ[Xij,YrS,dBOL(X) ] = Z[Xij,Y daB(X) ]

It follows from 4.1.5 that (with the obvious notations)

b R(Fg (0,6, (0) = 8 (0™ R(F, (00,6, ()

%
boallg (D = H,(0)S,, (%)
, *
and these formulae describe ¢a6 completely. It follows that

1 1

= d g (X)

* * -
Oupfga (D = 8gdet REFG(0,65(0)) = det(S,g (X))

* - -
so that ¢GB does” indeed map dBa(X) 1 into ZZ[X?j,Yis,daB(X) 1].

*
The ¢GB induce isomorphisms of open subschemes

(4.1.10) c VvV

¢a8 aB Ro

and Mcr; . is now the scheme obtained by glueing together the schemes
b b
Ve for all nice selections 0, by means of the isomorphisms ¢a8'

. . cr .
As in section 3 above one can now embed Mm n.p into a product of
b b

. . cr .
a Grassmannian over Z and an affine space over Z to see that Mm n,p is
. b 3
a separated scheme.
For each nice selection 0 let V;? be the open subscheme of Va

defined by




co _ o L0 -1
(4.1.11) Vo = $ Spec(Z [Xij,YrS,Q(Fa(X), HQ(Y”Y ]
tthere y runs through all the nice selections of the set of row indices

Jp n of Q(FQ(X),HdW»,Then the ¢a8 restrict to give isomorphisms

b

co co co

(4.1.12) B - 8o,

O _ yCO 0y

where VaB =V, aB”

Glueing together the V;O by means of the ¢;g we

obtain the open subscheme MET2 €0 of MCT .
m,n,p m,n,p

To see how all these abstract formulas look in concreto consider
the casem = 2, n = 2, p = 1. In this case, there are three nice selections

a,B,Y Jz’z,vviz.

(4.1.13) a = {(,D, (0,2)}, p=1{©,1D, (1,0}, yv={©,1, (1,2)}

We have

F (X

8(X)

FY(X)

B BB B _ B g
12512+ X10%51%90 7 XXX,

YooY Y oY Y Y oY Y
= XX T XX T Ak Ky




4.2. Small Intermezzo: Completely reachable systems over a ring.

A system I=(F,G,H) over a ring R is said to be completely
reachable if R(F,G): RF -~ Rn, r = (n+1)m is a surjective map, cf.
e.g. [Sol] or [Roul. This is equivalent to each element of the family
Z(P) = (F(f),G(f),HCP)), f:E Spec(R) being completely reachable. Indeed
R(F,G): RF - R™ is surjective if it is surjective mod every maximal

ideal [Bou, Ch.II, §3.3,Prop.11] and the statement follows.

4.3. The algebraic geometric version of the nice selection lemma.

The next thing to do is to discuss the algebraic-geometric version of
the nice selection lemma, 3.2.3. Recall that this lemma says that if
the system (F,G,H) over a field k is cr then there is a nice selection
o such that R(F,G)a is invertible. Now let (F,G,H) be a cr system over
a ring R, which per definition means that R(F,G): RE -~ Rn, r (n+l)m,
is surjective, which in turn is equivalent to condition that the systems
I(p) = (F(r),G(P),H(r) over kGr), the quotient field of R/r, are cr
for all prime ideals p. Then of course one does not expect the existence
of a nice selection o such that R(F,G)a is an invertible matrix over Rj;
after all £ = (F,G,H) should be interpreted as a family and not as a
single system.

For a continuous topological family Z(0) over a topological space M
the nice selection lemma implies that there is a finite covering

M=U Uu such that for all o € Ua’R(F(O)’G(O))a is invertible. And this

property generalizes nicely.

4.3.1, Lemma. Let £ = (F,G,H) be a cr system over a ring R. For each
nice selection a let du =‘det(R(F,G)a). Then the ideal generated by the
du is the whole ring R. (This means of course that the U, = Spec(R[d;l])
cover all of Spec(R)).
Proof. Let I be the ideal generated by the da’ o nice. Suppose that I # R.
Then there is a maximal ideal W such that I © M. Consider
I(m) = (F(m),G(m),H(m)). Then det(R(ZCm))a) = 0 in R/m for all o, showing
that Z(m) is not cr(by the old nice selection lemma 3.2.3 over the field
R/m) which contradicts the assumption that I was cr.

To state the more global version of this lemma we need a bit of notation

Let T be a family of cr systems over a scheme V. For each nice selection &

we define

(4.3.2) Ua = {v € V|det(R(E(v))a) # 0}




This definition seems a bit ambiguous at first because R(Z(v)) depends
th what basis we choose in the state space of I(v) and hetice is only
defined up to multiplication on the left by an n x n invertible matrix
with coefficients in k(v). This matrix being invertible, however, means
that the whole symbol group det(R(Z(v))a) # 0 makes perfectly good sensge

so that Uy is welldefined. Of course Ua is an open subscheme of V.

4.3.3. Lemma. Let I be a family of cr systems over a scheme V. For each

nice selection o let U be as in (4.3.2). Then _U. U =V.
o onice O

This follows immediately from lemma 4.3.1 because V can be covered with
affine schemes Spec(Ri) (such that moreover the underlying bundle of I

is trivial over each Spec(Ri)).

4.4, The universal bundle EY over M;rn p* The universal bundle E" over
b bl
;rn . is constructed just as in 3.4.11 above. Writing things out in
b ’

relentness detail one obtains the following algebraic-geometric local

pieces and patching data description.

For each nice selection o let

o o a Qqy _ n
(4.4.1) E, = Spec(Z [x"i‘j,Yrs] e zlz),...,22]1) =V xA

R . . o SO g
where Z [Xij’Yrs] is as 1p 4,1.1; i.e. Spec Z [Xij’Yrs] V- Let
(4.4.2)

be the projection induced by the natural inclusion
* o L0 ’ a L0 o
‘na : Z [Xij’Yr,s] c Z [Xij’Yr,s’Zt]'

Define for each pair of nice selections o,B.

(4.4.3) E

ofB

_ o Lo o. =14y =
ag = Spec Z [Xij’Yr,s’Zt’daB(X) H=v

and let

(4.4.4) ' Bt Byg ” By

be the isomorphism given by the ring isomorphism

o
r

: -1 ; -1
bot.5) Brg ¢ 2 00002005, 071 > 2 G YA a 07

B




given by

(4.4.6) xB ¢BﬁLnO@LYiSHdharﬁ)“%Y%,Z%Ha&étﬂﬂafh_

where the $u8(t)(xa,2u) are defined by the equality

34@8(1) (x%,z%
'$u8<n> x*,z%

The $d8 are compatible (by their definition) with the ¢a8

in that the following diagram commutes for each pair of nice selections

a,R-

It follows that by glueing the Ea together by means of the $d6 we
obtain a vectorbundle E".

(4.4.9) m: EY > M
ok ) - Cct m,n,p
y.5. The _merphism jnto M,

We start with the case that the underlying vectorbundle E of the family I
is trivial and that the parametrizing scheme V is affine.l is then
described by a ring R, V = Spec(R), E = Spec(R[Zl,...,Zn], mT:E=>V

induced by the natural inclusion R = R[Z ..,Z ], and vectorbundle

homomorphisms F: E~>E, G Spec(R[U .. U ]) -~ E, H: E ~» Spec(R[YI,-wsY
The fact that these morphisms are vectorbundle homomorphisms is reflected
by the fact that the associated homomorphisms of rings

F*: R[Z,...,2 ] - R[Z,...,2 ], G*: R[Z],...,Zn] > R[Ul,...,Um],

H*: R[Yl,...,Y] > R[Zl""’zn] are firstly R-algebra homomorphisms and
further of the form

(4.5.1) F*(z,) =
_ i

i)

np associated to an algebraic family of cr systems.

Y




where the flJ, 8; i3 hij are elements of R. This defines a triple of

matrices F = (f ), (g ), H = (h ) For each n1ce selection o
let 5 = R(F, G) d-det(s ) e R, let U/ Spec(R[d ]), and let
v, = Spec(ZZ[Xi ]) be "the n1ce-se1ect1on-a‘p1ece of M " of

4.1 above. Now deflne
(4.5.2)

by the morphism of rings

a 1

(4.5.3) oz [xij,Y‘;‘S] > Rl

given by

a . -1 ,= =
Xijh+ i-th entry of the column vector Sa R(F’G)s(a,j)

Ygsk* r-th entry of the column s of the matrix ﬁSa

where s(a,j) is the j—th successor index of the nice selection a,
cf. 3.2 above.

Or, using the obvious notation, w; is defined by
* _ P N * = 7
(4.5.5) wa(R(Fa(X),Ga(X)) = Sa R(F,G), wa Ha(Y) HSa

Now let B be a second nice selectlon We claim that the w and wB

-1

agree on Ua nu, = Spec(R[da R ]) In view of how the»Va, VB are

B
glued together to obtain MeT th1s means that we must prove the
b 9 .

commutativity of the diagram

a Lo
Z[X,., g

{57 Tperdyg®

aB
%
| Pag

B B -
z[x Y dBa(X)

Note first that

hig - -1 FC =
(4.5.7) wa(sas(x)) = wg(R(Fa(X),Ga(»)B) =8, R(F,G)B =8
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¥ - ]

. . . - -1 ¥ . .
0 that Wu does indeed map duﬁ(x) into “[du ’dﬁ 1. Now we is described

by

- sTIRGELE _
(4.5.8) WE(R(FB(X),GB(X)) = SB.R(F,G), ¢§HB(Y) HS8

and on the other hand

-1
Yroxs RIFL(X,6,(0) = (S (0 RE (X),6 (X)) (by (4.1.9))

s™1s s7IR(F,B) (by (4.5.7) and (4.5.5))
B oa

.—] - -
s~ 'R(F,GC
8 (F,G)
which fits perfectly with (4.5.8). Similarly w§¢aBHB(X) = waﬂa(Y)SaB(X)

- -1 ! . .
= HSaSa SB = HSB = ngB(Y), so that (4.5.6) indeed commutative. Thus

the § : U - V_ are compatible, and because U, U = Spec(R) we obtain
o o o onice o
a morphism of schemes

: V = Spec(R)—~ M°T
Yy P m,n,p
4.5.9. Lemma. The morphism wz depends only on the isomorphism class

of £ (so in particular ¢Z does not depend on how E is trivialized).

Proof. Let I' be a second family of cr systems over V = Spec(R) with

trivial underlying vectorbundle E' = Spec(R[Z',Zé,...,Z;J). Suppose

%' 1is isomorphic to ¥ and let the isomorphism be yu : E >~ E'. Because

u 1s a morphism of vectorbundles over V = Spec(R) its ring homomorphism
uk t R[Z),Z,...,21 > R[Z),2

goeeesZ]

is an R-algebra homomorphism of the form

u*(Zi) = I

] si.Z., s.. €R

1373 ij

Let S be the matrix (Sij)' Then S is invertible (over R) because p is
an isomorphism. Now because p defines an isomorphism I' = I we have
F'y = yF, uG6 = G', H = H'p which in terms of the matrices F,G,H

associated to ¥ (cf. (4.5.1) above) and the analogous matrices




FYOGT N of 2 means that

SF = F'S, SG = G', H = H'S

U
a’> o

| I L - v 1Y =
thef ?a S?u’_du —dfﬁ(s)du so that Ua qlandlﬂx wa all because
SR(F,G) = R(F',G'), HS

It follows that if d&, S&, U& are defined analogously to da’ S

= H', which proves the lemma.

4.,5.10. Construction of ¥ for families whose underlying bundle is not

necessarily trivial.

Now let & = (E; F,G,H) be a family of cr systems over a scheme V. We can
cover V with affine pieces Uiv= Spec(Ri) such that E is trivializable
over Ui' By the construction above and lemma 4.5.9 this gives us

morphisms (independant of the trivialization chosen)

. + Cr
1 m,n,p

Now on Ui n Uj the wi and wj must agree, because by lemma 4.5.9 again
wi and wj agree on all affine pieces Spec(R) < Ui n Uj' Hence the wi
combine to define a morphism

cr
: ->
wZ v Mm,n,p

which, again by lemma 4.5.9 depends only on the isomorphism class of Z.

4.6. The universal family,Zu of cr systems over M°t . Let E” be the
: b b

cr . . .
vectorbundle over M constructed in 4.4 above. In this section I

sty
. ; . cr
describe a (universal) family of cr systems over M

whose underlying
s

bundle is E". (That this family is indeed universal will be proved in 4.7
below) .
Recall that E” was constructed out of affine pieces

o

*Ea = Spec(ZZ[X?j,YrS,Z%]) glued together by means of certain isomorphisms

$u8’ cf. 4.4. Let AT = Spec(Z Uh,...,Ur]). To define 3% = (E%;F%,c%, 1

it suffices to define vectorbundle homomorphisms

'(4.6.1)‘ Fa: o - E

o Cof Vg % A" > E, H P E, VX AP




which are compatible with the identifications

v, N s a1 m_) m . 1. p+ P
¢u8' EaB Esa’ ¢a8x1d. VuB x A vBa x A, d)ocB x id: qu x A Vsa X A

ih the sense that the following diagram must be commutative

G
m o
\Y — E
B x A B
n,
id &
¢OLB><1 Pe,

G

Bv E

X
VBa A

(cf. also (3.4.17)). We now describe Fa’Gu’Ha as those morphisms whicﬁ

on the ring level are given by the Z:[X?j,Yis] - algebra homomorphisms

o Olq o Q ol
rS,zt] > Z [Xi.,Y ,zt]

(4.6.3) F*: 7z [x3.,Y
o ij j’ rs

, e F_(¥) 7>

(o}

* . Ol o
(4.6.4) G Z[Xij’Yr

Qo o
s’zt] >z |:Xij’Yrs’

(0}
UpseeenUd, 270 6 (0T

Ol

* . Q. o ol
(4.6.5) H*: z[xij,Yrs,v ]

(0] Q.
,...,vp] > zz[xij,')zrs,zt , Ve H (D)2

1

where Zu, U, V are respectively the column vectors (Z?,...,Za)t,

n
t t
WyeeesUD 5 (Ve V)

1°°
It remains to check that the diagram (4.6.2) is indeed commutative,
which is done by checking that the dual diagram of rings homomorphisms

is commutative.

This comes down to precisely the same calculations as in 3.4.14. As

an example we check that the diagram

*
: F
a Lo 0 -1 o a Lo 0
Z[ X..
[ 1J’Yrs’zt’daB(X) ] —— Z] Xij’Yrs’zt’daB(X)

-1

VR V¥
P08
*

B B B 1. T B oB B, -]
Z[ Xij’YrS"Zt’dBOL(X) ] —— ZL[ Xij’Yrs’Zt’dBOL(X) 1

is commutative. Because ¢;B maps Z[ ng,YB (X)—1 ] into

rs’dBa
*

zlx%. ¥ ,a
1 B8

i*trs B are respectively

(X)_]] and because F; and F

o L0 B B . . .
A o - - s e
[ 1J’Yrs ] -algebra and ZZ[Xij,YrS] algebra homomorphisms it suffices

to check that




n, B n, 6
% Fx% = Fkpx =
g FHZD) = FAGX (), £ =1, ..., n
By the definitions (4.4.7), (4.6.3) and using the definition of

¢3B’ cf. 4.1, we have

g7 By =
@ - ms,

-1,0, _ -1 o
(X772 =8 (X F (X2

B B

B By = ' -1,0
Brora(h) = r r 02F) = ox (F 05 32

=3 (X)"lFa(x)sa

apf (X)Sa

@712 =3 (X)_le(X)Za

B B oB

The remaining two squares of diagram (4.6.2) are similarly shown to be

commutative.

4.7. A rigidity lemma.

The key to the proof of theorem 3.4.20 (the algebraic-geometric
classifying theorem) is (as was remarked before) a rigidity property

-which in this context takes the following form.

4.7.1. Proposition. Let %, L' be two families of cr systems over a
scheme V. Suppose that there is a covering by open subschemes (Ui)
of V such that the two families I and I' restricted to U, are isomorphic
for all i. Then I and I' are isomorphic as algebraic families over V.

We note that no such proposition holds for arbitrary families

of systems cf. [HP] for a counterexample.

Proof. We can assume that the underlying vectorbundles E and E' have been
obtained by glueing together trivial pieces over affine subschemes of V.
Refining the covering (Ui) if necessary (this does not change the
validity of the hypothesis of the proposition) we can therefore assume
that E and E' have been obtained by glueing togetﬁer trivial bundles
Ui x A" over affine schemes Ui'

Our data are then as follows. We have for each i an affine scheme

i = Spec(Ri) and for each i,j isomorphisms of (trivial) bundles

R B . ) x AT > (U, nu,) x A"




which respectively define the bundles E and E'. The remaining ingredients

of the two families of systems I and L' are then given by vectorbundle
homomorphisms

F.,F': U, x A" > U, x 47, G,,G!: U, x A" > U, x A"
1 1 1 1 1 1 1 1
(4.7.1)

H,,H!: U, x A" > U, x AP
I A | i
such that the following diagrams are commutative for all i,j (where

U.. is short for U. N U.)
1] 1 J

(4-7'2) G.’G! U. .XAn'
171

Finally the fact that Zand X' are isomorphic over each Ui means that

there are vectorbundle isomorphisms ¢i: U x AT A-Ui x A" such that the
following diagram is commutative for all i

F
1

UixAn*——;~> UixAn
Gi/ t \Hl

4.7.3) UxA® 9, *

| .
SNt A

U.xA — Y U.xAn
i i

U.x AP
1 .

We now claim that the ¢i are compatible and combine to define an
isomorphism ¢: E +E' (it then follows, because this is locally true,
that ¢F = F'¢, ¢G = G', H'¢ = H). To prove this we must show that for

each Spec(R) = U © Uij =U, N Uj the following diagram commutes
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Now vectorbundle homomorphisms of trivial vectorbuundles over an affine
scheme U = Spec(R) are given by matrices with coefficients in R as we
explained en passant in the first few paragraphs of 4.5 above. Let

¢.,G!,F., F!,H.,0!,S..,8..,5.,S. be the matrices of the morphisms of
S S B Tt s T | i’7]

i7Tiyp

1 ) 1 \J >
vectorbundles Gi,Gi,Fi,Fi,Hi,Hi,q)i.,d)ij,(pi,d)J restricted to U. The
commutativity relations (4.7.2) and (4.7.3) then imply for these matrices

with coefficients in R that

(4.7.5)

and the matrices Si’sj’ S i are all invertible because they come from

ij?
vectorbundle isomorphisms.

It foliows that

S.S..R(F.,G.) = S.R(F.,G.) = R(F',G'
313(1’1) J(J,J) (J,J)

(4.7.6)
= at F' a1y = Q! T
Sin(Fi’Gi) SijsiR(Fi’Gi)

L is a fam&ly of cr systems and hence so is its restriction to
U = Spec(R). It follows (cf. 4.2 above) that R(fi,ai): RT - Rn,
r = (n+l)m,is a surjective map. Hence (4.7.6) implies that
SjSij = S'ijSi proving the commutativity of (4.7.4) and hence the
proposition. '

4.8. On the pullback construction. Let & = (E; F,G,H) be a family

of éystems over a scheme M and let ) : V' > M be a morphism of schemes.
Assume that everything is given in terms of local affine pieces and

patching data; i.e. I is given by trivial bundlesti'x AT Ui = Spec(Ri}; M
with vectorbundle isomorphisms ¢ij: Uij x A" > Uij.x A" and vector

bundle morphisms F.: U. x A" > U, x A", G.: U, x A" 5 U, x A",
- it Ui i it i 7 i

Ho: U, % A" > U, X AP such the nonprime diagram (4.7.2) is commutative,
and ¥ is giveﬁ by affine morphism31pi: Ui-+ Ui5Ui = Spec(Ri). Let

% . . : =
Wi: Ri'* Ri be the ring homomorphism oftpi. Let, as before, Fi’Gi’Hi

be the matrices of the vectorbundle morphisms Fi’Gi’Hi’




¥
Then the local pieces of the pullback family {°Z = I' are:
the trivial bundles Ui x A% > Ui with the vectorbundle homomorphisms
Flt vl x A% > U} x &%, Gl: Ul x &7 > Ul x A7, H: U} x A" > U} x AP
i i it i i it i i

. . =1 - sk | B E 3 v * 1
given by the matrices Fi wiFi, Gi wiGi’ Hi wiﬁi. The patching data
are defined as follows. If U' = Spec(R') c Ui n UE maps into U = Spec(R)

Ui n Uj under Y and wT: R + R' is the associated map homomorphism of

rings, then over Spec(R') the isomorphism ¢£j: U' x A" > U' x A" is

given by the matrix S' w F if Sij is the matrix of

q)..:Ux,A > U x A",
1]

|
This can be taken as the definition of the pullback family ¢°Z.

It agrees of course with the more informal description given in section

3 above.

4.9. The classifying theorem for algebraic families of cr systems over
_ schemes.

(Mcr
m,n,p —

classifying theorem for families of cr systems, i.e. theorem 3.4.20.

is classifying over Z ). We can now prove the algebraic-geometric

Stated more precisely this theorem says

4.9.1. Theorem. Let ¥ be an algebraic family of cr systems over a
scheme V. Then there exists a unlque morphism of schemes

byt V +-Mm n,p (defined in 4.5 above) such that wz ~ ¥ where 5" is the

b
universal family constructed in section 4.6 above. That is the map

1
z H‘¢§:and the map wlé-w'Zu (of 4.8 above) set up a bijective correspondence

. c . .
between the set of scheme morphisms V > M r o and isomorphism classes
b b

of families of cr systems over V. Moreover this isomorphism is functorial.

. H
Proof. First let y: V » MCF be a morphism of schemes, let Z = ¢'Zu

’n’

Then we must show that wz = Z. To do this it suffices to show that
wz and Y agree on all elements of some affine coverlng (U ) of V. We can

take this covering to be finer than the covering (V¥ (V ), dnice) where

Va c M;r P is the piece belonging to the nice selection o, cf. 4.1.
b b

Let therefore U = Spec(R) be such that P(U) < Va’ and let

o

rS]+R

* . o
Uk oz [Xij,Y

be the associated ring homomorphism. Then according to 4.8 above and
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the definition of Zu, cf. 4.6, the family I over U is described by the

three matrices

(4.9.2) F = V*F (X), G = y*6,, (X), H = y*H (Y)

By 4.5 above the morphism ¢§ : ZZ[X?j’Yis] + R associated to this family

is characterized by
(4.9.3)  PEREFLX), 6,(0) = 5. 'REF,E), yxH (1) = fis

where Sa = R(F,G)a. Because R(Fa(X), Ga(x))a = In’ Sa = In in this case

(cf. (4.9.2)) so that indeed (comparing (4.9.2) and (4.9.3)) ¢§ = *,

Now let X over V be a family of cr systems and let wZ: vV - M;rn P
b ’

be the associated morphism as defined in 4.5. We have to show that

1
wiz“ is isomorphic to Z. By the rigidity result 4.7.1 it suffices to show
1

that wéz“ and I are isomorphic over each element of some affine covering
(Ui) of V, which we can take fine enough so that the underlying bundle

E of X is trivial over each Ui' Let therefore U = Spec(R) be such that X
over U is described by the triple of matrices F,G,H.

Let da = det(R(F,a)u) for each nice selection 0. Then U in turn is covered
by the U, = Spec(R[d&]]) (by the nice selection lemma). So taking a still
finer covering (if necessary) we can assume that U = Spec(R) is such that
for a certain nice selection a we have that Sa = R(F,é)a is invertible

over R. Then by 4.5 wz is given on U by the ring homomorphism

[

R o

X .
CY* o Z [X ,r,s]-*R

characterized by

1

(4.9.4) w*R(Fa(X),Ga(X)) =S, R(F,G), w*Ha(Y) = HS

1
By 4.8 the family of cr systems ?iz? is defined by the matrices
(4.9.5) F' = Y¥F (X), G' = Y*G, (X), H' = Y (X)
Comparing (4.9.4) and (4.9.5) we see that over U the families defined
by F,G,H and by F',G',H' are indeed isomorphic with the isomorphism being

defined by Sd (which is invertible over R). This concludes the proof

of the theorem.




4.10. On cr systems over rings. The classsifying theorem 4.9.1 of

course also applies to systems over rings R. Such a system (with
finitely generated projective state module X) gives rise to a family
of cr systems over R iff R(F,G): RY - X, r = (n+1)m,is surjective
(cf. 4.2). If R is such that all finitely generated projective
modules are free (which happens e.g. if R is a ring of polynomials

over a field by the Quillen-3Suslin theorem [Qulgug]),then theorem 4.9.1
cr
M

says that the R-rational points of
. Wm,n,p

are precisely the GLn(R)

orbits in L°Y (R), i.e.
b ,p

Ccr
m,n,p

(R) = L;rn p(R)/GLn(R) (if R is projective free)
b b

In general the theorem gives a canonical injection

LC]’.'

cTr
mon,p(®/CL RS M ()

b b

. . . . cr .
with the remaining points of Mm n p(R) corresponding to systems over R
%y

whose state module is projective but not free.

4.11. A few final remarks. There is a completely dual theory from the
r,co

co instead of cr point of view. Also the open subscheme M° is of

?n,
course classifying for families of co and cr systems. This scheme is
embeddable (over Z ) in an affine scheme A(n+l)mp as a locally closed

subscheme.




5. EXISTENCE AND NONEXISTENCE OF GLOBAL CONTINUOUS CANONICAL
FORMS.

As a first application of the fine moduli spaces of section 3 and 4 above we
discuss existence and nonexistence of global continuous canonical forms

for linear dynamical systems.

5.1. The topological case.

Let L' be a GL_(R)-invariant subspace of L (R). A canonical
n m,n,p

form for GLnGR) acting on L' is a mapping c: L' - L' such that the

following three properties hold

(5.1.1) e(z5) = c(¥) for all T € L', S € GLnaR)

(5.1.2) for all ¥ € L' there is an S € GLnGR) such that c(%) = ZS

(5.1.3) c(Z) = c(Z'") => S E€ GLnGR) such that %' = ZS

(Note that (5.1.3) is implied by (5.1.2).

Thus a canonical form selects precisely one element out of each
orbit of GLnGR) acting on L'. We speak of a continuous canonical form
if ¢ is continuous.

Of course -there exist (many) canonical forms. E.g. order the set
of all nice selections o in J in some way. For each I € Lcr R)

n,m m,n,p
let a(Z) be the first a such that R(Z)a is nonsingular. Then

S =
(5.].4) Lk c G(Z)(Z) = 2 ’ S = R(Z)a(z)

. . cr . <

is a canonical form on L (R) (Luenberger canonical forms a la Bryson).
b 9

mapping is not continuous, however, except when m = 1 (in which case therc

is only one nice selection), which entails a number of drawbacks e.g. in

numerical calculations and in identification procedures, cf.[cWil for a

discussion in the similar case of Jordan canonical formsbr co
5.1.5. Theorem. There is a continuous canonical form on Lm ; pGR) if
————— b b

.and only if p lorm=1.
Proof. If m = 1 let g J] n = {¢0,1),(1,1), ..., (n,1)} be the unique
b

nice selection {(0,1), ..., (n-1,1)}. Then

S -1
(5.1.6) C‘w: Z - CT%OL(Z) =2 S = R(Z)d
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1s a continuous canonical form, because R('/j)Oc is always invertible for
Y cr.

Similarly if p =1, let B J be the unique nice row selection.

_ n,l1’ v
Then I+ ZS, S = Q(Z)B] is a continuous canonical form because Q(Z)B is
invertible for all co I (if p = 1).

It remains to show that there cannot be a continuous canonical form

. cr,co
> : > >
¢ on all of Lm,n,pGR) if both m 1, p 1.

To do this we construct two families of linear dynamical systems
as follows for all a €ER, b € R (We assume n > 2; if n = 1 the examples

must be modified somewhat).

2 1

where C is some (constant) real (p-2) x (n—2) matrix. Here the

continuous functions.

y](a), y,(a), xl(b), xz(b) are e.g. yl(a) = a for |al < 1,

y,(a) = a~! for [a|_z‘1, y,(a) = exp(—az), Xl(b) = 1 for | b 5_1,




x](b) = b—2 for ]b|_2 1, xz(b) = b—]exp(-b—z) for b # 0, x2(0) = 0.

The precise form of these functions is not important. What is important
is that they are continuous, that x](b) = b—Jy](b-J), xz(b) = bblyz(b—])
for all b # 0 and that yz(a) # 0 for all a and x](b) # 0 for all b.

For all b # 0 let T(b) be the matrix

\ 0

Let Z](a) = (Fl (a)) G] (a)s H] (a)), Zz(b) = (Fz(b)a Gz(b)s Hz(b))- Then

one easily checks that

T(b)

(51.8) ab=]=>21(a)

= Z,(b)

Note also that I,(a), I,(b) € A

m,n,pGR) for all a,b € R; in fact

(5.1.9) Z](a) € Ua’ a (€0,2), (1,2), ..., (n-1,2)) for all a €R

(5.1.10) szb) € UB; B = ((0,1), (1,1), ..., (n-1,1)) for all b € R
which proves the complete reachability. The complete observability is
seen similarly.

®) .

. . . co,cr
Now suppose that c is a continuous canonical form on Lm ; P
b b

Let (X, (2) = (F (2),8,(a),A, (a)), c(Z,() = (F,(),E,(),H,(b)).

Let S(a) be such that c(Zl(a)) = Zl(a)s(a) and let S(b) be such that

ez, () = I, ™.

It follows from (5.1.9) and (5.1.10) that

s(a) = R, (a),5, (a)) R(F, (2),6, (@)

- - - -1
S() = R(F,(b), €, (b)) gR(F,(b),G, (b))

Consequently S(a) and S(b) are (unique and are) continuous functions
of a and b.

Now take a = ‘1. Then ab = 1 and T(b) = I so that (cf. (5.1.7),
(5.1.8) and (5.1.11) §(1) = S(1). It follows from this and the




continuity of S(a) and g(b) that we must have

(5.1.12) sign(det S(a)) = sign(det S(b)) for all a,b €R

Now take a = b = -1. Then ab = 1 and we have, using (5.1.8),

S(-1)T(-1) T(—J))Ec—l)

z, (-1) = (Z] (-1

v oy S -
Z,(-1) = c(Z,(-1))

e(z,(-1)) = £, (0%

It follows that S(—]) = §(-J)T(—]), and hence by (5.1.7), that
det(S(-1)) = - det(S(=1))

which contradicts (5.1.12). This proves that there does not exists a

. . co .

continuous canonical form on LS°°“*(@®R) if m > 2, and p > 2.
n - -
25

5.1.13. Remark. By choosing the matrices B, C in Gl(a), Gz(b), Hl(a)’ Hz(b)
judiciously we can also see to it that rank Gl(a) = m = rank Gz(b),
rank Hl(a) = p = rank Hz(b) if p < n and m < n. Note also that F in the

example above has n distinct real eigenvalues so that a restriction like

'F must be semi simple''also does not help much.

5.1.14. Discussion_of the proof of theorem 5.1.5. The proof given above,

though definitely a proof,is perhaps not very enlightening. What is behind it

is the following. Consider the natural projection.

(5.1.15) m s 1.ST»CO > MCT»Cc0
m’n’pC[R) m’n’pGR)

Let c be a continuous canonical form. Because c is constant on all orbits

c induces a continuous map T: MCT» €0 ®) - Ler»cO
. m,n,p m,n,p . .
section of m, (cf. (5.1.1) - (5.1.3)). Inversely if T is a continuous section

co,cr . . .
of m then TOT : L7727 (R) - LCO’CrGR) is a continuous canonical form.
m n,p m’n’p ’

(R) which clearly is a

Now (5.1.15) is (fairly easily at this stage, cf. [Haz .1]), seen
to be a principal~GLnGR) fibre bundle. Such a bundle is trivial iff it admits

a continuous section. The mappings




ar I (a), br I,(b)

of the proof above now combine to define a continuous map ofiE]GR) = circle
into McrnCOGR) such that the pullback of the fibre bundle (5.1.15) is

’ ’
nontrivial. In fact the associated determinant GL (R) fibre bundle is the

Mobius band (minus zero section) over the circle.

5.2. The algebraic-geometric case.

The result corresponding to theorem 5.1.5 in the algebraic geometric
case is the following. For simplicity we state it for varieties (over
algebraically closed fields).

5.2.1. Theorem. Let k be an algebraically closed field. Then there exists

cr,co(k) N Lcr ,CO

i ’n’p
varieties if and only if m = 1 or p = ].

a canonical form c: L (k) which is a morphism of algebraic

Here of course a-canonical form is defined just as in 5.1 above;

simply replace R with k everywhere in (5.1.1) - (5.1.3) and replace the

word "continuous" with'morphism of algebraic varieties', which means that
locally ¢ is given by :rational expressions in the coordinates.

The proof is rather similar to the one briefly indicated in 5.1.14
cr,co cr,co

above. In this case L k) M (k) is an algebraic principal
m,n,p m,n,p

‘GLn(k) bundle and one again shows that it is trivial if and only if m = 1
or p = 1. The only difference is the example used to prove nontriviality.
The map used in 5.1.14 is non-algebraic, nor is there an algebraic injective

morphlsmﬁP (k) - Mco €T (k). Instead one defines a three dimensional manifold
’ b :
much related to the families Zl(a), Zz(b) together with an injection into
M;r;c;(k) such that the pullback of this principed bundle is easily seen
9 s

to be nontrivial. Cf. [Haz 2] for details.




6. REALIZATION WITH PARAMETERS AND REALIZING DELAY-
DIFFERENTIAL SYSTEMS.

As a second application of the existence of fine moduli spaces for
cr systems we discuss realization with parameters (cf. also [Bﬂ) and
realization of delay-differential systems. A preliminary step for this is

the following bit of realization theory.

6.1. Resumé'gg some realization theory.

Let T(s) be a proper rational matrix-valued function of s with the
(formal) power series expansion (around s = )
(6.1.1) + Azs*2 + ..., A, € KPED
1
One says that T(s) is realizable by a linear systém of dimension < mn,
if T(s) is the Laplace transform (resp. z—transform) of a linear
differentiable (resp. difference) system . = (F,G,H) € Lm p(k). This

2*te
means that

(6.1.2) | T(s) = H(sTn—F)-]G

or, equivalently
(6.1.3) A, i =1,2,3,...

A necessary and sufficient condition that T(s) be realizable by a system of
dimension n is that the associated Hankel matrix h(A) of the sequence

of = (AI’AZ’ A3,...) be of rank < n. Here h@) is the block Hankel matrix

More prec1se1y we have the partial realization result Wthh says that there

exist F G H € LCO Cr(k) such that A = HF1 ]G iff rank h @) = rank hn+ e =
’ 9

where hiQ*) is the block matrix con51st1ng of the first i block rows and the

first i block-columns of h@).
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Now suppose that rank h@l) is precisely n, and let F,G,H realize A.
We have

H

h@d) = |HF | (GIFGIF

HF2

2(;5.

and it follows by the Cayley-Hamilton theorem that R(F¥,G) and Q(¥,H)
are both of rank n so that I = (F,G,H) is in this case both cr and co.
Finally we recall that if ¥ and ' are both cr and co and both
realized‘, then £ and I' are isomorphic, i.e. there is an S € GLn(k)
such that &' = ZS
For all these facts,cf. e.g. [KFA] or [Haz3].

6.2. A realization algorithm.

Now let A be such that rank hGA) = n. We describe a method for

cr,co(k) which realizes A. By the above

calculating a ¥ = (F,G,H) G,Lm,n,p

we know that there exist a nice selection o, c:Jm 0 the set of column
2

indices of

A2n+1

and a nice selection a < J n’ the set of row indices of hn

2

that the n n matrix h G‘) has rank n. Here h_, @4)a o is the matrix

+
. n+l Q50 n+l %
obtained from hn+16*) by removing all Yows whose index is not in o
and all columns whose index is not in ac. We now describe a method for

indi - cr,co
finding a % (F,G,H) € Lm,n,p

R(F,G) = I . (Such a I is unique).
a n
c

(k) such that X realizes # and such that




Let Ye be the subset of J n of the first p row indices, so that
2

hn+1(<,4)Y consists of the first row of blocks in (6.2.1). Now let
r

(6.2.2) h o)

o
Yr’ c

Now let

(6.2.3) =h b o
r Cc

1

and define R' = S ~ (h @*)a ). Then (R')a = In and we let F,G be the

Cc

n+l
. : . r
unique nXn and nXm matrices such that

(6.2.4) , R(F,G) = R'

Recall, cf.3.2.7above that the columns of F and G can be simply read ' of
from the columns of R', being equal to either a standard basis vector or
equal to a column of R'.

For every field k and each pair of nice selections
a, eJ; oI let W(ar,ac)(k) be the space of all sequence of

m,n’ "r ,
pXm matrices o = (A ) such that rank(hn+]64)) = n and

17 e A2n+]

rank(hn+l¢4)a o ) =‘n. Then the above defines a map

e

. cr,co
(6.2.5) T(ar,ac). W(ur,ac)(k) > Lm,;,p(

k)

6.2.6. Lemma. If k =R or £ the map T(ar,ac) is analytic, and algebraic-
geometrically speaking the T(ar,aé) define a morphism of schemes from

. - . . . cr,co
the affine scheme W(o_,0 ) into the quasi affine scheme L 2 .
r c m,n,p

6.2.7. Lemma. Let W(k) be the space of all sequences of pxm matrices

oA = (AI’AZ""’A2h+]) such that rank(hn+]Q4)) = n = rank hn@4). Let
h: 1.CT»CO
m,n’p

ho‘t(ar,ac) is equal to the natural embedding of W(ar,ac)(k) in W(k).

(k) + W(k) be the map h(F,G,H) = (HG,HFG,...,HF°"G). Then

(I.e. ho'r(ar,ac) is the identity on W(ar,ac)(k).

Proof. Let of € W(ar,aé)(k). By partial realization theory (cf. 6.1 above)

we know that & is realizable, say by L' = (F',G',H'). Then because

U‘€‘W(dr,dc)(k) we have that § = R(F',G') is invertible. Let
c




-1
= (F,G,H) =S - (s JF'S, S’JG’,H’S). Then % also realizesof and

R(F,G)a = In. Now observe that the realization algorithm described above
simply fecalculates precisely these F,G,H fromc#.

cr,co

6.2.8. Corollary. Let k =R or I and let h: M (k) + W(k) be the map
’

induced by h: Lm n P(k) + W(k). Then h is an 1somorphlsm of analytic
b 3
manifolds.

co,Ccr

6.2.9. Corollary. More generally h: L -~ W induces an isomorphism of

m,n,p
schemes M n,p + W. In particular if k is an algebraically closed field
b i ]
then we have an isomorphism of the algebraic varieties Mm 0 p(k)_ and
) £

WEK) . ’

6.3. Realization with parameters.

6.3.1. The topological case. Let Ta(s), a €V be a family of transfer

functions depending continuously on a parameter a € V. For each a Y

write a(s) = A](a)c_] + Az(a)sm2 + ... and for each a let n(a) be

the rank of the block Hankel matrix of X(a) = (Al(a),Az(a),...). The
question we ask is: does there exist a continuous family of systems
Z(a) = (F(a),G(a),H(a)) such that the transfer functionof % (a) is

T (s) for all a. The answer to this is definitely yes provided n(a) is
bounded as' a functlon of a. Simply take a long enough chunk of theyé(a)
for all a and do the usual realization construction by means of block
companion matrices and observe that this is continuous in the Ai(a),*)
The question becomes much more delicate if we ask for a continuous family
of realizations which are all cr and co. This obviously requires that n(a)
is constant and provided that the space V is such that all n = n(a)
dimensional bundles are trivial this condition is also sufficient.

Indeed if n(a) 1is constant then‘thecd(a) determine a continuous map

V > W@R) and hence by Corollary 5.2.8 a continuous map V - MeE> o .

m,n,p
Pulling back the unlversal family over McrnchR) to-a family over V

gives us a famlly (E;F,G,H) over V such tﬁaé the transfer function of the
system over a € V iéfTé(s) for all a. The bundle E is trivial by hypothesis,
so there are continuous sections €15 +eey €1 V > E such that
{el(a),...,ﬁh(a)} is a basis for E(a) for all a € V. Now write out the
matrices of F,G,H with respect to these bases to find a continuous family

Z(a), which realiZeS‘Ta(s) and such that Z(a) is cr aﬁd co for all a.

*) True if v is paracompact and normal, one needs partitions of unity
(in any case, I do) to find continuous T. (a) such that B 1 = T]B +"'+Tn81
where B is the i-th block column of hﬁﬁ} "




6.3.2. The polynomial case. Let k be a field and k its algebraic closure,

e.g. k=R and k =T. Let TX(S) be a transferfunction with coefficients
in k[x.,...,x ], where x,, ..., x_ are indeterminates. We ask whether
1° q? 1 q
there exists a realization of T(s) over k[x ,.,.,x ], that is a triple of
1 q’

matrices (F,G,H) with coefficients in k[x],...,xq] such that

T (s) = H(sI—F)_]G. Again the answer is obviously yes if we do not require
any minimality conditions on the realization (provided n(x],...,x ) the
degree of the Hankel matrix of T(s) is bounded for all (x],...,x ) € k%,
Now assume that n(x],... ,xq) is constant for all (x],...,x ) € k4.
Then (xl,...,x )P+d4(xl,...,x ) defines a morphism of algebraic varieties
K1 > W(k) and hence by Corollary 6.2.9 a morphism xd 5 M°T> co(k) Pulling
back the universal family by means of this morphism we flad,a famlly
(E;F,G,H) over kY whlch is defined over k because the morphism kd 5 W(k)

cr,co

and the 1somorphlsm\Mm (k) are defined over k. Thus I is defined over k

H b

and by the Quillen-Suslin theorem E is trivializable over k. Taking the
corresponding sections and writing out the matrices of F,G,H with respect
to the resulting bases we find an F,G,H with coefficients in kEx ,...,xq]

which realize T (s) for all x € kq, i.e. such that Tx(s) H(sI-F) °

Moreover this system (F,G,H) is cr over kfx ,...,x ] (meaning that
1 q

R(F,G): k[x .,x ](n+1)m

12
and even stronger 1ts dual system is also cr (i.e. (F,G,H) is split

in the terminology of [So 3].

> kfx],...,xq] is surjective); it is also co

6.3.3. Realization by means of delay-differentiable systems.
Let I = (F(ol,.--,o ), G(o ,...,o ), H(o, seens0y )) be a delay
differential system with q 1ncommensurab1e delays. Here 0. stands for

the delay operator Glf(t) = f(t- ai), cf. 2.3 above for this notation.

The transfer function of ¥ is then

-a;s -a s -a;s -a s _, ~a;s
(6.3.4) T(s) = G(e yeeese 1) (sI-F(e beeose I HCe yeoen€

which is a rational function in s whose coefficients are polynomials in

-a s

s eeey © .

Now inversely suppose we have a transfer function T(s) like (6.3.4)
and we ask whether it can be realized by means of a delay-differential

system(zgc). Now if the a, are incommensurable then the functions
=a, (s -a,Ss . i
s,e ! 5> ceey € 9 are algebraically independant and there is precisely

one transfer function T(s;o],...,qq) whose coefficients are polynomials

B




—-a,s -a s

1> ++20y such that T(s) = T'(s,e ! .,e 4 ). Thus the problem is

mathematically identical with the one treated just above 6.3.2. In passing

ingo

let us remark that complete reachability for delay-systems in the setnse of
that the associated system over the ring]R[Ol,...,Oq] is required to be cr

seems often a reasonable requirement, e.g. in connection with pole placement,

cf. [So.1] and [Mo ].

7. THE "CANONICAL" COMPLETELY REACHABLE SUBSYSTEM.

7.1. % for systems over fields. Let I = (F,G,H) be a system over a field
k. Let X°T be the image of R(F,G): k' - kn, r = m(n+1). Then obviously
F(Xcr) c Xcr’ G(km) c Xcr’ so that there is an induced subsystem

)}

terms of matrices this means that there is an S € GLn(k) such that ZS

Cr o (Xcr;F',G',H') which is called the canonical cr subsystem of I. In

has the form

(7.1.1)

with (F Gl’Hl) = Zcr, the "canonical" cr subsystem. The words Kalman

11°
"decomposition' are also used in this context. There is a dual construction
relating to co and combining these two constructions "decomposes" the
system into four parts.

In this section we examine whether this construction can be
globalized, i.e. we‘ask whether this construction is continuous, and
we ask whether something similar can be done for time varying linear

dynamical systems. .

7.2. 2% for time varying systems. Now let L = (F,G,H) be a time varying

system, i.e. the coefficients of the matrices F,G,H are allowed to vary,
say continuously, with time. For time varying systems the controlability
matrix R(Z) = R(F,G) must be redefined as follows

(7.2.1) R(F,G) = (G(O):{ G(1)} ... !G(n))

where

(7.2.2) G(0) = G; F(i) = FG(i-1) - &(i-1)




where the ' denotes differentiation with respect to time, as usual. Note
that this gives back the old R(F,G) if F,G do not depend on time. The
system is said to be cr if this matrix R(Z) has full rank. These seem

to be the appropriate notions for time varying systems; cf. e.g. [We, Haz5]
for some supporting results for this claim.

A time variable base change x' = Sx (with S = S(t) invertible for all t)

changes I to 55 with

(7.2.3) 5 = (srs™l48s7! 56,57y
Note that R(IZ) hence transforms as

(7.2.4) R(Z%) = SR(Z) -

7.2.5. Theorem. Let I be a time varying system with continuously varying
parameters. Suppose that rank R(I) is constant as a function of t. Then
there exists a continuous time varying matrix S, invertible for all t,

such that I° has the form (7.1.1) with (F

]],G],H]) cr.

Proof. Consider the subbundle of the trivial (n+1)m dimensional bundle
over the real line génerated by the rows of R(Z). This is a vectorbundle
because of the rank assumption. This bundle is trivial. It follows that
there exist r sections of the bundle, where r = rank R(I), which are
linearly independant everywhere. The continuous sections of the bundle are
of the form Zai(t)zi(t), where zl(t), ey zn(t) are thg rows of R(Z) and
the ai(t) are continuous functions of t. Let bl(t)’ cees br(t) be the

r everywhere linearly independant sections and let

bj(t) = Zaji(t)zi(t), j=1, ..., ryi=1, ..., n.

Let E' be the r dimensional subbundle of the trivial bundle E of

dimension n over the real line generated by the r row vectors

aj(t) = (aj](t), ...,'ajn(t». Because the quotient bundle E/E' is trivial

we can complete the r vectors a](t), ceey ar(t) to a system set of n
vectors al(t), cees an(t) such that the determinant of the matrix formed
by these vectors is nonzero for all t. Let Sl(t) be the matrix formed by
these vectors, then S]R(Z) has the property that for all t its first r

rows are linearly independant and that it is of rank r for all t. It follows

that there are unique continuous functions Cki(t) s k =r+l, ..., n; 1 I, ..., 1




such that
Now let

§,(t) =

-C(t)

Then S(t) = Sz(t)Sl(t) is the desired transformation matrix (as follows

from the transformation formula (7.2.4)).

Virtually the same arguments give a smoothly varying S(t) if the
coefficients of I véry smoothly in time, and give a polynomial S(t) if
the coefficients of I are polynomials in t (where in the latter case we
need the constancy of the rank also for all complex values of t and use

that projective modules over a principal ideal ring are free).

7.3. Z°F for families. For families of systems these'techniques give

7.3.1. Theorem. Let X be a continuous family parametrized by a contractible
tbpological space‘(resp. a differentiable family parametrized by a contractible
manifold; resp. a polynomial family). Suppose that the rank of R(Z) is

constant as a function of the parameters. Then there exists a continuous

(resp. differentiable; resp. polynomial) family of invertible matrices

S such that $° has the form (7.1.1) with (F

The proof is Virtually the same as the one given above of theorem

GI’HI) a family of cr systems.

7.2.5; in the polynomial case one of course relies on the Quillen-Suslin
theorem [ Qu; Sus] to conclude that the appropriate bundles are trivial.
Note also that, inversely, the existence of an S as in the theorem implies
that the rank of R(Z) is constant.
‘ For delay—diffefential systems this gives a "Kalman deComposition'provided
the relevant, obviously necessary, rank condition is met.

Another way of proving theorem 7.3.1 for systems over certain rings rests
on the following lemma which is also a basic tool in the study of isomorphisms
of families in [HP] and which implies a generalization of the main lemma

of [0S] concerning the solvability of sets of linear equations over rings.

7.3.2. Lemma. Let R be a reduced ring (i.e. there are no nilpotents # 0)
and let A be a matrix over R. Suppose that the rank of A(p) over the quotient
field of R/p is constant as a function of p for all prime ideals ‘. Then

Im(A) and Coker(A) are projective modules.




Now let ¥ over R be such that rank R(ZG?)) is constant, and let R
be projective free (i.e. all finitely generated projective modules over R
are free). Then Im R(Z) < R" is projective and hence free. Taking a basis
of Im R(Z) and extending it to a basis of all of Rn, which can be done
because R"/Im R(Z) = Coker R(IL) is projective and hence free, now gives the

desired matrix S.

There is a complete set of dual theorems concerning co.

7.4. 5°F for delay differential systems. Now let £(0) = (F(0), G(o), H(0))
be a delay differential system. Then of course we can interpret I as a pol-
ynomial system over R[o] =]R[0],...,or] and apply theorem 7.3.1. The
hypothesis that rank R(Z(c)) be constant as a function of Oys +++5 O
(including complex and negative values of the delays) is rather strong

though.

" Now if we assume that all functions involved in

(7.4.1) x(t) = F(o)x(t) + G(ou(t), y(t) = H(o)x(t)

are zero sufficiently far in the past, an assumption which is not unreasonable

and even customary in this context, then it makes perfect sense to talk about

base changes of the form
(7.4.2) = S(og)x

where S(g) is a matrix whose coefficients are power series in the delays
Ops +ves O and which is invertible over the ring of power series
]R[[cl,...,or]]. Indeed if c]u(t) = a(t-a]), a

zero for t < —Na] then

! > 0 and the function B(t) is

fes) .' i N+N'
(.Z bicl)@(t) = _Z biB(t—lai)
i=o i=o

where N' is such that t < N'al.

Allowing such basis changes one has
7.4.3. Theorem. Let 1(0) be a delay-differential system. Suppose that
rank R(Z(0)) considered as a matrix over the quotient field k(ol""’of)
is equal to rank R(g(0)) (over R) where 3z(0) is the system obtained from
2(0) by setting all 05 equal to zero. Then there exists a power series

base change matrix S € GL GR[[O]]) such that Z has the form (7.1.1)




with (F H;) a cr system (over R[[cl]).

,G

Thllpr;of is again similar where now of course one uses that a
projective module over a local ring is free.

Note thét 2(0) is not the system obtained from Z(c) by setting
all delays equal to zero. For example if %(0) is the one dimensional,
one delay system §(t) = x(t) + 2x(t-1) + u(t) + u(t-2),

y(t) 2x(t) - x(t-1), then Z(0) is the system x(t) = x(t) + u(t),
y(t) 2x(t) obtained by removing all delay terms.

8. CONCLUDING REMARKS ON FAMILIES OF SYSTEMS AS
OPPOSED TO SINGLE SYSTEMS.

Mcr and MCo . One
m,n,p —— m,Nn,p

aspect of the study of families of systems rather than single systems

8.1. Non extendability of the moduli spaces

is the systematic investigation of which of the many constructions
and algorithms of systems and control theory are continuous in the
system parameters (or more precisely to determinesso to speak, the
domains of continuity of these constructions). This is obviously
important if one wants e.g. to execute ‘these algorithms numerically.
Intimately (aﬁd obviously) related to this continuity problem
is the questidﬁ of how a given single system can sit in a family of
systems (deformation (perturbation) theory). The fine moduli spaces
cr and M;O answer precisely this question (for a system which

m,n,p »y, P
is cr or co): for a given cr (resp. co) system the local structure of

cr co . .
M resp. M around the point represented by the given
- n,p(lR) (resp m,n’lD(IR)) p P y 8

system describe exactly the most complicated family in which the given

system can occur (all other families can up to isomorphism be uniquely
obtained from this one by a change of parameters). Thus one may well be
interested to see whether. these moduli spaces can be extended a bit.
In particular one‘copld expect that M;f ,pGR) and M;?n’pGR) could be

combined in some way to give a moduli space for all systems which are

cr or co. The following example shows that this is a bit optimistic.

8.1.1. Example. Let' Z and X' be the two families over € (or R) given

by the triples of matrices

) e s

0




61

¥ is co everywhére and cr everywhere but in 0 = 0, and L' is cr everywhere
and co everywhere but in ¢ = 0. The systems X(0) and I'(0) are isomorphic
for all o # 0, but £(0) and 1'(0) are definitely not isomorphic. This
kills all chances of having a fine moduli space for families which

consist of systems which are co or cr. There cannot even be a coarse
moduli space for such families.

Indeed let(; be the functor which assigns to every space the set of
all isomorphism classes of families of cr or‘co systems. Then a course
moduli space for F(cf.[Mu] for a precise definition) consists of a
space M together with a functor transformation #(-) » Mor(-,M) which is
an isomorphism if - = pt and which also enjoys an additional universality

property. Now consider the commutative diagram

F(C\ {0}) » Mor(€ \ {o},M)

N A

o
F(€) — Mor(C,M)

%F ({o}) == Mor({o},M)

Consider the elements of %(C) represented by £ and I'. Because L and L'
are isomorphic as families restricted to €\ {0} we see by continuity

(of the elements of Mor(€,M)) that a(Z) = a(Z'). Because X(0) and

£'(0) are not isomorphic this gives a contradiction with the injectivity
of ¥{0}) + Mor({0},M).

Coarse moduli spaces represent one possible weakening of the fine
moduli space property. Another, better adapted to the idea of studying
families by studying a maximally complicated example,is that of a versal
deformation. Roughly a versal holomorphic deformation of a system I over
€ is a family of systems L(0) over a small neighbourhood U of 0 (in
some parameter space) such that £(0) = I and such that for every family
L' over V such that %.'(0) = I there is some (not necessarily unique)
holomorphic map ¢(i.e. a holomorphic change in parameters) such that
¢!Z ~ %' is a neighbourhood of O.

For square matrices depending holomorphically a parameters (with

similarity as isomorphism) Arnmol'd, [Ar], has constructed versal deformations




and the same ideas work for systems (in any case for pairs of matrices
(F,G), cf. [Ta 2]).

. From the identification of systems point

cO’C;CIR) is important put also

8.2. On the geometry of M2 CO
m’n’p

of view not only the local structure of M.m n

b b
its global structure cf. also [BrK] and [Haz 8]. Thus for example if
co,cr
I,n,1
some of these components are of rather complicated topological type,

m=1=p, M (R) = Rat(n) decomposes into (n+1) components, and

[Br], which argues ill for the linearization tricks which are at the

back of many identification procedures. One way to view identification
is as finding a sequence of points in M;?;f;
in. Ideally this sequence of points will then converge to something.

. o
Thus the question comes up of whether M; » CL

(R) as more and more data come

(@®R) is compact, or
2 b

compactifiable in such a way that the extra points can be interpreted
as some kind of systems. Now M°C?€T

L. : . m,n,p
compactification question. There does exist a partial compactification
=~ . . . = cr,co
M such that the extra points, i.e. the points of M ~NMO?
‘m,n,p m,n,p m,n,p
correspond to systems of the form

(R) is never compact. As to the

(8.2.1) x = Fx + Gu, y = Hx + J(D)u

where D is the differentiation operator and J is a polynomial in D. This
seems to give still more motivation for studying systems more general
than X = Fx + Gu, y = Hx [Ros]. This partial compactification is also
maximal in the sense that if a family of systems converges in the sense
that the associated family of input/output operators’ converges (in the
weak topology) then the limit input/output operator is the input/output
operator of a system of the form (8.2.1). Cf. [Haz 4] for details.

8.3. Pointwise-local-global isomorphism theorems. One perennial ‘question

which always turns up when one studies families rather than single objects
is: to what extent does the pointwise or local structure of a family
determine its global properties. Thus for square matrices one has e.g.
the question studied by Wasov [Wal, cf. also [0S]; given two families of
matrices A(z), A'(z) depending holomorphically on some parameters z.
Suppose that for each separate value of z, A(z) and A'(z) are similar;
does it follow that A(z) and A'(z) are similar as holomorphic families.
For families of systems the corresponding question is: let X(0)

and X'(0) be two families of Systems and suppose that Z(o) and I'(o) are
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isomorphic for all values of 0. Does it follow that £ and §' are
isomorphic as families (globally or locally in a neighbourhood of every
parameter value gJj.

Here there are (exactly as in the holomorphic-matrices-under-
similarity-case) positive results provided the dimension of the
stabilization subgroups {S € GLnGR)IZ(O)S = 2(0)} is constant as a
function of o, cf. [HP].
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