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ABSTRACT.

This tutorial and .expository paper considers linear dynamical

systems k = Fx + Gu, y = Hx, or, x(t+1) = Fx(t) + Gu(t), y(t) = Hx(t);

more precisely it is really concerned with families of such, i.e.,

roughly speaking, with systems like the above where now the matrices

F,G,H depend on some extra parameters a. After discussing some

motivation for studying families (delay systems, systems over rings,

n-d systems, perturbed systems, identification, parameter uncertainty)

we discuss the classifying of families (fine moduli spaces). This is

followed by two straightforward applications: realization with parameters

and the nonexistence of global continuous canonical forms. More applications
,

especially to feedback will be discussed in Chris Byrnes' talks at this

conference and similar problems as in these talks for networks will be

discussed by Tyrone Duncan. The classifying fine moduli space cannot

readily be extended and the concluding sections are devoted to this

observation and a few more related results.
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1. INTRODUCTION.

The basic object of study in these lectures (as in many others at this

conference) is a constant linear dynamical system, that is a system of

equations

(1.1) = Fx + Gu

= Hx

(a): continuous time

(E)

x(t+1) = Fx(t) + G

y(t) = Hx(t)

(b): discrete time

with xEk
n
= space space, u E km = input or control space, y E kP = output-

space, and F,G$H matrices with coefficients in k of the appropriate sizes;

that is, there are m inputs and p outputs and the dimension of the state

space, also called the dimension of the system E and denoted dim(E), is n.

Here k is an appropriate field (or possibly ring). In the continuous time

case of course k should be such that differentiation makes sense for (enough)

functions ]R -÷ k, e.g. •k =IR or E. Often one adds a direct feedthrough
 term

ju, giving y = Hx + Ju in case (a) and y(t) = Hx(t) + Ju(t) in case (b)

instead of y = Hx and y(t) = Hx(t) respectively; for the mathematical prob
lems

to be discussed below the presence or absence of J is essentially irrelevan
t.

More precisely what we are really interested in are families of objects

(1.1), that is sets of equations (1,1) where now the matrices F,G,H depend

on some extra parameters a. As people have found out by now in virtually

all parts of mathematics and its applications, even if one is basically

interested only in single objects, it pays and is important to study familie
s

of such objects depending on a small parameter c (deformation and pertu
rbation

considerations). This could be already enough motivation to study familie
s,

but, as it turns out, in the case of (linear) systems theory there are 
many

more circumstances where families turn up naturally. Some of these 
can be

briefly summed up as delay-differential systems, systems over rings
, continuous

canonical forms, 2-d and n-d systems, parameter uncertainty, (si
ngularly)

perturbed systems. We discuss these in some detail below in secti
on 2.

To return to single systems for the moment. The equations (1.1
) define

input/output maps fE : u(t)i-÷ y(t) given respectively by

( .2 ) y(t) = f He
F(t-T)

G (T)dT,

a

(1.2b) y(t) = E A.u(t-1- , A. = HF
1-1

9 I =
i=1 1

t> 0

1,2,3,...



where we have assumed that the system starts in x(0) = 0 at time 0. In both

cases the input/output operator is uniquely determined by the sequence of

matrices A
l' 

A
2' 

... . Inversely, realization theory studies when a given

sequence A1, 
A2' - Jl is such Al•=HFG

for all i. Realization with parameters is now the question: given a sequence

of matrices Al(a), A2(a), A3(a), ... depending polynamially (resp. continuously,

resp. analytically, resp. ..,) on parameters a, when do there exist matrices

F,G,H depending polynomially (resp. continuously, resp. analytically, resp...

on the parameters a such that Ai(a) = H(a)F1-1(0)G(a) for all 1. And to what

extend are such realizations unique? Which brings us to the next group of

questions one likes to answer for families.

A single system E given by the triple of matrices F,G,H is completely

F
n
Greachable if the matrix R(F,G) consisting of the blocks G, FG,

(1.3) R(E) = R(F,G) = 03! FG! •• . iFnG)

has full rank n. (This means that any state x can be steered to any other

state x t by means of a suitable input). Dually the system E is said to be

completely observable if the matrix Q(F,G) consisting of the blocks
H, HF, ...,HFn

HF
(1.4) Q(E) = Q(F,H) = •

111Fri/

has full rank n. (This means that two different states x(t) and x t(t) of the

system can be distinguishedJon the basis of the output y(T) for all T >

As is very well known if A
1' 

A
2' 

... can be realized then it can be realized

by a co and cr system and any two such realizations are the same up to

base change in state space. That is, if E = (F,G,H) and E t= (F t ,G t,H t) both

realize A
1, A2' 

... and both are cr and co then dim(E) = dim(E t)
-1there is an invertible n x n matrix S such that F t = SFS , Gt = Sc,

-
H t = HS

1 
(It is obvious that if E and E t are

n and

related in this way then

they give the same input/output map). This transformation

(1.5) - -E = (F,G,H)t-÷ E = (F,G,H)
S 
= (SFS

1 
,SG,HS

1 
)

corresponds of course to the base change in state space

that at least one good notion of isomorphism of systems

over k are isomorphic iff dim(E) = dim(E t) and there is

x t = Sx. This argues

is: two systems E, E'

an S E GL
n
(k), the



group of invertible matrices with coefficients in k, such that E'

A corresponding notion of homomorphism is: a homomorphism from

= (F,G,H), dims = n, to E' = (F',GI,H'), dims = n', is an n x n matrix

B (with coefficients in k) such that BG = G', BF = F'B, H T B = H.

Or, in other words, it is a linear map from the state space of E to the

state space of E' such that the diagram below commutes.

(1.6) km-
..----

B

n 
F'

k

k
n

1
The obvious corresponding notion of isomorphism for families

E(a), Z' (a) is a family of matrices SO S(a)) such that E(a) =

where, of course, S(G) should depend polynamially, resp continuously,

resp. analytically, resp.-. on a if E and E' are polynomial, resp.

continuous, resp. analytical, resp.. ..families. One way to look at the

results of section 3 below is as a classification result for families,

or, even, as the construction of canonical forms for families, under the

notion of isomorphism just described. As it happens the classification

goes in terms of a universal family, that is, a family from which,

roughly speaking, all other families (up to isomorphism) can be uniquely

obtained via a transformation in the parameters.

Let Lm
,n,p

(k) be the space of all triples of matrices (F,G,H) of

dimensions nxn, nxm, pxn, and let 
Lco,cr 

be the subspace of cr and co
m,n,p 

triples. Then the parameter space for the universal family is the quotient

space 
Lco,cr 
m,n,p

(k
)
/GL

n(
k), which turns out to be a very nice space.

The next question we shall take up is the existence or nonexistence

of continuous canonical forms. A continuous canonical form on L
c°,cr
m,n,p

is a continuous map (F,G,H)1,-* c(F,G,H) such that c(F,G,H) is isomorphic

to (F,G,H) for all (F,G,H) E Lc°'cr and such that (F,G,H) and (F',G',111)
m,n,p

are isomorphic if and only if c(F,G,H) = c(F',G',H T) for all (F,G,H),

(F,,G,01,)E Lco,cr. Obviously if one wants to use canonical forms to
m,n,p

get rid of superfluous parameters in an identification problem the

canonical form had better be continuous. This does not mean that

(discontinuous) canonical forms are not useful. On the contrary, witness

e.g. the Jordan canonical form for square matrices under similaray. On the

other hand, being discontinuous, it also has very serious drawbacks; cf.

e.g.[Gleli] for a discussion of some of these. In our case it turns out that



there exists a continuous canonical form on all of Lc°'cr if and only ifm,n,p

in --,... 1 or p = 1.

Now let, again, E be a single system. Then there is a cdftonical

subsystem E
(r) 

which is completely reachable and a canonical quotient

,co
system L which is completely observable. Combining these two constructions

one finds a canonical subquotient (or quotient sub) which is both cr and

co. The question arises naturally whether (under some obvious necessary

conditions) these constructions can be carried out for families as well

and also for single time varying systems. This is very much related

to the question of whether these constructions are continuous. In the ,

last sections we discuss these questions and related topics like: given

two families E and E' such that E(G) and E'(a) are isomorphic for all

(resp. almost all) values of the parameters a; what can be said about

the relation between E and E' as families (resp. about E(a) and E'(a)

for the remaining values of 0.

2. WHY SHOULD ONE STUDY FAMILIES OF SYSTEMS.

For the moment we shall keep to the intuitive first approximation of

a family of systems as a family of triples of matrices of fixed size

depending in some continuous manner on a parameter a. This is the

definition which we also used in the introduction.

2.1. (Singular) perturbation, deformation, approximation.

This bit of motivation for studying families of objects, rather than

just the objects themselves, is almost as old as mathematics itself.

Certainly (singular) perturbations are a familiar topic in the theory

of boundary value problems for ordinary and partial differential equations

and more recently also in optimal control, cf. e.g. [Ma].

For instance in [0Ma], chapter VI20'Malley discusses the singularly

perturbed regulator problem which consists of the following set of

equations, initial conditions and quadratic cost functional which is to be

minimized for a control which drives the state x = (Y) to zero at time t = 1.z

= Al(c)y + A2(c)z + 131(0u y(0,c) =

(2.1.1)ci = A4(0y + A4(c)z + B2(c)u z(0,c) = z4)(c)

J(c) = x (1,c)7t(c)x(1,c) + (x t,c)Q(c)x(t,E) + uT(t,c)R(c)u t,c))dt

with positive definite R(6), and Q(c),7(c) positive semidefinite. Here the

upperTdenotestransposes.Thematrices/6"(c), i = 1,2,3,4, B.(c), i = 1,2,



A(r), 01), R(L) may also depend on t. For fixed small c > 0 there is a

unique optimal solution. Here one is interested, however, in the

asymptotic solution of the problem as c tends to zero, which is, still

quoting' from COMa] a problem of considerable practical importance, in

particular in view of an example of Hadlock et al.[HJK] where the

asymptotic results are far superior to the physically unacceptable

results obtained by setting c = 0 directly.

Another interesting problem arises maybe when we have a system

(2.1.2) * = Fx + G u + G2
v
' 

y = Hx

where v is noise, and where F, Gl, G2,H depend on a parameter E.

Suppose we can solve the disturbance decoupling problem for c = 0. I.e.

we can find a feedback matrix L such that in the system with state feedback

loop L

=(F+GL)x + Giu + G2v, y = Hx

the disturbances v do not show up any more in the output y, (for e = 0).

Is it possible to find a disturbance discoupler L(6) by "perturbation"

methods, i.e. as a power series in c which converges (uniformly) for 6

sma1.1 enough, and such that L(0) = L.

In this paper we shall not really pay much more attention to

singular perturbation phenomena. For some more systems oriented material

on singular perturbations cf. [ICKU] and also [Haz 4].

2.2. Systems over rings.

Let R be an arbitrary commutative ring with unit element. A linear

system over R is simply a triple of matrices (F,G,H) of sizes n x n, n x m,

p x n respectively with coefficients in R. Such a triple defines a linear

machine

(2.2.1) x(t+1) = Fx(t) + Gu(t), t = 0,1,2,..., x E Rn, u E km

y(t) = Hx(t), y E RP

which transformes input sequences (u(0),u(1),u(2),...) into output 
sequences

(y(1),y(2),y(3),...) according to the convolution formula (1.2.b).

It is now absolutely standard algebraic geometry to consider t
hese

data as a family over Spec(R), the space of all prime ideals of R 
with the



Zariski topology. This goes as follows. For each prime ideal p let

1, : R Q(R/p) be the canonical map of R into the quotient field

of the integral domain Rip. Let (F(p), c(p), H(p)1 be the triple

of matrices .over Q(014) obtained by applying i to the entries of

F,G,H. Then Up) = (F(p),G(0,11(14)) is a family of systems parametrized

by Spec(R).

Let me stress that, mathematically, there is no difference between

a system over R as in (2.2.1) and the family E(r) . As far as intuition

goes there is quite a bit of difference, and the present author e.g.

has found it helpful to think about families of systems over Spec(R)

rather then single systems over R. Of course such families over Spec(R)

do not quite correspond to families as one intuitively thinks about them.

For instance if R = ZZ = the integers, then Spec(a) consists of (0)

and the prime ideals (p), p a prime number, so that a system over ZZ

gives rise to a certain collection of systems: one over 1Q = rational

numbers, and one each over every finite field ]F = 72 1(p)  Still the

intuition one gleans from thinking about families as families parametrized

continuously by real numbers seems to work well also in these cases.

2.3. Delay-differential systems.

Consider for example the following delay-differential system

(2.3.1)

k ( ) --.=•• x (t-2) x2(t-o) + u(t-1) + um

k
2
(0 = (0 x

2 
(t-1) + u(t-o)

y(t) = x (0 + x2(t-2a)

where a is some real number incommensurable with 1. Introduce the delay

operators al, (52 by a0(t) = fgt-1), a213(t) = (t-a). Then we can rewrite

(2.3.1) formally as

(2.3.2)

with

(2.3.3)

k(t) = Fx(t) + Gu(t), y(t) = H

+ a1

H = ( 1
9
a
2
)



and, forgetting so to speak where (2.3.2), (2.3.3) came from, we can view

this set of equations as a linear dynamical system over the ring llqo1,2 (3,],

and then using 2.2 above also as a family of systems parametrized by the

(complex) parameters , 2 ' 
a point of view which has proved fruitfull

1 

e.g. in [By 4]. This idea has been around for some time now,

[ZW, An, Yo , Rff], though originally the tendency -was to consider .these

systems as systems over the.fields1R(a...2G
2
); the idea to consider

them over the rings]R[a...,a2 
instead is of more recent vintage([Mo,Kam]).

There are, as far as I know no relations between the solutions of

(2.3.1) and the solutions of the family of systems (2.3.2), (2.3.3). Still

many of the interesting properties and constructions for (2.3.1) have their

counterpart for (2.3.2), (2.3.3) and vice versa. For example to construct

a stabilizing state feedback loop for the family (2.3.2) - (2.3.3)

depending polynomially on the parameters al, 02 that is finding a

stabilizing state feedback loop for the system overlKa1 ,a2],means finding

an m x n matrix L(0
1 
,a
2 
) with entries in]R[a1'

a
2
] such that for all complex

01G2 det(s-(F+GL)) has its roots in the left half plane. 
Reinterpreting

a and 
1 02 

as delays so that L(a1,02) becomes a feedback matrix with delays 

one finds a stabilizing feedback loop for (the infinite dimensional)

system (2.3.1). (cf. [BC], cf. also [Kam], which works out in some

detail some of the relations between (2.3.1) and (2.3.2) (2.3.3) viewed

as a system over the ring1RG1202
])

As another example a natural notion of isomorphism for systems

E = (F2G,H), E' = (F',G ,11 1) over a ring R is: E and E' are isomorphic if

there exists an n x n matrix S over R, which is invertible over R, i.e.

such that det(S) is a unit of R, such that E = ES. Taking R --TR[a1 ,a2]

and reinterpreting the G. as delays we see that the corresponding notion

for the delay-differential systems is coordinate transformations with

time delayswhichis precisely the riglIt notion of isomorphism for studying

for instance degeneracy phenomena, cf[Kap].

Finally applying the Laplace transform to (2.3.1) we find a transfer

- - _
function T(s2e

s 
2e

as 
), which is rational in s2e

-s 
and e

as
 . It can also

be obtained by taking the family of transfer functions T (s)
,0

I 2
-s

and then substituting e for a
1 
and e

as

2

for 02 Inversely given a transfer function T(s) which is rational in
.
--as

s2e ,e one way ask whether it can be realized as a system with delays
-

which are multiples of 1 and a. Because the functions s, e-s, 
eas are

algebraically independant (if a is incommensurable with there is a unique



rational function T(s,01,02) such that T(s) = T(s,e-s,
e 
) and the

realizability of T(s) by means of a delay system, say a system with trans-

mission lines, is now mathematically equivalent with realizing the two

parameter family of transfer functions T(s,0-1,a21 by a family of systems

which depends polynomally on

2.4. 2-d and n d systems.

Consider a linear discrete time system with direct feed-through term

(2.4.1) x(t+1) = Fx(t) + Gu(t), y(t) = Hx(t) + Ju(t)

The associated input/output operator is a convolution operator, viz.

(cf.(1.2.b))

(2.4.2 y(t) = E Aiu t-i , A = J,
i=o

G for i =
•

Now there is an obvious (north-east causal) more dimensional,

generalization of the convolution operator (2.4.2), viz.

(2.4.3)
h k

y(h,k) = E EA. .u(h-i,k-j), h k = 0,1,2,..
i=o j=o

.1,2,

A (Givone-Roesser) realization of such an operator is a "2-d system"

(2.4.4)

x (h+1,k) = lrxi(h,k) 
+ F12x2 

(h,k) + Giu(h,k)

x2(h,k+1) 
F21x1 

(h,k) + F22x2(h,k) + G2u(h,k)
--"': 

y(h,k) = Hixi(h,k) + H x2(h,k) + Ju(h,k)

which yields an input/output operator of the form (2.4.3) with the

determined by the power series development of the 2-d transfer function

T(si 2)

2.4.5) E A. s-is-j = T(si,
1,j 1 2 

. H2)
i,j

(s1 n 
0

n
2

F
11 

F121

21 F221

where I is the r x r unit matrix and n
1 
and n

2 
are the dimensions of the

state vectors x
1 
and x

2' 
There are obvious generalisations to n-d systems,

n > 3. The question now arises whether every proper 2-d matrix transfer

function can indeed be so realized. (cf.[ Eis] or [S02] for a definition

of proper. A way to approach this is to treat one of the si as a parameter,
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giving us a realization with parameters problem.

More precisely let R be the ring of all proper rational functions in

sl. In the 2-d case this is a principal ideal domain which simplifies

things.conOirderably. Now consider T(s1's21 as a proper rational function

in s
2 
with coefficients in R . This transfer function can be realized

giving us a discrete time system over R defined by the quadruple of

matrices (F(s
1 
), G(s

1 
), H(s

1
), J(s

1
)). Each of these matrices is proper

as a function of s
1 
and hence can be realized by a quadruple of constant

matrices. Suppose that

(FF,GF,HF,JF) realizes F(s1)

(F g,G g,H g,J g) realizes G(s1)

(FH,GH,HH,JH) realizes H(s1)

(FJ,GJ,HJ,JJ) realizes J(s1)

Then, as is easily checked, a realization in the sense of 2.4.4) is defined

by

H = (H1

ijF HFHG 0

G i F 
F 

o - -6---6-F 
0 0 F

G 
0 0

G
H 

0 F
H 

0 0

\O  I 0 0 0 F
J

G =( G
2

H J = J
J ' J

This is the procedure followed in [Els] ; a somewhat different approach,

with essentially the same initial step (i.e. realization with parameters,

or realization over a ring) is followed in [5o2]

2.5. Parameter Uncertainty.

Suppose that we have a system E = (F,G,H) but that we are uncertain abollt

some of its parameters, i.e. we are uncertain about the precise value of

some of the entries of F,G or H. That is., what we really have is a family of

systems E0), where runs through some set B of parameter values, which

we assume compact. For simplicity assume that we have a one input-one output

system. Let the transfer function of E() be ys) = ft3(s)/gci(s). Now

suppose we want to stabilize E by a dynamic output feedback loop with
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transfer function P(s) = Vs)/(s), still being uncertain about the value of

(3. The transferfunction of the resulting total system is T(s)/(1-T(s)P(s)).

So we shall have succeeded if we can find polynomials cp(s) and tgs) such

that for all P, E B all roots of

gf3(04)(s) f(s)4(s)

are in the left halfplane, possibly with the extra requirement that P(s)

be also stable. The same mathematical question arises from what has been

named the blending problem, cf [Tail .It cannot always be solved. In the

special but important case where the uncertainty is just a gain factor,

i.e. in the case that B is an interval [b
1 
,b
2 
]
9 
b
2 
> b

1 
> 0 and

T (s) = P.T(s), where T(s) is a fixed transforfunction, the problem is

solved completely in [Tall.

3. THE CLASSIFICATION OF FAMILIES. FINE MODULI SPACES.

3.1. Introductory and Motivational Remarks.

(Why classifying families is essentially more difficult than

classifying systems and why the set of isomorphism classes of (single)

systems should be topologized).

Obviously the first thing to do when trying to classify families up

to isomorphism is to obtain a good description of the set of isomorphism

classes of (single) systems over a field k, that is to obtain a good

description of the sets L
m,n,p(k)/GL (k) = Mm,n,p

(k) and of the quotient

map L(k) M (k). This will be done below in section 3.2m,n,p m,n,p

for the subset of isomorphism classes (or sets of orbits) of completely

reachable systems. This is not particularly difficult (and also well known)

nor is it overly complicated to extend this to a description of all of

M (k) = L (k)/GL (k), cf. [Haz6]. Though, as we shall see, therem,n,p m,n,p n

are, for the moment, good mathematical reasons, to limit ourselves to

cr systems and families of cr systems, or,dually,to limit ourselves to co systems

Now let us consider the classification problem for families of systems.

For definiteness sake suppose we are interested (cf. 2.1 and 2.3 above e.g.)

in real families of systems E(a) = (F(a), G(a), H(a)) which depend

continuously on a real parameter a EIR. The obvious, straightforward and

in fact right thing to do is to proceed as follows. For each a EIJI we have
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a system E(a), and hence a point ga) E M = L ([R)/GLOR),m
,n,p m,n,p n

the set of isomorphism classes or, equivalently, the set of orbits in

OR) uhder the action (E,S)F-+ E of GL OR) on L OR). This defines
m,n,p n m,n,p

a map (p(E): 11 ÷ M OR), and one's first guess would be that two families
m,n,p

are isomorphic iff their associated maps 4)(E), 4)(E') are equal.

However, things are not that simple as the following example in L1,200R)

shows.

(3.1.
1 

Example. E(a) = (( 2 
0 
),(

a 1
I NE'(a) = (( 

O

a I

1,2)),

, (1,2a))

For each a Ell, E(a) and E'(u) are isomorphic via T(a) = (1 ) if a 0 0
0 a

and via T(a) = (1 
2
) if a = O. Yet they are not isomorphic as continuous

0 1

families, meaning that there exists no continuous mapll GL OR)
2 '

GP+ T(a), such that E'(a) = E(G)
T(G) 

for all a EFL One might guess that

part of the problem is topological. Indeedl it is in any case sort of

obvious that one should give M OR) as much structure as possible.
m,n,p

Otherwise the map (1)(E):11R-3- Mm
,n,p

OR) does not tell us whether it could

have came.from a continuous family. (Of course if E(a) is a continuous

family overIR giving rise to (1)(E) and S E GLnOR) is such that E(0)5 E(0)

then the discontinuous family E'(a), E'(a) = E(a) for a 0 0, E'(0) = E(0)S

gives rise to the same map). Similarly we would like to have VE) analytic

if E is an analytic family, polynomial if E is polynomial, differentiable

if E is differentiable, ...

One reason to limit oneselve to cr systems is now that the natural

topology (which is the quotient topology for Tr: L OR) M OR)) will
m,n,p m,n,p

not be Hausdorff unless we limit ourselves to cr systems. (It is clear that

one wants to put in - at least all co,cr systems).

There are more reasons to topologize
n,p

OR) and more generally

M (k), where k is any field. For one thing it would be nice if
m,11,1)

M OR) had a topology such that the isomorphism classes of two systems E
m,n,p

and E T were close together if and only if their associated input/output maps

were close together (in some suitable operator topology; say the weak

topology); a requirement which is also relevant to the consistency

requirement of maximum likelyhood identification of systems , cf.

[
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Jet topologizing N !R) does not remove the problem posed by example
m,n,p

(3.1.1). Indeed, giving Ilm,n,p0R) the quotient topology inhttited from

L
m,n,p

OR) the maps defined by the families E and E' of example (3.1.1)

are both cottintots.

Restricting ourselves to families consisting of cr systems (or dually

to families of co systems), however, will solve the problem posed by

example (3.1.1). This same restriction will also see to it that the

quotient topology is Hausdorff and it will turn out that Mcr OR)/GL OR)
m,n,p

is naturally a smooth differentiable manifold. From the algebraic geometric

point of view we shall see that the quotient Lcr /GL exists as a smooth
m,n,p n

scheme defined over ZZ. It is also pleasant to notice that for pairs of

matrices (F,G) the prestable ones (in the sense of [Mu]) are precisely

the completely reachable ones ([Ta21) and they are also the semi-stable

points of weight one, [BR].

Ideally it would also be true that every continuous, differentiable,

polynomial,... map (1) :11 M
cr 

OR) comes from a continuous, differentiable,
m,n,p 

polynomial,... family. This requires assigning to each point of Mcr OR)
m,n,p

a system represented by that point and to do this in an analytic manner.

This now really requires a slightly more sophisticated definition of

family then we have used up to now, cf. 3.4. below. And indeed to obtain

e.g. all continuous maps of say the circle into M OR) as maps associated
m,n,p

to a family one also needs the same more general conceptof families of system

over the circle.

,3.2. Description of the quotient set (or set of orbits) 
Lcr
m,n,p

Let k be any field, and fix n,m,p €IN. Let

(3.2.1) 
n,m 

{(0, 0,2), 0,m); (1, (1,m);

(n, 1) , (n,m)},

(k)/CL (k).

.• •

lexicographically ordered (which is the order in which we have written down

the (n+l)m elements of J ). We use J to label the columns of the matrix
n,m n,m

R(F,G), F E knxn, 
G E knxm, 

cf. 13 above, by assigning the label (i,j)

to the j-th column of the block FiG.

A subset a c: J is called nice if (i,j) E a (i-1,j) E a or i = 0
n,m

for all i,j. A nice subset with precisely n elements is called a nice selection.
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Given a nice selection a, a successor index of a is an element (i,j) E Jn,m

such that a U {(i,j)} is nice. For every jo E {1,...,m} there is precisely

one successor index (1,j) of a with .j = jo. This successor index will be

denoted s(a,j0).

Pictorially these definitions look as follows. We write down the

elements of Jn,m 
in a square as follows (m=4,n=5)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

Using dots to represent elements of Jn,m 
and x's to represent elements of

a the following pictures represent respectively a nice subset, a not nice

subset and a nice selection.

X X

X •

• • • • • X X •

X

11 • • • X • •

• • • • • • X X .

• •
. • • • • •

• • X X . • • •

The successor indices of the nice selection a of the third picture above

are indicated by *'s in the picture below

(3.2.2)
* . . • • •

X X X

We shall use Lm,n(k) to denote the set of all pairs of matrices (F,G)

cr
over k of sizes n x n and n x m respectively; Lm,n(k) denotes the subset of

completely reachable pairs (cf. 1.3 above). For each subset E J m

and each (F,G) E L (k) we shall use R(F,G) to denote the matrix obtained
m,n

from R(F,G) by removing all columns whose index is not in f3.

With this terminology and notation we have the following lemma.

3.2.3. Nice Selection Lemma.

Let (F,G) E L: nr (k). Then there is a nice selection a such that'

det(R(F,G)a) 0.
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Proof. Let a be a nice subset of J such that the columns of R(F,G)m 
a

are linearly independant and such that a is maximal with respect to this

property.

Let a = {(0,j1), • 1 9j1); (09j2)9 ---9 (i2,j ); (0,j), • (is'is)/'

By the maximality of a we know that the successor indices s(a,j), 3= 1, • m

are linearly dependant on the columns of R(F,G)
a
. I.e. the columns with

indices (i1+4,j1), • (i +1,j ) and (0,0, t E {1,...,m}
s s ' s

are linearly dependant on the columns of R(F,G)a. Suppose now that with

induction we have proved that all columns with indices (i
r
+2,,j

r
), r = 1,

and (2.-1,t), t E {1,...,m} {j1,...,41 are linearly dependant on the

columns of R(F,G)
a 

> I. This gives us certain relations
' --

i+2,
F G =E a(i, 

FiG.' 
r 

F G. = E b(i,j)FiG.
j 

(i,j)Ea Jr (i,j)Ea

(Where G denotes the t-th column of G). Multiplying on the left with F

we find expressions

. i+
• E a(i,j)F

(i,j)Ea

i +k+1
.

F 
r 

G. E b j)Fi+
Jr (i,j)Ea

i +k+1
expressing F G

t a
nd F C. as linear combination of those columns of

Jr
R(F,G) whose indices are either in a or a successor index of a. The latter

are in turn linear combinations of the columns of R(F,G) , so that we have

proved that all columns of R(F,G) are linear combinations of the columns

of R(F,G)a. Now (F,G) is cr so that rank(R(F,G)) = n, so that a must have had

n elements, proving the lemma.

For each nice selection a we define

(3.2.4 U (k) = {(F,G,H) E
,n,p

(k)Idet(R(F,G) 01a a

Recall that GL (k) acts on Lm
,n,p

(k) by (F,G,H (SFS ,SG,HS .

3.2.5. Lemma. U is stable under the action of GL (k) under L
m,n,p

(k). Fora

each E E (F,G,H) E U
a 

there is precisely one S E GL (k) such that
R(ES) 

= R(SFS
-1

SG)
a 
= I

n' 
the n x n identity matrix.

Proof. We have

(3.2.6 R(E = R(SFS- ,SG) = SR(F,G = S R(E)
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It follows that R(E
s
)
a 
= SR(E)

a 
which proves the first statement. It also

follows that if we take S = R(F,G) then R(E
s
) = I and this is alsoa a n

the only S which does this because in the equation S R(E)a = Ra >a R(Z)a has

rank n.

3.2.7. Lemma. Let x
1' 

x
m 

be an arbitrary m-tuple of n-vectors over k,

and let a be a nice selection. Then there is precisely one pair (F,G) E L(k)

such that R(F,G)
a = I R(F,G)

s(a,j) 
= x

j' 
j = 1, ..„

Proof (by sufficiently complicated example). Suppose in = 4, n = 5 and that

a is the nice selection of (3.2.2) above. Then we can simply read off the

desired F,G. In fact we find G
1 
= x G

2 
= e G

3 
= x

3' 
G
4 
= e

2
, F

1 
= e

3'
F2 = e4, F3 = x2, F4 = e5, F5 = x4. Writing down a fully general proof is a

bit tedious and notationally a bit cumbersome and it should now be trivial

exercise.

3.2.8. Corollary. The set of orbits Ua(k)/GLn(k) is in bijective correspondence

with k
nm 

x k', and U
a
(k) GL

n
(k) x (knmxkl ) (as sets with GL (k)-action,

where GL (k) acts on GL
n
(k) X (knmxklm) by multiplication on the left on the

first factor).

Proof. This follows immediately from lemma 3.2.5 together with lemma 3.2,6.

Indeed given I (F,G,H) E Ua. Take S = R(F,G)-0-t 1 and let (F',G T ,H') = ES

Now define (I) : Ua(k) GL(k) 
x (knmxkpn) 

by assigning to (F,G,H) the matrix
-1
S , the m n-vectors R(E 

)( 
. j = 1, ..., in and the p x n -matrix H'saor

InverselygivenaTEGLOO,mn-vectorsx.,j = 1, in andapxn
crmatrix y. Let (F',G t) E L(k) be the unique pair such that R(F',G 1)a = In,

R(FT,G 
)s(a,j) 

= x
3
., j = 1, m. Take H' = y and define

11) : GL (k) x (k
nm 

xk
pn 
) U (k) by VT,(x,y)) = (F ,G ,H').. It is triviala

to check that 0 = id, (14 = id. It is also easy to check that (I) commutes witi,
the GL

n
(k)-actions.

3.2.9.Thec# 
0-ocWcanonicalforms.ForeachEEIJot(k) we denote

a
with c

#a
(E) the triple:

(3.2.10) c#a() = with S = R(E)-al

a(E) is the unique triple in the orbit of I such that



Proof. Let a be a nice subset of J such that the columns of R(F,G)m 
a

are linearly independant and such that a is maximal with respect to this

property.

Let a = {(0,j1), 1,j1); (0,j2), (i2,j ); ; (0,j), (is,js)1.

By the maximal ity of a we know that the successor indices s(a,j), 3= 1,

are linearly dependant on the columns of R(F,G)a. I.e. the columns with

indices (i1l-1,y, (is+1,js) and (0,0, t E {1,...,m}

are linearly dependant on the columns of R(F,G)a. Suppose now that with

induction we have proved that all columns with indices (ir
+2,,j

r
), r = 1,

and 0,-1,0, t E {1,...,m} {j1,...,js} are linearly dependant on the

columns of R(F,G)
a 

k > 1. This gives us certain relations
' --

F
k- 

G
t 
= E a
(i,j)Ea

i+2,

,i)Fi F G. = E bj, 
r 

Jr (i,j)Ea

(where G
t 
denotes the t-th column of G). Multiplying on the left with F

we find expressions

a
(i,j)Ea

DFi+
'

i41+1
r

G. = E b(i,j)Fi+1G.
Jr (i,j)Ea

• , M

k
i+9+1

expressing F G
t 
and F C. as linear combination of those columns of

Jr
R(F,G) whose indices are either in a or a successor index of a. The latter

are in turn linear combinations of the columns of R(F,G), so that we have

proved that all columns of R(F,G) are linear combinations of the columns

of R(F,G) 
a
. Now (F,G) is cr so that rank(R(F,G)) = n, so that a must have had

n elements, proving the lemma.

For each nice selection a we define

(3.2.4) U
a
(k) = {(F,G,H) E L

m,n,p
Idet(R(F,G)a)

Recall that GL (k) acts on 
Lm,n,p

(k) by (F,G,H) = (SFS ,SG,HS

3.2.5. Lemma. U is stable under the action of GL (k) under L
m,n,p

(k). Fora

each E E (F,G,H) E U
a 

there is precisely one S E GL (k) such that
-

R(E5) = R(SFS 
1 
,SG)

a 
= I, the n x n identity matrix.

n

Proof. We have

3.2.6) R(E5) = R(SFS ,SG) = SR(F,G) = S R(E)
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with c
#a
(E) the tiiple:
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It follows that R(E ) = SR(E)
a
, which proves the first statement. It also

-follows that if we take S = R(F,G)
a

1 
then R(E )

a 
= I

n 
and this is also

the only S which does this because in the equation S R(E)a R(E ).0t R(E)a has

rank n.

3.2.7. Lemma. Let x x
m 
be an arbitrary m-tuple of n-vectors over k,

and let a be a nice selection. Then there is precisely one pair (F,G) E Lc (k)
m,n

such that R(F,G) = I R(F,G) = X. j = 1,a n' s(a,j) j' •O, MO

Proof (by sufficiently complicated example). Suppose m = 4, n = 5 and that

a is the nice selection of (3.2.2) above. Then we can simply read off the

desired F,G. In fact we find 
G1 

= x G
2 
= e G

3 
= x

3' 
G
4 
= e

2' 
F

1 
= e

3'
F
2 
= e

4' 
F
3 
= x

2' 
F4
 

e5-
' 

F5 = x
4' 

Writing down a fully general proof is a

bit tedious and notationally a bit cumbersome and it should now be trivial

exercise.

3.2.8. Corollary. The set of orbits Ua(k)/GLn(k) is in bijective correspondence
pnwith knm x k

pn
, and U

a
(k) GL

n
(k) x (k

nm 
xk ) (as sets with GL

n
(k)-action,

where GL
n
(k) acts on GL

n
(k) x (knmxk") by multiplication on the left on the

first factor).

Proof. This follows immediately from lemma 3.2.5 together with lemma 3.2,6.

Indeed given E = (F,G,H) E Ua. Take S = R(F,G)-0-t i and let (F',G T ,H') =

u` 

ES.

Now define (I) : Ua(k) GL_(k) x (knmxkl)n) by assigning to (F,G,H) the matrix

S
_1
, them n-veators 

R(ES 
)s(a,jr 

j = 1, ..., TR and the p x n matrix H'.

Inversely givenaTEGL
n
(k),mn-vectors x.,j= 1, ...,mandapxn
crmatrix y. Let (F T ,G T) E L(k) be the unique pair such that R(F',Gt)ot = I

n
R(F T ,G')s(a,j) = xj, j = 1, ..., m. Take H' = y and define

11) : GL(k) x (knmxk") U(k) by VT,(x,y)) = (F',G',H')T. It is trivial

to check that 0 = id, # = id. It is also easy to check that (I) commutes wit',
the GL

n
(k)-actions.

3.2.9. The c# (local) canonical forms. For each I E (k.) we denote
a

(3.2.10) coot(E) =

i.e. c 
a
(E)

with S = R(E)-0-ti

the unique triple V in the orbit of I such that
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R(E t) = I. Further if z E kmn x knP, then we let (Fa(z), Ga(z), Ha(z))

be the triple IgIn,z); that is if z = ((x1 „ xm), y)

CE (z), G
a
(z), Ha(z)) is the unique triple such that:a

(3.2.11) R(Fa( ), Ga(z))a= In, R(Fa(z), Ga(z))

z E (( , xm), Y) E knm x kPn

• = x. H (z) = y
cx,i) J' a

3.2.12. Remark. Let 7 : Ua(k) knm x k
pn 

be equal to IP: U 
a
(k)

GL
n
(k) x (knm x k

pn
) followed by the projection on the second factor.

Then T 
a
: Z CEla(Z), G

a
(z), H

a
(z)) is a section of 71-

a 
(meaning that

7 
a 
T 
a 
= id), and (T 

a
) = T

a 
Of course, 7

a 
induces a bijection

U
a
(k)/GL (k) ± k x kPn.

3.2.13. Description of the set of orbits Lcr (k)/GL
n
(k). Order the

m,n,p
crset of all nice selections from J in some way. For each E E Lm m
,n,p

let a(E) be the first nice selection in this ordening. Now assign to X: the

triple c (E). This assigns to each E E Lcr (k)/GL
n
(k) one particular#a(E) m,n,p

well defined clement in its orbit and this hence gives complete

description of the set of orbits 
Lcr 

(k),4Ln(k).
m,n,p

3.3. Topologizing L
cr 
m,n,p(k)/GLn(k) =

mcr ‘fk,
m,n,p 

3.3.1. A more "homogeneous" description of 
Mrcti,n,p

(k). The description of the

set of orbits of GL
n
(k) acting on Lc (k) given in 2.3.13 is highly

m,n,p
lopsized in the various possible nice selectionsa. A more symmetric

cr
description of Mm

,n,p
(k) is obtained as follows. For each nice

nm pnselection a, let V
a
(k) =k xk and let for each second nice selection

(3.3.2) Vcai( ) = lz E V
a
Idet(R(F

a
( ), Ga(z)) ) 0

That is, under the section T
a
• V

a 
(k)-->. U

a
(k) of 3.2 above which picks out' 

precisely one element of each orbit in U 
a 
(k) V cpc(k) corresponds to those

orbits which are also in yk); or, equivalently Vap.(k) = Tra(Ua(k) nUi3(k))•
We now glue the Va(k), a nice ,together along the Vap.(k) by means of the

identifications:



(3.3.3

: V(k)
a ic)t

(F (z) , G H
a a a

), (1)(1 (z) = z'

11S = (v ( , a ( ) u ( )

18

= R(Fa(z),Ga(z))-(31

Then, as should be clear from the remarks made just above2M
cr
m,n,p

the the union of the V
a
(k) with for each pair of nice selections

a„ V(k) identified with Va(k) according to (3.3.3).i

3.3.4. The analytic varieties Mcr (5) and Mcr (1). Now let k =IR or Cm,n,p m,n,p
and give Va(k) = for knm x kPn its usual (real) analytic structure. The

subsets Va(k) c: V (k) are then open subsets and the e5 (k) are analytica
diffeamorphisms. It follows that Mc (5) and Mc (C) will bem,n,p m,n,p
respectively a real analytic (hence certainly C-) manifold and a complex

analytic manifold, provided we can show that they are Hausdorff.

First notice that if we give L (5) and 
Lm,n,p

(C) the topology of
2 m,n,p

mn+n +np n
2
+nm+np11 and C respectively and the open subsets U

a
(k) and

cr
L
mn,p

(k), k =1R, C the induced topology, then the quotient topology

for Tr 
a 
: U 

a 
(k).4. 1.1 

a
(k) is precisely the topology resulting from the

identification V
a
(k) k

nm 
x k

pn 
. It follows that the topology of

m
cr „ 

i ,..k.,
) 
.4 Lcr = mcr ‘k i:\

m,n,p 
kk) s the quotient topology of Lcr

`m,n,p 
m
,n,p

(k)/GL
n
(k) 

m,n,p I
Now let 

Gn,m(n+1) 
(k) be the Gras smann variety of n-planes in m(n+1)-

space. For each (F, G), R(F,G) is an n x m(n+1) matrix of rank n which
_i

hence defines a unique point of 
Gn,m(n+1)

(k). Because R(SFS , SG) = SR(F, G)

we have that (F, G) and (F, G) define the same point in Grassmann space.

It follows that by forgetting H we have defined a map:

(3.3.5) M n (k) G
m,n,p n,m(n+1

rows of R(F,G).

(k), (F, G) 'j-'- subspace spanned by the

In addition we let h: M
cr
 (k) -± km,n,p

(3.3.6) 191(F,G,H) •
•
•
A
n+1

•

n+1
2
mP be the map induced by:

A
n+1

•

A
2n+1...,

, A. = HF1IG, 1, ..., 2n+1
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It is not particularly difficult to show ([1:laz 1-3], cf. also the realization
- algorithm in 5.2 below) that the combined map (R,h):M

cr
n, 

(k)
m4p

Grim(n+1)
(k) x 

k(n+1)2 
is

mp 
injective. By the quotient topology remarks

above it is then a topological embedding,proving that M
cr
 (k) is a
m,n,p

Hausdorff topological space. So we have:

3.3.7. Theorem. Mcr (IR) and Mc (C) are smooth analytic manifolds.

cr,co 
cr 

coThe sets M (30 and M' (C) are analytic open sub-manifolds. (Thesem,n,p m,n,p
are the sets of orbits of the cr and co systems, or equivalently, the

L
m
cr
,n,p

(k) mcr (k), k 
CE).images of L

m 
er,n,p`k) under TT :

m,n,p

3.3.8. Remark. A completely different way of showing that the quotient

space M
cr
 (3) is a differentiable manifold is due to Martin andm,n,p

Krishnaprasad, [MK]. They show that with respect to a suitable invariant metric
on L , ( co k),er GL (k) acts properly discontinuously.m,n,p' n

3.3.9. The algebraic varieties Mc (k). Now let k be any algebrai-m,n,p
cally closed field. Giving 

Lm,n,p
(k) = k

n2+nm+np 
the Zariski topology

and U 
a
(k) the induced topology for each nice selection a. Then U

a
(k) cte

GL (k) x V 
a 
(k), V

a 
(k) = knurl." also as algebraic varieties. The V 0 (k)n 43

are open subvarieties and the c5_,(k): Vot (k) V(k) are isomorphismsup_
of algebraic varieties. The map (R,,h) is still injective and it follows

that Mc (k) has a natural structure of a smooth algebraic variety, withm,n,p
mcr,co(k)

an open subvariety.m,n,p

3.3.10. The scheme M
cr
 . As a matter of fact, the defining pieces of  m,n,p

the algebraic varieties M
cr 

(k), that is the V (k), and the glueingm,n,p a
isomorphisms If. 

a
(k) are all defined over7L. So there exists a scheme(3mcr

over 2Z such that for all fields k the rational points over k 
mcr (k,,

m,n,p 0 m,n,p ii
are precisely the orbits of GL

n
(k) acting on L

cr 
(k). For details

m,n,p
cf. section 4 below.
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3.4. A universal family of linear dynamical systems

3.4.1. As has been remarked above it would be nice if we could attach
in a continuous way to each point of Mm

,n,p
(k) a system over k represen-

ting that point. Also it would be pleasant if every appropriate map
crfrom a parameter space V to 

Mm,n,p 
came from a family over V. Recalling

from 2.2 above that systems over a ring R can be reinterpreted as
families over Spec(R), this would mean that the isomorphism classes
of systems over R would correspond bijectively with the R-rational

cr crpoint
s 
Mm

,n,p
(R) of the scheme 

Mm,n,p 
over 22, cf. 3.3.10.

Both wishes, if they are to be fulfilled require a slightly more
general definition of system then we have used up to now. In the case
of systems over a ring R the extra generality means that instead of
considering three matrices F, G, H over R, that is three homomorphisms

m n n nG: R Rn, F: R -÷ R, H: 
R 

RP we now generalize to the definition:
a projective system over R consists of a projective module X as state

module together with three homomorphisms G: im -* X, F: X ÷ X, H: X ± R.
Thus the extra generality sits in the fact that the state R-module X

is not required to be free, but only projective. The geometric counter-
part of this is a vectorbundle, cf. below in 3.4.2 for the precise

definition of a family and the role the vectorbundle plays.

In some ciicumstances it appears to be natural, in any case as an

intermediate step to consider even more general families. Thus over a ring
R it makes perfect sense to consider arbitrary modules as state modules,

and indeed these turn up naturally when doing "canonical" realization

theory, cf. [Eil, Ch. XVI], which in terms of families means that one

may need to consider more general fibrations by vector spaces than

locally trivial ones.

3.4.2. Families of linear dynamical systems (over a topological space).

Let V be a topological space. A continuous family E of real linear

dynamical stystems over V (or parametrized by V) consists of:

(a) .a vectorbundle E over V

(b) a vectorbundle endamorphism F: E ± E

(c) a vectorbundle morphism G: V x]R ± E

(d) a vectorbundle morphism H: E --V x
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For each v E V let E(v) be the fibre of E over v. Then we have homo-

Morphisms of vector spaces G(v):{v}x lam ÷ E(v), F(v): E(v) E(v),

H(v): E(v) {n} x Ie. Thus choosing a basis in E(v), and taking

the obvious bases in {v} x le and {v} x le we find a triple of

matrices F(v), G(v), H(v). Thus the data listed above do define a

family overVin the sense that they assign to eachvEValinear

system. Note however that there is no natural basis for E(v) so that

the system is really only defined up to base change, i.e. up to the

GL OR) action, so that what the data (a)-(d) really do is assign a
point of M (IR) to each point v E V.

m2n2P
As E is a vectorbundle we can find for each v E V an open neighbor-

hood W and n-sections sl, sn: W Elw such that si(w),

s (w) E E(w) are linearly independent for all w E W. Writing out

matrices for F(w), G(w), H(w) with respect to the basis

si(w), s
n
(0 (and the obvious bases in {0 x le and fw} x iRP),

we see that over W the family E can indeed be described as a triple of
_

matrices depending continuously on parameters. Inversely if (F, G, H)

is a triple of matrices depending continuously on a parameter v E V,

then E = V x 1111 F(v,x) = (v, F(v)x), F(v,u) = (v,a(v)u),

H(v,x) = (vj-i(v)x) define a family as described above. Thus locally the

new definition agrees (up to isomorphism) with the old intuitive one we

have been using up to now; globally it does not.

Here the appropriate notion of isomorphism is of course: two families

(E; F, G, H) and E' = (E'; F', G', H') over V are isomorphic if there

exists a vectorbundle isomorphism (1): E E such that F'cl) = (PF (1)G, = G'

H =

3.4.3. Other kinds of families of systems. The appropriate definitions of

other kinds of families are obtained from the one above by means of minor

and obvious adjustments. For instance, if V is a differentiable (resp.

real analytic) manifold then a differentiable (resp real analytic) family

of systems consists of a differentiable vector bundle E with differentiable

morphisms F, G, H (resp ananalytic vectorbundle with analytic morphisms

F, G, H). And of course isomorphisms are supposed to be differentiable

(resp. analytic).
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Similarly if V is a scheme (over k) then an algebraic family consists

of an algebraic vectorbundle E over V together with morphisms of

algebraic vectorbundles F: E G: V E, H: E -*V x AP,

where A
,r 

is the (vectorspace) scheme A
r
(R) = R

r 
(with the obvious

R-module structure).

Still more variations are possible. E.g. a complex analytic family

(or holomorphic family) over a complex analytic space V would consist

of a complex analytic vectorbundle E with complex analytic vectorbundle

hamomorphisms F: E4- E, G: V x dm E, H: E÷V x CP.

3.4.4. Convention. From now one whenever we speak about a family of

systems it will be a family in the sense of (3.4.2) and (3.4.3) above.

3.4.5. The canonical bundle over G(k). Let G (k) be the Grassmann
n,r n,r

manifold of n-planes in r-space (r > n). Let E(k) 9 
Gn,r 

(k) be the

fibre bundle whose fibre over x E Gn,r(k) is the n-plane in k
r 

represented

by the point x. If k = R or M this is an analytic vector bundle over

G 
r
(k). More generally this defines an algebraic vectorbundle E

n, 
over the scheme G .

n,r
In terms of trivial pieces and glueing data this bundle can be

described as follows. Let M
nxr

(k) be the space of all n x r matrices of
reg

rank n and let Tr: M
n r(

k) G (k) be the map which associates to each
reg n,r

n x r matrix of rank n, the n-space in k
nr
 spanned by its row vectors.

Then the fibre over E(x) of E over xeG n,r(k) is precisely the v
ector

space of all linear combinations of any element in 71"
-1
(x). From aiis

there results the following local pieces and glueing data 
description of

Gn,r 
(k) and E(k). For each subset a of size n of {1,2, ..„ r}

 let U(k)

be the set of all n x r matrices A such that Aa 
is invertible, let

(r-)
V(k) = k

n n 
and for each z E V T(k), z = (z1' 

• • • , z ), z. E kn,
a a r-n

let A
a 
( ) be the unique n x r matrix such that (Aa 

(z)) = 
Ia n 

and

.Aa (z)t(j) 
= z. where t(j) runs through the elements of {1,2, 

..., r}-a
j

in the natural order, j = 1, ..., r-n. Then G r
(k) consists of the

n, 

V1(k) glued together along the VI (k) = {z E V t(k)IA
a 
(z) is invertible}

a ets a f3.

by means of the isomorphisms:
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(3.4.7) (1)'k): V(k)  z 444- z' (A
a
(z)f3.) A

a 
z) = (t

set ' 
Ao

(Note how very similar this is to the pieces and patching data description

of M
cr
 (k) given in 3.3.1 above; the reason is understandable if one
m,n,p

- cr
R: M (k) G (k), which is compatible with the local pieces

m,n,p n,(n+l)m
and patching data for the two spaces).

The bundle E(k) over Gn,r(k) can now be described as follows. Over

cr nx(n+l)m
observes that the map R: L (k) M (k), induces a map

m,n,p reg

each V (k) 
c:Gn,r 

(k) we can trivialize E(k) as follows:
a 

(3.4.8) Vat(k) x kn E(k)lv,tk\, (z,x
ot`

x
T
A (z).
a

It follows that the bundle E(k) over G
n, r 

__(k) admits the following local

pieces and patching data description which is compatible with the

local pieces and patching data description given above for G (k).

The bundle E(k) consists of the local pieces E(k) = V t(k) x k glued
a a

together along the E (k) = V' (k) x kn by means of the isomorphisms:
aPs cpc,

(3.4.9) $1 • V I (k) kn 4- Vt (k) x kn

.(z,x) (q)4(z), Aot(z)f3 x)

The bundle which is really of interest to us is the dual bundle E to E

described by the local pieces Ea(k) = V('1(k) x kn glued together by the

patching data:

7,43 , f kn; .
(3.4.10) Yar 

v k, 
api k I 1/ 0,(k) x kn

(z, x) 1-* (1:P4(z), (Aa(z))-lx)

(Note that the glueing isomorphisms Clid are compatible with the projections
d (113
E(k) V(k) and the glueing isomorphisms (Ps t for G n,r(k); note alsoa a cpti, A 
that all three sets of glueing data (1).' (- 

,
P t ĉ1;`' are transitive in the
043 af3

sense that (I) o (pa = cl) are similarly for the cl;t and sf.').
13y ay



3.4.11. The underlying vector bundle of the universal family over 
nx(+1

Mcrm,n,p 
(k). The map R: L

m,n,pv 
ncr ÷ 

)m(k), (F,G H) R(F,G) induces
reg

a map.

(3.4.12) i: Mcr (k) G
m,n,p n,(n+l)m

(k)

(because R(ES) = SR(E), S E GLn(k)).

If k =IR or C, (3.4.12) is a morphism between analytic manifolds. In

general (3.4.12) defines a morphism between the schemes M
cr
 and

d 
m,n,p

. Now let E
u 
= RE , the pullback by means of R of theGn,(n+l)m

d .
"canonical" bundle E described above in (3.4.5).

cr
Now recall that M 

n
(k) was obtained by glueing the various pieces

m,,p
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V
a
(k) = knm.x k together, where a runs through all nice selections

pn

from J m. In terms of this description Eu(k) can be described as follows:
x x

Eu(k) consists of pieces Eu(k) = V 
x kn = knm kpn kn 

(k) one for

each nice selection a. For each pair of nice selections Eu (k) =

V 
a
(k) x k c: V 

a
(k) x k

n
. Now for each pair of nice selections a,

f3. 
let $0 (k): Ea(k) be the isomorphism:

(3.4.13) $a(k) ,x) = Oaps(z), ( F (z), Ga(z)y-1

where cts 
°L

• V 
a
(k) -* V (k) is the isomorphism of 3.3 above (which

P.' f3.
describes how the V (k) should be glued together to give Mul,n,p(k), anda

V 
a 
(k) -± U 

a 
(k), (F 

a 
(z), G a (z), H 

(z)) is the section T
a 

described

above in (3.2. 12) . Then E
u
(k) is obtained by glueing together the Ea(k)

along the Eu (k) by means of the isomorphisms (3.4.13).

3.4.14. Construction of - a universal family of cr systems. Let E (k) over

mcr
(k) be the bundle described above and view it as obtained via the

m,n,p
patching data (3.4.13). Recall also that, cf.(3.3.3) above:

(3.4.15) (Pa () = ZI ** (F (z), (z), H (z))S =
a a a

with S = R(F (z), G 
a
(z))

a  fi
-1
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For each nice selection a we now define a bundle endomorphism
F(k) of E(k) = Va(k) x and bundle morphisms G(k):

V 
a 
(k) x km Eu(k), Hu(k): E(k) V

a 
(k) x kP. These are defined asa a a 

follows:

F(k) (z,x) = (z, F 
a
(z)x)

(3.4.16) G(k) (z,u) = (z, G 
a
(z)x)

Htolt(10 ( ,x) = (z, H 
a
(z)x)

We now claim that these bundle morphisms are compatible with the glueing
isomorphisms (3.4.13), which means that we must prove the commutativity
of the diagram below for each pair of nice selections a, (3.

(3.4.17

where
u
G
a

Vxk

V 
a
xk

G
-11
a E

a

T)oti3

E
u
a

H
u

Fa uE v
otsaf3

ai3

E
i3a

V 
a
xkP

we have abbreviated various notations in obvious ways. Now
z,u) = , Ga(z) u)

= (q) ), R(F (z), G (z)) G (z) u)a ot

= ((j)ai3(z), G .(z

= Gu(q)a x id(z, u))

) u)

by (3.4.16)

by (3.4.13)

by (3.4.15)

proving the commutativity of the left most square of (3.4.17). Similarly:

= , Fa(z) x) by (3.4.16)

= (q)a(z), R(Fa(z), Ga(z): Fa(z) x)

= (q)a(z), Fp.(z7) R(Fa(z), Ga(z));lx)

= Fu
oti3

by (3.4.13)

by (3.4.15)

proving the commutativity of the middle square of 3.4.17 And finally,

and completely analogously:



u-
, ) = W01)4(z), R(Fu(z), ;a

(%)) x)

-
= (q)043(z), H(z)z) R(Fa(z), Ga(z))

1
 x)

= (4)44(z), Ha(z) x)

.( x id) (H'ILDit(z, x))

proving the commutativity of the last square of (3.4.17).

Thus the 
Fu' 

G
a' 
u Hu combine to define bundle morphisms Fu(k): Eu(k) -->-

a a
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by (3.4.13)

by (3.4.16)

by (3.4.15)

r
E
u
(k), Gu: Mc (k) x km 4- Eu(k), H

u
(k): E

u
(k)÷ 

mcr 
‘ 
fkg
) 
, x kp.

m,n,p m,n,p 

If k = R or C, F
u 
(k), G

u 
(k), Hu(k) are morphisms of analytic vector

bundles. Algebraically speaking the F
u
(k), Gu(k), Hu(k) for varying k

are part of a morphism of algebraic vector bundles over the scheme

cr
M
' 

which are defined over ZZ
m,n,p 

.

3.4.18. The pullback construction. Let V be a topological space and

(1):V÷ Mm
,n,p

(BO acontinuous map. Let E
u 
= (E ;F G,H) be thecr ,uuuu

universal family of systems constructed above. Then associated to (!)

we have an induced family (1).En- over V (obtained by pullback). The precise

formulas are as follows:

- (1).E
u
 = {(v,x) E V X Eu l(I)(v) = 7(x)}, where 7: EU 

mcr 
(30 is the

u m
,n,p

bundle projection; the bundle projection of (rE is defined by

(v,x)

u "
) (v Fux) E (rE-

' u
- (1).G : (v,u) Guu E (1).Eu

' u
- (1).11 : (v,x) ‘±. (v, 

11u)
 E 4).(M

cr 
(3) x (IRP) = V x

m,n,p 
IR

Obivously (1).E is (up to isomorphism) the family of systems over V such

that the system over v E V is (up to isomorphism) the system over (1)(v)

in the family Eu.

If V and (I) are differentiable (resp. real analytic) there results a
cr

differentiable (resp real analytic) family over V. If (I): V -* M (C)
m,n,p

is dmorphism of complex analytic manifolds there results a complex

analytic family and on the algebraic-geometric side of things if

cr
(P: V .4- 

Mmn,p 
is a morphiam of schemes one finds thus an algebraic

family over the scheme V.
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3.4.19. The topological fine moduli theorem. Let V be a topological space

and E a continuous family of completely reachable systems over V. Then
cr

there exists a unique continuous map (f): V -÷ M(IR) such that E is
m,n,p 

u
isomorphic to (1).E (as continuous families; i.e. there is a bijective

correspondence between continuous maps V M
cr
 Mad isomorphism classes
m,n,p

of continuous families over V).

3.4.20. The algebraic-geometric fine moduli theorem. Let V be a scheme

and E an algebraic family of cr systems over V. Then there exists a unique
umorphism of schemes (I): V M

cr 
such that E is isomorphic to (1).E over V.

m,n,p

3.4.21. On the proof of theorem 3.4.19. First consider the topological case. The map

associated to E is defined as follows. For each v E V we have a system

E(v), which uniquely determines an isomorphism class of linear dynamical

systems (cf. ( 3.4.2)) ;that is uniquely defines a point (1)(v) of
cr
M (R) which is the space of all isomorphism classes of cr systemsm,n,p
(of the dimensions under consideration). This (I) is obviously continuous.

cr
Now E (z) for all z E M (E) respresents z. So, by 3.4.18, E andm,n,p
are two continuous families of cr systems over V such that for all v E V,

I n

E(v) and (1).E-(v) are isomorphic. It follows that the families E and

E' = (1).E are isomorphic as continuous families. The reason is the following

rigidity property: if (F, G, H),(FT, G', H') E Lcr (E) are isomorphic
m,n,p

then the isomorphism is unique. Indeed, if S is an isomorphism then we must

have SR(F, G) = R(F', G') so that if a is a nice selection such that R(F,G) is

-1
S = R(F', G')a (R(F, G)a) . The statement that E and E' over V are 

isigfertible,then

morphic if they are pointwise isomorphic results as follows. For every

v E V there is a V' 3 v such that the bundles E and E' of E and E' are

trivial over Vt so that over V' the families E and E' are simply (up to

isomorphism) continuously varying triples of matrices (F(v'), G(v'), 11(v')),

(1"(v'), G'(v I), H'(-v t))v E V'. Let a be a nice selection such that

is invertible. . Restricting V' a bit more if necessary we can assume

that R(F(v'),G(v')) is invertible for all v' E V' Then S(vT) = R(F'(vt),C,'(v'))a

(R(F(v T), G(v'))a)-1 is a continuous family of invertible matrices taking

E(v') into EI(vT) for all v' E V'. Thus E and E T are isomorphic over some

small neighborhood of every point of V. The isomorphisms in question must

agree on the intersections of these neighborhoods, again by the rigidity

property. It follows that these local isomorphisms combine to define a

global isomorphism over all of V from E to Ef.
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A more format and also more formuti based version of this argument

can be found in [Haz1]. The scheme theoretic version (theorem 3.4.20)

is based on the same rigidity property, cf section 4 below for some details.

3.4.22. Remark. In [HK] I claimed that the underlying bundle Eu of the

universal family E was the pullback by means of R (cf. (3.3.5)) of the

bundle E over G
n,(n+l)m 

whose fibre over z was the n-plane represented

by z. As we have seen it is not; instead E
u 

is the pullback of the dual

bundle E of E. Now the determinant bundle of E
d 

is a very ample line

bundle (rather then the determinant bundle of E) so that the argument

in [HK] to prove that Min,n 
is not quasi affine is correct modulo two

errors which cancel each other.

mcr
4. THE CLASSIFYING "SPACE" IS DEFINED OVER ZZ

m,n,p
AND CLASSIFIES OVER ZZ .

Mainly for completeness and tutorial reasons I give in this section

the details algebraic-geometric details of the remarks 3.3.10 and 3.4.20

cr
that there exists a scheme Mm,n,p 

over ZZ of which the varieties Mrcl
i,n,p

(k),

cf. 3.3.93k an algebraically closed field, are obtained by base change

and that this scheme is classifying for algebraic families of cr systems,

and thus in particular classifyingkrcrsystems over rings (with possibly

a projective module as state module).

Those who are not particularly interested in the algebraic-geometric

details can skip this section without consequences for their understanding

of the remainder of this paper. There is in any case nothing difficult

about what follows below and anyone who has once seen, say, the construction

of the Grassmann schemes or projective spaces over ZZ, will have no difficult4 es

in supplying all details for himself from what has been said in section 3

above. All we are really doing below is rewriting a number of formulas of

section 3 above using capital letters instead of small ones. This does take

a certain number of pages, though. It seemed desirable to include these, as,

judging from the audience's remarks during the oral presentation of these

lectures, there is, perhaps rightly so, a distinct unwillingness in accepting

without further proof a statement on the part of the lecturer like "the

algebraic-geometric version of this theorem is proved similarly".
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cr
4.1. Definition of the scheme M. For each nice selection ac:Jm,n,p n,m

let

(4. = Spec(&[X°j.t 
,Yars' 

• i = n,
i 

r = 1, . •, p, s =

1
•••

n])

m,

Let H
a

 (Y) be the p x n matrix (Ya ), and let F
a
(X),G

a 
X)) be the unique

rs 

pair of matrices over ZZ[X
a
..] such that

(4.1.2) R(F X)G(X))a = I R(F (X),G (X)) =
a a s(a,j)

= 1, •

(where the s(a,j) are the m successor indices of a, cf. 3.2). Finally

for each pair of nice selections a,13 let d(X) E 2Z[Xcj
. be the
i 

element

(4.1.3) d
af3, 

= det(R(Fa(X),Ga(X))p,

and let V be the open subscheme of Va 
obtained by localizing with

a(3.
respect to dar3(X),i.e.

(4.1.4
a 

= Spec(& X.. Y
a
' 
d(X)

rs 

Now for each pair of nice selections a,f3, write down the formulas

a
(4.1.5

a

where

(4.1.6

F (X)Sa a X) = F (X)

Got( = G(X) , HotenSeti3(X) = H (Y)

= R(F (X),G (X))
af3 a a

• • ,

Because the entries of F (X) and G (X) are equal to zero, 1 or X.ij

for some i,j and because the (r,$)-th entry of H (Y) is 'Y's , the 
formulae

rs ,

(4./.5) provide us with certain expressions for the Xl.' and YID in
lj r,s
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terms of the X
ij' 

Y
rs' 

which by (4.1.6), (4.1.5) and (4.1.3) (and

the usual formula for matrix inversion) can be written as polynomials

in )e. Ya , d _(X)
-1
, say

ij rs - 06

(4.1.7) O. 
ij 

X)- ), Y j)(XL,da
rs a ij a

Then

(4.1.8) (13,
* 

: 0.)-4. ap.(i,j)(Xa), Y.113.s i-± (pap,(r,$)(Xa,Ya)
ct, li

defines an isomorphism of rings.

ZZ 
a a _1,

ZZ[X. ,Y ,d )[Xij, s,WX
ij rs af3.

It follows from 4.1.5 that (with the obvious notations)

(4.1.9)

(pot R(F (X),G (X)) =

(1)H(Y) =

and these formulae describe

d = (1) d t

a

(X)
-1

R(F
a
(X),G (X))

a

completely. It follows that

-1
R F (X) G (X)) ) = det(S

a(3 a
(X)) = d

' a

a a
so that (I) does indeed map d (X)

-1 
into a[X.

ij rs a

The if. induce isomorphisms of open subschemes

(4.1.10) :V -*V
af3. (3.a

and 
mei-

is now the scheme obtained by glueing together the schemes
m,n,p

V
a 

for all nice selections a, by means of. the isomorphisms (I)
'

cr
As in section 3 above one can now embed Mm,n,p 

into a product of

a Grassmannian over ZZ and an affine space over ZZ to see that Mc is
m,n,p

a separated scheme.

For each nice selection a let Va
co
 be 
 

the open subscheme of Va
defined by



(4.1.11)
a 

V Z“V ° = U Spec(X
j
. 

,Ya 

' 
Q(F (X), H (0-

y
1]

a i rs a co, 
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Where y runs through all the nice selections of the set of row indices

p,n 
of Q(F

a
(X),14em Then the cl) restrict to give isomorphisms

d Ot

(4.1.12)
co

(1)c Vc
a13

V
a43' a 

i3a

o co o
where Vc = V

a 
n V • Glueing together the Vc by means of the 

fi,co we
a13ar a lict

crco cr
obtain the open subscheme M' 

of m 
.

m,n,p m,n,p

To see how all these abstract formulas look in concreto consider

the case m = 2, n = 2, p = 1. In this case, there are three nice selections

a,,Y

(4.1.13

We have

Thus

viz.

= {(0, , 0,2)1, = {(0, )}, y = f(0,1), (1,2)1

F
a
(X

F =

F =

G(
 
X) =

X) =
0

G (X) =

XI
21

0

1,1

d 
a 
( = X

a21
d(X) = - Xa

' 
d (X) = X13 +X

12 X21 
X -X

1 
X X._ay 1 fty 1 1 22 1 22 22

d a( = X
2 

d 
a 2 
(X) = - XY

1 
(X = XY

11 
XY + XY

11
XY
22
XY
21 

- XY XY
11 21 21 122 ' ' y



4.2. Small Intermezzo: Completely reachable systems over a ring.
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A system E=(F,G,H) over a ring R is said to be completely

reachable if R(F,G): R
r 

R
n 

r = (n+l)m is a surjective map, cf.

e.g. [Sol] or [Rou]. This is equivalent to each element of the family

E(10 = (F(t),G(p),H(p)), 1.E Spec(R) being completely reachable. Indeed

R(F,G): Rr Rm is surjective if it is surjective mod every maximal

ideal [Bou, Ch.II, §3.3,Prop.11] and the statement follows.

4.3. The algebraic geometric version of the nice selection lemma.

The next thing to do is to discuss the algebraic-geometric version of

the nice selection lemma, 3.2.3. Recall that this lemma says that if

the system (F,G,H) over a field k is cr then there is a nice selection

a such that R(F,G)a is invertible. Now let (F,G,H) be a cr system over

a ring R, which per definition means that R(F,G): Rr Rn, r (n+l)ms

is surjective, which in turn is equivalent to condition that the systems

E(t) = (F(),G(p),H(p) over 10p), the quotient field of Rip, are cr

for all prime ideals T. Then of course one does not expect the existence
of a nice selection a such that R(F,G)

a 
is an invertible matrix over R;

after all E = (F,G,H) should be interpreted as a family and not as a

single system.

For a continuous topological family E(G) over a topological space M

the nice selection lemma implies that there is a finite covering

M = U Ua 
such that for all a E U

a'
R(F(a),G(0)

a 
is invertible. And this

property generalizes nicely.

4.3.1. Lemma. Let E = (F,G,H) be a cr system over a ring R. For each

nice selection a let d = det(R(F,G) ). Then the ideal generated by the
a a 

-1
d
a 

is the whole ring R. (This means of course that the U = Spec(R[d 
a
])

a 
cover all of Spec(R)).

Proof. Let I be the ideal generated by the da, a nice. Suppose that

Then there is a maximal ideal fli, such that I c: Wt. Consider

EOTO = (F(7110,G(m),H(m0). Then det(R(E(m))a) = 0 in Rhn for all a, showing

that E(w0 is not cr(by the old nice selection lemma 3.2.3 over the field

VIT) which contradicts the assumption that E was cr.
To state the more global version of this lemma we need a bit of notation

Let E be a family of cr systems over a scheme V. For each nice selection a

we define

(4.3.2) lv E Vld t(R((v))0t
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This definition seems a bit ambiguous at first because R(E(v)) depends

Oti what basis we choose in the state space of E(v) and hence is only

defined up to multiplication on the left by an n x n invertible :matrix

with coefficients in k(v). This matrix being invertible, however, means

that the whole symbol group det(R(E(v)) 
a
) 0 makes perfectly good sense

so that Uct is welldefined. Of course U is an open subscheme of V.
a

4.3.3. Lemma. Let E be a family of cr systems over a scheme V. For each

nice selection a let U
a 
be as in (4.3.2). Then U. U = V.

anice a

This follows immediately from lemma 4.3.1 because V can be covered with

affine schemes Spec(R) (such that moreover the underlying bundle of E

is trivial over each Spec(Ri)).

4.4. The universal bundle E
u 
over M171,n,p. The universal bundle Eu over

cr
is constructed just as in 3.4.11 above. Writing things out in

m,n,p
relentness detail one obtains the following algebraic-geometric local

pieces and patching data description.

For each nice selection a let

(4.4.1)
a a 

E 
a 
= Spec(ZZ [X. .,Y 61 

[Za' 
Z
a 
]) = V

a 
x A

n
ij rs I n 

a a
where 72 ix. ,Y is as in 4.1. ; i.e. Spec ZZ[Xc. ,Ya ] = V . Let

ij rs ij rs a

(4.4.2 :E ±V
a a

be the projection induced by the natural inclusion
ot 01, Of.

TT : [ X . ,Y [x. ,Y , Za
a ij r,s lj r,s t

Define for each pair of nice selections

(4.4.3)

•••

and let

(4.4.4)

= Spec ZZ ij

:F
EI3ct

)- ]) = V

be the isomorphism given by the ring isomorphism

(4.4.5) T* • a  72
ij' rs t' f3a ij rs t'
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given by

(4.4.6 )(1 .4. (1) ),Y(3 
s 
h+ (I) (r,$)(Xa,YP), r‘' (t)(Xa,Za)

00.3 r, 043 t 043

where the
oft.
(t)(Xa,Za) are defined by the equality

(4.4.7)

1

ai3(1)(xa,zot)

(n)(Xa,Za)
aCi

Iza
_ .

=S (X)
1
 •

ot •

ni

The are compatible (by their definition) with the (I)
af2.

in that the following diagram commutes for each pair of nice selections

a,13•

(4.4.8)

E E
af3 (3a

c43

  v

ii

It follows that by glueing the E
a 

together by means of the we
ot

obtain a vectorbundle E
u
.

c%4.5. The morphLsm if) LD m min as$ociated Eo an a1ge6raic family of cr sygtems.,p
We start with the case that the underlying vectorbundle E of the family

is trivial and that the parametrizing scheme V is affine.E is then

described by a ring R, V= Spec(R), E = Spec(R[Z1,...,Z), 7 : E-+ V

induced by the natural inclusion R R[Z ,Z 
]' 

and vectorbundle
n 

homomorphisms F: E E, G: Spec(RU..,U
m
]) -÷ E, H: E Spec(RPE ....Y•1, ,)

The fact that these morphisms are vectorbundle homomorphisms is reflected

by the fact that the associated homomorphisms of rings

F*: G*: R[Z1,...,Zn]

H*: R[Y ...,Y] R[Z ...,Z
n
] are firstly R-algebra homomorphisms and

further of the form

(4.4.9) 
Eu mcr

m,n,p

(4.5.1) F*(Z.) = E f. .Z., G*(Z.) = E g. .11., H*(Y.) = E h. .Z.

j1
1 . 1j 3- 

j=1 =1 13 - 1 13 
J

= j1
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where the f p. h are elements of R. This defines a triple of
ij"ij' ij

matrices 1' = (f..), a . (g..), R . (h..). For each nice selection d
ij ij ij

let S = R(F,G) a=det(S 
a 
) E R, let U

a 
= Spec(R[d 

ai 
]), and let

a Ot/ at 

V = Spec(2 [Xcl.t ,Ya ]) be the nice-selection-a-piece of Mcr it 
ofa ij rs m,n,p

4.1 above. Now define

(4.5.2) :U 
a 

4- V
a

by the morphism of rings

(4.5.3)

given by

(4.5.4

e : a [X°.
'
.t Ya

a 
, R[d

a 
]

13 rs

a
X
j
. i-th entry the column vector 

a
R(F,o)s(a,j)

i 

a
Y r-th entry of the column s of the matrix HS

ars

where s(a,j) is the j-th successor index of the nice selection a,

cf. 3.2 above.

Or, using the obvious notation, e is defined by
a

(4.5.5 4(R(Fa(X),Ga(X)) = S-1R(P,a), 1p* H (Y) = Rs
a a a a

Now let be a second nice selection. We claim that the IPa 
and lp

- -I
agree on U

a 
n U Spec(R[d

a
I 
,d ]). In view of how the V

a 
V are

'
glued together to obtain Mc this means that we must prove the

m,n,p
commutativity of the diagram

(4.5.6)

ZZ[X°.t.,Ya ,d (X) -1]
ij rs a(3

14(1

a
R[d 

-1
,d 
-1
]

-1
72 ,d (X) ]

ij rs

Note first that

(4.5.7) 11)*(S X)) = WR(Fa(X),Ga(Y) ) = Sa R(F,G) =
a a



th:11 d(ws indeed map (1 1(X)

by
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Now ip
* 

is described

4.5.8) 11/ R(F(3 ,G (X)) = (3.R F,G , Y) = TIS p.

and on the other hand

11)*(1)* R(F (X),G (X)) = S X)
-1

R(F X ,G X)) (by (4.1.9))
a otP. a aP. a a

=S SS R(F,G)
(3. act

= s-lR(F
' 

-6)

(by (4.5.7) and (4.5.5))

which fits perfectly with (4.5.8). Similarly tpphyX) = tipeTa(Y)Sai3(X)

- -
= HS S 

15 
= HS = 111H (Y), so that (4.5.6) indeed commutative. Thus

the 'p: Ua Va are compatible, and because U. U = Spec(R) we obtaina 
anice a

a morphism of schemes

: V = Spec(R)-+ 
mcr
m,n,p

4.5.9. Lemma. The morphism 11)
E 
depends only on the isomorphism class

of E (so in particular ip does not depend on how E is trivialized).

Proof. Let E be a second family of cr systems over V = Spec(R) with

trivial underlying vectorbundle E' = Spec(R[Z71,ZI2,...,Z;1]). Suppose

E' is isomorphic to E and let the isomorphism be p : E E'. Because

Ii is a morphism of vectorbundles over V = Spec(R) its ring homomorphism

R[Z1,Z ,...,Zn]

is an R-algebra homomorphism of the form

p*(z!) =  s.. C R
J.1 ij j

Let $ be the matrix (s..). Then S is invertible (over R) because p is
ij

an isomorphism. Now because p defines an isomorphism E' E we have

Ft p = pF, pG = G', H = Hi p which in terms of the matrices F,G,TI

associated to E (cf. (4.5.1) above) and the analogous matrices
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W,C',11' of X' means that

SF = F'S, SG = G', H = H'S

It follows that if d(;,t, Stct, U' are are defined analogously to da, Sa, Ua

then S' = SS . d' = det(S)d so that U' = U arfclIP' = IP all because
a a 1 aa a a a a_ _ _ _ _

SR(P,-a) = R(F',G1), HS = H', which proves the lemma.

4.5.10. Construction of IPE 
for families whose underlying bundle is not

necessarily trivial.

Now let E = (E; F,G,H) be a family of cr systems over a scheme V. We can

cover 'V with affine pieces U. = Spec(R) such that E is trivializable

over U. By the construction above and lemma 4.5.9 this gives us

morphisms (independant of the trivialization chosen)

cr
.: 

1 
M
m,n,p

Now on U. n U. i 
the IP and ti) must agree, because by lemma 4.5.9 again

and agree on all affine pieces Spec(R) U 11 
i j

U. Hence the tp
i1 j i 3

combine to define a morphism

: V 4. 
Mcr
m,n,p

which, again by lemma 4.5.9 depends only on the isomorphism class of E.

4.6. The universal family E of cr_systems  over M
cr 

. Let E
u 
be the

m,n,p
cr

vectorbundle over M constructed in 4.4 above. In this section I
m,n,p cr

describe a (universal) family of cr systems over M whose underlying
m,n,p

bundle is E''. (That this family is indeed universal will be proved in 4.7

below).

Recall that Eu was constructed out of affine pieces

a a a
= Spec(W,[X

j
. ,Y 

rs 
,Z ]) glued together by means of certain isomorphism

i. t

cf. 4.4. Let AJ = Spec(WAU...,Ur
]). To define E

u 
= (Ell;Fu,Gu,Hu)

a '
it suffices to define'vectorbundle homomorphisms

(4.6.1) E
a 

--->- E
a 

G
a
:V

a
xAm .H :E -V

' 
x AP

a' a • a a



which are compatible with the identifications

:E ÷E (1) xid:Vxe -->-Vxe (I)xid: V
043 aI3 a et ot ' a(3,

ih the sense that the following diagram must be commutative

(4.6.2)

V
043

H
a m a a

x A -÷E 
,  V

a(3. 043

1(1),,a xid Tr.„
Ga F

E 
o 

E x A
Vikt Ba 13a P.cx

39

-* V

(cf. also (3.4.17)). We now describe Fa'Ga'Ha 
as those morphisms which

ra a
on the ring level are given by the ZZ LX j

. ,Y 
rs

J - algebra homomorphisms
i 

(4.6.3) F*: ZZ[Xe.t ,Ya ,Za] ZZ[X°.t ,Ya ,Za], F
a
(X)Za

a ij rs t ij rs t

(4.6.4) G*: ZZ[X°.t ,Ya ,Za] -* a[X°.t ,Ya
a lj rs t lj rs'

(4.6.5)
a 

* : ZZ [X a.
a 13 rs

where Za, U,

,v -* [xa" et, • ij'
y
 rs

a
G U

m ' a

a
ti,

V are respectively the column vectors (

(U U )
t 

(V ...,V )
t

1, , m p

1--± H (Y)Zet

a 7(1,t
,

x

It remains to check that the diagram (4.6.2) is indeed commutative,

which is done by checking that the dual diagram of rings homomorphisms

is commutative.

This comes &own to precisely the same calculations as in 3.4.14. As

an example we check that the diagram

a 
7Z[ X. ,Y

a 
,Z
a

13 rs

7Z[ X. . ,Y
13 rs

( X) I]
f3a

F
13._

a 
[ X. 

,Ya 
Z
a 

d
13 rs' a

A
%*
(P
ai3

[ XY Z d (X)..,
rs' t' 13a

1

is commutative. Because * -1
maps 2Z[Xj.•,Y 

,d13a 
(X) ] into

ai3 i rs 

and because F
* 
and F* are respectively

ij rs 043. a (3

a[X(3.t.,Ya ]-algebra and 7L[Xl
j 
,YI3 ] - algebra homomorphisms it suffices

ij rs irs

to check that



(T44 F(Z) = F4* (Z) , t = 1, .. nt acf3 t

By the definitions (4.4.7), (4.6.3) and using the definition of

(ph, cf. 4.1, we have

F*(p* (Z ) = F*(S ( a = S
a 
(X) F (X)Za

a af3. a a a

-1 pvg) = tp.(yX)Z13) = (1)* _(F (X))S 
Za

ct 003 f3.

= S(X)F(X)s(x)s(x)
a a a(3 aPs a
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The remaining two squares of diagram 4.6.2) are similarly shown to be

commutative.

4.7. A rigidity lemma.

The key to the proof of theorem 3.4.20 (the algebraic-geometric

classifying theorem) is (as was remarked before) a rigidity property

which in this context takes the following form.

4.7.1. Proposition. Let E, E' be two families of cr systems over a

scheme V. Suppose that there is a covering by open subschemes

of V such that the two families E and E' restricted to U. are isomorphic
1

for all i. Then E and E' are isomorphic as algebraic families over V.

We note that no such proposition holds for arbitrary families

of systems cf. [HP] for a counterexample.

Proof. We can assume that the underlying vectorbundles E and E' have been

obtained by glueing together trivial pieces over affine subschemes of V.

Refining the covering (U.) if necessary (this does not change the
1

validity of the hypothesis of the proposition) we can therefore assume

that E and E' have been obtained by glueing together trivial bundles

U. x A
n 
over affine schemes U..

1 1
Our data are then as follows. We have for each i an affine scheme

U. = Spec(R) and for each i,j isomorphisms of (trivial) bundles
1 1

: (u. n u.) (u. n
1 3 3
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which respectively define the bundles E and E'. The remaining ingredients.

of the two families of systems E and E' are then given by vectorbundle

homomorphisms

(4.7.1)

F. FT. U. An .÷ U. x\ TI„G'.: U.
1' 1 1 1 1 1

H.,H': U. x An
i

x AP
1 i 1

such that the following diagrams are commutative for all i,j (where

U.. is short for U. n u.)
13 1 3

(4.7.2) 
G.,G.

,
U..

1 3. 13

G. GI
3 U.

"--).13

1
F. ,F!
1 1

F. ,F
1 3 

U. .An H.,H!
13

jiiii

Finally the fact that E and Et are isomorphic over each Ui means that

therearevectorbundleisomorphise such that the

following diagram is commutative for all i

(4.7.3

n F.
UAA
1

iscl) .

GI. 4 41 F! H !
An 

U.)( All
1 1

U.,(A
1

H.

Wenowclainthattheq5.are compatible and combine to define an

isomorphism (1): E 4- E' (it then follows, because this is locally true,

that 0 = (PG = G', H',4) = H). To prove this we must show that for

each Spec(R) =U c -U. = U. n U. the following diagram commutes

(4.7.4)

A
n

(I)

U x A

1
(P.

(3.! • I,
13

U x A
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Now vectorbundle homomorphisms of trivial vectorbundles over an affine

scheme U = Spec(R) are given by matrices with coefficients in R as we

explained en passant in the first few paragraphs of 4.5 above. Let
_

G.,G!,F.,F! H.,ff!,S. ,S' ,S ,S be the matrices of the morphisms of
1 1 1 1' j

vectorbundles  ,(1).,,f, restricted to U. The
1' 1 1' 1 i 1 lj ij 1 j

commutativity relations (4.7.2) and (4.7.3) then imply for these matrices

with coefficients in R that

s...- = G. s..! = G! S .F. = F.S . S .F! =
13 .1 j' ij 1 j, ij 1 j ij' ij 1 j ij'

(4.7.5) S . H- = H.,S'. H' = 
HI, 

S.G. 
=, 

S.F. F!S 
'

H!S = H.,
iji  iji j 1 i i i 1 

, S.P. = HIS = H
33 33' 33 3

and the matrices S ,S S.., S!. are all invertible because they come from
i j' ij' ij

vectorbundle isomorphisms.

It follows that

(4.7.6)

-S.S..R(F.,u.) = S.R(T.,G.) = R
313 1 1 J J J J J

= s!.R(F!,-6!) =
13 1 1 131 1 1

Now I is a family of cr systems and hence so is its restriction to

U = Spec(R). It follows (cf. 4.2 above) that R(Pi,ai): Rr -± Rn,

r (n+l)m,is a surjective map. Hence (4.7.6) implies that

S.S. = SI.S. proving the commutativity of (4.7.4) and hence the
j 13 13 1
proposition.

4.8. On the pullback construction. Let I = (E; F,G,H) be a family

of systems over a scheme M and let ip : V' •4 M. be a morphism of schemes.

Assume that everything is given in terms of local affine pieces and

patchingclata;i.e.Eisgiverlbytrivialbundle"*"

wittivectorbundleisomorphisms(Pii i:Ure÷U.x Pi and vector
13

bundle morphisms Fi: U. x An -* U. x An, G.: U. x Ui
1 1 •

x -* U.
1 

AP such the nonprime diagram (4.7.2) is commutative,
and IP is given by affine morphisms 11).. U! U.)U! = Spec(R!). Let

11).:11. -*Mbetheringhomomorphismoftp—Let, as before, F.,G.,H1

be the matrices of the vectorbundle morphisms F.,G.,H..1 1 1
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Then the local pieces of the pullback family IrE = E t are:

the trivial bundles U! x4k11 -* IT' with the vectorbundle homomorphisms
i

F!: U1 x An -± Ut x An G'.• x Am U! x An IV: U! x An 4 tr. X AP
1 1 ' 1. 1 1 ' 1 1 1

given by the matrices = iJ4F1, G! 
, .
H' = tPtH. The patching data

1 i 1 
are defined as follows. If U' = Spec(W) c:U! n Ut maps into U = Spec(R)
U. n U. under 11) and IP*: R -+ R' is the associated map homomorphism of

3 1

rings, then over Spec(R') the isomorphism (I)! : U' X 
An .± An is

ij
given by the matrix S' = 1P*S if S is the matrix of

ij 1 ij ij

U x An U x An.
13

This can be taken as the definition of the pullback family IrE.

It agrees of course with the more informal description given in section

3 above.

4.9. The classifying theorem for algebraic families of cr systems over
schemes.

(mc
is classifying over a). We can now prove the algebraic-geometric
---

classifying theorem for families of cr systems, i.e. theorem 3.4.20.

Stated more precisely this theorem says

4.9.1. Theorem. Let E be an algebraic family of cr systems over a

scheme V. Then there exists a unique morphism of schemes
cr 1 u

11)-: V M (defined in 4.5 above) such that tPiE = E where L is theL m,n,p
universal family constructed in section 4.6 above. That is the map

E tP
E 
and the map IP 11) • u 

(of 4.8 above) set up a bijective correspondence

between the set of saheme morphisms V 4- M
cr
 and isomorphism classes
m,n,p

of families of cr systems over V. Moreover this isomorphism is functorial.

t
Proof. First let IP: V 

mcr
be a morphism of schemes, let E =

m,n,p
Then we must show that IP = E. To do this it suffices to show that

11)z and tl) agree on all elements of some affine covering (Ui) of V. We can

take this covering to be finer than the covering OP (V 
a
), o(nice) where

V
a 
c:M

cr
 is the piece belonging to the nice selection a, cf. 4.1.
m,n,p

Let therefore U = Spec(R) be such that Ip(U) c: and let
a'

: a[Xc./.,Ya ] R
ij rs

be the associated ring homomorphism. Then according to 4.8 above and
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the definition of Ell, cf. 4.6, the family E over U is described by the

three matrices

(4.9.2 = Ip*F
a 

,C = ip*G
a
(X), H = Y)

By 4.5 above the morphism ZZ[X°./ ,Ya 
s
] R associated to this family

is characterized by

(4.9.3) R F
a
(X), G

a 
X)) = Sc-x 1R(P,a), 11/tHot(Y) = USa

whereS = R(T,E) . Because R(F (X),G(X)) =I,S =I in this case
a a a aanan

(cf. (4.9.2)) so that indeed (comparing (4.9.2) and (4.9.3)) q =

Now let E over V be a family of cr systems and let IP : V
E

be the associated morphism as defined in 4.5. We have to show that

is isomorphic to E. By the rigidity result 4.7.1 it suffices to show

that IrE
u 
and E are isomorphic over each element of some affine covering

(U.) of V, which we can take fine enough so that the underlying bundle

E of E is trivial over each U.. Let therefore U = Spec(R) be such that E

over U is described by the triple of matrices P,a,u.
Let d

a = 
det(R(F,G) ) for each nice selection a. Then U in turn is covered

by the U
a 
= Spec(R[d

a 
]) (by the nice selection lemma). So taking a still

finer covering (if necessary) we can assume that U = Spec(R) is such that

for a certain nice selection a we have that S = R(F,G) is invertible
a a

over R. Then by 4.5 4) is given on U by the ring homomorphism

[ ] R
ij' r,s

characterized by

(4.9.4) 11)*R F (X),G (X)) = S-1R F,G , 11)*H = Us
a aa a

u
By 4.8 the family of cr systems tio'i is defined by the matrices

(4.9.5 = VT (X), = IP*
Ga 

X
a

, H' = Ip*Ha X)

Comparing (4.9.4) and (4.9.5) we see that over U the families defined

by P,071. and by P',-6,',Tv are indeed isomorphic with the isomorphism being

defined by Sa (which is invertible over R). This concludes the proof

of the theorem.
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4.10. On cr systems over rings. The classsifying theorem 4.9.1 of

course also applies to systems over rings R. Such a system (with

finitely generated projective state module X) gives rise to a family

of cr systems over R iff R(F,G): R
r 

X, r = (n+l)m2is surjective

(cf. 4.2). If R is such that all finitely generated projective

modules are free (which happens e.g. if R is a ring of polynomials

over a field by the Quillen-Suslin theorem[QaugAthen theorem 4.9.1

says that the R-rational points of 
Mcr 
in
,n,p 

are precisely the GL
n
(R)

orbits in L
cr
m,n,p

(R), i.e.

cr (11.)..4
m,n,p`

Lcr
(R)/GL (R)

m,n,p n
(if R is projective free)

In general the theorem gives a canonical injection

Lcr mcrn,p
ni,n,p n(R)/GL(R)c-÷ m (R)

cr with the remaining points of M(R) corresponding to systems over R

whose state module is projective but not free.

4.11. A few final remarks. There is a completely dual theory from the

co instead of cr point of view. Also the open subscheme M
, 

is of
n p17a

ry c,o

course classifying for families of co and cr systems. This scheme is

embeddable (over Z7,) in an affine schemeA(n+1)Tr] as a locally closed

subs cheme.
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5. EXISTENCE AND NONEXISTENCE OF GLOBAL CONTINUOUS CANONICAL

FORMS.

As a first application of the fine moduli spaces of section 3 and 4 above we

discuss existence and nonexistence of global continuous canonical forms

for linear dynamical systems.

5.1. The topological case.

Let L' be a GLn
(IR)-invariant subspace of Lm,n,p

(ER). A canonical

form for GLn
OR) acting on L' is a mapping c: L' L' such that the

following three properties hold

(5.1.1) c(Z5) = c(E) for all E E L', S E GL (ER)

(5.1.2) for all E E L' there is an S E GL(ER) such that c() = E

(5.1.3) c(Z) = (E') S E GLnOR) such that E t

(Note that ($.1.3) is implied by (5.1.2).

Thus a canonical form selects precisely one element out of each

orbit of GL
n
(ER) acting on L'. We speak of a continuous canonical form

if c is continuous.

Of course there exist (many) canonical forms. E.g. order the set
cr

of all nice' selections a in J in some way. For each E E L (IR)
n,m m,n,p

let a(E) be the first a such that R(E)a 
is nonsingular. Then

(5. 1.4 E c (E) = E
s
, S = R(E)

a(E)a(E)

is a canonical form on Lcr (ER) (Luenberger canonical forms 'a la Bryson).
m,n,p 

mapping is not continuous, however, except when m = 1 (in which case the-1- c:

is only one nice selection), which entails a number of drawbacks e.g. in

numerical calculations and in identification procedures, cf.[GWi] for a

discussion in the similar case of Jordan canonical forms.cr,co
5.1.5. Theorem- There is a continuous canonical form on L (ER) ifm,n,p

.and only if p = 1 or m = 1.

Proof. If m = 1 let a c: Ji,n = f(0,1),(1,1), n,1)1 be the unique

nice selection {(0,1), (n-1,1)}. Then

5.1.6)
--1

(E) =S = R(E)ot
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is a conLinuous canonical form, because R is always invertible for

X cr.

Similarly if p = 1, let B 
c: j 

be the unique nice row selection.
- n,l'

Then Et4- ES, S = Q(E)
-1 

is a continuous canonical form because Q(E) is

invertible for all co E (if p = 1).

It remains to show that there cannot be a continuous canonical form

r,coem,
c on all of L.:,n,pvJA) if both m > 1, p > 1.

To do this we construct two families of linear dynamical systems

as follows for all a ER, b ER (We assume n > 2, if n = 1 the examples

must be modified somewhat).

where -B is some

1

1

•

1

1 

2
(b)=1 2

•

constant) n-2) x (m-2) matrix with coefficients in1R

1 0 . . . 0

02

. . . 2\ 
i
lx(b)

• • 
1 

lx2(b)

1

1

2

H =1 0

•

o

where C is some (constant) real p-2) x (n-2)matrix. Here the

continuous functions.

yl(a), y2(a), xl(b), x (b) are e.g. y1(a) = a for lal < 1,

y1(a) = 
a1 

for lal 
z

, y2(a) = exp(-a2), x1(b) = 1 for lb- < 1,
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-
x1(b) = b

2
 for 'hi > 1, x2(b) = b-lexp(-b 2) for b 0, x2(0) = 0.

The precise form of these functions is not important. What is important
1

is that they are continuous, that x1(b) = b-lyl(b-1), x2(b) = b-ly2(13

for all b 0 and that y2(a) 0 for all a and x1(b) 9i 0 for all b.

For all b 0 let T(b) be the matrix

( 5.1.7) T(b)

(b 0

0

Let El(a) = (Fl(a), Gi(a), H1(a)),E 2(b) = 2(b), G(b), H (b)). Then

one easily checks that

( 5.1.8

Note also that

ab = I E (a)
T(b)

(a), E(b) E Lc°' VK) for all a,b ER; in fact
m,n,p

E (a) E U
' 

= ((0,2), (1,2),
1 ot, 

E U f3 = ((0,

. • • , ,2)) for all a ER

)) for all b ER

which proves the complete reachability. The complete observability is

seen similarly.
co cr

Now suppose that c is a continuous canonical form on L ' OR).
m,n,p

Let c(E l(a)) = (Pi( ),E1(a),T1 (a)), c(E2(b)) = (P2(b),E2(b),Ti2(b))

,S(a) „
a) and let b(p) be such thatLet S(a) be such that c(E l(a))

c(E2(b)) = 2(13) •
It follows from (5.1.9) and (5.1.10) that

(5.1.11)

S(a) = F (a),E1(a))0tR(F1(a),G1(a))-0-t1

g_(b) = G2(b))p. (F2(b),G(b)) 
1

Consequently S(a) and S(b) are (unique and are) continuous functions

of a and b.

Now take a = b = 1. Then ab = 1 and T(b) = In so that (cf. (5.1.7),

(5.1.8) and (5 1.11) S(1) = 7(1). It follows from this and the
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continuity of S(a) and S(b) that we must have

(5. .12) sign(det 5(a)). = sign(det .§.(13)) for all a,b E1R

Now take a = b = -1. Then ab = 1 and we have, using (5-1.8),

(

= c(E

)
T(-1

=

It follows that S = "g(-1)T(-1), and hence by 5.1.7), that

det(S(- )) = - det(g(-1))

which contradicts (5.1.12). This proves that there does not exists a

continuous canonical form on Lc° 
, cr

) if m > 2 and p > 2.
m,n,p

5.1.13. Remark. By choosing the matrices B, C in Gi(a), G2(b), Hi(a), H (b)

judiciously we can also see to it that rank G
1
(a) = m = rank G

2
(b),

rank H1 (a)= p = rank H
2(b) if p < n and m < n. Note also 

that F in the

example above has n distinct real eigenvalues so that a restriction like

IT must be semi simplenalso does not help much.

5.1.14. Discussion of the proof of theorem 5.1.5. The proof given above,

though definitely a proofl is perhaps not very enlightening. What is behind it

is the following. Consider the natural projection.

(5.1.15) LCr,C0410\ liCr,C00R)
7

m,n,p

Let c be a continuous canonical form. Because c is constant on all orbits

tm, ,.c induces a continuous map T: M
Cco 

) 
Lrcnrco

,n,p
yiLino 
0 which clearly is a

m,n,p 
yix 

section of 7, (cf. (5.1.1) - (5.1.3)). Inversely if T is a continuous section

of 7 then TO7 : Lc° 
Y") 

Lc OR) L ,o cr
OR) is a continuous canonical form.

m,n,pm,n,p 

Now (5d.15) is (fairly easily at this stage, cf. [Haz.1]), seen

to be a principal.GLnOR) fibre bundle. Such a bundle is trivial iff it admits

a continuous section. The mappings



50

a), b E2(b)

of the proof above now combine to define a continuous map of 1P 1 OR) = circle

into mcr,co._.
p(IR) such that the pullback of the fibre bundle (5.1.15) is

m,n, 
nontrivial. In fact the associated determinant GL,OR) fibre bundle is the

MObius band (minus zero section) over the circle.

5.2. The algebraic-geometric case.

The result corresponding to theorem 5.1.5 in the algebraic geometric

case is the following. For simplicity we state it for varieties (over

algebraically closed fields).

5.2.1. Theorem. Let k be an algebraically closed field. Then there exists

, co ik) Lcr,co _ .
a canonical form c: Lcr fk) which is a morphism of algebraic

m,n,p‘
varieties if and only if m = 1 or p = 1.

Here of course a canonical form is defined just as in 5.1 above;

simply replace1R with k everywhere in (5.1.1) - (5.1.3) and replace the

word "continuous" with mmorphism of algebraic varieties'', which means that

locally c is given by .rational expressions in the coordinates.

The proof is rather similar to the one briefly indicated in 5.1.14

cotk\ mcr,cotio .s
above. In this case Lcr' an algebraic principal

m,n,p‘ I m,n,p` I

GL
n
(k) bundle and one again shows that it is trivial if and only if m = 1

or p = 1. The only difference is the example used to prove nontriviality.

The map used in 5.1.14 is non-algebraic, nor is there an algebraic injective

o,cr
morphismF

1
(k) (k). Instead one defines a three dimensional manifold

m,n,p
much related to the families E l(a), E2(b) together with an injection into

cr,co
Mm

n,p
(k) such that the pullback of this principed bundle is easily seen

to be nontrivial. Cf. [Haz 2] for details.
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6. REALIZATION WITH PARAMETERS AND REALIZING DELAY-

DIFFERENTIAL SYSTEMS.

As a second application of the existence of fine moduli spaces for

cr systems we discuss realization with parameters (cf. also [13.3.0 and

realization of delay-differential systems. A preliminary step for this is

the following bit of realization theory.

6.1. Resume' of some realization theory.

Let T(s) be a proper rational matrix-valued function of s with the

(formal) power series expansion (around s = 00)

(6.1.1) T(s) = + A E kP
xm

, • 

One says that T(s) is realizable by a linear system of dimension < n,

if T(s) is the Laplace transform (resp z-transform) of a linear

differentiable (resp. difference) system E = (F,G,H) E L
m n p(

k). This

means that

('6.1.2)

or, equivalently

(6. .3)

T(s) = H(sTn-F)

-
A. = HFi = 1,2,3,..

A necessary and sufficient condition that T(s) be realizable by a system of

dimension n is that the associated Hankel matrix h(A) of the sequence

e4 = (A1 ,A2, A3,...) be of rank < n. Here 1(4) is the block Hankel matrix

h01) =

/A
1

A2 A3... \

A
2 

• •

A3

I
More precisely we have the partial realization result which says that there

,crexist F,G,H E 
Lco 

(k) such that A. = HFi-1G iff rank h (A) = rank h ) = n,
m,n,p i n n+1

where h.A) is the block matrix consisting of the first i block rows and the

first i block-columns of h(4).
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Now suppose that rank 11(4) is precisely n, and let F,G,H realize 4.

We have

MA) = HF T ...)

HF
2

and it follows by the Cayley-Hamilton theorem that R(F,G) and Q(F,H)

are both of rank n so that E = (F,G,H) is in this case both cr and co.

Finally we recall that if E and E' are both cr and co and both

realize44 then E and E' are isomorphic, i.e. there is an S E GLn(k)

such that E' = E
s

For all these facts,cf..e.g. [KFA] or [Haz3]

6.2. A realization algorithm.

Now letc4 be such that rank h(c.4) = n. We describe a method for

calculating a E = (F,G,H) E Lcr 
,co 

(k) which realizesc4. By the above
m,n,p

we know that there exist a nice selection a cJ
m,n 

the set of column

indices of

(6.2.

, h
n+ 
(A)

A
n+1

• . A
n+1

•

A
2n+1

and a nice selection a
r c

: 
Jp,n' 

the set of row indices of h (4), such
n+1

that the n. n matrix h
n+1

64) 
,a 

has rank n. Here h
n+
14) ,a 

is the matrix

r c r c

obtained from hn10) by removing all row $ whose index is not in a
r

and all columns Whose index is not in a
c 

We now describe a method for

, f.
finding a E = (F,G,H) E L:

n,p
co
‘
k) such that E realizes04 and such that

R(F,G)a = I. 
(
Such a E is unique).
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Let y be the subset of J
p,n 

of the first p row indices, so that

h
n+1

01) consists of the first row of blocks in (6.2.1). Now let
Yr

(6.2.2)

Now let

(6.2.3)

H =
n+1 €4)

S = h
n+1 44)a ,ar c

and define R' = S
_1(

h 44) ). Then (R'n+1 a
r a

cunique nxn and nxm matrices such that

(6.2.4) R(F,G) = R'

and we let F,G be the

Recall, cf.3.2.7above that the columns of F and G can be simply read of

from the columns of R', being equal to either a standard basis vector or

equal to a column of R'.

For every field k and each pair of nice selections

a c: J , a c: J let W(a ,a ) (k) be the space of all sequence ofc m,n r p,n r c
pxm matricesc4 = (A1, ..., A2n+1) such that rank(h

+1 
44)) = n and

n 

rank(h )
n+ a ,a

(6.2.5)

= n. Then the above defines a map

Lcr,co(k)
ut (lc); w(;tr I%) "() m,n,p •

6.2.6. Lemma. If k =IR orr the map T(ar,ac) is analytic, and algebraic-

geometrically speaking the T(a ,a.) define a morphism of schemes from
r c

,co.the affine scheme W(a ,a ) into the quasi affi crne scheme 
Lm,n,p

6.2.7. Lemma. Let W(k) be the space of all sequences of pxm matrices

04 = (A
1
,A
2"'"A2n+1) 

such that rank(h11.1.1 64)) = n = rank hn(4). Let

h: Lex , co (k) .4. .w(k)
m,n,p 

be the map h(F,G,H) = (HG,HFG,...,HF2nG). Then

ho T(a 
r 
,a ) is equal to the natural embedding of W(a

r
,a
c
)(k) in W(k).c

(I.e. hori(ar,a) is the identity on War,ac)(k).

Proof. Leto4 E W(a ,a)(k). By partial realization theory (cf. 6.1 above)
r c

we know thatc4 is realizable, say by E = (F',G',H'). Then because

A€ War,ac)(k) we have that S = R(F',G T)a is invertible. Let
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Z = (F,G,H) =
,S

= (S F'S, GI,H'S)1. Then E also realizesg4 and

R(F,G)
ac 

= 
1n• 

Now observe that the realization algorithm described above

simply recalculates precisely these F,G,H fromdr.

6.2.8. Corollary. Let k =]R orM and let 
h: mcr,co tic.\ 

W(k) be the map
-im,n,134 I

induced by h: 
Lm,n,p

(k) W(k). Then h is an isomorphism of analytic

manifolds.

o,cr
6.2.9. Corollary. More generally h: Lc -÷ W induces an isomorphism of

m,n,p
schemes 

Mm,n,p 
-÷ W. In particular if k is an algebraically closed field

then we have an isomorphism of the algebraic varieties 
Mm,n,p

(k) and

W(k).

6.3. Realization.with parameters.

6.3.1. The topological case. Let T 
a
(s)•, a E V be a family of transfer

functions depending continuously on a parameter a E V. For each a E V

write a(s) = A
I 
(a)c-1 + A

2 
(a)s-2 + ... and for each a let n(a) be

the rank of the block Hankel matrix of E(a) = (A1(a),A2(a),...). The

question we ask is: does there exist a continuous family of systems

E(a) = (F(a),G(a),H(a)) such that the transfer functionof E(a) is

T 
a
(s) for all a. The answer to this is definitely yes provided n(a) is

bounded as a function of a. Simply take a long enough chunk of the 64(a)

for all a and do the usual realization construction by means of block

companion matrices and observe that this is continuous in the A.(a):.*)

The question becomes much more delicate if we ask for a continuous family

of realizations which are all cr and co. This obviously reauires that n(a)

is constant and provided that the space V is such that all n = n(a)

dimensional bundles are trivial this condition is also sufficient.

crco
Pulling back the universal family over M ' OR) to a family over V

m,n,p
gives us a family (E;F,G,H) over V such that the transfer function of the

system over a E V is T 
a
(s) for all a. The bundle E is trivial by hypothes

so there are continuous sections e e : V.-->-E such that
' n

(e (a)} is a basis for E(a) for all a E V. Now write out the1
matrices of F,G,H with respect to these bases to find a continuous family

Z(a), which realizes T 
a
(s) and such that E(a) is cr and co for all a.

Indeed if n(a) is constant then the 4(a) determine a continuous map
cr co

V -'-WOR) and hence by Corollary 5.2.8 a continuous map V -'-M ' 00 .
m,n,p

) True if V is paracompact and normal, one needs partitions of unity
(in any case, I do) to find continuous T.(a) such that B = T B +Eh -4-T

I' 1 n n
.3 

Iwhere B. is the i-th block column of 11643-.
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e.g. k =]R and k =E. Let Tx(s) be a transferfunction with coefficients

in k[xl,...,xq], where xl, xq are indeterminates. We ask whether

there exists a realization of T(s) over k[x1 / x 
q
] that is a triple of/

matrices (F,G,H) with coefficients in k[x x
q
] such that

Tx(s) = H(sI-F)-1G. Again the answer is obviously yes if we do not require

any minimality conditions on the realization (provided n(x1 / x q) the

degree of the Hankel matrix of T(s) is bounded for all (x 9 x ) Eq

-q
Now assume that n(x1, x 

q 
) is constant for all (x111x ) E k .

,

Then (x . . x 
q 
),-404(x

l' 
x 
q
) defines a morphism of algebraic varieties' • • • ' 

cr , co .Kg W(k) and hence by Corollary 6.2.9 a morphism "ig 
mm,n,p`

fk) Pulling

back the universal family by means of this morphism we find a family

(E;F,G,H) over Kg which is defined over k because the morphism iq W(k)
WLth cr and the isomorphisAM 

co 
' (k) are defined over k. Thus E is defined over kim,n,p

and by the Quillen-Suslin theorem E is trivializable over k. Taking the

corresponding sections and writing out the matrices of F,G,H with respect

to the resulting bases we find an F,G,H with coefficients in k[k x
1'1 q

which realize T
x 
(s) for all x E Tc.5 i.e. such that T(s) = H(sI-F)-4G.'

Moreover this system (F,G,H) is cr over k[X ...,x 1 (meaning that
+1) q

nR(F,G): k[k1,...,x0 is surjective); it is also co

and even stronger its dual system is also cr (i.e. (F,G,H) is split

in the terminology of [So 3].

6.3.3. Realization by means of delay-differentiable systems. 

Let E (F(0' . a ) G(a1, • • l' •/aci), H(al,../Gq))

differential system with q incommensurable delays. Here ai stands for

the delay operator Gif(t) = f(t-a), cf. 2.3 above for this notation.

The transfer function of E is then

(6.3.4) T(s) =.G(
-a s -as -a s

)(si-F(e
-a s

...,e

be a delay

-a s

which is a rational function in s whose coefficients are polynomials in

-a
1 
s -a s

• • •

-a s

Now inversely suppose we have a transfer function T(s) like (6.3.4)

and we ask whether it can be realized by means of .a delay-differential

systernE(a).Nowifthea.are incommensurable then the functions
-a1(s) -a sqs,e , are algebraically independant and there is precisely. e 

one transfer function T(s;(1 ... a ) whose coefficients are polynomials/
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-a
1

in 0 such that T(s) = T'(s,e q ). Thus the problem is2

mathematically identical with the one treated just above 6.3.2. In passing

let us remark that complete reachability for delay-systems in the sense of

that the associated system over the ring]R[al,...,aqi is required to be cr

seems often a reasonable requirement, e.g. in connection with pole placement,

cf. [Soil and [Mo].

7. THE "CANONICAL" COMPLETELY REACHABLE SUBSYSTEM.

7.1. E r for systems over fields. Let E = (F,G,H) be a system over a field
rk. Let Xc be the image of R(F,G): k

r 
-÷- k

n
, r = m(n+1). Then obviously

c cr m crF(X r) c: X , G(k ) c: X , so that there is an induced subsystem
cr cr • . • •E = (X ;F',G',H') which is called the canonical cr subsystem of E. In

terms of matrices this means that there is an S E GL k) such that E
has the form

(7.

=((Fil F
12)

( ,

0 0 F
22

H2)

crwith (F
11
,G

1
,H

1 
= E , the "canonical" cr subsystem. The words Kalman

"decomposition" are also used in this context. There is a dual construction
relating to co and combining these two constructions "decomposes" the
system into four parts.

In this section we examine whether this construction can b

globalized, i.e. we ask whether this construction is continuous, and

we ask whether something similar can be done for time varying linear

dynamical systems.

cr
7.2. E for time varying systems. Now let E = (F,G,H) be a time varying

system, i.e. the coefficients of the matrices F,G,H are allowed to vary,

say continuously, with time. For time varying systems the controlability

matrix R(E) = R(F,G) must be redefined as follows

(7.2.1) R(F,G) = (G(0) G(1), , G(n))

where

(7.2.2) G(0) = G; F(i) = FG(i-1) - 6(i-1)
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where the 6 denotes differentiation with respect to time, as usual. Note

that this gives back the old R(F,G) if F,G do not depend on time. The

system is said to be cr if this matrix R(E) has full rank. These seem

to be the appropriate notions for time varying systems; cf. e.g. [We, Haz5

for some supporting results for this claim.

A time variable base change x = Sx (with S = S(t) invertible for all 0

changes E to ES with

(7.2.3)
_

(SFS +SS ,SG,HS
1 
)

Note that R(E) hence transforms as

(7.2.4) R(E = SR(E)

7.2.5. Theorem. Let E be a time varying system with continuously varying

parameters. Suppose that rank R(E) is constant as a function of t. Then

there exists a continuous time varying matrix S, invertible for all t,

such that ES has the form (7.1.1) with (F11,G1,H 1) cr.

Proof. Consider the subbundle of the trivial (n+l)m dimensional bundle

over the real line generated by the rows of R(E). This is a vectorbundle

because of the rank assumption. This bundle is trivial. It follows that

there exist r sections of the bundle, where r = rank R(E), which are

linearly independant everywhere. The continuous sections of the bundle are

of the form Ea-(t)z.(t), where1 • • • , z
n
(0 are the rows of R(E) and

the a.(t) are continuous functions of t. Let b
1
(0, b (t) be the1

r everywhere linearly independant sections and let

b(t) = Ea..(t)z.(t), j = 1, r; i = 1, n.31 1

Let E' be the r dimensional subbundle of the trivial bundle E of

dimension n over the real line generated by the r row vectors

a3(t) = (aji(t), a
3n
(0). Because the quotient bundle E/E' is trivial

we can complete the r vectors ai(t), ar(t) to a system set of n

vectors a
1 
(0, • a (t) such that the determinant of the matrix formed

by these vectors is nonzero for all t. Let S l(t) be the matrix formed by

these vectors, then S iR(E) has the property that for all t its first r

rows are linearly independant and that it is of rank r for all t. It follows

that there are unique continuous functions cki) , k = r+1, • • , 1, r
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such that z(t) = E cki .(t)z!(t), where zl(t) is the j-th row of S R(E). 

No let

S
2
(0 =

I 
r 

0

-C(t) I
n-r

Then S(t) = S2(t)S 1(t) is the desired transformation matrix as follows

from the transformation formula (7.2.4)).

Virtually the same arguments give a smoothly varying S(t) if the

coefficients of E vary smoothly in time, and give a polynomial S(t) if

the coefficients of E are polynomials in t (where in the latter case we

need the constancy of the rank also for all complex values of t and use

that projective modules over a principal ideal ring are free).

7.3.275r for families. For families of systems these techniques give

7.3.1. Theorem. Let E be a continuous family parametrized by a contractible

topological space (resp. a differentiable family parametrized by a contractible

manifold; resp. a polynomial family). Suppose that the rank of R(E) is

constant as a function of the parameters. Then there exists a continuous

(resp. differentiable; resp. polynomial) family of invertible matrices

S such that ES has the form (7.1.1) with (F
11
,G

1
,H

1
) a family of cr systems.

The proof is virtually the same as the one given above of theorem

7.2.5; in the polynomial case one of course relies on the Quillen-Suslin

theorem [ Qu; Sus] to conclude that the appropriate bundles are trivial.

Note also that, inversely, the existence of an S as in the theorem implies

that the rank of R(E) is constant.

For delay-differential systems this gives a "Kalman decomposition provided

the relevant, obviously necessary, rank condition is met.

Another way of proving theorem 7.3.1 for systems over certain rings rests

on the following lemma which is also a basic tool in the study of isomorphisms

of families in [HP] and which implies a generalization of the main lemma

of [OS] concerning the solvability of sets of linear equations over rings.

7.3.2. Lemma. Let R be a reduced ring (i.e. there are no nilpotents 0)

and let A be a matrix over R. Suppose that the rank of mi.) over the quotient
field of Rip is constant as a function of r for all prime ideals I). Then
Im(A) and Coker(A) are projective modules.
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Now let E over R be such that rank R((t)) is constant, and let R

be projective free (i.e. all finitely generated projective modules over R

are free). Then Im R(E) c:R
n 

is projective and hence free. Taking a basis

of Im R(E) and extending it to a basis of all of Rn, which can be done

because R
n
/Im R(E) = Coker R(E) is projective and hence free, now gives the

desired matrix S.

There is a complete set of dual theorems concerning co.

7.4. Ecr for delay differential systems. Now let E(a) = (F(a), G(a), H(a))

be a delay differential system. Then of course we can interpret E as a pol-

ynomial system over1R[a] and apply theorem 7.3.1. The

hypothesis that rank R(E(a)) be constant as a function of a a
1' r

(including complex and negative values of the delays) is rather strong

though.

Now if we assume that all functions involved in

(7.4.1) k(t) = F(a)x(t) + G(a y(t) = H(a)x(t)

are zero sufficiently far in the past, an assumption which is not unreasonable

and even customary in this context, then it makes perfect sense to talk about

base changes of the form

(7.4.2) = S(a)x

where S(a) is a matrix whose coefficients are power series in the delays

G and which is invertible over the ring of power series•Cl,

Indeed if ala(t) = a(t-a ), al > 0 and the function gt) is

zero for t < -No
1

t then

Co N+N'
( E b.ai)S(t) = E

1 1 io 
a

1=0

where N' is such that t < N'a
1.

Allowing such basis changes one has

7.4.3. Theorem. Let E(a) be a delay-differential system. Suppose that

rank R(E(G)) considered as a matrix over the quotient field k(0.1,...,01)

is equal to rank R((0)) (over JR) where E(0) is the system obtained from

E(0) by setting all a. equal to zero. Then there exists a power seriess

base change matrix S E GL ORC[a]]) such that E has the form (7.1.1)
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with (F
11
,G1,H ) a cr system (overIR[M]).

The proof is again similar where now of course one uses that a

projective module over a local ring is free.

Note that E(0) is not the system obtained from E(G) by setting

all delays equal to zero. For example if E(a) is the one dimensional,

one delay system X(t) = x(t) + 2x(t-1) + u(t) + u(t-2),

y(t) = 2x(t) x(t-1), then E(0) is the system x(t) = x(t) + u(t),

y(t) = 2x(t) obtained by removing all delay terms.

8. CONCLUDING REMARKS ON FAMILIES OF SYSTEMS AS

OPPOSED TO SINGLE SYSTEMS.

co
8.1. Non extendability of the moduli spaces Mc and M . One

m,n,p m,n,p
aspect of the study of families of systems rather than single systems

is the systematic investigation of which of the many constructions

and algorithms of systems and control theory are continuous in the

system parameters (or more precisely to determinelso to speak the

domains of continuity of these constructions). This is obviously

important if one wants e.g. to execute these algorithms numerically.

Intimately (and obviously) related to this continuity problem

is the question of how a given single system can sit in a family of

systems (deformation (perturbation) theory). The fine moduli spaces
cr co
M
m,n,p 

and 
Mm,n,p 

answer precisely this question (for a system which

is cr or co): for a given cr (resp. co) system the local structure of
co

M
171,n,p 

OR) (resp. M OR)) around the point represented by the given
m,n,p

system describe exactly the most complicated family in which the given

system can occur (all other families can up to isomorphism be uniquely

obtained from this one by a change of parameters). Thus one may well be

interested to see whether, these moduli spaces can be extended a bit.

In particular one could expect that Mc OR) and M
co
 OR) could be

m,n,p m,n,p
combined in some way to give a moduli space for all systems which are

cr or co. The following example shows that this is a bit optimistic.

8.1.1. Example. Let- E and EI be the two families over C (or IR) given

by the triples of matrices

(0-

I' lit , ,0

LO/ )'
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E is co everywhere and cr everywhere but in a = 0, and E' is cr everywhere

and co everywhere but in ci = 0. The systems E(u) and E'(u) are isomorphic

for all a 0, but E(0) and E'(0) are definitely not isomorphic. This

kills all chances of having a fine moduli space for families which

consist of systems which are co or cr. There cannot even be a coarse

moduli space for such families.

Indeed let % be the functor which assigns to every space the set of

all isomorphism classes of families of cr or co systems. Then a course

moduli space forT(cf.[Mu] for a precise definition) consists of a

space M together with a functor transformation T(-) ± Mor(-,M) which is

an isomorphism if - = pt and which also enjoys an additional universality

property. Now consider the commutative diagram

cF(C‘ {o}) Mor(C\{ },M)

a
0-r(C) Mor(C,M)

91({0}) Mor {0},M

Consider the elements of 5:(C) represented by E and E' Because E and E'

are isomorphic as families restricted to C\{0} we see by continuity

(of the elements of Mor(C,M)) that a(E) = a(E'). Because E(0) and

E'(0) are not isomorphic this gives a contradiction with the injectivity

ofT({0}) Mor({0},M).

Coarse moduli spaces represent one possible weakening of the fine

moduli space property. Another, better adapted to the idea of studying

families by studying a maximally complicated example, is that of a versal 

deformation. Roughly a versal holomorphic deformation of a system E over

C is a family of systems E(u) over a small neighbourhood U of 0 (in

some parameter space) such that E(0) = E and such that for every family

E' over V such that E'(0) = E there is some (not necessarily unique)

holomorphic map Vi.e. a holomorphic change in parameters) such that

crE = E' is a neighbourhood of 0.

For square matrices depending holomorphically a parameters with

similarity as isomorphism) Arnol'd, [Ar], has constructed versal deformations
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and the same ideas work for systems (in any case for pairs of matrices
(F,G), cf. [Ta 2]).

co8.2. On the geometry of M.::n,p. From the identification of systems point

c° u..)
,cr .of view not only the local structure of M is important out alsom,n,p

its global structure cf. also [BrK] and [Haz 8]. Thus for example if
,

m = 1 = 13, 
cocr

some of these components are of rather complicated topological type,
[Br], which argues ill for the linearization tricks which are at the
back of many identification procedures. One way to view identification
is as finding a sequence of points in 11.:,

n,p
°,cr

OR) as more and more data come
—

in. Ideally this sequence of points will then converge to something.
co,crThus the question comes up of whether M OR) is compact, orm,n,p

compactifiable in such a way that the extra points can be interpreted
cras some kind of systems. Now Mn(x) is never compact. As to the,p 

compactification question. There does exist a partial compactification

such that the extra points, i.e. the points of 
mcr,co

m,n,p m,n,p m,n,p
correspond to systems of the form

= Rat(n) decomposes into (n+1) components, and

(8.2.1) = Fx + Gu, y = Hx + J(D)u

where p is the differentiation operator and J is a polynomial in D. This
seems to give still more motivation for studying systems more general
than )1 = Fx + Gu, y = Hx [Ros]. This partial compactification is also
maximal in the sense that if a family of systems converges in the sense
that the associated family of input/output operators converges (in the
weak topology) then the limit input/output operator is the input/output
operator of a system of the form (8.2.1). Cf. [Haz 4] for details.

8.3. Pointwise-local-global isomorphism theorems. One perennial question_
which always turns up when one studies families rather than single objects
is: to what extent does the pointwise or local structure of a family
determine its global properties. Thus for square matrices one has e.g.
the question studied by Wasov [Wa], cf. also [OS]: given two families of
matrices A(z), AT(z) depending holomorphically on some parameters z.
Suppose that for each separate value of z, A(z) and A T(z) are similar;
does it follow that A(z) and A'(z) are similar as holomorphic families.

For families of systems the corresponding question is: let E(a)
and E'(a) be two families of systems and suppose that E(a) and E'((5) are
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isomorphic for all values of G. Does it follow that E and Et are
isomorphic as families (globally or locally in a neighbourhood of every
parameter value a).

Here there are (exactly as in the holomorphic-matrices-under-
similarity-case) positive results provided the dimension of the

stabilization subgroups {S E UnOR)1E(G)S = E(a)1 is constant as a
function of a, cf. [HP].
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