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A NUMERICAL COMPARISON OF SELF SCALING VARIABLE METRIC ALGORITHMS

by

G. van der Hoek and M.W. Dijkshoorn

ABSTRACT

‘Recently deve]oped quasi-Newton algorithms for unconstrained optimization
focus on the solution of badly scaled problems. A uniform numerical

comparison of these a]gbrithms is performed to get insight in their relative
behaviour and to verify emperically their ability to solve badly scaled
problems. A suitable battery of testproblems is suggested. The design of

the experiments and their results are preceded by a short description of

the theoretical backgrounds as they were developed by Oren and Luenberger.
Recent alternatives of Oren and Spedicato and of Shanno and Phua are mentioned
The classical DFP- and BFGS-algorithms are considered as well.
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1. INTRODUCTION

This study concerns the unconstrained minimization problem:
1.1. mln. f(x), x € En, the n-dimensional Euclidian space.
The objective function is supposed to be a sufficiently differentiable
convex function of x. The solution of unconstrained minimization problems
is one of the main subjects in the field of nonlinear programming. The
quasi-Newton methods (Davidon, [1959] called them Variable Metric Methods)
constitute a class of algorithms which use the gradients 9 =V f(xk) at
the iteration point Xy to define the search direction Py and to construct
an apprgximation D, to the inverse Hessian H_1 of f(x) in the optimal
point x . A general scheme for quasi-Newton methods is:
1. Initialization: choose arbitrarily a starting point X0 and a
positive definite symmetric matrix DO'
Calculate 99 = V f(xo). Go to 2

. Arrived at X s k=0,1, 2, .... define Xiel from
X1 = X~ akagk, where o, > G is the steplength, which is

determined by a linesearch. Go to 3
. In case of convergence, the a]gorfthm stops. Otherwise go to 4

. Dy is updated and k:= k+1. Go to 2.

The choice D, = I, the (n * n) - identity matrix for k = 0,1,2, ....
defines the method of steepest descent. Newton's method appears
from D, = H'1(x,) with o, = 1, for k = 0,1,2, ....

The first quasi-Newton method is due to Davidon, [1959] while Fletcher and

Powell, [1963] further developed Davidons method and supplemented convergence
and stability theorems.

Usually this first representative of the class of quasi-Newton algorithms
is called the DFP algorithm. |

Three characteristics of this algorithm are:

1. The matrices D, k = 1, 2, 3, ..., are positive definite, provided
that DO is chosen to be positive definite.

. If f(x) is a positive definite quadratic function and Dy = I
the algorithm is a conjugate gradient method and thus converges
in at most n steps.
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3. If again f(x) is a positive definite qUadratic function and the
algorithm requires all n steps, then D equals the 1nverse H—1
(this means that at Xn the direction - D n9n equals the Newton
step to the optimum x )

The convergence behaviour of the DFP- -algorithm relies on these well-
known properties. The 196°—paper of Fletcher and Powell was succeeded
by a 'great number of pub11cat1ons on related algorithms, most of them
presented alternative rules for the way of updating the matrices Dk'

Huang, [1970] formulated a general class of algorithms, with linesearch,

satisfying the second characteristic on the conjugacy of the search
directions. Later Osborne, [1972] suggested the following compact description

of Huangs update-formulae:
(1.2). D, .= D.- Dquqk Dy o it
.2). + P —— v,V wi
k+1~ "k~ qk qu v

(1.3) = Y = (qk'Dqu)-Pk -

Here 9 = Ik+1" 9> the gradient-difference vector,

Py = Xk+1'xk’ the step,

P and 6, are scalar parameters which can be chosen

arbitrarily within some 1imits.
The origina] DFP-algorithm corresponds with the choice Py = 1, ek = 0 for
k=0,1, 2, .... , while the Broyden-Fletcher-Goldfarb-Shanno algorithm
(BFGS) corresponds with b = o =1 for k =
Besides their successes in app11cat1ons, also ]ess favourab]e properties
of quasi-Newton methods were reported such as:

1. The dependency of the accuracy achieved in the linesearch.
Also this study shcws that the influence of this accuracy varies
per algorithm, which agrees with the results of earlier experiments
by van der Hoek and Baardman, [1977].

. Possible singularity of the inverse Hessian approximation Dk
A restart with Dk In is usually applied. See McCorm1ck and Pearson,
[19691, Lenard, [1976] and Powell, [1977].

. The sens1t1v1ty of the DFP algorithm to scaling of the obJect1ve
function. See e.g. Bard, [1968]. Bad_sca11ng can give rise to a
s1ngular matrix Dk‘




These above mentioned imperfections are confirmed by the results of Broyden,
[1967] and Greenstadt, [1970]. A remarkable result is proved in Dixon, [1972]
namely that for any differentiable function the quési-Newton algorithms of
Huang's family generate exact]y the same iteration points, provided that they

start from the same point Xg and that the applied exact linesearch uniquely
defines the steplength.

The sé]f—sca11ng variable metric algorithms (SSVM) of Oren and Luenberger,
[1974] do not suffer from the three above mentioned shortcomings. Oren and
Luenberger constructed a two-parameter family of updates, belonging to Huangs
family. They showed that efficient scaling of the objective function can be
achieved by a correct choice of their parameters. In fact their results are
extentions of the work of F]etcher,[19701 who showed the monotone convergence
of eigenvalues of the matrices DkH for a convex class of updating formulae.
If we define the condition number of a matrix as: the ratio of the largest to
the smallest eigenvalue, we see that as soon as the condition number of

D.H equals 1 there holds: D, = H™

. So this condition number is a measure
for comparison of Dk with H | |
Oren and Luenberger succeeded in the construction of a sequence of matrices
DkH with decreasing condition numbers, by app]ying'the update formulae:

D% Dk PPy

(1.4) Dk+1= {Dk - —rr— * ekvkvk'} Y 5 with

q, D, P g

./ P, . Dg
(1.5) . v = (9,0 a )2 | o - ek ) :

_ P9 9 D
Py 9 9y Py

(1.6) Y, == . (1 = ¢) + —5—= . ¢
k9D Ay kD79 Dy Tk

Particular choices of the parameters in the formulae (1.4)-(1.6) yield:
1. The DFP-update for Y = 1, by = 0 for all k '

2. The BFGS-update  for v = 1 and 6, = 1 for all k.

3. SSVM arises from all other combinations in which Yk satisfies (1.6)

Basically the parameters ¢, and 8, in (1.4)-(1.6) can be chosen arbitrarily

between bounds which shall be derived in ch. 2.

In their first experiments Oren and Luenberger, [1974] merely considered the

case ¢, = 0= 0 for all k. Later Oren, [1974b] discussed the choice of
parameters in a separate paper.




We started our experiments by extending to 25 combinations of ¢ and e thus
performing a-sensitivity analysis on the choice of the parameters. We
shall further investigate in this study the required accuracy of the
linesearch, which still quarantees overall convergence.

Denoting:
1.7 ~hy (a) = f(x, - aD .g)
(1.7) K Txy I

with o as variable of the linesearch, we terminate this search as
soon-as:

(1.8) I hk(o‘1‘+1) - hk(o‘-i); | <e

where i counts the number of cubic interpolations in the linesearch.

We investigated e = 1071,1073,107°.

Subsequently for the 3 best of these algorithms the efficiency of Oren's
Tinesearch, Oren, [1974b], based on the application of the test of
Goldstein and Price, [1967] was investigated.

Also we tested recent succeeders of the SSVM algorithms: the algorithms
of Oren and Spedicato, [1976] which are a subclass of Optimally Conditioned
Se]f—Sca]ing (0CSS) algorithms. These algorithms minimize a sharp bound
on the condition number of Dk' The resulting algorithms are two switching
rules which were tested fogether with two switching rules suggested by
Oren, [1974b].

Finally the results are compared with those of the DFP and BFGS algorithms
and with two algorithms suggested by Shanno and Phua, [19781, which
consist of devices for scaling of HO before applying the BFGS algorithm.
The first part of this report summarizes the theoritical backgrounds

of SSVM algorithms and their extentions as they appeared in literature
in the years 1976-1978. This concerns chapters 2.1-2.3. ‘

The second part, consisting of chapters 3.1-3.3, deals with the design
and realisation of experiments to perform a mutual comparison of the
above mentioned algorithms. Special attention is paid to the choice of
testfunctions. Finally chapter 3.4 contents a discussion of the results
of the experiments.




2.1. Self Scaling Variable Metric Algorithms

The main difference between SSVM-algorithms and other quasi-Newton
algorithms is the choice of the updating formulae.

We restr1ct our analysis to the minimization of convex functions f(x)
on E" which are at least twice continucusly differentiable. Those
functions can be approximated in a neighbourhood of their optimum
x*' by the first three terms of their Taylor-series expansion:

(2.1.1) F(x) = F(x7) + (x=x")VE(XT) + 3 (xxT) H(x-x")

f(x*) + %(x-x*)'H(x-x*).

An important theorem on the global convergence of quasi-Newton algorithms
applied on a quadratic objective function is

Theorem 1. For a positive definite quadratic objective function f(x) the
~ quasi-Newton algorithms convergence to the unique ont1mum x
of f(x), for any initial point X0+ '
At every step the following inequality holds:

«(R,) = 1]2 *
F(Xeap) = FIx7) :{K‘RE , 1}. (F(x) - F(x™)),

where K(Rk) is the condition number of the matrix Rk = H%DkH%.

A proof of this theorem can be found in Luenberger, [1973] and de Jong,
[19761. The matrix Rk is used as an indicator for the difference between

D, and H -1 Clearly R, = I indicates that D, = TRl R, is similar to D

k?
by definition, it has the same condition number as D

k*
It is clear from theorem 1 that convergence is accellerated if the quot1ents

K(Rk) - 142
y ———Y form a decreasing nul1 sequence. Thus 1im K(Rk) = 1 is required.
K(Rk) + 1

k- o

Before proceeding with the theoretical backgrounds we illustrate the
}effect of sca11ng by an example which makes use of the SSVM updating
formulae (1.4.)-(1.6. ). We apply three algorithms on the function:

F(x) = 3045 + 20x5 with xp = (1,1).




The values of K(Rk) are calculated for the fo]]oWing algorithms,
algorithm 1. DFP Y = 1 and 0 = 0 for all k .

algorithm 2. DFP after scaling the objective function. In this exémp]e
a'sca1ingfactor 40 is used which transforms: the eigenvalues
of R, into 1 and 13.

algorithm 3. SSUM with 9 = ¢, = 0 for all k.

The néxt tables contéin for these algorithms the iteration matrices
D> Hand R for k =0, 1. Ap-and 1, are the eigenvalues of R, for k =0, 1.

Table I Iteration’ matrices at the starting point

algorithm 1 algorithm 2 algorithm 3

[

[+ 1)

k (H) 11

Exact Tineminimization in the direction -ocDogO and application of
(1.4.)-(1.6.) yields: |




Table II Iteration matrices after one iteration

Dy [-.17781 -.36256. ( .67923 -.02828 .01584 .00188
-.36256  .84077 -.02828 1.06362 ' .00188 .02773

10.6683 21.7537| (1.01885 -.04242 .94997 .11253)
-14.5025 33.6306/ | -.02828 1.06362 .07502 .83118

A .781165

Ao 43.298964 | 1.082475

c(Ry)  43.298964 1.082475 1.280139

Obviously K(Rl) for the scaled DFP algorithm improves the unscaled version
and is comparable to the SSVM algorithm with ¢ = ¢ = 0.

2.1.1 Properties of the matrices D .

The matrices Dk generated by the application of the rules given in (1.4.)-
(1.6.) satisfy the following quasi-Newton requirements:

1. For a positive definite matrix Dk’ By >0, Yi > 0 and pk'qk >0
the matrix Dk+1 is positive definite as well.

. For a quadratic objective function f(x) the SSVM-algorithm is a

conjugate direction algorithm which converges to the minimum in
at most n steps.

. For a quadratic objective function f(x) the n-th approximation
D, equals HL in the case that vy, = 1 for all k.

Properties 1, 2 and 3 are well-known for quasi-Newton algorithms. As an
illustration only the first property will be proved below. For simplicity

of the notation the index k is suppressed and the index k+1 is replaced

by '-'. So Dk = D and Dk+1 = D.

Proof of property 1.

The proof is by induction. Using D0 = In we only have to prove the positive
definiteness of D from that of D . Let x € E" be a nontrival vector, then:




x'Dx = yx' [D- 29940 , ovv'] x + XBR X

q'Dq Pq

This yields for o >0

x'Dx > yx'[D - EEELELJX + ~—RR*——

p-q

Now we distinguish two cases: a. «x'p # 0, b. x'p=0

a.

2
= x'Dx.q'Dg - x'Dgq'Dx ‘ix p)
x'Dx >y [ 37D 1+ 57q

As the square root of the positive definite symmetric matrix D exists,

we define:

1 1
r = D°x and s = D4q

So: x'Dx > y [LL=8 8 2 (r's) ]+LX-BL

Using s's > 0, r'r.s's > (r's)2 (Cauchy-Schwarz) and y > 0, this yields

_ 1h 2 4
X' Dx 3_15791— >0 as p'q>0 and x'p # 0.

Pq

x'p-=0. As x is nontrivial and P=0and a =0 correspond with
X = x* we only need to consider x'Dg = 0. '
Then we see that x'Dq = x'D(g - q)
= x'Dg,
and
a'Dg = (g - g)'D(g - g)
= g'Dg + g'Dg (use that the exact linesearch provides g'Dg = 0).
means that

> yx'[D - 9%335—1 X

can be converted into:

g'Dg.x'Dx - (x Ng)
x ' Dx >y [ 37D

2

+ g'Dg.x'Dx]

1- 1
We define u = D?g and v = D%x.

2
= u'u.v'v = (v'u) v 9 'Dg. x'Dx
Then x'Dx > y 370 4

>y S_Qg+%égé (Cauchy - Schwarz and q'Dq > 0)

>0 (v > 0 and D pos. def.)




2.1.2. The eigenvaluestructure of the updating formulae.

For compactness we follow Oren and Luénberger, [1974] in their notation
of (1.4.) and (1.5.) as
2.1.3. :

0 | - qu'D l p'
D (DsY’p3q) (D —El-rl-ja- + 8vv ) Y +%’T]-

with = (q'Dq)%. (535 —'52%5)

Again we suppress the subscripts as only one iteration is considered.
The following fundamental Lemma is due to Oren and Luenberger, [1974].

Lemma 1. Let De(D,y,p,q) be defined by relations (2.1.3.). Then for any
symmetric non-singular matrix D, non-trival vectors p,q € E" and scalars
8, vy(y # 0), there holds:

a. De(D’Ysp’q) = De(yD,l,p,q) '

b. D°(D,vsp,a) = (1-0)0°(Dy»p,a) + 6D (D,v,p.q)

e 10MDyeped) 1Y = 0207 1/v5q0p)

Relation (a) connects a scaled problem (yD) with a special update formula,
(b) gives the update formula as a combination of elementary formulae

(the restriction e € [0,1] will prove to be necessary)and (c) gives a
'duality' relation.

Proof:

a. D°(D,v.pa) = D?(vD,1,p,q)
Substitution of yD in (2.1.5.) gives:
7= % (q'Dg)d { p_ 0 }
v = y2.(q'Dq) pq 'ar%a

1
2

='Y Vv

Then (2.1.3) gives:

_ .2
no gq'D ‘ '
D D,]., 9 = - Y q . !
(vDs1,p,q) = (vD '"?GT%E"’ + yovv') + %Ea
- (D _ qulD 1

! PP
q'bg T OV Yt g

= De(DsYspsQ)




b._ De(D,Y,p,q) = (1'9)DO(D’Yspsq) + BDI(D,Y,p,Q)

Relation (2.1.3) yields:
(2.1.4) Dl(D,y,p,q) - DS(D,Y’PsQ) = yw'
(2.1.5)  D%(Dyv+p»q) - D°(Dsvspsq) = youv!
Subtracting 6 times (2.1.4) from (2.1.5) yields the desired relation.

[Dl(DsYapsq)]_l = DO(D-lsl/Y:qap)

This can be proved by direct multiplication showing that:

Dl(D,Y:PsQ) DO(D-I’I/qujp) =1

The next Lemma deduces an updating formula for the matfix R = H%DH
from the updating formula for D.

Lemma 2. Let De(D,y,p q) be defined by (2.1.3) while H is a positive
definite symmetr1c matrix. Assume p'q > 0 and q = Hp. Then for R = H%DH%
and z = H 2p the following relation holds: '
(2.1.6)

R =ADe(R,y,z,z).

Proof: Define u = H2v and use HZDHE =

1 . 1
= { HEpH? - ﬂigﬂ%%ﬁggﬂi + eHiyy! 2 } + PP T

Z RZ Z'Z

{R-“—TRZZR + éuu‘}yﬁ-—z—%—

’De(R,y,z,z)

Assuming that v # 0 and G nonsingular, R-is also nons1nau1ar _

Hence Lemma 1 applies for R with z= =p=q and R=D, thus yielding relations
for the updating of R.

The intended eigenvaluestructure analysis of De(R,y,z,z) will be done in
two steps.

First, in theorem 2, the relation is considered between the eigenvalues
of two general matrices B and A which satisfy the relation.

-




(2.1.7)
_a _ Arr'A o opr!
B.= A o TR

with r € E", r# 0. Note that (2.1.7) means that the matrix B follows.
from the addition of two matrices of rank 1 to the matrix A.

In the second step those results are extended to D°(R,v,2,2).

The theorems were formulated by Oren and Luenberger, [1974]

and are extensions of the results of Fletcher, [1970].

The following Lemma, which is due to Loewener, [1957] will be used:

Lemma 3. (Interlocking eigenvalue theorem). Let S be a symmetric (nxn)-

matrix with eigenvalues Xy < X, < ... <X and let a € E" be an arbitrary
vector. '

The matrix T is defined by: T =S + aa' and has eigenvalues u; < up <...<

<
n="n"

Then: A < uf <3y <1y <.ve< A
Theorem 2. Let A be a positive definite symmetric matrix with eigenvalues
0 <X <A <...< A and Tet r € E be a nontrivial vector. The matrix B is
defined by (2.1.7) and has eigenvalues w; < uy <...< . Then there are
three possibilities: ‘

(1) if A o> 1 then uy = 1 and Lixi-Liuii A for i = 2,3,....,n

(i1)  if A < 1then u =1and ay<py < Agyq 21 ford=1,2,....001

i+l

(i11) 1f a;< 1< A the index J is such that Aj< 1< 2j., then

< A

Hi“ﬁ3zi%i-“i&ﬁuyskmﬂ;hﬂﬁnuiun

n and at least

one of the two eigenvalues Hys Mg equals unity.

Proof: First we consider the matrix P defined by:

; _a . Arr'A
2.1.8 = A A -
Then Pr = 0, r # 0, means that r is eigenvector of P with eigenvalue O.
Let gi< g2 < t, be the eigenvalues of P. Then the interlocking eigen-
valuetheorem gives:
2.1.9 0 = gy Ay S 5p% Ay LSS A
From (2.1.7) and (2.1.8) follows:

rr'
B=P +—
r'r
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Let (r=)w1,w2, M denote the orthogonal eigenvectors of the symmetric
matrix P, corresponding with the eigenvalues 0= 015 o2 Z t,- Then
r'wk =0 for k = 2,3,....,n yields Bwk=Pwk= A for k = 2,3,...., n.
Further: Br = r, so the eigenvalues of B are {cz, TSN 1}, which
becomes the set of nondecreasing eigenvalues {“1’ ,un} of the matrix B.
- One of those My equals. 1 and’ corresponds with the eigenvector r of B.

Now there are three cases:

1< Ap. As Ai< g5, it follows that unity is the smallest eigenvalue of B,
$0O u; =1 and Wy =gy for i = 2,3,...,n and part (i) of the theorem

is proved.

A 1. As s An; it follows that unity is the largest eigenvalue of B,
SO w, = 1 and Hi = Z44p for i =1,2,...,n-1, and part (i1) of the
theorem is proved.

A= 1_§AJ+1‘for some index J. 1< J 5n-1‘

The intekva] [AJ, AJ+1] contains the eigenvalue 1 and Cje1> AS
(2.1.9) shows. Ther the applied rearrangement caused: My T Ly
| for i =1,2,...,0-1, uy = min (1,§J+1) > Mypl = maX(l,gJ+i)

and By = Ls for i =3 + 2,...,n.

This means that at least one of the eigenvalues 1y and Hipl equals unity.

The way in which the eigenvalues (and consequently the condition numbers)
change in the construction of the matrix B from P and A is illustrated in
figure 1. The possible cases (1) (ii), and (iii) are given for n = 4

| ' S . A
(i) e == =TT // f’7<’7/ "// z
-/ T

1

0 H

PR NANNIVAN
=YX

0 1

— : : : A
('i]"i)‘ . ’\/: ‘ \ {’\‘ '/’/ '1’/ c
S A A
1

0 H

Note that in all three cases the smallest eigenvalue A, of A is
transformed into the eigenvalue ¢ = 0 of P, which in turn becomes
the eigenvalue u = 1 of the resulting matrix B.

Figure 1.
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It will be clear from theorem 2, especially part (iii), that in order
to guarantee that B will have a lower condition number than A, the
interval spanned by the eigenvalues of A must contain the element 1.

- This forms the basis of the development of the SSVM-algorithms.

The next theorem extends the results of theorem 2 to the updating formula
(2.1.6) of R. | |

Theorem 3. Let R%(v) = D°(R,v,z,2) be given by (2.1.6) for some fixed
positive definite matrix R and z € E", z # 0. Let the eigenvalues of ﬁe( )

be:
2 Hy (y) Then, for 6 € LO 1] and vy > 0 there holds:"

by (Y)< u1(y)< b Yy) for i = 1,2,.....n.

Lemma 2 y1e1ds for two parameters 61 and 6o with 0< 6< 92< 1:
e

R 2y = R Ay) + v (65 = 09). u
For this case Lemma 3 states:
e1( % |

(2.1.10) i Y)-i,“i (v)< bipp(y) for i =1,2,....,n-1.

This means for an arbitrary 6 € [0,1]:
(2.1.11) W (1 1§ (12031 (v) and

(2.1.12) W{(v)< nilkud, (v) for = 1,2,.....n-1

Combination of (2.1.11) and (2.1.12) gives the theorem

Theorem 4. Let R%(y) =D%(R.v,z, z) be given by (2.1.6) for a fixed positive
definite matrix R and z € £, 7z # O The e1genva1ues of R and R® (v) are

respectively Ali Azi s S A and “1 (v)< UZ(Y) cee < uz(Y)-

Then, provided that o € [0,1] and y > O there are three possible cases:

(1) if ya > 1then u?(y) =1 and ya;_;< u?(y)ﬁ vA; for i =2,3,.,n.

oy 0
(i1) if Yknjlthen up(¥) = 1 and ykii.u?(y)i YA;< 1 for 1= 1,2,..,n-

(111) 1f yap< 1< ya, and the index J is such that yi;< 1< yiy,; then

J+1
) 6 6 6
YA2 ()< A< <¥Aq< uy(y)< 1< UJ+1(Y) = Y>\J+1,<_~'f_<_ “n_(Y)f_ YA

where at least one of the eigenvalues ug(y), ug+1(y) equals unity.




Proof.  First we consider the case ﬁo(l) (the DFP-update). Then the
theorem follows from the substitution A=R, B=§0(1) and r=z in theorem 2.
(1) (BFGS). Lemma 1 states: RY )17 00 (r7L1,2,).
The eigenvalues of R} and [P’\l(l)]-1 are respectively,
1 1 1
1/xn§1/kn_L§ -+--2 1/2; and 1/un(1)§_1/un_1(1)§...,§ 1/uy(1).

Secondly the case R

Application of theorem 2 for these eigenvalues and the inverse of these
relations gives the proof for Rl(l).

Using the results for Eo(l) and ﬁl(l) we can extend the theorem to ﬁo(y)
and ﬁl(y) with v>0 using Lemma 1.

Lemma 1 gives: DB(R,y,Z,Z) = DQ(yR,l,z,z).
The.eigenvalues of yR are YAS YAS s YA,- Substitution of {yAL...,yAn}
for_{Al,..,.,An} in the preceding part of the proof extends the resu]fs
to the cases o = O and 6 = 1 with v > 0 |
Further theorem 3 gives for all o € [0,1] and ¥y >0
Wmnslmslt L1120,
Herefrom follows directly that any inequality satisfied by both u?(y).and u}(y)

is also satisfied by'u?(y) and the theorem is proved for all ¢ € [0,1] and y>0.

Corollary 1. With R%(y) , R, A; and u?(y) as in theorem 4, then
[l (1) - 1 < Iy - 1] for'i = 1,2,....,n.

Proof. In all cases of theorem 4 we have
2<ui(1)< 1 and Jor 1< b3 (1)< A, for all i,

which makes the result obvious.

Corollary 2. With the seme notation as corollary 1 and «(.) as the

condition of a matrix, then for 6 € [0,1] and y>0 there are three cases:

. 56
) gz 1 then i <R3z v

(1) ya< 1 then 1/va> «(RO(y))> U1k,
0

(111)  vA,> 1> va; then «(R%(y))< «(R).

The proof follows iﬁmediate]y from theorem 4.
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As we are looking for matrices Rk with decreasing condition number,

the last case of corollary 2 is most interesting. Hence we are

interested in rules to find scaling factors Y| Which satisfy 1/An§_y‘§.1/x1.
In chapter (2.1.3) will be shown that all Y, as defined in (1.6)

satisfy this relation.

Figure 2 gives an illustration of the difference of the eigenva]ues
of Ry and Ry in the example of ch. 2.1.

40 60

43.2
40 60

Figure 2

2.1.3 Restrictions on *he parameters.

In the preceding paragraphs several times the sense of proper scaling

of the objective function was mentioned. An alternative way to obtain sca-
ling of the objective function by a constant & is to multiply the

inverse Hessian approximation by £ before updating. In both cases

the matrix R, = HZD H2 will be multiplied by .

As Lemma 1 stated:
: 6

0
_nk _nk
Dk+1 - D (EDk319pksqk) - D (Dk3gapk3qk)1

this scaling can be implemented in SSVM-algorithms by simply choosing
Y = E- So Y, can be interpreted as a scaling factor and varying Yy
has the effect of'rescaling the objective function. ,
Updating formulae as defined by (1.4) and (1.5) are said to be self-
scaling, if for any fixed positive definite quadratic function with
Hessian H the parameters 6> Y are automatically selected such that
K(Rk+1)§ K(Rk) for all %, independently of the updating vector Py
(Oren and Luenberger, [10741). '
The parameter By : the condition 8y €[0,1] was applied in a number of
above mentioned theorems. The necessity of this condition follows from
a counterexample due to Fletcher, [1970], in which both & < - ¢ and
6 >1+ ¢ for e € (0,1) lead to a contradiction.




Consider a problem with:

The eigenvalues of R are:
A =T
Ay = 1+2e-¢

z =%{(1+28)‘(1+4€)'}

As ¢ is strictly positive of order €2 we know < 1< 1+2¢ - ¢
First let v = 1
Then substitution in (2.1.5) yields:

0
either singular or has a negative eigenvalue.

e+0 0 : -0
> which means that for 6< -e the matrix R°(1) is
1

This contradicts the positive definiteness of Dk for all k.

For y =1/t the relation 1/, < y<1/x; still holds.
This time substitution in (2.1.6) gives:

0 1

Then for'az l+e we have:

n

K(Re(y))3_1+§€ > 1+‘§_C' =k(R), which contradicts corollary 2 of

theorem 4,

The parameter yk.'Our goal is to meet the requirement (iii) of corollary
- 2 of theorem 4, to ensure a decrease in the value of the condition number
of the matrix Rk. As it is rather expensive to evaluate the eigenvalues
themselves we are interested in scaling factors Yy based on currently
available information and still satisfying part (ii1) of corollary 2.

- Therefore Oren, [1974a] introduces a convex class of scaling factors:

Let D be a nonsingular symmetric matrix and p,q € E", p # 0, q#0.

Then the scalar y¢(D,p,q) is defined by:

¢ - (1-.y P'Q P'g
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We intend to show that the thus defined scalars y¢(D,p,q) for ¢ € [0,1]
meet our requirements. It is clear from (2.1.13) that y¢(D,p,q) is
strictly positive if D is positive definite, p'q> 0 and ¢ € [0,1]. There
remains to be proved that '

}\1<—"~'——-—‘—— < A

- Y¢(D3psq). -

Theorem 5. Let p,q €E',p # 0, q # 0 with p'q >0, D and H are positive
definite symmetric matrices and R is a positive definite matrix, such
that

q = Hp
1 1
R = H2DH?
then for all ¢ € [0,1] there holds:
1/An.§v¢(D,p,q) <1 g

where A and An’are the smallest and the largest eigenvalue of R.

Proof. First we rewrite (2.1.13) as:

- (2.1.14) y¢(D,p,q) (1-9) —Tﬂ— ¢-ELQT—— » using the relation
p'0lp _p
P'q g

for p = -aDg

g
'Dq

As y¢(D,p,q) is defined as a convex combination of yl(D,p,q) and yO(D,p,q)
it suffices to prove the theorem for these two extreme values.

| ) N
Let z = Hp and r = H'2q. Then ¢ = 0 in (2.1.14) yields:
O( ,p,Q) = Rz . Further: Alz z< z'Rz< A Z 'z, which leads d1rect1y to

1/, < O(D Ps q)< 1/

The case ¢ = 1 gives in (2.1.13)
Yl( L

r'R Ly r' .
Ty - Substitution in T2 » yields the
n .

result 1/ jyl(D,p,q)j_l/Kl

D,p,Q) =

Conclusion: y¢(D,p,q) as defined in (2.1.13) are suitable sta]ihg factors
for SSVM-algorithms. Those scaling factors can be found using currently
available information about p,q,g and D, and make the algorithm 1nVariant
under scaling of the objective function and/or variables (numerical insta-
bilities as reported by Bard, [1968] will not occur).

Theorem 6 proves this statement.
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Theorem 6. Let Dk’ Xk’ek and O be defined as above. {Dk}, {xk} and {Dk},
{ik} are the sequences generated in the application of the algorithm on
f(x) and af(Bx) respectively (a> 0, B> 0). For the initialisation we assume

-~

Dy = GDO (6> 0) and Bio = X,- Both applications use the same sequences

(6,} and {4, }. Then, for ¢ e ¢,
D = D /ag? and X = x/8 for all k

Proof.  For all X, € E" we have 9 = (af(8X,))
asvxf(xk)
= aB 9 (%)
So the first search direction is the same and X = x1/8
Hence Py = py/8 g = aBgy and §, = aBqy
Substitution in the updating formulae (1.4.) - (1.6.) gives:

ﬁl = Dl/aBZ. The remaining part of the proof is by induction.

Conclusion: we found that for k =1,2,... there holds:

1) If v, >0, 6,> 0, pqu > 0 for all k, then all matrices Dy

are positive definite.

2) The derived scaling factors Yk 9guarantee a sequence of matrices Rk’
whose condition numbers form a decreasing sequence.

As the algorithm is self-scaling it is invariant under scaling of the
objective function and/or the variables.

If O € {0,1} the inverse Hessian approximation.constant1yimproves and the
algorithm more and more resembles Newton's method. This will provide

for a good local convergence rate even without linesearch. Thus we

expect to find in our experiments good results with inexact linesearches
while simultaneously the influence of roundoff errors will decrease.

2.2. Optimally Conditioned Self-Scaling Algorithms (0CSS)

It will be clear from ch. 2.1. that there is still a wide variety of possible

choices of the parameters vy and 6. That's why Oren, [1974b] investigated

the selection of these parameters. Moreover he suggested two rules for the

parameters y and 6. According to one of these rules the parameter vy ,

expressing scaling of the objective function is selected as close as

possible to unity and 6 is chosen such to offset an estimated bias in Det (DyH)
relative to unity. The main result of Oren, [1974b] is that it is

showed that still further improvement can be achieved by a proper selection

of these parameters y and g, ‘




In their paper Oren and Spedicato [1976] give a theory to impose a

- sharper bound on the condition number of the inverse Hessian approximation
(D ). For these algorithms we skip the theoretical backgrounds which can
be found in Oren and Spedicato, [1976] and proceed with mentioning the

| results, using the following brief notation:

o =p'q

T =q'Dq

n=p'D"lp = p'q. g'p/g'Da
An optimal pérameter, 6 for which D is optimally conditioned, is:
(2.2.1) 8 = o(r - yo)/Ty(nr - 0%)}
This optimal parameter 8 satisfies:

0< é_j 1 for o/t <y < /o

=0 fory = /o

=1 for y = o/t

One can easily see that still any value of v € [o/t, 7/c] can be chosen.

Oren and Spedicato suggested the following two switches:

Switch 1

If n/o < 1, choose v =n/&
. If o/t> 1, choose y = ¢/z
If ¢ 1< 1 < /o, choose v

6 =o(m - o)/ (mt - 02)>

Switch 2

2)%}

‘This switch can be found by substituting vy =(n/t)

v=(r/1)% and 6 = 1/{1 + (/o

1
2

into 2.2.1.

This switch has the pleasant property that the update of the inverse
equals the inverse of the update.

Beside these two switch algorithms two other switching algorithms (Oren,
[1974b]) were implemented: '




Switch 3

If m/o < 1, choose y=n/0 and o

If o/t > 1, choose y =0/t and o

If o/t <1 < n/o, choose y = 1 and
8 = ot - o)/ (mt - &%)

Switch 4 |

y = n/t and o

2.3. Shanno and Phua

In their paper Shanno and Phua, [1978] discuss matrix conditioning and non-
x]inear optimization, fccussed on scaling algorithms for unconstrained
optimization. They state that SSVM algorithms perform pobr]y compared to
initially scaled BFGS and Davidon‘s, [1975] algorithm with only one
exception formed by the class of homogeneous functions. Using the definition
of Jacobson and Oskman, [1970]: a homogeneous function can be written as:

f(x) = B_l(x - X) VF(x) + f(X), in which % is the minimizer and

B is called the degree of homogeneity. A typical homogeneous function of
degree four is Oren's Quartic function:

f(x) = (x'Ax)Z, which we also used as a testfunction.

As mentioned before the BFGS algorithm is a SSVM algorithm With‘
Yo =0 = 1 for all k. ' :

K o .
Shanno and Phua proposed initial scalings of the BFGS algorithm. They meant

by initial scaling that HO = In is multiplied by a scalar before it is updated.
The two strategies for initial scaling are:

1) Yo = ao‘(ao is the stepsize found in the first linesearch)
As a motivation for choosing %y is that it corresponds with scaling the
objective function with a factor Yo = @g- Note that we proved in theorem 6 |
that the scaling factcr Yk = o can also be deduced from the following
composite divice for upcating:
first the matrix D, is replaced by @Dy and then D, , is calculated
from (1.4) - (1.6).




, which means that 99 = 0 in 1.6.
As stated before 8 = 1 in the BFGS update; assuming that this is the
optimal value for 6 then with 2.2.1 i = %T%a for i = 0.

3. Numerical Experiments

The goal of the numerical experiments is to compare the efficiency of
developed quasi-Newton algorithms for unconstrained optimization, which

apply different rules to solve the problem of bad scaling. In the experiments
special attention is paid to the effect of increasingly bad scaling, the

influence of the accuracy of the linesearch and of the dimension of the
problem.

Further reasonsto design these experiments are that reported numerical
results in literature concern more or less different test batteries.
Surprisingly, up to now ecpériments are not focussed on the main goal of
these algorithms: their ability to attack badly scaled problems where the
spectrum of eigenvalues of the matrix R1 does not contain the unit element.

‘The next chapter describes the design of the experiments performed.

3.1. Algorithms Implemented

The flowchart given in figure 3 is a general representation of the
implementation of the considered algorithms.
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The different algorithms are defined by particular choices for the
~ linesearch and the formulae for updating the inverse Hessian approximation.

We investigated implementations of the following 9 algorithms:

1. Davidon-Fletcher and Powell. Fletcher and Powell, [1963]
2. BrOyden-F]etcher-Go]dfarb and Shanno. e.g. Broyden, [1970]

3. Self Scaling Variable Metric (25 parameter choices),
Oren and Luenberger, [1974] '

4-7 Four Optimally Conditioned Self Scaling Switches.
Oren and Spedicato, [1976]

8,9 Two devices for initial scaling of BFGS, Shanno and Phua, [1978]

For these algorithms the accuracy of the linesearch was varied.
Also the effect of the test of Goldstein and Price, [1967] to avoid
linesearches was investigated for a range of accuracies of this test.

The experiments were performed on an IBM 370/158 computer using the
FORTRAN-G compiler under 0S/VS2 (MVS-Multiprogramming Virtual Storage),

in double precision. The program consists of a main program called SSVM
which calls the subroutines CUBIC (1inesearch) and UPDAT (updating inverse
Hessian approximation).

Special remarks on the program:

SSVM: 1. The Goldstein and Price condition to test whether the Newton

steplength'l' is acceptable or not is tested in the main program
SSVM.

. As theoretically Dk+1 need no longer be positive definite if
p'q'< 0 we test this relation before calling UPDAT. If
p'q <0, D47 equals Dy (no updating). If this happens 10 times
in executing one testproblem the run is terminated with a message.
Only in the execution oftestprdblem 6 this occured.

. If the number of used function evaluations exceeds a predesigned
number NFMAX, the execution is terminated with a message. We used
the extremely high value NFMAX = 1000, to distinct hardly solvable
problems from unsolvable problems.




CUBIC  This linesearch is described in appendix A. It is a bracket1ng
process followed by cubic interpolations. Because of possible nonconvexity
in the problems (p'q < 0 can occur:) the linesearch is safeguarded in the
sense that it reverses a generated search direction which is not initially
downhill.

UPDAT  In this subroutine the updating of the inverse Hessian approximation

takes place. The Oren-Spedicato switches require the calculating of E = p'D-lp

which equals E'= p'g * p'q, Oren, [1974a]
g'Dq
The Tatter expression in used in the computations as it is cheaper than the

first. (In case of an exact linesearch we can use E'! = azg Dg or E''' = ap'q).

3.2. The choice of testproblems, termination criteria and performance indicators

The subjects to be treated in this chapter are motivated by the necessity

of a proper design of the experiments,invorder to be able to draw correct
conclusions from the figures which will be generated.

We treat these subjects in the order in which they occur in the t1t1e of th1s
chapter

Testproblems To meet our goal on the design of the numerical experiments,

mentioned in the beginning of this chapter, we composed a collection of

12 testproblems, mentioned in appendix B. The testproblems, whose gradients
are analytically given, are taken from Titerature. Necessary new problems

are generated by varying parameters which influence the condition number of
the testoroblem and/or the dimension. Though the convergence properties of

the developed algorithms are proved for convex minimization problems, usually
test batteries, including ours, also contain nonconvex problems. For the moment
we merely remark that recent research on global minimization algorithms to
minimize nonconvex prob]ems,_Rinnooy Kan, [1979], provides for an entirely
different, statistically oriented approach, in stead of simply applying one
lTocal search. The set of 12 testfunctions consists of:

1, 2, 3, 4: Increasingly badly scaled variations on Rosenbrock's function,
Rosenbrock, [19611, Colville, [1968]

5, 6 : 10- and 30-dimensional generalizations of Rosenbrock's function.

7, 8,9 :2-, 10- and 30-dimensional Quartic functions, Oren, [1973]1, to
test the behaviour on homogeneous functions of different dimension.

10, 11, 12: 2-, 4-, and 6-dimensional Hilbert problems, Oren, [1973], to test
the influence of increasing extreme il1-conditioning on purely
quadratic functions.
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Terminationcriteria As a wide variety of these criteria is known and
applied we had to make a choice and decided to stop iterating as soon as
both fo110w1ng conditions are met:

. : -6

11 9l =107,
4

1 X1 X 112207

We preferred this criterion consisting of two components as it guarantees
a certain accuracy in determining both the optimal function value f*
and the coordinates of the optimum x*.

The Tinear Taylor approximation of f(x) around Xy yields

HF Oeen) = F 00D TT= 1T 9 1T T X %

||f (Xk+1) - T (x) | 5_10—10 in our case.

Tab]e 1II illustrates the still possible inaccuracy in x* under our
_stopping rules.

Table’iil

Last iteration point (xl,xz) for the two dimensional Quartic function for
different algorithms with the applied termination criterium.

Algorithm Xq Xo f(xl,xz)

SSVM ¢ = 1, 0 = . . - .740 10716

o = . . - . 742 10710

6 = . . . - 781 10716
Switch T . - : 741 10710
741 10716
781 10716
233 10710
215 10710
215 1070
292 10710
185 10713
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A single component criterium as || f( Xk+1) - ) || = 10-10, as applied

in Oren, [1974b], Oren and Spedicato [1976] and Shanno and Phua, [1978]
locates x* still less accurately.

The cub1c linesearch terminates if the Euclidian distance of succeedingly
generated points along the search direction is smaller than or equal to a
preset parameter called EPSCU. This means in the notation of (1.7) and (1.8):

' hy (o) < EPSCU

k(egp1) -

Performance indicators Candidates for performance indicators are:

number of function evaluations, number of iterations and required number of
CPU=secs to solve a testproblem. In our terminology an iteration consists of
the generation and exploration of a search direction. These three indicators
are all mentioned in the tables with results. The number of required function
evaluation was used as the main indicator. It corresponds directly with the
number of iterations as the number of functionevaluations per iteration does
not vary much. The main disadvantage of counting functionevaluations to solve
the whole set of testproblems is that different objective functions are
equally weighted though they may differ substantially in complexity: from the
figures of tables IV and VI can be seen that one evaluation of the 30-
dimensional Rdsenbrock-function is approximately as expensive as five evaluations
of -the 2-dimensional Quartic function. This influence is compensated by
considering separately classes of testfunctions, such as the higher dimensional
ones, and drawing separate conclusions for those classes.

The required CPU-time gives additional information on the overhead of
computations such as matrixmanipulations which the program performs.

However the CPU-time cannot be measured very accurately because of the inaccuracy
of the internal clock of the machine and, which is more important, because of
the multiprogramming facility.

We find that times varied up to 10% for jobs run in daytime and requiring less
than 10 measured secs CPU-time. Because of this lack of accuracy, we merely
mention CPU-times in the next tables and do not draw further conclusions

from them.




3.3. Design of the experiments and results

The experiments were designed in the following way:

Experiment I  Find the three best (¢,6)-combinations of the Oren-Luenberger
SSVM-algorithms, without application of the Goldstein and Price test.The
to 1070, The resulting

accuracy of the linesearch EPSCU varies from 107!

algorithms are called A, B and C.

Experiment II The algorithms A, B and C evolving from experiment I and
implementationsof the four Oren-Spedicato switches are compared. The parameter
o of the new applied Goldstein and Price test varies from 0.01 to 0.49 and
EPSCU has the same range as in experiment I.

Experiment III DFP and BFGS are implemented together with the two devices
for initial scaling of BFGS by Shanno and Phua, [1978].

Under the applied termination criteria the generalized Rosenbrock function

with C = 106 appeared to be too hard for all algorithms. That is why it is not

incorporated in the next tables.

The most relevant results are summarized in the next tables, using the
following notation:

# F : number of required function evaluations
# IT : number of required iterations

CPU : required CPU-time in secs

F* . reached function value

The 25 algorithms evolving from 5 particular choices for each of the parameters
¢ and & were generated by the loops:

D010 I =1,5
PHI = .25 * (I-1)
DO 10 J =1,5
TETTA = .25 * (J-1)
10 CONTINUE
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Table IV:#F for 25 (¢,6)-combinations. Accuracy linesearch 107} No Goldstein/Price test

9 10 1 1314 15 16 17 18 19

. C

testfunction

Ros (c=1) 2 - : » 26
(c=10%) 160 : 98
(c=10%) 863

(n=10) 305 210 i79 157
(n=30} F F'FF F ' 552
Quartic(n=2) 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 a7
(n=10) 72 72 72 712 72 72 72 72 72 72 72 72 72 72 68 70 74 72 72 69 70 71 74 69
(n=30) 8 91 91 87 91 & 8 90 9 8 91 91 91 91 g 9 91 91 91 9 8 91 9 91
Hilbert (n=2) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
(n=4) 26 24 24 26 28 28 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

(n=6) 2 22 22 22 22 22 22 2 2 2 2 22 22 22 22 22 22 22 22 22 22 22 2 22

2626 1689 1925 1923 1944 1528 1367 1408 1478 1571 1451[1245] 1297 1449 1485 1388[1247 1325 1389 1405 1386[1227]1310 1319 1584
F F F F




Table V: # IT for 25 (¢,6)-combinations. Accuracy linesearch 10'1 ,  No Goldstein/Price test

algorithm 1
testfunctio

Ros(c=1) 7
(c=10%) 24
(c=10%) 1

(n=10) 57
(n=30) F
Quartic(n=2) 8
(n=10) 17
(n=30) 26
Hilbert(n=2)

(n=4)
(n=6)




Table VI: CPU for 25 (¢,6)~combinations. Accuracy linesearch 107} : .. No Goldstein/Price test

algorithm

testfunctio

(n=30) 17.
Quartic(n=20)

(n=10)

(n=30)
Hilbert(n=2)

(n=4)

(n=6)




Table VII: F* for 25 (¢,6)-combinations. Accuracy linesearch 10-1 No. Goldstein/Price test

algorithm
testfunctio

Ros(c=1)
2
4

(c=10%)
(c=10")

(n=10)

(n=30)
Quartic(n=2)

(n=10)

(n=30)
Hilbert(n=2)

(n=4)

(n=6)




Table VII: Continuation

_algorithm

testfunction

Ros (c=1) .153
(c=10%) .105
(c=10%) 130

(n=10) .257
(n=30) .263
Quartic(n=2) .103
(n=10) .645
(n=30) .135
Hilbert(n=2) .950
(n=4) .619
(n=6) .303
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Table VIII: # F for 25 (¢,8)-combinations. Accuracy linesearch 10_3' No Goldstein/Price test

algorithm’

“5\\\‘\“‘-~‘

testfunction

Ros(c=1)
(c=10%)

(c=10%)

(n=10)

(n=30) F
Quartic(n=2) 59

(n=10) 94

(n=30) 134
Hilbert(n=2) 10

(n=4) 24

(n=6) 22




Table IX: # F for 25 (s.8)zcombinations. Accuracy linesearch 10-6
No Goldstein/Price test

algorithm ' - 12 13 14 15 16

testfunction

Ros(c=1)
(c=10%)
(c=10%)

(n=10)
(n=30) F F

Quartic(n=2) 62 62
(n=10) 101 106
(n=30) 146

Hilbert(n=2) 10 10 10 = 10 10 10
(n=4) 24 24 24 24 24 24
(n=6) 22 22 22 22 22 22

2962 2381 2355 2341
F F F F
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Table X: # F for the 3 best (¢,6)-combinations and the 4 Oren-Spedicato switches.
Accuracy linesearch 107'. Goldstein/Price test with o = 107L.

algorithm A SWI SWII SWIII SWIV

testfunction

Ros(c=1)
(c=10%)
(c=10%)

(n=10)

(n=30)
Quartic(n=2)

(n=10)

(n=30)
Hilbert(n=2)

(n=4)

(n=6)

.
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Table XI: # I7 fbr the 3 best (¢,6)-combinations.and the 4 Oren-Spedicato switches.
Accuracy linesearch 1071, Goldstein/Price test with o = 1071,

algorithm SWII SWIII

testfunction

Ros(c=1)
(c=10)
(c=10%)

(n=10)

(n=30)
Quartic(n=2)

(n=10)

(n=30)
Hilbert(n=2)

(n=4)

(n=6)
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Table XII: CPU for the 3 best (¢,6)-combinations and the 4 Oren-Spedicato switches.
Accuracy linesearch 10-1. Goldstein/Price test with o = 10-1

algorithm ~ SWI  SWII SWITI  SWIV

testfunction

Ros(c=1)
(c=10%)
(c=10%)

(n=10)

(n=30) 19.
Quartic(n=2)

(n=10)

(n=30)
Hilbert(n=2)

(n=4)

(n=6)




Table XIII: F*, obtained by the 3 best (¢,6)-combinations. and tﬁw'ﬂ Oren-
Spedicato switches.

Accuracy linesearch 10'1. Goldstein/Price test witth o = 10_1.

SHII SWIII SWIV
algorithm

testfuiccic

Ros (c=1) . . i - . . 19 687 10720
-1 -
(~=10%) . . ) i ) ) 215 10
(c=10%) ) ) ) ) 123 10718 72 F

-21

(n=10)

(n=30)
Quartic(n=2)

(n=10)

(n=30)
Hilbert(n=2)

(n=4)

(n=6)




Table XIV: # F for DFP, BFGS and 2 Shanno/Phua variants.
Accuracy linesearch 10-1. Goldstein/Price test with o = 10

-1

algorithm DFP BFGS SH/PH I SH/PHII

testfunction

Ros(c=1)
(c=10%)
(=10

(n=10)
(n=30) F
Quartic(n=2) 60
(n=10) 479
(n=30) 716
- Hilbert(n=2) 10
(n=4) 18
(n=6) 16

22 3016




Table XV: # IT for DFP, BFGS and 2 Shanno/Phua variants.
Accuracy Tinesearch 1071, Goldstein/Price test with ¢ = 107},

algorithm  OFP  BFGS  SH/PHI SH/PH IT

testfunctio

Ros(c=1) 8
(c=10%) Rz
(c=10%) 132

(n=10) 59
(n=30) F
Quartic(n=2) 17

(n=10) 446

(n=30) 616
Hilbert(n=2) 3
(n=4) 6

(n=6)




Table XVI: CPU for GFP, BFGS and 2 Shanno/Phua variants.
Accuracy linesearch 10-1. Goldstein/Price test with o = 10-1

algorithm SH/PHI  SH/PHII

\

testfunction‘

Ros(c=1)
(c=10%)
(c=10%

(n=10)
(n=30)
Quartic(n=2)
~(n=10)
(n=30)
Hilbert(n=2)
(n=4) |
(n=6)




 Table XVII: Fx » obtained by DFP, BFGS and 2 Shanno/Phua variants.

Accuracy linesearch 10'1. Goldstein/Price test with o.= 10

-1

\nggzifﬁﬁ\\\\ DFP SH/PH 1 SH/PH 11
testfunction

Ros (c=1) 515 : 327 10720

(c=10%) y : .323 10721
(c=10%) : : .260 10724

(n=10) . : .125 10716
(n=30) . .836 10717
Quartic(n=2) . . .215 10713
(n=10) . : 474 107°
(n=30) . . .264 1077
HiTbert . . .324 10762
(n=4) ¥ . .207 10713
(n=6) . : .303 10713




‘3.4 Discussion of the results

Experiment I

The numbers of function evaluations required by algorithms 1-25 for
EPsCU = 1071, 1073 and 1078 are given in tables IV, VIII, IX. We selected
the seven 'best' algorithms for respectively EPSCU = 10-1, for
EPSCU = 10-1 and EPSCU = 10—3 and, finally for all three accuracies:
Epscy = 1071, 1073 and 1078, The results are given in table XVIII.
We Mention that obviously nontrivial values are to be preferred and that
all three columns of table XVIII contain the same seven parameter combinations.
From tables IV, YIiII, IX and figure 4 can be deduced that increasing the
accuracy makes all algorithms more expensive from which we conclude that
EPSCU = 10_1 is to be preferred. This confirms our remarks in Ch. 2.1. on
inexact linesearches. These arguments led to the following choice of three
'best' parameter combinations éthﬁng from experiment I on our set of
testproblems:

6 = 1. , .25 : algorithm 22

¢ = .50, o = .25 .+ algorithm 12

¢ = .75, 6 = .25 : algorithm 17.

From now we call these algorithms A, B, C respectively.

Table XVIII: # F for EPSCU = 107!

EPSCU = 1071, 1073 (cumulative)

EPSCU = 1071, 1073, 107° (cumulative)

epscu = 1071 pscu = 107, 107 Epscu = 1071, 1073, 107°
algorithm- #F algorithm #F .. algorithm #F

22 - 1227 17 - 2893 12 - 4803

12 - 1245 12 - 2895 23 - 4826

17 - 1247 22 - 2947 22 - 4844

13 - 1297 23 - 2955 : 24 - 4970

23 - 1319 24 - 3028 17 - 4980

24 - 1319 13 - 3089 18 - 5052

18 - 1325 7 - 3140 13 - 5058




45

The results of experiment I are illustrated in figure 4. In this figure

the experimentally found points are connected by straightblines to simplify
'‘reading' of the figure. This is not intended to suggest an analytically
proved continuity of number of function evaluations in terms of parameter

combinations'

From figure 4 we see that ¢ = 0 is unsatisfactorily while for any given
nontrivial value of ¢ the algorithms get worse for higher values of q.
Obviously the parameter 6, which is the weighting factor of the correction
term vv' in (1.2) is of more importance than the parameter ¢ which defines
the scaling of the objective function! ’

The conclusion on the accuracy of the linesearch is further investigated
in experiment II where the Goldstein and Price test is implemented which
may lead to avoid Tlinesearching completely.




figure 4: required furictionevaluations for the
25 parameter choices. '

EPSCU = 107°

-
-

T

EPSCU = 1077

EPSCU = 1077

number of algorithm ——>

1 2 3 4 5




Experiment II

We consider implementation of the algorithms A, B and C and the four
Oren-Spedicato switches.

First the sensitivity for the choice of the parameter ¢ of the Goldstein
and Price test is investigated. We tested ¢ = 0.01. 0.10, 0.25 and 0.49.
For o = 0.01 the Newton steplength '1' will often be accepted and no
linesearch is performed. Increasing o causes more linesearches, for

o = 0.49 almost al] iterations use a cubic linesearch with EPSVU = 10’1,
In our experiment ¢ = 0.10 generally yielded the best results. The final
results are given in tables X - XIII. Clearly switch IV is dominated by

the competitive algorithms.

Experiment I11

Implementation or DFP, BFGS and the two Shanno-Phua algorithms were run
for ¢=0,10 and EPSCU = 10-1. Clearly DFP prefers (requires) an exact
linesearch, which confirm known results. Tables XIV - XVII present the
relevant figures

Figure 5 illusirates the results of the experiments on the resulting
testset of 11 algorithms:

A B, C, switches I, II, 1II, IV, Shanno/Phua I, II, DFP and BFGS.

Our general conclusion is that switches I, II and II are competitive with
the (optimized) algorithms A, B and C.

BFGS is s1ightly worse than the Shanno/Phua variants. The results of the
last two variants are clearly 1hf1uenced by their problems in solving the
3 homogeneous testfunctions. Further it should be realized that the
algorithms A, 3 and C evolve from an optimization of algorithms with
respect to the parameters ¢ and 6. Thus the performance of the general
scaling devices of the switches I, II and III and Shanno and Phua's
variant is really excellent' Finally the results with the algorithms

A, B‘and C indicate to replace Oy = 1 for all k in BFGS by By = .25

for all k. '




figure 5: required functionevaluations for
experiments II and III.
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The influence of the dimension of the testproblem and

remarks on homogeneous testproblems.

Table XIX presents those figures from tables X and XIV which concern

the 10- and 30-dimensional Rosenbrock and Quartic testfunctions.

Clearly initial scaling of BFGS should not be recommended for homogeneous
testproblems as the Quartics. This confirms Shanno and Phua,[1978].
Further table XIX suggests to apply Shanno/Phua I or switch II for
higher dimensicnal problems. If it is known beforehand that f(x) is
homogeneous, which rarely happens in real-Tife problems, switch II is

to be preferred. |

Table XIX: # F for the 10- and 30-dimensional testproblems.

AGo]dsteih/Price test with o = 0.10. Accuracy linesearch 10_1

algorithn SWI SWII WIII SWIV SH/PH $H/PH DFP  BFGS
I .

II
testfunction

Ros (n=10) 128 133 124 166 113 262
(n=30) - 237 264 256 312 231 F

Quartic(n=10) 47 47 47 48 172 479
(n=30) £2 53 53 53 414 716

930 2457
F




Influence of the conditioh of the testproblem.

Two effects were investigated:

a) The ability of the algorithms to solve problems with a shifted spectrum
of eigenvalues of Ré. We varied the parameter c of a family of Rosenbrock-
problems ¢ =1, 107, 104, 106.

the condition at the starting point (-1.2,1) but creates increasingly

Increasing c only slightly influences

extremely ill-conditioned optimal points (1,1). A1l algorithms failed
to solve the problem with ¢ = 106.

b) Increasingly i11-conditioned pure quadratic problems are the Hilbert
problems for increasing dimension. We investigated n = 2, 4, 6.

The results on these testfunctions are summarized in table XX.
Conclusion

From the experiments with the Rosenbrock-family we conclude that the BFGS
algorithms (BFGS with or without initial scaling) behave better for i11-
conditioned optimal points.

The differenceson purely quadratic functiorsare negligible,

Table XX: # F for ill-conditioned testproblems

algorithm' . A SWI SWI SWII SWIV SH/PH SH/PH
: I II

testfunction

Ros(c=1) 28 » 15
(c=10%) 110 72
(c=10"y 346

Hilbert(n=2) 13 .12
(n=4) 28 32
(n=6) 27 y 35




Final remarks

Recently developed self scaling algorithms for unconstrained minimization

were described and compared in experiments. _
A11 algorithms, except DFP, showed a good performance with an inexact

linesearch (generally an iteration requires about 2 function evaluations).
For reasons of robustness and simplicity in use (initially scaled) BFGS
algorithms seem to be preferable in most practical situations. This
conclusion is even more general: numerical comparisons by Grandinetti, [1978]
and Shanno and Phua,[1978b] show that this classical quasi-Newton algorithm
is competitive with sophisticated versions of quasi-Newton algorithms as
those based on factorisations or projections of search directions,
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Appendix A: iinesearches and the Goldstein and Price Test.

Linesearches

The efficiency of 11nesearches or one-dimensional optimization procedures,
is. frequent1y reported in literature. See e.g. Lootsma, [1972], Dixon,
[1972], Sargent and Sebastian, [1972], Himmelblau, [1972], van der

Hoek and Baardman, [19771, Biggs, [1971], Tamir, {19761, Fox R.L.c.s.,
[1975] and Walsh, [1975]

The available methods can be derived, roughly speaking, into two classes:
.Methods based on the splitting of an interval into two segments (Golden
Section and Fibonacci search) and methods based on (polynomial)
approximation followed by interpolation to a point x near the minimum x*

In the basic algorithm we implemented Davidon's cubic interpolation method
as linesearch, but we also investigated the possibility to avoid relatively
expensive Tinesearches by 51mpiy taking the Newton step 1,

Usually linesearches are based on the assumption that the funct1on f(x)

is unimodal in the‘search direction d. The Tinesearch searches fqrvthe
unique minimum of h(d) = f(xk+ adk) along the ray X, + udk. The used cubic
interpolations are applied after bracketing the minimum. They require

function values f(x) and the directional derivative of f(x) in the point
X * adk, which is given by

6(a) = V'F(x, + ady).d,.

We proceed now with the description of the 1ihes¢arch, (the subécfipt k
will be suppre:sed), which consists of the following steps:

step 1. Calculate fy = f(x + 0.d) and G(0) = ¥'f(x + 0.d).d< 0
go to sten 2.

step 2. Find a value aq of o satisfying at least one of the following
conditions:
i. G(al) = v'f(x + al.d).d> 0
ii. f“l = f(x + al.d)> frs
"~ go to step 3.

Approximate f(x + o.d) by the cubic polynomial y(a) given by the
4 conditions which express that y(a) and f(x + a.d) possess the
same function value and the same directional derivate in both
endpoints of the interpolation interval. Go to step 4.




step 4. Find the minimum @ of y(a) on the considered interval and
go to step 5.

step 5. Define, using o which of the smaller intervals ([O,am] or
[am, al]); brackets the minimum and apply eenvergence conditions.
Stop if convergence is obtained, otherwise go to step 3.

Figures 6 and 7 illustrate the conditions of step 2. Note that figure 7
concerns the case that the function to be minimized is not unimodal,
which happens “requently in practical problems.

f

Y(a) | 'O G(0)< O

1 _l |

figure 6

figure 7




Davidon proposed to define oq in step 2 by:
ay = min {og> - —if fel }
G(0)
where o is some representative magnitude of the problem (usually
ag = = 2) and f is a preliminary estimate of the minimum (we used
in all cases =0) _2(f
It is easy tu ver1fy that ““*4%3(‘f}‘ is the value of a which
minimizes a quadratic objective function along the ray x + ad,
substituting for fe the eXact minimum value of f(x). We replaced
Davidon's estimate by:
-2f0)
G(0)
where the cbsolute value of the quotient {—-—0} is made necessary
by the choic2 f = 0 and permitted because SQ)G (0) <0 (dis a
descent direct1on) The choice of oy is followed by testing the
conditionso® step. 2. If aq violates both conditions, aq is replaced
by Zal, e:c. thus performing a 'bracketing' of the minimum.
The polynomial y(a), given by step 3, has a uniqueminimum in o

- _Glaq) +w-2z
o, = a 1 1
mo 1 { ©G(ey) - 9(0) + 2 }

A.1.1

a = min {2, abs(—0)},

with
A1z =3 ag.(fy - fal) + 6(0) + G(ay) and

A5 w= (2% - 60).6(a)))2.
See e.g. Walsh [1975] for a further treatment of (A.1.3) - (A.1.5),

Finally, step 5 needs a rule to choose the next interpolation interval:

G(ap,)< 0 gives rise to consider logs a1 as next interpolation interval,
otherwise [0,a.1 1s taken.

The Goldstein and Prize test (Goldstein and Price, [1967])

The effect of this ilest is that no linesearch is performed if the step-
length "1" yields a paint Xpa1 with f(xk+1) suff1c1ent1y close to the
linear (Taylor) approximation of f(x) in a neighbourhood of x,.

The 1mp1ementat1un nf this test yields the following strategy for
determination of {he steplength:




stép 1: set o = 1 calculate X1+l and f(xk+1) and
go to step ?

step 2: test if the Goldstein and Price test is satisfied:

o < f(xk+1) ") c1-6 for given 0< o < }
'k Py

If satisfied, accept X 41 @nd return.
Otherwise go to step 3.

step 3: find o and Aeel from the available linesearch and return.

Apparently o = 3 permanently causes a usual Tinesearch, while o close

to zero almost completely avoids this linesearch. The best choice of &
depends on f(x) ard the algorithm in which this test is used. We obtained
good results for o = 0.10, which means that seldomly a linesearch is

performed.




Appendix B: TestprobLlams.

1, 2, 3, 4 A family of Rosenbrock-functions:

2

f(x) = c(xé - x?)2 + (1 - xq)

for ¢ =1, 102, 10%, 10°.

Initial point: x6 = (- 1.2, 1)
Solution: x*' = (1,1) with f(x*) = 0.

Multidimensional banana functions:

for N = 10, 30 the function
n-1

f(x) = { 100(xk+1- xi)2 + (1 - xk)z}
k=1

initial point xj = (-1.2, 1, 1.2, 1, ... , -1.2, 1)
solution x*' = (1,1,...,1) with f(x*) = 0.

Oren's Quartic function for N = 2, 10, 30
12 N \

2 with A= Sa
6

£(x) = (x“Ax)

initial point xé = (1,1,...,1)

solution xx'= (0,0,...,0) with f(x*) = 0

Hilbery problems-for~N=-2, 4, 6

£(x) = x"hx With (A ):s = —=—— (i,3 = 1,...,n)
L A N

(An is an (n x n) segment of the Hilbert matrix)
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