
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

'"--tet 1 Li
ECONOMETRI INSTITUTE

A NUMERICAL COMPARISON OF SELF SCALING

VARIABLE METRIC ALGORITHMS

#cS

G. van der HOEK and M. W. DIJKSHOQRN

REPORT 7910/0

ERASMUS UNIVERSITY, P.O. BOX 1738, ROTTERDAM, THE NETHERLAND
S

A NUMERICAL COMPARISON OF SELF SCALING VARIABLE METRIC ALGORITHMS

by

G. van der Hoek and M.W. Dijkshoorn

ABSTRACT

Recently developed quasi-Newton algorithms for unconstrained optimization

focus on the solution of badly scaled problems. A uniform numerical

comparison of these algorithms is performed to get insight in their relative

behaviour and to verify emperically their ability to solve badly scaled

problems. A suitable battery of testproblems is suggested. The design of

the experiments and their results are preceded by a short description of

the theoretical backgrounds as they were developed by Oren and Luenberger.

Recent alternatives of Oren and Spedicato and of Shanno and Phua are mentioned

The classical DFP- and BFGS-algorithms are considered as well.

Contents

Page

1. Introduction 2

2.1. Self Scaling Variable Metric Algorithms 6

2.2. Optimally Conditioned Self Scaling Algorithms 19

2.3. Initial scaling of BFGS 21

3. Numerical experiments 22

3.1. Algorithms implemented 22

3.2. The choice of testproblems, termination criteria and performance 25

indicators.

3.3. Design of the experiments and results 28

3.4. A discussion of the results 44

Acknowledgement 51

Appendix A Linesearches and the Goldstein and Price test

B Testproblems

References

52

56

57

June 1979

'Preliminary and confidential, comments invited'

2

1. INTRODUCTION

This study concerns the unconstrained minimization problem:

1.1. min. f(x), x E E
n
, the n-dimensional Euclidian space.

The objective function is supposed to be a sufficiently differentiable

convex function of x. The solution of unconstrained minimization problems

is one of the main subjects in the field of nonlinear programming. The

quasi-Newton methods (Davidon, [1959] called them Variable Metric Methods)

constitute a class of algorithms which use the gradients gk = V f(xk) at

the iteration point xk to define the search direction pk and to construct
an approximation Dk to the inverse Hessian H-1 of f(x) in the optimal

point x. A general scheme for quasi-Newton methods is:

1. Initialization: choose arbitrarily a starting point xo and a

positive definite symmetric matrix Do.

Calculate go = V f(x0). Go to 2

2. Arrived at xk, k = 0, 1, 2, define x41 from

x1(4.1 = xk akDkgk, where al, > 0 is the steplength, which is

determined by a linesearch. Go to 3

3. In case of convergence, the algorithm stops. Otherwise go to

4. Dk is updated and k:= 41. Go to 2.

Remark: The choice
Dk - - I, the (n * n) - identity matrix for k = 0,1,2, ..

defines the method of steepest descent. Newton's method appears
-from Dk = H 1
(xk) with ak = 1, for k = 0,1,2, ..• •

• •

The first quasi-Newton method is due to Davidon, [1959] while Fletcher and
Powell, [1963] further developed Davidons method and supplemented convergence
and stability theorems.

Usually this first representative of the class of quasi-Newton algorithms
is called the DFP algorithm.

Three characteristics of this algorithm are:

1. The matrices Dk, k = 1, ?, 3, are positive definite, provided

that D0 is chosen to be positive definite.

2. If f(x) is a positive definite quadratic function and Do = In,

the algorithm is a. conjugate gradient method and thus converges

in at most n steps.

If again f(x) is a positive definite quadratic function and the
-algorithm requires all n steps, then D equals the inverse
H1

(this means that at xn the direction - Dngn equals the Newton
step to the optimum x*).

The convergence behaviour of the DFP-algorithm relies on these well-
known properties. The 1963-paper of Fletcher and Powell was succeeded
by a great number of publications on related algorithms, most of them
presented alternative rules for the way of updating the matrices Dk.

Huang, [1970] formulated a general class of algorithms, with linesearch,
satisfying the second characteristic on the conjugacy of the search
directions. Later Osborne, [1972] suggested the following compact description
of Huangs update-formulae:

POI('
D q '

(1.2) D = D -k+1 k

(1.3)

clOkqk Pk Pk qk

'Dkqk).pk
(Pk icik"kqk

with

Here qk = gk4.1-gk, the gradient-difference vector,

Pk = xk+1-xk, the step,
pk and ek are scalar parameters which can be chosen
arbitrarily within some limits.

The original DFP-algorithm corresponds with the choice pk 1, Ok = 0 for
k= 0, 1, 2, while the Broyden-Fletcher-Goldfarb-Shanno algorithm
(BEGS) corresponds with ek = pk = 1 for k = 0, 1, 2, ..
Besides their successes in applications, also less favourable properties
of quasi-Newton methods were reported, such as:

1. The dependency of the accuracy achieved in the linesearch.
Also this study shows that the influence of this accuracy varies
per algorithm, which agrees with the results of earlier experiments
by van der Hoek and Baardman, [1977].

2. Possible singularity of the inverse Hessian approximation Dk.
A restart with Dk = 'n is usually applied. See McCormick and Pearson,
[1969], Lenard, [1976] and Powell, [1977].

3. The sensitivity of the DFP algorithm to scaling of the objective
function. See e.g. Bard, [1968]. Bad scaling can give rise to a
singular matrix Dk.

These above mentioned imperfections are confirmed by the results of Broyden,

[1967] and Greenstadt, [1970]. A remarkable result is proved in Dixon, [1972]

namely that for any differentiable function the quasi-Newton algorithms of

Huang's family generate exactly the same iteration points, provided that they

start from the same point xo and that the applied exact linesearch uniquely

defines the steplength.

The self-scaling variable metric algorithms (SSVM) of Oren and Luenberger,

[1974] do not suffer from the three above mentioned shortcomings. Oren and

Luenberger constructed a two-parameter family of updates, belonging to Huangs

family. They showed that efficient scaling of the objective, function can be

achieved by a correct choice of their parameters. In fact their results are

extentions of the work of Fletcher,[1970] who showed the monotone convergence

of eigenvalues of the matrices DkH for a convex class of updating formulae.

If we define the condition number of a matrix at: the ratio of the largest to

the smallest eigenvalue, we see that as soon as the condition number of

DkH equals :1 there holds: k - H . So this condition number is a measureg i -

for comparison of Dk with

Oren and Luenberger succeeded in the construction of a sequence of matrices

DkH with
decreasing condition numbers, by applying the update formulae:

DkqkqkiDk PkPk with
Dk+1

= {131
k qk Dkqk

+ekvkvk
}yk pk qk

(Pk Dkqk
= (clk s) • qP q k -k -kiDk k

Pk icik gOk
n n • (1 - a FD q •k k

Particular choices of the parameters in the formulae (1.4)-(1.6)yield:

1. The DFP-update for yk = 1, ek = 0 for all k

2. The BEGS-update for yk = 1 and ek = 1 for all k.

3. SSVM arises from all other combinations in which yk satisfies (1.6)

Basically the parameters (1)1(and ek in (1.4)-(1.6) can be chosen arbitrarily

between bounds which shall be derived in ch. 2.

In their first experiments Oren and Luenberger, [1974] therely considered the

case q= ek= 0 for all k. Later Oren, [1974b] discussed the choice of

parameters in a separate paper.

We started our experiments by extending to 25 combinations of (p and e thus

performing a.sensitivity analysis on the choice of the parameters. We

shall further investigate in this study the required accuracy of the

linesearch, which still guarantees overall convergence.

•Denoting:

(1- 7) hk() = f(x k - aDk.gk)

with a as variable of the linesearch, we terminate this search as

soon as:

(1.8) I h(a1) hk(a)- 1 < 6

Where i counts the number of cubic interpolations in the linesearch.

We investigated 6 = 10
-1

,10-3,10
-6
.

Subsequently for the 3 best of these algorithms the efficiency of Oren's

linesearch, Oren, [1974b], based on the application of the test of

Goldstein and Price, [1967] was investigated.

Also we tested recent succeeders of the SSVM algorithms: the algorithms

of Oren and Spedicato, [1976] which are a subclass of Optimally Conditioned

Self-Scaling (OCSS) algorithms. These algorithms minimize a sharp bound

on the condition number of D The resulting algorithms are two switching

rules which were tested together with two switching rules suggested by

Oren, [19741)].

Finally the results are compared with those of the DFP and BEGS algorithms

and with two algorithms suggested by Shanno and Phua, [1978], which

consist of devices for scaling of Ho before applying the BEGS algorithm.

The first part of this report summarizes the theoritical backgrounds

of SSVM algorithms and their extentions as they appeared in literature

in the years 1976-1978. This concerns chapters 2:1-2.3.

The second part, consisting of chapters 3.1-3.3, deals with the design

and realisation of experiments to perform a mutual comparison of the

above mentioned algorithms. Special attention is paid to the choice of

testfunctions.Finally chapter 3.4 contents a discussion of the results

of the experiments.

2.1. Self Scaling Variable Metric Algorithms

The main difference between SSVM-algorithms and other quasi-Newton
algorithms is the choice of the updating formulae.
We restrict our analysis to the minimization of convex functions f(x)
on En which are at least twice continuously differentiable. Those
functions can be approximated in a neighbourhood of their optimum
x* by the first three terms of their Taylor-series expansion:

(2.1.1) f(x) = f(x*) + (x-x)'Vf(x*) + i(x-x
*
)'H(x-x

*
)

= f(x*) i(x-x
*
)'H(x-x

*
).

An important theorem on the global convergence of quasi-Newton algorithms
applied on a quadratic objective function is

Theorem 1. For a positive definite quadratic objective function f(x) the
quasi-Newton algorithms convergence to the unique optimum x
of f(x), for any initial point xo.

At every step the following inequality holds:

K(Rk) - l
f(xki.1)

<

.K(Rk) 1 • (T(k) f(x

y

1where K(Rk) is the condition number of the matrix R = H2DkH2.

A proof of this theorem can be found in Luenberger, [1973] and de Jong,
[1976]. The matrix Rk is used as an indicator for the difference between
Dk and H

-1
. Clearly Rk = I indicates that Dk = H. As Rk is similar to Dk'by definition, it has the same condition number as Dk.

It is clear from theorem 1 that convergence is accellerated if the quotients
K(Rk) - 1)2

form a decreasing null sequence. Thus lim K(Rk) = 1 is required.(K(Rk) 1.

Before proceeding with the theoretical backgrounds we illustrate the
effect of scaling by an example which makes use of the SSVM updating
formulae (1.4.)-(1.6.). We apply three algorithms on the function:

f(x) = 304 + 204 with x6 = (1,1).

The values of K(Rk) are calculated for the following algorithms,

algorithm 1. DFP yk = 1 and ok = 0 for all •k .

algorithm 2. DFP after scaling the objective function. In this example
a scalingfactor 40 is used which transforms the eigenvMues
of R into 1 and 11-.

algorithm 3. SSVM with Qk = (I)k = 0 for all k.

The next tables contain for these algorithms the iteration matrices
Dk, H and Rk for k = 0, 1. X1 and A2 are the eigenvalues of Rk for k = 0, 1.

Table I Iteration matrices at the starting point

algorithm 1

(10 01)

(60 0)

0 40

(.6 0)

40

40

60

K(R0)

K(H)

algorithm 2

1 0

(0 1

0

algorithm 3

(1 0

o 1)

(60 0)

0 40

(60 0

0 40

40

60

Exact lineminimization in the direction -aD0g0 and application of
(1.4.)-(1.6.) yields:

Table II Iteration matrices after one iteration

(_17781 -.36256) (.67923 -.02828\ (.01584 .00188
-.36256 .84077

1
-.02828 1.06362/ ' .00188 .02773/

(10.6683 21.7537\ (1.01885 -.04242) (.94997 .11253)
-14.5025 33.6306) k02828 1.06362 .07502 .83118

1

43.298964 1.082475

K(R) 43.298964 1.082475

.781165

1.280139

Obviously K(111) for the scaled DFP algorithm improves the unscaled version
and is comparable to the SSVM algorithm with e = = 0.

2.1.1 Properties of the matrices Dk.

The matrices Dk generated by the application of the rules given in 1.4.)-
(1.6.) satisfy the following quasi-Newton requirements:

1. For a positive definite matrix Dk, ek 0, ik 0 and >

the matrix Dk+1 is positive definite as well.

2. For a quadratic objective function f(x) the SSVM-algorithm is a
conjugate direction algorithm which converges to the minimum in
at most n steps.

3. For a quadratic objective function f(x) the n-th approximation
-1Dn equals H in the case that yk = 1 for all k.

Properties 1, 2 and 3 are well-known for quasi-Newton algorithms. As an
illustration only the first property will be proved below. For simplicity
of the notation the index k is suppressed and the index k+1 is replaced
by 1 - 1. So Dk = D and Dk+, = 5.

Proof of property 1.

The proof is by induction. Using Do = In we only have to prove the positive
definiteness of D from that of D . Let x E En be a nontrival vector, then:

x'Ox x s [1) -
D9q1)
crpc, + evv i x+

This yields for e > 0

x'Ox > x'[0 Ng' x + x1131?1),(q'Dci p q

x'p
P

Now we distinguish two cases: a. x'p A 0, b. x'p =

, 2
. x ,ox y - x'Dqq' 3 x

q'Dq P

As the square root of the positive definite symmetric matrix D exists,
we define:

1
r = D2x and s = D2c1

-So: x'Ox >
r.sss's

+.1Z IP)
pq

Using s's > 0, r'r.s's > (r's)
2

(Cauchy-Schwarz) and y > 0, this yields
2ty n)

x'Dx >`-:" > 0 as p'q > 0 and x'p A 0.

b. x'p = 0. As x is nontrivial and p = 0 and a = 0 correspond with
x = x* we only need to consider x'Dg = 0.
Then we see that x'Dq = x'D(g - g)

= x'Dg,
and

= (g - .g)'D(g

.= -6 1 D-g + g'Dg

This means that

x'Dx> yx 1[D q uq

(use that the exact linesearch provides 'Dg = 0).

can be converted into:

x,bx y [7516-6.x 1 Dx - (x'D-6)2 + g'Dg.x'Dx,
q'Dq

We define

Then

1
D2g and v = D2x.

> y tigu.v'y - (v 1 1.)2 g'Dg.x'Dx
q'Dq Y q'Dq

g 1 D9.x 1 Dx
q'Dq (Cauchy - Schwarz and 'Dq > 0)

> 0 (y > 0 and 0 pos. def.

10

2.1.2. The eigenvaluestructure of the updating formulae.

For compactness we follow Oren and Luenberger, [1974] in their notation

of (1.4.) and (1.5.) as

2.1.3.

9Y,Psq

with

l

= (p - Dq + evv 1) y
+nn

q P

(clipc1)1. VTI
Again we suppress the subscripts as only one iteration is considered.

The following fundamental Lemma is due to Oren and Luenberger, [1974].

Lemma 1. Let De(D,y,p,q) be defined by relations (2.1.3.). Then for any

symmetric non-singular matrix D, non-trival vectors p,q E En and scalars

0, y(y 0), there holds:

a. De(D,y,p,q) = De(yD,1,p,q)

b. De(D,y,p,q) = (1-0)0(4,p,q) + eD1(D,y,p,q)

c.
[D1(D,y,p,c)f4 DO(f1,11y,q0)

Relation (a) connects a scaled problem (yD) with a special update formula,

(b) gives the update formula as a combination of elementary formulae

(the restriction e E [0,1] will prove to be necessary)and (

'duality' relation.

Proof:

a. D (D,y,p,q) = D(yD,1,p,q)

Substitution of yD in (2.1.5.) gives:

1
= 2.(q'Dq fp

9qtp q q Dqj

Then (2.1.3) gives:

D (yD,1,p,q) (yD -
12
Nctip + yevvi P

ycl ' Dq p q

(D - Dqc" + evv 1) y + 13131q Dci P q

= De(D,y,P,q)

gives a

11

D
e
(D,y,p,q) = (1-0)D0

(D,y,p,q) + eD (,y,p,q)
Relation (2.1.3) yields:

(2.1.4) Di(D,y,p,q) d)(D,y,p,q) = yvvi
(2.1.5) De(D,i,p,q) - O(D,y,p,q) = 'OW

Subtracting e times (2.1.4) from (2.1.5) yields the desired relation.

- -c. M
1
(D,y,P,q)]

1
= D

0
(D 1 ,l/y,q,p)

This can be proved by direct multiplication showing that:
1 0 -1D (D,y,p,q) D (D ,l/y,q,p) . I

The next Lemma deduces an updating formula for the matrix R = HD
from the updating formula for D.

2.
2

Lemma 2. Let De(D,y,p,q) be defined by (2.1.3) while H is a positive
2.definite symmetric matrix. Assume plc' > 0 and q = Hp. Then for R = WDH2

and z = H 2p the following relation holds:

(2.1.6)

D (R,y,z,z).

Proof: Define u = H2v and use 0-150 =

HH
=
{ H2DH2 - 71-p 2

1 1 H2DHpp'HDH2 + 01-12vv1H
1 1

Rzz'R
z'Rz

+ euul

,y,z,z)

zz'+ ---r—
z z

1
app'H2
p'Hp

Assuming that y 0 and 0 nonsingular, R-is also nonsingular.
Hence Lemma 1 applies for R with z=p=q and R.D, thus yielding relations
for the updating of R.

The intended eigenvaluestructure analysis of 106(R,y,z,z) will be done in
two steps.

First, in theorem 2, the relation is considered between the eigenvalues
of two general matrices B and A which satisfy the relation.

12

(2.1.7)
Arr'A

B = A - r Ar
rr'
r 5

with r E En, r 0. Note that (2.1.7) means that the matrix B follows

from the addition of two matrices of rank 1 to the matrix A.

In the second step those results are extended to D (R,Y,Z,Z).

The theorems were formulated by Oren and Luenberger, [1974]

and are extensions of the results of Fletcher, [1970].

The following Lemma, which is due to Loewener, [1957] will be used:

Lemma 3. (Interlocking eigenvalue theorem). Let S be a symmetric (nxn)-

matrix with eigenvalues Ai < A2 < xn
and let a E E

n be an arbitrary

vector.

The matrix T is defined by: T = S + aa' and has eigenvalues p-1 --
Then: Al i A2 < p2 <...< An

Theorem 2. Let A be a positive definite symmetric matrix with eigenvalues

0 < A1 < A2-- ‹. .< An and let r C
 En be a

nontrivial vector. The matrix B is

defined by (2.1.7) and has eigenvalues p < p <...< p
n
. Then there are

1 — 2 --
three possibilities:

)

(i

(iii

if A
1

1 then pl = 1 and 1<A,_ <11.
1

< A. for i = 2,35. .,n

if
n-

1 then pn = 1 and Ai < < x. < 1 for I = 1,2,...,n-1

if A1< l<An the index J is such that x,< x 1 thenu J+

Aaf. Ajf. P < An and at least

one of the two eigenvalues pj, pj+1 equals unity.

Proof: First we consider the matrix P defined by:

2.1.8 P = A - Arr'A
r Ar

Then Pr = 0, r 0, means that r is eigenvector of P with eigenvalue 0.

Let 1- - 2- - < n be the eigenv
alues of P. Then the interlocking eigen-

-
valuetheorem gives:

2.1.9 0 = 2< •cr. An.

From 2.1.7) and (2.1.8) follows:

rr'
B = P + -77-

r r

13

Let (r=)w ,1w
2' ,wn denote the orthogonal eigenvectors of the symmetric

matrix P, corresponding with the eigenvalues 0= ci< c2‹.... cn. Then
r'w

k
= 0 for k = 2,3,....,n yields Bw

k =Pwk k
= w

k for k = 2,3,...., n.
Further: Br = r, so the eigenvalues of B are {c2, 1}, which
becomes the set of nondecreasing eigenvalues {pv. ,1111} of the matrix B.
One of those pk equals 1 and corresponds with the eigenvector r of B.
Now there are three cases:

(1) 1< x1. As x1< 2'
< , it follows that unity, is the smallest eigenvalue of B,—

so pi = 1 and pi = ci for i = 2,3,...,n and part (i) of the theorem
is proved.

(ii) < 1. As <
an it follows that unity is the largest eigenvalue of B,— '

so pn = 1 and pi = for i = 1,2,...,n-1, and part i) of the
theorem is proved.

(iii) xj_f_ 1 for some index J. 1< J

The interval [AJ, A1 contains the eigenvalue 1 and j
(2.1.9) shows. Then the applied rearrangement caused: pi

1, as

for i = 1,2,. ..,J-1, pj = min (1,c,34.1) pj+1 = max(1,s1+1)
and for i = J
This means that at least one of the eigenvalues pj and equals unity.J 1

The way in which the eigenvalues (and consequently the condition numbers)
change in the construction of the matrix B from P and A is illustrated in
figure 1. The possible cases (i), (ii), and (iii) are given for n = 4

(iii

0 1
Note that in all three cases the smallest eigenvalue A, of A is
transformed into the eigenvalue = 0 of P, which in turn becomes
the eigenvalue p = 1 of the resulting matrix B.

TI

Figure 1.

14

It will be clear from theorem 2, especially that in order

to guarantee that B will have a lower condition number than A, the

interval spanned by the eigenvalues of A must contain the element 1.

This forms the basis of the develo ment of the SSVM-algorithms.

The next theorem extends the results of theorem 2 to the updating formula

(2.1.6) of R.

Theorem 3. Let A (y) = 0(R,y,z,z) be given by (2.1.6) for some fixed
positive definite matrix R and z E En, z 0. Let the eigenvalues of Ae(y)

be: 0
 < p

o
(y). Then, for 0 E [0,1] and y > 0 there holds:n

e 1
for i = 1,2,....,n.--

— 1:Proof: Lemma 2 yields for two parameters and e2 with 0< e
-02 01
R (Y) = (Y) Y - o1). uu'.
For this case Lemma 3 states:

1 02 1
(2.1.10) p.1 (Y) Pi ()f +1() for i = 1,2,....,n- .Y -- 1-1 Y

This means for an arbitrary 0 E [0,1]:
0 e 0(2.1.11) pi(y)..f. pi(y)._<_pii../(y) and

(2.1.12) p.(y)< pl.(yhp
+1
? (y) for = 1,2,....,n-1i 1'

Combination of (2.1.11) and (2.1.12) gives the theorem

Theorem 4. Let re(y)= De(R,y,z,z) be given by (2.1.6) for a fixed positive

definite matrix R and z E E,zi 0. The eigenvalues of R and p0(i) are
respectively Ai< < *** - < An and

o
(Y)‹ 11-(Y)< .--.< n(Y)-*- 1

Then, provided that 0 E [0,1] and y > 0 there are three possible cases:

(1) if yxl> lthen pi(y) = 1 and yAi _i< yXi for i = 2,3,.,n.

if yxlthen 4(y) = 1 and yAi < 14(y)< yXj4.1.< 1 for 1 = 1,2,..,n-1

(iii) if yXl< l< yAn and the index J is such that yXj< 1< yAj4.1 then

0 e e 0 <_yxj< pj(y)< l< p(y) .2..z_ 1XJ+1._<_• • -__ PricYLYAl< Pi" YA2---

where at least one of the eigenvalues pe '(Y) pe (y) equals unity.J J+1

15

Proof.. First we consider the case 0(1) (the DFP-update). Then the
theorem follows from the substitution A=R, B=0(1) and r=z in theorem 2.
Secondly the case OM (BFGS). Lemma 1 states: z).

[R1(1)]-1= DO(R-1,.,z,
The eigenvalues of R-1 and [0(1)]-1 are respectively,

1/xn<1/Xn_ i< .< 1/x1 and 1/4(1)‹ 1/4_1(1)‹.. pl

Application of theorem 2 for these eigenvalues and the inverse of these-relations gives the proof For R 1(1)
-0Using the results for R (1) and R1(

and R(y) with y>0 using Lemma 1.

Lemma 1 gives: De(R,y,z,z) = De(yR,1,z,z).

The eigenvalues of yR are yy YAn.

-0) we can extend the theorem to R (y)

Substitution of fy>1...,YAnl
for

{x1"— ,x } in the preceding part of the proof extends the results
to the cases 0 = 0 and 0 = 1 with y > 0

Further theorem 3 •gives for all 0 E [0,1] and y >
0, , 0, , 1,

= 1,2,...,n.

0 1Herefrom follows directlythatany inequality satisfied by both i(y) and
is also satisfied by 4(y) and the theorem is proved for all e E [0,1] and y>0.

Corollary 1. With TZ (y) , R, Ai and 4(y) as in theorem 4, then
14(1) 1 l< lxi - 11 for/ i = 1,2,....,n.

Proof. In all cases of theorem 4 we have

1 and /or I.< 4(1)< X. for all 1,1— — —
which makes the result obvious.

m
Corollary 2. With the same notation as corollary 1 and K(.) as the
condition of a matrix, then for e E [0,1] and y>0 there are three cases:

(i) (yAl aa/i> > 1 then ()) YX11_1,

yAn< 1 then 1/YA1> K(V(y))> 1/1X2,

(iii) yXn...>__ 1> yX, then K(Re(y))< K(R).

The proof follows immediately from theorem 4.

•••••

16

As we are looking for matrices Rk with decreasing condition number,

the last case of corollary 2 is most interesting. Hence we are

interested in rules to find scaling factors yk which satisfy 1/xn< y

In chapter (2.1.3) will be shown that all yk as defined in (1.6)

satisfy this relation.

Figure 2 gives an illustration of the difference of the eigenvalues

of R0 and R in the example of ch. 2.1.1

40 60

40 60

0
p (1

0.76

Figure 2

2.1.3 Restrictions on the parameters.

DFP

SSVM

In the preceding paragraphs several times the sense of proper scaling

of the objective function was mentioned. An alternative way to obtain sca-
ling of the objective function by a constant E is to multiply the
inverse Hessian approximation by before updating. In both cases

the matrix Rk - H2Dk H2 will be multiplied by

As Lemma 1 stated:
ek n kin n
(-1(5-5rk 51k) =

Dk+1
=0 Dina

this scaling can be implemented in SSVM-algorithms by simply choosing

yk = E. So yk can be interpreted as a scaling factor and varying yk
has the effect of rescaling the objective function.

Updating formulae as defined by (1.4) and (1.5) are said to be self-
scalin9, if for any fixed positive definite quadratic function with
Hessian H the parameters ek, yk are automatically selected such that
K(Rk4.1)< (Rk) for all k, independently of the updating vector pk.
(Oren and Luenberger, [1974]).
The parameter ok: the condition ek C[0,1] was applied in a number of
above mentioned theorems. The necessity of this condition follows from
a counterexample due to Fletcher, [1970], in which both 0 < - c and
0 > 1 + 6 for 6 C (0,1) lead to a contradiction.

17

Consider a problem with:

(1+6 6
2

z=(6
1

162
6

The eigenvalues of R are:

2

=11(1+26)-(1+46)1 1

As c is strictly positive of order 6
2

we know ç< 1< 1+26 -
First let y = 1

Then substitution i (2.1.6) yields:

(6+e 0)

0 1

either singular or has a negative eigenvalue.

This contradicts the positive definiteness of Dk for all k.

For y =lk the relation 1/An < y<10,1 still holds.
This time substitution in (2.1.6) gives:

Rem

_
R (y) =

Then for e> 1+6 we have:

, which means that for e< -6 the matrix R0(1)is

K(R. (y))› 1+2c > 1+2c-
=K(R), which contradicts corollary 2 of

theorem 4.

The parameter yk.. Our goal is to meet the requirement (iii) of corollary
2 of theorem 4, to ensure a decrease in the value of the condition number
of the matrix R As it is rather expensive to evaluate the eigenvalues
themselves we are interested in scaling factors yk based on currently
available information and still satisfying part (iii) of corollary 2.
Therefore Oren, [1974a] introduces a convex class of scaling factors:
Let D be a nonsingular symmetric matrix and p,c1 E En, p / 0, q 0.
Then the scalar y(1)(D,p,q) is defined by:

(2.1.13) y4)(D,p,q) = (1-(p) + (1) 1c 3ik •

18

We intend to show that the thus defined scalars y (D,p,q) for (1) E [0,1]

meet our requirements. It is clear from (2.1.13) that y4)(D,p,q) is

strictly positive if D is positive definite, pig> 0 and (1) E [0,1]. There

remains to be proved that

1

y(D51)5q)
An

Theorem 5. Let p,q EEn_,p 0, q 0 with p'q >0, D and H are positive

definite symmetric matrices and R is a positive definite matrix, such

that

q = Hp
1 1

R = H2DH2

then for all (1) E [0,1] there holds:

1/An <i(1)(1),p,q) < 1/ xl,

where x1 and Xn
are the smallest and the largest eigenvalue of R.

Proof. First we rewrite (2.1.13) as:

(2.1.14)
-1

qb
Y (D,P q) = (1-) + (1) P ID3 (11)

pID-ip p'g for p = -Dg
p'sci g'Dq

using the relation

As y(P(D,p,q) is defined as a convex combination of y1(D,p,q) and y
it suffices to prove the theorem for these two extreme values.

Let z = Hlp and r = H 2q. Then it, = 0 in (2.1.14) yields:

z'z
o(D'135q) z Rz Further: xlz sz< z'Rz< xnz'z, which leads directly to

1/xn <y
o
(D,p,q)< 1/x1

The case cp = 1 gives in (2.1.13)
-11 r I R r r'r r'ry (D,p,q) - ror . Substitution in < , yields thex

n
• — xl

result 1/An <y1(D,p,(1)< 1/x1

Conclusion: y4)(D,p,q) as defined in (2.1.13) are suitable scaling factors
for SSVM-algorithms. Those scaling factors can be found using currently
available information about p,q,g and D, and make the algorithm invariant
under scaling of the objective function and/or variables (numerical insta-
bilities as reported by Bard, [1968] will not occur).
Theorem 6 proves this statement.

19

Theorem 6. Let Dk, xk,ok and (11(be defined as above. {DO, {xk} and {Dk
{xk} are the sequences generated in the application of the algorithm on
f(x) and af(x) respectively (a> 0, p 0). For the initialisation we assume
Do = 6D0 (6> 0) and 60 = xo. Both applications use the same sequences
0k1 and {h}. Then, for f C C2,

-Dk - Dk /a 2. and xk - xk /13 for all k--
Proof. For all 1(C En we have k;4(

- ve(af(6())x k

apxf(xk)

= a gk(xk)
So the first search direction is the same and x1 = x1/(3

Hence Po = po/f3, go = ano and qo = amo

Substitution in the updating formulae (1.4.) - (1.6.) gives:

1 =D1/at32. The remaining part of the proof is by induction.

Conclusion: we found that for k = 1,2,... there holds:

1) If yk > 0, ek> 0, pkqk > 0 for all k, then all matrices Dk
are positive definite.

2) The derived scaling factors yk guarantee a sequence of matrices Rk,
whos'e condition numbers form a decreasing sequence.

3) As the algorithm is self-scaling it is invariant under scaling of the
objective function and/or the variables.

If ek C {0,1} the inverse Hessian approximation constantly improves and the
algorithm more and more resembles Newton's method. This will provide
for a good local convergence rate even without linesearch. Thus we
expect to find in our experiments good results with inexact linesearches
while simultaneously the influence of roundoff errors will decrease.

2.2. Optimally Conditioned Self-Scaling Algorithms_ (OCSa

It will be clear from ch. 2.1. that there is still a wide variety of possible
choices of the parameters y and e. That's why Oren, [1974b] investigated
the selection of these parameters. Moreover he suggested two rules for the
parameters y and e. According to one of these rules the parameter y ,
expressing scaling •of the objective function is selected as close as
possible to unity and e is chosen such to offset an estimated bias in Det(DkH)

relative to unity. The main result of Oren, [1970] is •that it is
showed that still further improvement can be achieved by a proper selection
of these parameters y and e.

20

In their paper Oren and Spedicato [1976] give a theory to impose a
sharper bound on the condition number of the inverse Hessian approximation
(Dk). For these algorithms we skip the theoretical backgrounds which can
be found in Oren and Spedicato, [1976] and proceed with mentioning the
results, using the following brief notation:

= p i q

T = q'Dq

= p = p q. g p/g Dq

An optimal parameter, 6 for which D is optimally conditioned, is:

(2.2.1) 8 = aerr - YaV{i(7. G
2)}

This optimal parameter ë satisfies:

0< 8 < 1 for (VT < y < Tr/a
•••••••

= 0 for y = la

e = 1 for y = /T

One can easily see that still any value of y E [a/T, Tr/a] can be chosen.
Oren and Spedicato suggested the following two switches:

Switch 1

If Tr/o < 1, choose y =71./0 and e = 0

If a/T> 1, choose y = /T and e =

If a T< 1 < it/a, choose 1 and_ _

8 = a(71- -)/(TrT -

Switch 2

2 1= ('rr/)2 and e = 1/{1 + ()2}

This switch can be found by substituting y =(Tr/T)2 into 2.2.1.

This switch has the pleasant property that the update of the inverse
equals the inverse of the update.
Beside these two switch algorithms two other switching algorithms (Oren,
[19741A) were implemented:

21

Switch 3

If Tr/a < 1, choose y =TT/G and 0 = 0

If a/T > 1, choose y = cr/T and 0 = 1

If G/T < 1 < Tr/G, choose y = 1 and

0 = u(T

Switch 4

Y = Tr/T and 0

2.3. Shanno and Phua

2

In their paper Shanno and Phua, [1978] discuss matrix conditioning and non-
linear optimization, focussed on scaling algorithms for unconstrained
optimization. They state that SSVM algorithms perform poorly compared to
initially scaled BEGS and Davidoes, [1975] algorithm with only one
exception formed by the class of homogeneous functions. Using the definition
of Jacobson and Oskman, [1970]: a homogeneous function can be written as:

) vf(x) + f(X), in which X is the minimizer and

is called the degree of homogeneity. A typical homogeneous function of
degree four is Oren's Quartic function:

f(x) = (x'Ax)2 which we also used as a testfunction.

As mentioned before the BEGS algorithm is a SSVM algorithm with
y = e = 1 for all k.K k
Shanno and Phua proposed initial scalings of the BEGS algorithm. They meant
by initial scaling that Ho = In is multiplied by a scalar before it is updated.
The two strategies for initial scaling are:

1) yo = o (c is the stepsize found in the first linesearch)
As a motivation for choosing ao is that it corresponds with scaling the
objective function with a factor yo = ao. Note that we proved in theorem 6
that the scaling factor yk = a k can also be deduced from the following
composite di Vice for updating:
first the matrix Dk is replaced by a D and then D10.1 is calculated
from (1.4) - (1.6).

22
p01 q0

Yo (10,D00 , which means that (1)0 = 0 in 1.6.

As stated before e = 1 in the BEGS update, assuming that this is the

_ P optimal value for then with 2.2.1 y. - for i = 0.
q'Dq

3. Numerical Experiments

The goal of the numerical experiments is to compare the efficiency of

developed quasi-Newton algorithms for unconstrained optimization, which

apply different rules to solve the problem of bad scaling. In the experiments

special attention is paid to the effect of increasingly bad scaling, the

influence of the accuracy of the linesearch and of the dimension of the

problem.

Further reasonsto design these experiments are that reported numerical

results in literature concern more or less different test batteries.

Surprisingly, up to now ecperiments are not focussed on the main goal of

these algorithms: their ability to attack badly scaled problems where the

spectrum of eigenvalues of the matrix R1 does not contain the unit element.

The next chapter describe;the design of the experiments performed.

3.1. Algorithms Implemented

The flowchart given in figure 3 is a general representation of the

implementation of the considered algorithms.

linesearch

updating
inverse
Hessian

24

The different algorithms are defined by particular choices for the

linesearch and the formulae for updating the inverse Hessian approximation.

We investigated implementations of the following 9 algorithms:

1. Davidon-Fletcher and Powell. Fletcher and Powell, [1963]

2. Broyden-Fletcher-Goldfarb and Shanno. e.g. Broyden, [1970]

3. Self Scaling Variable Metric (25 parameter choices),

Oren and Luenberger, [19741

4-7 Four Optimally Conditioned Self Scaling Switches.

Oren and Spedicato, [1976]

8,9 Two devices for initial scaling of BFGS, Shanno and Phua, [19781

For these algorithms the accuracy of the linesearch was varied.

Also the effect of the test of Goldstein and Price, [1967] to avoid

linesearches was investigated for a range of accuracies of this test.

The experiments were performed on an IBM 370/158 computer using the

FORTRAN-G compiler under OS/VS2 (MVS-Multiprogramming Virtual Storage),

in double precision. The program consists of a main program called SSVM

which calls the subroutines CUBIC (linesearch) and UPDAT (updating inverse

Hessian approximation).

Special remarks on the program:

SSVM: 1. The Goldstein and Price condition to test whether the Newton

steplength'1 1 is acceptable or not is tested in the main program

SSVM.

2. As theoretically Dk4.1 need no longer be positive definite if

plq <

0 we test this relation before calling UPDAT. If

0, 0k+, equals Dk (no updating). If this happens
10 times

in executing one testproblem the run is terminated with a message.

Only in the execution of testproblem 6 this occured.

3. If the number of used function evaluations exceeds a predesigned

number NFMAX, the execution is terminated with a message. We used

the extremely high value NFMAX = 1000, to distinct hardly solvable

problems from unsolvable problems.

25

CUBIC This linesearch is described in appendix A. It is a bracketing
process followed by cubic interpolations. Because of possible nonconvexity
in the problems (p'cl < 0 can occur!) the linesearch is safeguarded in the
sense that it reverses a generated search direction which is not initially
downhill.

UPDAT In this subroutine the updating of the inverse Hessian approximation
takes place. The Oren-Spedicato switches require the calculating of E = p'D p
which equals E!*.= p'g * p'q , Oren, [1974a]

g'Dq
The latter expression in used in the computations as it is cheaper than the
first. (In case of an exact linesearch we can use E's = a

2
g'Dg or E s' = aplq).

3.2. The choice of testproblems, termination criteria and performance indicators

The subjects to be treated in this chapter are motivated by the necessity
of a proper design of the experiments,iw:order to be able to draw correct
conclusions from the figures which will he generated.
We treat these subjects in the order in which they occur in the title of this
chapter.

Testproblems To meet our goal on the design of the numerical experiments,
mentioned in the beginning of this chapter, we composed a collection of
12 testproblems, mentioned in appendix B. The testproblems, whose gradients
are analytically given, are taken from literature. Necessary new problems
are generated by varying parameters which influence the condition number of
the testproblem and/or the dimension. Though the convergence properties of
the developed algorithms are proved for convex minimization problems, usually
test batteries, including ours, also contain nonconvex problems. For the moment
we merely remark that recent research on global minimization algorithms to
minimize nonconvex problems, Rinnooy Kan, [1979], provides for an entirely
different, statistically oriented approach, in stead of simply applying one
local search. The set of 12 testfunctions consists of:

1, 2, 3, 4: Increasingly badly scaled variations on Rosenbrock's function,
Rosenbrock, [1961], Colville, [1968]

5, 6 : 10- and 30-dimensional generalizations of Rosenbrock's function.

7, 8, 9 : 2-, 10- and 30-dimensional Quartic functions, Oren, [1973], to
test the behaviour on homogeneous functions of different dimension.

10, 11, 12: 2-, 4-, and 6-dimensional Hilbert problems, Oren, [1973], to test
the influence of increasing extreme illconditioning on purely
quadratic functions.

26

Terminationcriteria As a wide variety of these criteria is known and

applied we had to make a choice and decided to stop iterating as soon as

both following conditions are met:

11 gkil <

11 xkll. -xk I <.10-4.

We preferred this criterion consisting of two components as it guarantees

a certain accuracy in determining both the optimal function value f*

and the coordinates of the optimum x*.

The linear Taylor approximation of f(x) around xk yields

Ilf (xk+1) f (xk) 11 II gk II lixk+1 -x01

SO

1 If xk+1) f (xk) I < 10-10 in our case.

Table III illustrates the still possible inaccuracy in x* under our

stopping rules.

Table III

Last iteration point (x1,x2) for the two dimensional Quartic function for

different algorithms with the applied termination criterium.

Algorithm

SSVM •= 1, e =.25

(1) =.50,e =.25

=.75,0 =.25

Switch I

II

III

IV

SH/PH I

II

DFP

BEGS

x 1 x2 f(' 2)

.2882 10-3 .3880 10-4 .740 10-16

.2885 10-3 .3841 10-4 .742 10-16

.2883 10-3 .3862 10-4 .741 10-16

.2883 10-3 .3862 10-4 .741 10-16

.2883 10-3 .3862 10-4 .741 10-16

.2883 10-3 .3862 10-4 .741 10-16

.9527 10-4 -.1401 10-3 .233 10-16

.9561 10-4 .2622 10-3 .215 10-15

.1284 10-3 -.2552 10-3 .215 10-15

.3747 10-3 -.1238 10-3 .292 10-15

.1102 10-2 -.2708 10-3 .185 10-13

27

A single component criterium as f(xki_i) - f(xk) II < 10
-10

, as applied
in Oren, [1974b], Oren and Spedicato [1976] and Shanno and Phua,'[1978]
locates x* still less accurately.

The cubic linesearch terminates if the Euclidian distance of succeedingly
generated points along the search direction is smaller than or equal to a
preset parameter called EPSCU. This means in the notation of (1.7) and (1.8):

hk(aii..1) - hk(ai)[< EPSCU

Performance indicators Candidates for performance indicators are:
number of function evaluations, number of iterations and required number of
CPU-secs to solve a testproblem. In our terminology an iteration consists of
the generation and exploration of a search direction. These three indicators
are all mentioned in the tables with results. The number of required function
evaluation was used as the main indicator. It corresponds directly with the
number of iterations as the number of functionevaluations per iteration does
not vary much. The main disadvantage of counting functionevaluations to solve
the whole set of testproblems is that different objective functions are
equally weighted though they may differ substantially in complexity: from the
figures of tables IV and VI can be seen that one evaluation of the 30-
dimensional Rosenbrock-function is approximately as expensive as five evaluations
of the 2-dimensional Quartic function. This influence is compensated by
considering separately classes of testfunctions, such as the higher dimensional
ones, and drawing separate conclusions for those classes.
The required CPU-time gives additional information on the overhead of
computations such as matrixmanipulations which the program performs.
However the CPU-time cannot be measured very accurately because of the inaccuracy
of the internal clock of the machine and, which is more important, because of
the multiprogramming facility.
We find that times varied up to 10% for jobs run in daytime and requiring less
than 10 measured secs CPU-time. Because of this lack of accuracy, we merely
mention CPU-times in the next tables and do not draw further conclusions
from them.

28

3.3. Design of the experiments and results

The experiments were designed in the following way:

Experiment I Find the three best (,e)-combinations of the Oren-Luenberger

SSVM-algorithms, without application of the Goldstein and Price test.The

accuracy of the linesearch EPSCU varies from 10-1 to 10-6. The resulting

algorithms are called A, B and C.

Experiment II The algorithms A, B and C evolving from experiment I and

implementationsof the four Oren-Spedicato switches are compared. The parameter

0 of the new applied Goldstein and Price test varies from 0.01 to 0.49 and

EPSCU has the same range as in experiment I.

Experiment III DFP and BFGS are implemented together with the two devices

for initial scaling of BFGS by Shanno and Phua, [1978].

Under the applied termination criteria the generalized Rosenbrock function
with C = 10

6
 appeared to be too hard for all algorithms. That is why it is not

incorporated in the next tables.

The most relevant results are summarized in the next tables, using the

following notation:

h(F : number of required function evaluations

IT : number of required iterations

CPU : required CPU-time in secs

F* : reached function value

The 25 algorithms evolving from 5 particular choices for each of the parameters
(1) and e were generated by the loops:

DO 10 I = 1,5

PHI = .25 (I-1)

DO 10 J = 1,5

TETTA = .25 * (J-1)

10 CONTINUE

Table IV:#F for 25 hO

29
29

-combinations. Accuracy linesearch 10-1

algorithm . 1 2 3 4

testfunction

No Goldstein/Price test

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A

Ros(c=1) 32 29 29 28 28 29 28 28 26 25 29- 28 25 25 26 28 26 25 23 22 28 25 26 22 23(c=102) 160 102 94 91 98 102 100 101 98 111 93 101 108 119 119 91 98 119 126 103 98 111 119 103 127(c=104) 863 357 329 328 315 350 330 313 322 306 339 300 307 374 356 311 331 362 381 380 321 307 348 345 540

(n=10) 305 211 207 210 241 193 174 175 183 209 171 159 . 162 ii9 195 173 157 160 159 168 166 160 170 161 168(n=30) F 726 F F F 588 471 527 584 655 552 391 429 486 523 525 372 391 434 466 511 362 382 420 463Quartic(n=2) 47(n=10). 72 72 72 72 72 7,2 72 72 72 72 72 72 72 72 72 68 70 74 72 72 69 70 71 74 69(n=30) 91 89 91 91 87 91 89 89 90 90 89 91 91 91 91 89 90 91 91 91 90 89 91 91 91Hilbert(n=2) 10(n=4) 24 24 24 24. 24 24 24 24 24 24 24 24 ?4 24 24 24 24 24 24 24 24 24 24 24 24(n=6) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22- 22 22 22 22 22 22 22- 22 22

2626 1689 1925 1923 1944 1528 1367 1408 1478 1571 1451
F F F

1245, 1297 1449 1485 1388 1247 1325 1389 1405 1386 1227 1310 1319 1584

30

Table V: # IT for 25 (0,e)-combinations. Accuracy linesearch 10-1 No Goldstein/Price test

algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

testfunctio

Ros(c=1) 7

(c=102) 24 23 22 23 24 23 21 23 26 23 22 23 22 23 22 23 26 23 23 23 24 23 22 23 24

(c=104) 111 88 87 88 95 88 94 96 99 97 90 92 95 106 104 84 97 106 103 107 93 100 103 102 134

(n=10) 57 63 67 70 81 57 54 58 60 68 58 54 54 59 64 63 54 57 52 57 63 55 55 54 56

(n=30) F 212 F F F 165 148 176 199 232 191 126 145 165 186 201 122 127 146 161 203 122 127 136 151

Quartic(n=2) 8

(n=10) 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 15 16 17 17 17 16 16 16 17 16

(n=30) 26 26 26 26 25 26

Hilbert(n=2) 3

(n=4) 4

(n=6) 5

30

Table VI: CPU for 25 (4),0 -combinations. Accuracy linesearch 10-1

algorithm 1 2 3 4 5 6 7

testfunctio

31

Goldstein/Price test

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ros(c=1) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.03
(c=102) 0.17 0.16 0.14 0.14 0.15 0.16 0.14 0.15 0.16 0.15 0.14 0.15 0.15 0.15 0.15 0.15 0.17 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.16
(c=104) 0.85 08 0.51 0.48 0.45 0.45 0.45 0.48 0.47 0.45 0.46 0.43 0.45 0.51 0.56 0.44 0.51 0.55 '0.55 0.59 0.48 0.53 0.49 0.49 0.73

(n=i0) 1.53 1.59 1.60 1.70 1.96 1.38 1.32 1.37 1.45 1.70 1.35 1.37 1.29 1.42 3.60 1.51 1.33 1.42 1.31 1.44 1.48 1.38 1.36 1.29 1.32
(n=30) 17.89 32.03 35.52 35.43 37.19 24.13 22.77 25.95 29.30 34.82 27.89 18.94 21.60 24.50 27.37 29.24 18.16 18.98 21.65 23.80 29.17 18.39 18.94 20.29 22.55
Quartic(n=20) 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 , 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.06 0.06 0.06
(n=10) 0.46 0.46 o.46 0.45 0.48 0.49 0.46 0.43 0.43 0.45 0.43 0.43 0.43 0.48 0.48 0.41 0.41 0.46 0.43 0.43 0.41 0.41 0.41 0.43 0.41
(n=30) 3.72 3.76 3.79 3.81 3.69 3.74 4.01 3.92 3.78 3.78 3.73 3.83 3.79 3.97 3.98 3.87 3.82 3.96 3.78 3.85 3.82 3.82 3.91 3.81 3.77
Hilbert(n=2) 0.02
(n=4) 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.07 0.07 0.07 0.07
(n=6) 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.15 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.17 0.14 0.14 0.14 0.14 0.14

31

32

Table VII: F* for 25 4),(3)-combinations. Accuracy linesearch 1

algorithm 1 2

testfunction

10-16Ros(c=1) .744 10-18 .245 .140 10-16 .562 10-17 .853 10-18

(c=102) .789 10-3° .783 10-19 .133 10-27 .115 10-22 .415 10-"

(c=104) .209 10-25 .508 10-19 .105 10-28 .136 10-24 .675 10-22

32

No Goldstein/Price test

7 8 9 10 11 12

.245 10-16 .700 10-17 .916 , 10-2° . .197 10-16 .103 10-16. • 140 10716 .916.20-2°

.783 .10-19 .197 10-17 . 342 10-24 .170 10-24 .783. 10-23 .185 10-18' :342 10-.24

.127 10-'25 .462 10-20 .147 10-17 . 425. 2J-20 .149 10-23 . 979 10-22 .222 10-23

-17(n=10) .543 .204 10-17 .234 10-17 .823 10-18 .127 10-16 .174 10
-18

.104 10-17 .892 10-17 .731 10-17 .108 10-17 .220 10-17 .313 10-17
(n=30) F .404 10-16 F F F .128 10-16 .856 10-17 .614 10-16 .609 10-16 .902 10-16 .538 10-17 .110 10-16
Quartic(n=2) .117 10

-16 .
113 10-16 .110 10-16 .107 10-16 .103 10-16 -1.113 10-16 .110 10-16 .107 10 6 .103 10-16 .999 10-17 .110 10-16 .107 10

-16

(n=10) .728 10-19 .903 10-19 .102 10-18 .108 10-18 .111 10
-18

.490 10-19 .684 10-19 .859 10-19 .984 10-19 .106 10-18 .222 10-19 .459 10-19
- - - - -(n=30) .127 10
15

.112 10 15
.118 10

15
.125 10 15 .183 10 14 .187 10-15 .137 10- 15 .115 10-15 .115 10-15 .128 10-15 .265 10-15 .177 10-15

Hilbert(n=2) .104 10-31 .971 10-32 .920 10-32 .929 10-32 .917 10-32 .971 10
-32

.921 10-32 .975 10-32 .975 10-32 .997 10-32 .921 10-32 .975 10-32

619 10
-16 -16(n=4) .619 10- .16 .615 10-16 .621 10

-16
.620 10 .619 10

-16
.618 10-16 .615 10-16 .616 10-16 .616 10-16 .619 10-16 .617 10-16

(n=6) .303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10-13

'fable VII: Continuation

algorithm

testfunction

13 14 15 16 17 18

33
33

19 20 21 22 23 24 25

Ytos(c=1) .153 10-16 ..428 10-17 .192 10-26 .562 10-17 .197 10-16 .428 10-17 -283 10-16 .182 10-16 .853 10-18 .103 10-16 .192 10-26 .182 10-16 .207 i -26- -(c=102) .105 10-24 .145 10 21
.158 10 27 .115 10-22 .169 10-24 .145 10-21 .88C 10-22 .605 10-17 .415 10-25 -783 10-23 .159 10-27 .605 10-17 .0.0

- - -(c=104) .130 10
3
° .250 10 20

.125 1C-17 .316 10-29 .i88 10
-28

.106 10 17 .470 1.0-25 .825 1C-23 .272 10-24 .146 10-24 .103 10-29 .259 10-17 .120 10-30

(n=10) .257 10-18 .124 10-16 .898 10-18 .463 10-17 .123 10-17 .107 10-16
(n=30) .263 10-16 .468 10-17 .278 10-16 .120 10-16 .186 10

-16
.168 10-16

Quartic(n=2) .103 10
-16 -999 10-17 .966 10-17 .107,10-16 .103 10 16 .999 10-17
-(n=10) .645 10 19 .818 10

-19
.947 10

-19
..530 10-16 374 10-17 .656 10-19

(n=30) .135 10-15 .124 10-15 .113 10-15 .260 10-15 .222 10-15 .170 10-15
•Hilbert(n=2 -32.950 10 • .958 10-32 .109 10-31 .929 10-32 .105 10-31 .958 10-32

.619 10-16 .614 10-16
(.n=4) .618 10-16 .617 10-16 .611 10-16 .613 10-16
(n=6) .303 10-13 -.303 10-13 .303 10-13 .303 10-13 .303 10 13 . .303 10-13

.804 10-18 .127 10-16 .314 10-17 -16 -17 -16.170 10 .522 10 .126 10 .294 10-17

.675 10-17 .130 10-16 .223 10-16 .707 10-17 .147 10-16 .852 10-17 .136 10-16

.966 10-17 .933 10-17 .103 10-16 .999 10-17 .966 10-17 .933 10-17 .900 10-17

.616 10-19 .787 10-19 .174 10-16 -.833 10-17 .860 10 1 8 .125 10-18 .106 10-16

.133 10-15 .120 10-15 .264 10-15 .273 10-15 .226 10-15 .167 10-15 .131 10-15

.969 10-32 .991 10-32 .988 10-32 -32.933 10 .107 10-31 .100 10-31 .937 10-32

.614 10-16 .619 10-16 .624 10-16 .611 10-16 .620 10-16 .620 10-16 .617 10-16

.303 10-13 -13.303 10-13 .303 10-13 .303 10-13 .303 10-13 .303 10 .303 10-13

34

Table VIII: F for 25 ((p0)-combinations. Accuracy linesearch 10-3 No Goldstein/Price test

algorithm 1 2 3 4 5 6 7 8 9 10 11 .12 13 14 15 16 17 18 19 20 21 22 23 24 25

testfunction

Ros(c=1) 34 31 31 30 30 31 30 30 28 27 31 30 27 27 28 30 28 27 25 24 30 27 28 24 25

(c=102) 169 134 121 130 132 134 136 136 129 123 120 136 122 127 127 130 129 127 132 140 132 122 128 140 149

(c=104) 882 470 436 443 4?9 471 443 450 447 544 436 450 530 577 433 442 447 577 441 43C 429 543 433 436 434

(n=10) /50 262 29C 293 288 235 215 230 258 266 233 205 205 235 244 234 218 207 213 233 237 204 206 220 219

(n=30) FFFFF715 608 674FF710 488 567 650 729 725 486 550 582 660 772 489 501 544 605

Quartic(n=2) 59

(n=10) 94 95 95 95 87 90 94 94 95 91 90 94 94 94 94 91 91 94 94 96 90 89 101 97 97

(n=30) 134 131 130 130 131 131 132 133 131 131 131 132 132 132 130 129 133 132 132 131 129 131 133 133 132

Hilbert(n=2) 10

(n=4) 24

(n=6) 22

2778 2238 2218 2236 2212 1922 1773 1862 2203 2297 1866 1650 1792 1957 1900 1896 1646 1829 1734 1835 1934 1720 1645 1709 1776

FFFFF F F

34

35

35
Table IX # F for 25 6.07combinations. Accuracy linesearch 10-6

algorithm 1 2

testfunction

Goldstein/Price test

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ros(c=1) 36 33 33 32 32 33 32 32 30 29 33 32 29 29 30 32 30 29 27 26 32 29 30 26 27
(c=102) 177 145 125 140 142 145 145 145 151 128 126 145 129 133 135 140 151 133 138 145 142 129 135 146 156
(c=104) F 534 520 498 508 534 :11 529 52Q 534 520 528 539 500 492 498 528 501 492 48-/ 508 533 492 486 484

(n=10) 384 291 325 342 305 266 262 267 304 284 274 244 Z42 268 295 270 252 243 244 273 281 240 247 266 250
(n=30) FFFFFF679 803FFF 595 684 753 F F 760 622 683 781 F 599 597 647 689
Quartic(n=2) 62
(n=10) 101 106 106 106 102 101 101 106 106 106 101 100 106 106 106 194 105 105 106 105 103 102 105 105 104
(n=30) . 146 143 145 145 148 144 147 147 147 147 145 146 149 149 146 145 147 147 149 149 149 147 147 148 148
Hilbert(n=2) 10
(n=4) 24
(n=6) 22

2962 2370 2372 2381 2355 2341 2015 2147 2384 2346 2317 1908 1996 2056 2322 2307 2091 1898 1957 2084 2333 1897 1871 1942 1976
FFFFFF F F F F F

36

Table X: A4 F for the 3 best (4),e)-combinations and the 4 Oren-Spedicato switches.

Accuracy linesearch 10-1. Goldstein/Price test with a = 10-1.

algorithm A B C SWI SWII SWIII SWIV

testfunction

Ros(c=1) 28 22 29 21 21 21 17

(c=102) 110 106 114 111 111 98 493

(c=104) 346 371 347 358 350 364 F

(n=10) 128 133 124 130 117 166 F

(n=30) 237 264 256 225 268 312 F

Quartic(n=2) 38 38 38 38 38 38 52

(n=10) 47 47 47 48 47 48 F•

(n=30) 52 53 53 53 53 53 F

Hilbert(n=2) 13 13 13 13 13 13 14

(n=4) 28 28 28 28 28 28 18

(n=6) 27 27 27 27 27 27 16

1054 1102 1076 1052 1073 1168

37

Table XI: # 17 for the 3 best ((he)-combinations and the 4 Oren-Spedicato switches.
Accuracy linesearch 10-1. Goldstein/Price test with a = 10-1.

'algorithm

testfunction

SWI SWII SWIII SWIV

Ros(c=1) 10 10 10 9 9 9 10
(c=102) 29 31 32 33 33 31 54
(c=104) 148 167 164 165 160 156 F

(n=10) 79 91 72 81 77 100 F
(n=30) 167 162 160 176 184 233 F
Quartic(n=2) 24 24 24 24 24 24 31
(n=10) 33 33 33 34 33 34 F
(n=30) 38 39 39 39 39 39 F
Hilbert(n=2) 3 3 3 3 3 3 3
(n=4) 4 4• 4 4 4 4 5
(n=6) 5 5 5 5 5 5 5

38

Table XII: CPU for the 3 best (),e)-combinations and the 4 Oren-Spedicato switches.

Accuracy linesearch 10-1. Goldstein/Price test with a = 10-1.

algorithm

testfunction

WI MI SWIII SWIV

Ros(c=1) 0.05 0.06 0.04 0.03 0.04 0.03 0.03

(c=102) 0.14 0.13 0.15 0.13 0.14 0.12 0.38

(c=104) 0.5A 0.61 0.58 0.54 0.60 0.53 F

(n=10) 1.39 1.60 1.30 1.46 1.32 1.71 F

(n=30) 19.69 20.28 20.79 20.47 21.71 26.62 F

Quartic(n=2) 0.09 0.07 0.09 0.09 0.09 0.08 0.11

(n=10) 0.57 0.66 0.67 0.62 0.63 0.65 F

(n=30) 4.52 4.70 4.81 4.45 4.37 4.49 F

Hilbert(n=2) 0.02 0.02 0.04 0.02 0.02 0.02 0.02

(n=4) 0.08 0.07 0.09 0.08 0.08 0.08 0.08

(n=6) 0.15 0.14 0.15 0.17 0.18 0.17 0.10

39

.39
Table XIII: *, obtained by the 3 best (4),0)-combinations and thee '4 Oren-

Spedicato switches.

Accuracy linesearch 10-1 Goldstein/Price test with a = 10
-1
.

algorithm A

testfuilcica

Ros(c=1) .179 10-17 .528 10-17 .376 10-18

-(c=102) .'153 10
16
 .270 10-22 .473 10-17

-(c=104) .132 10-26 .586 10-21 .596 10 20

SWI SWII SWIII SWIV

-,513 10-19 .513 10-19 .513 10-19 .687 10 20

-.170 10-22 .120 10-22 .439 10 26 .215 10-21

.210 10-22 .123 10-13 .74 10-21

-(n=10) .116 10-16 .661 10 18 .720 10-18 .114 10-16 .152 10-18 .191 10-17 F
(n=30) .142 10-15 .601 10717 .432 10-16 .221 10-16 .645 10-17 .156 10-17 F

- -Quartic(n=2) .741 10-14 .742 10-14 .741 10-14 .741 10 14
.741 10 14 .741 10-14 .233 10-14

-(n=10) .792 10-14 .857 10 14 .823 10-14 .295 10-14 .849 10-14 .295 10-14 F
(n=30) .316 10-13 .153 10-13 .144 10-13 .218 10-13 .148 10-13 .218 10-13 F

-Hilbert(n=2) .933 10-32 .975 10-32 .105 10-31 .887 10 32 .916 10-32 .887 10-32 .739 10-31

-(n=4) .611 10-16 .616 10-16 .611 10-16 .619 10 16 .616 10-16 .619 10-16 .206 10-13

. -13 -10(n=6) .303 10-13 .303 10-13 303 10 .303 10-13 .303 10-13 .303 10-13 .151 10

40

Table XIV: # F for DFP, BEGS and 2 Shanno/Phua variants.

Accuracy linesearch 10-1. Goldstein/Price test with a = 10
-1.

algorithm

testfunction

Ros(c=1)

(c=102)

(c=104)

DFP BEGS SH/PH I SH/PH II

22 17 15 15

133 •67 72 72

300 227 225 228

(n=10) 262 112 116 113

(n=30) F 381 244 231

Quartic(n=2) 60 41 58 58

(n=10) 479 128 172 172

(n=30) 716 253 415 414

Hilbert(n=2) 10 10 12 12

(n=4) 18 30 32 32

(n=6) 16 26 35 35

3016 1292 1396 1382

41

Table X : A4 IT for DFP, BEGS and 2 Shanno/Phua variants.
Accuracy linesearch 101. Goldstein/Price test with a = 10-1.

algorithm

testfunctio

DFP BEGS SH/PH I SH/PH II

Ros(c=1) 8 8 8 8
(c=102) 34 34 34
(c=104) 132 123 119 122

(n=10) 59 58 81 82
(n=30) F 152 171 178
Quartic(n=2) 17 21 35 35
(n=10) 446 83 144 144
(n=30) 616 109 387 386
Hilbert(n=2) 3 3 3 3
(n=4) 6 6 4 4
(n=6) 6 6 5 5

42

Table XVI: CPU for DFP, BEGS and 2 Shanno/Phua variants.

Accuracy linesearch 10-1. Goldstein/Price test with a = 10-1

algorithm DFP BEGS SH/PH I SH/PH II

testfunction

Ros(c=1) 0.03 0.02 0.02 0.02

(c=102) 0.14 0.10 0.10 0.11

(c=104) 0.45 0.36 0.35 0.47

(n=10) 1.30 0.97 1.28 1.35

(n=30) F 17.99 19.87 21.04

Quartic(n=2) 0.08 0.07 0.11 0.10

• (n=10) •7.17 1.46 2.45 • 2.38

(n=30) 69.91 • 13.14 44.14 43.49

Hilbert(n=2) 0.02 0.01 0.01 0.02

(n=4) 0.06 0.08 0.08 0.09

(n=6) 0.12 0.14 0.17 0.22

43

Table XVII: F* , obtained by DFP, BEGS and 2 Shanno/Phua variants.
Accu...acy linesearch •10-1. Goldstein/Price test with 0 = 10-1.

algorithm

testfunction

Ros(c=1)

(c=102)

(c=104)

(n=10)

(n=30)

Quartic(n=2

(n=10)

(n=30)

Hilbert

(n=4)

(n=6)

DFP BEGS SH/PH I SH/PH II

.515 10-22 .154 10-20 .327 10-20 .

.481 10-20 .262 10-21 .323 10-21 .

•156 10-25

.382 10-17

.292 10
-13

.680 10
-12

.240 10
-11

.810 10-63

.1212 10-13

.166 10-1°

.493

.106 10-17

.158 10-16

.186 10-11

-.707 10
12

.111 10-10

.810 10-63

.105 10-13

.949 10-11

260 10-24

.125 10-16

.836 10-17

.215 10-13

.474 10-9

.264 10-9

.324 10-62

.207 10-13

.303 10-13

317 10-20

323 10-21

-804 10 23

.278 10-18

.102 10-17

.215 10-13

.472 10-9

.263 10-9

.810 10-63

.207 10-13

.303 10-13

44

3.4 Discussion cy;=• t e results

Experiment I

The numbers of funztion evaluations required by algorithms 1-25 for

EPSCU = 10-1, 10-3 and 10-6 are given in tables IV, VIII, IX. We selected

the seven 'best' algorithms for respectively EPSCU = 10-1, for

EPSCU = 10-1 and EPSCU = 10-3 and, finally for all three accuracies:

EPSCU = 10-1, 10-3 and 10-6. The results are given in table XVIII.

We mention that obviously nontrivial values are to be preferred and that

all three columns of table XVIII contain the same seven parameter combinations.

From tables IV, VIII, IX and figure 4 can be deduced that increasing the

accuracy makes all algorithms more expensive from which we conclude that
-

EPSCU = 10.1 is to be preferred. This confirms our remarks in Ch. 2.1. on

inexact linesearches. These arguments led to the following choice of three

'best' parameter combinations evolving from experiment I on our set of

testproblems:

= 1. , e = .25 : algorithm 22

= .50, e = .25 : algorithm 12

(I) = .75, e = .25 : algorithm 17.

From now we call these algorithms A, 13, C respectively.

Table XVIII: # F for EPSCU = 10-1

EPSCU = 10-1, 10-3 (cumulative)

EPSCU .= 10
-1
, 10

-3, 10
-6 (cumulative)

EPSCU = 10-1 EPSCU = 10
-1, 10-3 EPSCU = 10

-1, 10-3, 10-
6

algorithm htf. algorithm #F

22 - 1227 17 - 2893

12 - 1245 12 - 2895

17 - 1247 22 - 2947

13 - 1297 23 - 2955

23 - 1313 24 - 3028

24 - 1319 13 - 3089

18 - 1325 7 - 3140

algorithm #F

12 - 4803

23 - 4826

22 - 4844

24 - 4970

17 - 4980

18 - 5052

13 - 5058

45

The results of experiment I are illustrated in figure 4. In this figure
the experimentally found points are connected by straight lines to simplify

'reading' of the figure. This is not intended to suggest an analytically
proved continuity of number of function evaluations in terms of parameter
combinations:

From figure 4 we see that (I) = 0 is unsatisfactorily while for any given
nontrivial value of (I) the algorithms get worse for higher values of e.
Obviously the parameter e, which is the weighting factor of the correction
term vv' in (1.2) is of more importance than the parameter cl) which defines
the scaling of the objective function:

The conclusion on the accuracy of the linesearch is further investigated
in experiment II where the Goldstein and Price test is implemented which
may lead to avoiJ linesearching completely.

„..

FF 1

2800

2600

2400

2200

2000

1800

1600

1400

1200

•

F

a

/

11,/

1

/

\i/

number of algorithm

1 2 3 4 5

F.
i'a,

1

figure : required furictioneval uations for the

25 parameter choices.

"i‘

1

•
A

• \
•

12 13 14 15 16 17 13 19 20 21

EPSCU = 10-6

EPSCU = 10

EPSCU = 10

22 23 24 25

47

Everiment II

We consider implementation of the algorithms A, B and C and the four
Oren-Spedicato switches.

First the sensitivity for the choice of the parameter a of the GoldStein
and Price test is investigated. We tested a = 0.01. 0.10, 0.25 and 0.49.
For a = 0.01 the Newton steplength '1' will often be accepted and no
linesearch is performed. Increasing a causes more linesearches, for
= 0.49 almost all iterations use a cubic linesearch with EPSVU = 10-1,

In our experiment a = 0.10 generally yielded the best results. The final
results are given in tables X - XIII. Clearly switch IV is dominated by
the competitive algorithms.

Experiment III

Implementation of DFP, BFGS and the two Shanno-Phua algorithms were run
for a= 0,10 and EPSCU = 10-1. Clearly DFP prefers (requires) an exact
linesearch, which confirm known results. Tables XIV - XVII present the
relevant figures

Figure 5 illustrates the results of the experiments on the resulting
testset of 11 algorithms:
A, 6, C, switches I, II, III, IV, Shanno/Phua I, II, DFP and BEGS.
Our general conclusion is that switches I, II and II are competitive with
the (optimized) algorithms A, B and C.
BEGS is slightly worse than the Shanno/Phua variants. The results of the
last two variants are clearly influenced by their problems in solving the
3 homogeneous testfunctions. Further it should be realized that the
algorithms A, 3 and C evolve from an optimization of algorithms with
respect to the parameters (p and e. Thus the performance of the general
scaling devices of the switches I, II and III and Shanno and Phua's
variant is really excellent: Finally the results with the algorithms
A, B and C indicate to replace ek = 1 for all k in BEGS by ek = .25
for all k.

1600

1400

1200

1100

1000

900

F

algorithm

A

figure : required functionevaluations for

experiments II and III.

SWI Still SWIII SWIV SH/PHII DFP BEGS

49

The influence of the dimension of the testproblem and

.1911_1121ET21.22.L1§Lts_ILITI).12n.

Table XIX presents those figures from tables X and XIV which concern

the 10- and 30-dimensional Rosenbrock and Quartic testfunctions.

Clearly initial scaling of BEGS should not be recommended for homogeneous

testproblems as the Quartics. This confirms Shanno and Phua a[1978].

Further table XIX suggests to apply Shanno/Phua I or switch II for

higher dimensionai problems. If it is known beforehand that f(x) is

homogeneous, which rarely happens in real-life problems, switch II is

to be preferred.

Table XIX: # F for the 10- and 30-dimensional testproblems.
Goldstein/Price test with a = 0.10. Accuracy linesearch 10-1

algorithm

testfunction

SW I SW II SWI I I SWI V SH/PH DFP BEGS
I II

Ros(n=10) 128 133 124 130 117 166 F 116 113 262 112
• (n=30) ' 237 264 256 225 268 312 F 244 231 F 381

Quartic(n=10) 47 47 47 48 47 48 F 172 172 479 128
(n=30) E2 53 53 53 53 53 F 415 414 716 253

464 497 480 456 485 579 4F 947 930 2457 874

50

Influence of the condition of the testproblem.

Two effects were investigated:

a) The ability of the algorithms •to solve problems with a shifted spectrum

of eigenvalues of Ri. We varied the parameter c of a family of Rosenbrock-

problems c = 1, 10
2, 10

4
, 10

6
. Increasing c only slightly influences

the condition at the starting point (-1.2,1) but creates increasingly

extremely ill-conditioned optimal points (1,1). All algorithms failed

to solve the voblem with c . 10
6
.

b) Increasingly ill-conditioned pure quadratic problems are the Hilbert

problems for increasing dimension. We investigated n . 2, 4, 6.

The results on these testfunctions are summarized in table XX.

Conclusion

From the experiments with the Rosenbrock-family we conclude that the BEGS

algorithms (BEGS with or without initial scaling) behave better for ill-

conditioned optimal points.

The differences on purely quadratic functiomare neglijible.,

Table XX: # F for ill-conditioned testproblems

algorithm'

testfunction

SW I SW It SW III SW IV SH/PH SH/PH DFP BEGS
I II

Ros(c=1) 28 22 29 21 21 21 17 15 15 22 17

(c=102) 110 106 114 111 111 98 493 72 72 133 67

(c=104) 346 371 347 358 350 364 F 225 228 300 227

Hilbert(n=2) 13 13 13 13 13 13 13 12 12 10 10

(n=4) 28 28 28 28 28 28 28 32 32 18 30

(n=6) 27 27 27 27 27 27 27 35 35 16 26

552 567 558 558 550 551 1578 391 394 499 377

Final remarks

Recently developed self scaling algorithms for unconstrained minimization

were described and compared in experiments.

All algorithms, except DFP, showed a good performance with an inexact

linesearch (generally an iteration requires about 2 function evaluations).
For reasons of robustness and simplicity in use (initially scaled) BEGS

algorithms seem to be preferable in most practical situations. This

conclusion is even more general: numerical comparisons by Grandinetti,[1978]
and Shanno and Phua,[1978b] show that this classical quasi-Newton algorithm
is competitive with sophisticated versions of quasi-Newton algorithms as

those based on factorisations or projections of search directions,

Acknowl-e-dgenmt

The authors are indebted to Prof,Dr.Ir; van den Vberendonk,

Drs. Bus and Dr.Ir. de Jong for discussionsin various stages of

this project,

52

Ap endix : Linesearches and the Goldstein and Price Test.

Linesearches

The efficiency of linesearches or one-dimensional optimization procedures,

is frequently reported in literature. See e.g. Lootsma, [1972], Dixon,

[1972], Sargent and Sebastian, [19721, Himmelblau, [19721, van der

Hoek and Baardman, [19771, Biggs, [1971], Tamir, [1976], Fox R.L.c.s.,

[1975] and Walsh, [1975].

The available methods can be derived, roughly speaking, into two classes:

. Methods based on the splitting of an interval into two segments (Golden

Section and Fibonacci search) and methods based on (polynomial)

approximation followed by interpolation to a point x near the minimum x*

In the basic algorithm we implemented Davidon's cubic interpolation method

as linesearch, but we also investigated the possibility to avoid relatively

expensive linesearches by simply.taking the Newton step.. '1!.

Usually linesearztes are based on the assumption that the function f(x)

is unimodal in the search direction d. The linesearch searches for the

unique minimum of h(a) = f(xk+ adk) along the ray xk + adk. The used cubic

interpolations are applied after bracketing the minimum. They require

function value J f(x) and the directional derivative of f(x) in the point

xk + adk'
which is given by

G(a). = V'f(xk + adk).dk.

We proceed now with the description of the linesearch, (the subscript k

will be suppreDsed), which consists of the following steps: •

step 1. Calculate f0 - - f(x + 0.d) and G(0) = Vlf(x + O.d).d<
0

go to ste? 2.

step 2. Find a value of a satisfying at least one of the following1
conditions:

i. G(al) = vif(x + al.d).d> 0

ii. fa = f(x + a .d)> fo,

go to step 3.

step 3. Approximate f(x + a.d) by the cubic polynomial y(a) given by the

4 conditions which express that y(a) and f(x + a.d) possess the

same function value and the same directional derivate in both

endpoints of the interpolation interval. Go to step 4.

53

step 4. Find the minimum am of y(a) on the considered interval and
go to step 5.

step 5. Define, using am which of the smaller intervals ([0,ami or
[am, al]); brackets the ninimum and apply convergence conditions.
Stop if convergence is obtained, otherwise go to step 3.

Figures 6 and 7 illustrate the conditions of step 2. Note that figure 7
concerns the case that the function to be minimized is not unimodal,
which happens 'requently in practical problems.

aill

a1

figure 6

figure 7

54

Davidon proposed to define al in step 2 by:

2(fo - fel ,
A.1.1 al = min foto, /

G(0)

where ao is some representative magnitude of the problem (usually

ao = 2) and fe is a preliminary estimate of the minimUm (we
used

in all cases f = 0)e -2(f
It is easy tu verify that is the value of a which

minimizes a quadratic objective function alon§ tha ray x + ad,

substituting for fe the exact minimum value of f(x). We replaced

Davidon's estimate by:

A.1.2 al = mitt {2, abs(ILF-0)},
G(0)

where the Ebsolute value of the quotient C2101 is made necessary

by the choic2 fe = 0 and permitted becauseWG(0) < 0 (d is a

descent direction). The choice of al is followed by testing the

conditionsoF step 2. If al violates both conditions, al is replaced

by 2al, ex thus performing a 'bracketing' of the minimum.

The polynomial y(a), given by step 3, has a uniqueminimum in am:

A.1.3 am
= a1 1- G(a) + w - z

G(al) g(0) + 2w 1
with

A.1.4 z = 3/a1.(fn - f
a

G(0)+ G and
' l

A.1.5 = (z2 - 1)

See e.g. Walsh [1975] for a further treatment of (A.1.3) - (A.1.5),

Finally, step 5 needs a rule to choose the next interpolation interval:

G(am)< 0 gives rise to consider [am, al] as next interpolation interval,

otherwise [0,am] is taken.

The Goldstein and Pri:e test (Goldstein and Price, [1967])

The effect of this test is that no linesearch is performed if the step-

length "1" yields a pint with f(x10.1) sufficiently close to the

linear (Taylor) approximation of f(x) in a neighbourhood of xk.

The implementation of this test yields the following strategy for

determination of the steplength:

55

step : set a = 1 calculate x10.1 and f(xkil.) and

go to step 9

step 2: test if the Goldstein and Price test is satisfied:

< (xk+1) f(xk) < 1 - a for given 0< a

WI<

If satisfied, accept x10.1 and return.

Otherwise go to step 3.

step 3: find a and k+1 from the available linesearch and return.

Apparently CY = permanently causes a usual linesearch, while a close

to zero almost completely avoids this linesearch. The best choice of

depends on f(x) ard the algorithm in which this test is used. We obtained

good results for a = 0.10 which means that seldomly a linesearch is

performed.

56

Appendix B: Testprobl?.ms.

9

5, 6

7, 8, 9

A family of Rosenbrock-functions:

22
f(x) = - x1) (1 - xl)2

for c = 1, 10
2, 104 06.

Initial point: x6 = (- 1.2, 1)

Solution: = (1,1) with f(x*) = 0.

Multi di mensi onal banana functions:

for N 10, 30 the function

n-1 2 f(x) = E 100(xk+i- xk)
2
 +

k=1

initial point xot = (-1.2, 1, -1.2, 1, , -1.2, 1)

solution x* = (1,1,...,1) with f(x*) = 0.

Oren's Qua-rtic function for N = 2, 10 30

f(x) = (xilix)2 with A

initial point x = (1,1,...,1)

solution x*1 = (0,0,..,0) with -1(x = 0

10, 11, 12 Hilbert problems- for- N 2, 4, 6

f(x) = x Jinx with (A) 14; - (i,j = 1,...,n)
i+j-1

(A is an (n x n) segment of the Hilbert matrix)

57

REFERENCES

Bard, Y., [1968], On a Numerical Instability of Davidon-like Methods,

Maths.of Comp,, 22, pp. 665-666.

Biggs, M.C., [1971], Minimization Algorithm making use of non-quadratic

Properties of :he objective Function, J. Inst. Maths. Applics., 8,

pp. 315-327 and 12, pp. 337,338.

Broyden, C.G., [19671, Quasi-Newton methods and their Application to Function

Minimization, Maths. of Comp., 21, pp. 368-381.

Broyden, C.G., [1970], The Convergence of a Class of double-rank

Minimization Algorithms Part 1 and Part 2, J. Inst. Maths. Applics.,

pp. 76-90, 222-231.

Colville, A.R., [19(43], A comparative Study on nonlinear Programming Codes,

IBM Tech. Rept. no. 320-8949.

Davidon, W.C., [1959], Variable Metric Method for Minimization, A.E.C. Research

and Developinent Report ANL-5990 (Rev.).

Davidon, W.C., [1975], Optimally conditioned Optimization Algorithms without

Linesearches, Math. Progr. 9, pp. 1-30.

Dixon, L.C.W., E1972, Variable Metric Algorithms: Necessary and sufficient

Conditions for Identical Behaviour on Non-quadratic Functions, J.O.T.A.,

10, pp. 34-4G.

Dixon, L.C.W., [1972b), The Choice of Steplength, a crucial Factor in the

Performance of Variable Metric Algorithms, in F.A. Lootsma (ed),

Numerical MeOods for no.nlinear Optimization, Ac. Press, London, 1972.

Fletcher, R., [1970? A new Approach to Variable Metric Algorithms,

Computer J., 13, pp. 317-322.

Fletcher, R., and M.J.D. Powell, [1963], A rapidly convergent descenttlethod

for Minimization. Computer J., 6, pp. 163-168.

Fox, R.L., L.S. Lasdon, A. Tamir and M.W. Ratner, [1975] An efficient

1-dimensional Searchprocedure, Man. Sci. 22, no. 1.

Goldstein, A.A., and J.F. Price, [1967], An effective Algorithm for

Minimization, Numerische Mathematik, 10, pp. 184-189.

58

Grandinetti, L., 0.978], Factorization versus non-Factorization in quasi-

Newton Algorithms for Differentiable Optimization, Report N. 5,

Dipartimento di Sistemi, Universita della Calabria, Italy.

Greens tadt, J. [19/0), Variations on Variable Metric Methods, Maths.

of Comp., 24, pp. 1-22.

Himmelblau, D.M., [1972], Applied nonlinear Programming, Mc Graw Hill,

New York.

Hoek, G. van der and M. Baardman, [1977], Onderzoek naar de keuze van

de staplengte op de werking van de algoritme van Fletcher en Powell,

Dutch,Working Paper, Econometric Institute, Erasmus University Rotterdam.

Huang, H.Y., [1970], Unified Approach to Quadratically convergent Algorithms

for Function ftinimization, J.O.T.A., 5, pp. 405-423.

Jacobson, D.H., and W. Oksman, [1970], An Algorithm that minimizes

homogeneous Functions of n Variables in n 4- 2 Iterations and rapidly

minimizes genlral Functions, Technical Report 618, Division of

Engineering and Applied Physics, Harvard University, Cambridge, MA.

Jong, J.L. de, C197611, Numerieke algoritmen voor niet lineaire Optimalise-

ringsproblemen, Dutch, Technische Hogeschool Eindhoven.

Lenard, M.L., [197E], Convergence Conditions for restarted Conjugate

Gradient Methods with Inaccurate Linesearches, Math. Progr., 10,

pp. 32-52.

Loewner, C., [1957', Advanced Matrix Theory, Lecture Notes, Stanford

University.

Lootsma, F.A., [1972], Penalty-Function Performance of several Unconstrained

Minimization Tellniques, Philips Res. Repts., 27, pp. 358-385.

Luenberger, D.G., L1973], Introduction to Linear and Nonlinear Programming,

Addison-Wesley Publishing Company, Massachusetts.

Mc Cormick, G.P., and J.D. Pearson, [1969], Variable Metric Methods and

Unconstrained Optimization, in 'Optimization', R. Fletcher (ed),

Ac. Press, London, pp. 307-325.

Oren, S.S, [1973], Self Scaling Variable Metric Algorithms without Lihesearch

for Unconstrainrd Minimization, Maths. of Comp., 27, no. 124, pp.

873-885.

59

Oren, S.S, [1974a*A, Self Scaling Variable Metric Algorithms, Part II:

Implementation and Experiments, Man. Sci., 20, no. 5.

Oren, S.S., [1974bi, On the Selection of Parameters in Self Scaling Variable

Metric Algorithms, Math. Prog. 7, no. 3.

Oren, S.S., [1978], Perspectives on Self Scaling Variable Metric Algorithms,

Xerox, Analysis Research Group Technical Report 78-4.

Oren, .S.S, andILG Luenberger, [1974], Self Scaling Variable Metric Algorithms,

Part I,Criteria and Sufficient conditions for Scaling a Class of

Algorithms, Man. Sci., 20, no. 5.

Oren, S.S. and E. S7edicato, [1976], Optimal Conditioning of Self Scaling

Variable Metric Algorithms, Math. Prog. 10, pp. 70-90..

Osborne, M.R., [1972], Topics in Optimization, Stan-CS-72, Stanford

University.

Powell, M.J.D., [1977], Restart Procedures for the Conjugate Gradient

Method, Math. ?rogr. 12, pp. 241-254.

Rinnooy Kan, A.H.G., [1979], Paper to be presented at the X International

Symposium on Mathematical Programming, Montreal.

Rosenbrock, H.H., [1961], An automaticilethod for finding the greatest or

least Value of a Function, Computer J. 3, pp. 175-184.

Sargent, R.W.H. and D.J. Sebastian, [1972], Numerical Experience with

Algorithms for Unconstrained Minimization, in F.A. Lootsma (ed),

Numerical Methcds for nonlinear Optimization, Ac. Press, London, 1972.

Shanno, D.F. and Karg-Hoh Phua, [1978a1, Matrix Conditioning and Nonlinear

Optimization, Math. Prog. 14. pp. 149-160.

Shanno, D.F. and Kang-Hoh Phua, [19781A, Numerical Comparison of Several

Variable Metric Algorithms, J.O.T.A. 25, no. 4, Aug. 1978.

Tamir, A., [1976], Linesearch Techniques based on Interpolating Polynomials

using Functionvalues only, Man. Sci. 22, no. 5.

Walsh, G.R., [1975], Methods of Optimization, J. Wiley & Sons, London

LIST OF REPORTS 1979

7900 "List of Reprints, nos 220-230; Abstracts of Reports Second Half 1978

7901/S "Motorists and Accidents (An Empirical Study)", by B.S. van der Laa-1.

7902/S "Estimation of the Minimum of a Function Using Order Statistics", by

de Haan.

7903/S "An Abel and Tauber Theorem Related to Stochastic Compactness", by

L. de Haan.

7904/E "Effects of Relative Price Changes on Input-Output Ratios - An

Empirical Study for the Netherlands", by P.M.C. de Boer.

7905/0 "Preemptive Scheduling of Uniform Machines Subject to Release Dates",

by J. Labetoulle, E.L. Lawler, J.K. Lenstra and A.H.G, Rinnooy Kan.

7906/S IT-Regular Variation", by J.L. Geluk.

7907/0 "Complexity Results for Scheduling Chains on a Single Machine", by

J.K. Lenstra and A.H.G. Rinnooy Kan.

7908/E "Input-Output and Macroeconomic Forecasting Through the Generalized

Inverse", by K.P. Vishwakarma.

7909/E "An Application of the Generalized Inverse in Input-Output and

Macroeconomic Analysis", by K.P. Vishwakarma.

7910/0 "A Numerical Comparison of Self Scaling Variable Metric Algorithms",

by G. van der Hoek and M.W. Dijkshoorn.

