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ABSTRACT

We investigate the computational complexity of deterministic sequencing

problems in which unit-time jobs have to be ;.cheduled on a single machine

subject to chain-like precedence constraints. NP-hardness is established

for the cases in which the number of late jobs or the total weighted tardi-

ness is to be minimized, and for several related problems involving the

total weighted completion time criterion.
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1. INTRODUCTION

The theory of the computational complexity of combinatorial problems has

been applied on various occasions to provide fundamental insights into their

inherent difficulty, notably in the area of sequencing and scheduling [7].

Rather than reviewing this theory in detail, we refer to [9;15] for informal

introductions and to [6] for a thorough exposition. Suffice it to say that

the theory has allowed the identification of a large class of NP-complete

problemsr with the following two important properties:

(i) no NP-complete problem is known to be easy, i.e., solvable by an algo-

rithm whose running time is bounded by a polynomial function of problem

size;

(ii) if any NP-complete problem would turn out to be easy, then they would

all be easy.

All these problems are recognition problems, which require a yes/no answer.

The optimization problems that correspond to many of them are at least as

difficult and will be called NP-hard. Many notorious problems such as 0-1

programming, traveling salesman, plant location and job shop scheduling

problems are NP-hard. Hence, establishing NP-hardness of a problem yields

strong circumstantial evidence against the existence of a polynomial-time

algorithm for its solution. This makes it easier to accept the inevitability

of tedious enumerative optimization methods or of fast approximation algo-

rithms.

In this paper we shall be mainly concerned with the complexity of

scheduling Unit-time jobs on a single machine subject to chain-like prece-

dence constraints. The scheduling model is defined as follows. There are n

jobs Ji,...,Jn that have to be processed on a single machine. The machine

can execute at most one job at a time; each job is available at time zero
and requires one unit of uninterrupted processing time. The ordering of the

jobs has to respect a given precedence relation -÷. This relation is derived

from an acyclic directed graph with vertices corresponding to jobs; if there

is a directed path from J
j 
to J

k' 
we write J

j 
J
k 

and reauire that J is

completed before Jk can start. Some important types of precedence relations

are defined and illustrated in Figure 1. We shall assume that the constraints

are chain-like, i.e., each job has at most one Immediate predecessor and at

•
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) atbititaty.

(b) outttee: each vertex has indegree at most one.

(c) inttee: each vertex has outdegree at most one.

e 

(d) chain: each vertex has indegree at most one and outdegree at most one.
•Figure 1 Types of precedence relations.

most one immediate successor.

Eachfeasiblescheduledefinesacompletiontin =
3 3

The optimality criteria that will be considered are all nondecreasing func-

tions d r each J., we de-i 
3 3

fine its tardiness T. = max{0,C -d } and its unit penalty U. = 1 if C > d.,
3 

Uj

U. = 0 otherwise, and we may reauire the minimization of the total weighted

completion time w.C., the total weighted tardiness /w.T., the total tardi-

ness IT., or the number of late jobs IU..
3 3

In Sections 2 and 3 we establish NP-hardness for the minimization of

U. or or Iw.T in the described model. Weaker results for the 1U, criterion

have been reported in [4;8];, the case of the T. criterion remains open. In
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Section 4 we prove NP-hardness for the minimization of Iw.C. in various
3 3related scheduling environments. In Section 5 we summarize our results in

the compact notation of [7] and offer some concluding remarks.

i
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2. THE NUMBER OF LATE JOBS

ThernainresultofthispaperconcernstherninimizationofU.on a single
3

machine.

THEOREM 1. The problem of scheduling unit-time jobs on a single machine sub-

ject to chain-like precedence constraints so as to minimize U. is NP-hard.

The case in which there are no precedence constraints but arbitrary process-

ing times is• solvable in 0(n log n) time [19]. Thus, imposition of a very

simple type of precedence relation on the jobs has a dramatic effect on the

computational complexity of the problem. Theorem 1 dominates previous NP-

hardness results for the case of arbitrary precedence constraints [4] and

for the case of chain-like constraints and arbitrary release dates (i.e.,

:.lower bounds on the starting times of the jobs) [8].

;Proof of Theorem 1. We have to show that .some known NP-complete problem is

.-reducible_tothel1J..problem. Our starting point* will be the following NP-

complete problem [9;6;16]: -1

SET 3-PARTITION: Given a set S = {1,...,3t}. and a 'family S•= {S11...,

s
} of 3-element subsets of S, .doeS S include a partition if Si i.e.,

a subfamily of t subsets such that each element in S is'contained in

exactly one of them?

Given any i,nsitarice of SET 3-PARTITION, we construct an instance of the YU.
problem, but with nonequal processing times, as follows:

there are 4s jobs;

for each occurrence of an element j E S in a subset S. 2, there is a
1 --

job J with processing time p.. = sj and due date d
ij 

= t+isj(j+1)ij 13
(j E Si, = 1,...,$);

for each subset S. E S, there is a job J. pwith processing time .1 -- i
and due date d. = la, where d= s + s 

1eSi
Y? j (i = 1,...,$);1= j 

for each subset S
i 
= S, where j < j' < j", there are chain-_

• like precedence constraints J ÷ J. ÷ J. J. (i = 1,...,$).J. 
"1j 1j' 13 

We shall prove the following propositions.

1(a) This problem can be polynomially transformed into an equivalent problem
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with unit processing times.

1(b) SET 3-PARTITION has a solution if and only if there exists a feasible

schedule with value 3(s-t).
3 '

Propositions 1(a) and 1(b) together imply Theorem 1.

Proof of Proposition . 1(a). We replace each job J. by a chain J 9.

(11 11 ijJ(Pij) of unit-time jobs with due dates = = d,ii = d,ij 13 13
d(Piji = d (j E S, = 1,...,$). The resulting problem - has d unit-timeij ij ,1 
jobs. Given any feasible schedule in which J(1),...,J() are not scheduledJ. 

i 
iPij
j 

(1)consecutively, we can obtain another schedule by moving J. ,...,J Pij-1) to
13 13

the right, up to J(
ij
PW, thereby moving some other jobs to the left. This

schedule is still feasible, since no precedence constraints are violated,

and it has no more late jobs, due to our choice of due dates. Hence, each
(1) (p• •)

chainJ 4- .... 4- J 1JcanbeconsideredasasinglejobJ.with process-1Jij 13
ing time p.. and due date d

j
.li 

i
• Proof of Proposition 1(b). Suppose that SET 3-PARTITION has a solution,

• i.e., S includes a partition Sl of S. A feasible schedule in which no more
than 3(s-t) jobs are late is then obtained as follows (cf. Figure 2). First,

:2the t "subset jobs" J. with Si c S' are scheduled in the interval 10,t]. For1
each element jE S, it is now possible to select exactly one "occurrence job"

. from J. = 
{J.., 

= j, i = 1,...,s} that is preceded by one of these subset13 

SET 3-PARTITION instance with t= 2, s= :

S 1 2 4 5
_

6

S
1 1 2 4

_

S2 2 3 5

S3 2 4 5

.54 3 5 6

partition of S: {S1,S4}

feasible schedule with 3(s-t) late jobs:
r 

t s 4 T 4.4 3s 4s  14 

4
2 2

PJ46 J3  32-
5s 6s s_t 14 2s '4'77i7—.4 3s

t.ist(3t+i) s•ist(3t+1)

J34

25

1435
4s 5s 5s

Figure 2 Illustration of the reduction of SET-3-PARTITION to the

 1

problem.
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jobs, and to schedule it in

way, 3f occurrence jobs are

maining s-t subset jobs are

remaining 3(s-t) occurrence

jobs are late.

Conversely, suppose that there exist g a feasible schedule in which at
most 3(s-t) jobs are late, or, equivalently, in which at least 3t occurrence
jobs are on time. It will be shown below that this 'implies that exactly one
job from each set 1_ (j E S) is on time. This, in turn, implies that the-J.

amount of time available for processing subset jobs that precede at least
one of these occurrence jobs is bounded from above by

the interval Et+is(j-1)j,t+isj(j+1)]; in this

completed at their due dates. Finally, the re-
3 3scheduled in Et+-st(3t+1),s+-st(3t+1)] and the2 23jobs in [s+.2st(3t+1),d]; the latter occurrence

3 3
maxES {d..} 

- 
jES 

p. = t + -st(3t+1) -st(3t+1) = t.j ij ij 2 . 2

The subsets corresponding to these jobs constitute a subfamily SI c S of
size at most t such that each element in S is contained in at least one of

- them. Hence, S' defines a partition of S.

••• •

••••••

It remains to be shown that if 3t occurrence jobs are on time, then
exactly one job from each set 3. (j E S) is on time. It is clearly sufficient

'to prove that the following assertion A(j) holds for j = 1,...,3t.
A(j): If j occurrence jobs are on time and completed not later than
t+isj(j+1), then exactly one job from the set J is on time, for k =-k
1,...,j.

Note that A(j) implies that no set of j on-time jobs can be completed before
sk = isjAj+1).k=1
Obviously, A(1) and A(2) are true. We will show that A(1),...,A(j-1)

together imply A(j). Suppose that j jobs are on time and completed not later
than t+isj(j+1). Let x (0 s x j) of these jobs belong to J.. If x = 0,

• then at least one job from a set 4 with k j+1 has to be completed not
later than t+isj(j+1), and j-1 other, jobs have to be on time and completed
not later than

t + isi(j+1) - s(j+1) = t + is(j-1)j - s < s(j-1)j.

A(j-1) implies that this is impossible. It follows that 1, and j-x other
jobs have to be on time and completed not later than

••••



t + isj(j+1) xsj = t + is(j-x)(j-x+1) is(x-1)x

f= t + is(j-1)j for x = 1,

l< is(j-x)(j-x+1) for x 2.

If x 2, A(j-x) implies that this is impossible: It follows that x = 1,
and A(j-1) asserts that exactly one job from the set 4 is on time, for
k = 1,...,j-1. This is equivalent to A(j).



3. TOTAL WEIGHTED TARDINESS

We next consider the minimization of Xw.T. on a single machine.3 3

• THEOREM 2. The problem of scheduling unit-time jobs on a single machine sub-
• ject to chain-like precedence constraints so as to minimize INNT,T is NP-hard.

D

The case in which there are no precedence constraints is simply solvable as
a linear assignment problem in 0(n

3
) time [7]; for arbitrary processing times

.it is NP-hard L18;17;12]. When all weights are equal, the problem of Theorem
, 2 is NP-hard for arbitrary precedence constraints [14], but the case of chain-
like constraints remains open. We strongly suspect that even this problem is
NP-hard: minimizing T. seems much harder than minimizing YU., and so far all3
complexity results have confirmed this intuition.

. Proof of Theorem 2. Our proof is of the same form as the proof of Theorem 1.
77-We will start from the following NP-complete problem [6]:
-D! 3-PARTITION: Given a set S = {1,.:.,3t} and positive integers a1,...,a3t,• b

b with a. < aj < for all j E S and y a = tb, does S have a partitionjES j
into t 3-element subsets S

i 
such that y a = b (i = 1,...,t)?jESi j

Given any instance of 3-PARTITION, we construct an instance of the Iw.T,
D J.problem, again with nonequal processing times, as follows:

there are 4t-1 jobs;

- for each(ij E S, there is a job J. with processing time p. = a., due date
3 3di = 0 and weight w = a.;•

- for each i E (1,...,t-1), there is a job J1 with processing time p = If1due date d! = i(b+1) and weight w = 2;1
- there are no precedence constraints.

It clearly suffices to prove the following propositions.
• 2(a) This problem can be oolvnomially transformed into an equivalent problem

with unit processing times and chain-like precedence constraints.
• 2(h) 3-PARTITION has a solution if and only if there exists a schedule with

value Xw.T y, where y =
1...k5_3t 

a
j
a
k 
+ i(t-l)th.

It is easily verified that the entire transformation is polynomial-bounded.
This crucially depends on the fact that 3-PARTITION is NP-complete even when
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the numerical problem data are encoded in unary rather than binary, i.e.,
when the problem size is 0(tb) instead of 0(t log b). [5].

Proof of Proposition 2(a). We replace each job J. • by a chain J
p.)

3-4- %.7 13j) of unit-time jobs with due dates.d(1) = . • • = .3, Pi) = d. and weightsi 3 3(1
w. = ... 

=14(
Yi--/) =0,wW=w.(j E.S). As in the proof of Proposition

1(a), we can apply a simple interchange argument to show that, due to our
(p • )thoiceofweights,eachchainJ(I n be considered as ai 3

single job. J. with processing time p., due date d. and weight w..
• 

3 3 3 3Proof of Proposition 2(b). Let us first ignore the jobs JI (i = 1,..•,
t-1). Since d .= 0 for all j E S, we have X w.T = 1 w.0 ; moreover,• i jES 33 jES 33since p = w for all j E S, the value of y w.cis not influenced by the_ i i jES 3 j

• ordering of S [2]. It follows that for any schedule of the jobs J. (j E S)
without machine idle time we have

• wT
L4jES j j ajak.

Let us now calculate the effect of inserting job J1 in such a schedule. Sup-
pose that J1 is completed at time CI and define LI = C1-di. Since all jobs
J. (j E S) that are processed after J1 are completed one time unit later,3
the value of 

J1.ES 
w.T. is increased by the total weight of these jobs. It3 3

follows that

y 
jES 

w 
11

.T + wIT' = (
15j51(53t aak (t-1)b - LI) + 2mak{O,L;)3j ._j

= 45j..5_k3t ajak 
(t-1b +

It is easily seen that insertion of all jobs J! resulting in completion times
C = d.!+L! (i = 1,...,t-1) yields a schedule with valuei 1

LiXw.T rt-1 r
t-i)b +103 j 

= =15.j5k53t ajak
= y vt-1 1,,,I.

Li=1 1 i t

It follows that a schedule has value lw.T, y if and only if there is no
3 3

idle time and moreover the jobs Ji are completed at times CI = di = i(b+1)
(i = 1,...,t-1). Such a schedule exists if and only if the jobs J. (j E •S)
can be divided into t groups', each containing 3 jobs and requiring b units
of processing time, i.e., if and only if 3-PARTITION has a solution. 0
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4. TOTAL WEIGHTED COMPLETION TIME

We finally extend the result of the previous section to the minimization of

Iw.0 in various scheduling environments. Our results are stated without

proof; they can easily be derived by a straightforward application of the

techniques employed to prove Theorem 2.

Theorem 3 deals with the single machine model where, in addition, the

jobs have either release dates (i.e., lower bounds on their starting times)

, or deadlines (i.e., upper bounds on their completion times).

THEOREM 3. The problems of scheduling unit-time jobs on a single machine sub-
ject to chain-like precedence constraints and either arbitrary release dates
or arbitrary deadlines so as to minimize Xw.0 are both NP-hard.

3

The case in which there are no precedence constraints but both release dates

and deadlines is solvable as a linear assignment problem in 0(n3) time; the

,,reverse case in vihich there are arbitrary precedence constraints but neither
73release dates nor deadlines is NP-hard.[13;14]. When all weights are equal, _
_ the case of arbitrary precedence constraints, release dates and deadlines

•. can be solved in 0(n2) time through the Coffman-Graham algorithm [1] [11].

Theorem 4 extends these results to the situation of two parallel iden-

tical machines, where each job can be processed on either machine. Chain-like

precedence constraints and release dates (deadlines) on one of the machines

can be simulafed by outtree(intree)-like constraints, including a single

. chain on the other machine, in an obvious way.

- THEOREM 4. The problems of scheduling unit-time jobs on two parallel identi-

cal machines subject to either outtree- or intree-like precedence constraints

so as to minimize Xla.0 are both NP-hard.
3

When all weights are equal, the case of arbitrary precedence constraints can

• be solved in 0(n
2
) time by the Coffman-Graham algorithm [1] [3].

• Theorem 5 states analogous results for a two-machine flow shop, where

each job J. consists of a chain of two operations 0 0 which have to be7 lj 2j
processed on the first and the second machine respectively. Note that a pre-
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cedence constraint iJk implies that 02j has to be completed before Olk
can start.

THEOREM 5. The problems of scheduling jobs with unit-time operations in a
two-machine flow shop subject to either outtree- or intree-like precedence
constraints so as to minimize Iw.0 .are both NP-hard.

JJ

When all weights are equal, these problems can be solved in polynomial time
• [10], but the case of arbitrary precedence constraints then remains open.
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5. CONCLUDING REMARKS

For those who are familiar with the classification of deterministic sequenc-

ing problems introduced by Graham, Lawler, et al. [7], we list the problems

which have been shown to be NP-hard in this paper using their notation.

• Theorem 1: lichain,Pi =1IIU_,;

Theorem 2: lIchain.P .=111w.T.;3

Theorem 3: 1Ichain,r
i 
,p,=1 

i i
1/..w.0 ; lichain,d.,p =11Xw.C.;

3 3 • 3  ., 
14
3 3Theorem 4: P2douttrbee,.P .=11Yw.C.; P2lintree,p.=112,.0 ;3

iyw
3 3 3 

,P3 
.c..3 3

The remaining major open problem in the area of scheduling chains of unit-

time jobs on a single machine is llchain, =11XPi Ti.

Proposition 2(b) in Section 3 basically establishes NP-hardness for

111Xw.T.. The same reduction was already given, without proof, in [17,p.359];3 3
a more complicated transformation can be found in [12]. NP-hardness proofs

for this problem that are weaker in the sense that they are valid only with

respect to the standard binary encoding of the numerical problem data

appeared in [17,p.357] and, surprisingly, [18]. All the above NP-hardness

• results are "strong" in the sense that they hold even with respect to a

unary. encoding 5;6;15].
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