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ABSTRACT

A function U : R+ R+ is said to be It-regularly varying with exponent a if
there exists a positive function L such that

U(Xx)
U(x)

 --* log A ÷ co) for A> 0
Na

x
a
L(x)

co -xs
Suppose U(s) : =sf e 

0 1-e
-xs

-and U(t) : =f e
tx
 dU(x) exist for s,t > 0 and some p > 0.

0

Co

U(x)dx, U* (s) : = f 
dU(x) 

0 (s+x)P

*
Furthermore we define x(x) = Z -- 

1 
U(2). We prove that U, U, U

1<m_sx m m

x are TI-regularly varying if one of them is ff-regularly varying, supposed some
extra assumptions are satisfied.
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1. Introduction

First we give the definition of regular variation.

Definition: A function U is said to be regularly varying with exponent
p at infinity if it is real-valued, positive and measurable
on .(0,00) and if for each X > 0

. U(Xx) (co)lim Xp where pe R. (notation UERU(x) Va
x+co

Remark. Regular variation of U at zero can be defined analogously.
Regularly varying functions with exponent zero are, called slowly varying.
The theory of regularly varying functions has been developed by Karamata.
For some basic facts see

A recent treatment of regular variation is also given in Seneta's book (13).
Karamata proved the following theorems on regular variation which are basic
in this theory:

Theorem A: Suppose U : R+ R+ is Lebesgue summable on finite intervals.
(1) If U varies regularly at infinity with exponent B > -1

then

.  xU(x) lim   B + 1
xx+co
U(t) dt

0

xU(x)
i) If lim   = 4. 1 with a > —1 then UERV(-)

ax+c.
I U(t) dt
0

The second theorem concerns the Laplace-Stieltjes transform
Co

U(t) = I e-ts dU(s) of U.
0

Theorem B: Suppose U : R
+ R+ 

is non-decreasing, right-continuous U(0+) = 0,

U(t) is finite for t > 0.

For a > o the following assertions are equivalent:
(i) U c RV(c)))

a
(ii) U c RV

(0)

Both imply

U(x) (iii) lim 
=r(B+1)u(1/x)



The converse statement that (iii) implies regular variation of U is well-

known. See e.g. Drasin (3).

For non-decreasing functions U we can combine the theorems A and B using

the notion of a fractional integral:
x

Definition: 
a
U(x) = I (x-t)

a 
dU(t) where a > 0.r(a+1

0

Theorem C: Suppose U : R R is non-decreasing and right-continuous,

U(0+) = 0 and U(t) is finite for t > 0. For a > 0 and a > 0 the

following assertions are equivalent:

U C

(ii) 
a 
U c RV (a9

a+f3

(iii
U(x)

a  ro+i)

-*xa U(x) r(a+$4.1)

(0)(iv) U c RV
-a

U(x) 
(x -)ro+i)

U(1/x)

Remark that the case a = I yields theorem A with B > 0. For arbitrary a > 0

theorem C can be proved by using theorems A and B and the relation

a
U (I/x) = x U(1/x)

since 
a
U(x) is non-decreasing.-

It only remains to prove that (iii) implies (i).

This can be done using a result of Drasiz and Shea.
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We write
U(x)

r(= f t)
a-1

t dt r(a)r(8+1) a) a
xa 

U(t) (
x 6 r(a+f3+1) 

U(x) (x cc')

CO

0

dtOr I U(t) k c U(x) where the Kerhel k is positive.

Application of theorem 6.2 of (4) then yields (i).

In 1963 Bojanic and Karamata (2) studied the class of functions U for which

U(Xx) U(x) lim exists for some function L(x) and showed that a can bea
x+00 x L(x)

chosen such that L(x) is slowly varying.

In this paper we shall see that the theorems A and B can be sharpened for

functions U which satisfy the relation

Jim
a

x+m x L(x)

U(Xx) u(x)

= H(X) for some function L(x)

For X=0 this relation is also studied by de Haan who gives a refinement of

theorem B.

We need the following definitions and results which can also be found in (7)

Definition A function U : e .1t+ belongs to the class II if U is measurable

and if there exists an auxiliary function L(x) which is strictly

positive such that for all X > 0

liiñ U(Xx) U(x) log A
x+co L(x)

The class R is a subclass of the slowly varying functions.
Note that the auxiliary function L(x) is determined up to asymptotic equality:
a positive function L(x) is an auxiliary function for U(K) c R if and only if
L(x) U(xe) U(x) for x .4- m.Let L(x) be slowly varying and in L i(dt/t) on

finite intervals.

L(t)Then U(x) = f dt is an element of R with auxiliary function L(x).
0 t

L(tx)/tx 1This follows since L()/."' for x m uniformly on compact subsets of (o,co)1x 
"* 

Hence for X >
U(Xx) - U(x)

L(x)

Xx X X
. L(t) dt f L(tx),/tx t f= log XL(x) t L(x)/x

1 1



L(x), U1(x) is measurable and

a
It can be shown that each function U II for which I U(t)/t dt exists for all

0
LOO+ X

a > 0 can be written as U(x) 
L(t) 

dt where L is slowly varying.
0

x
Here also L(x) --f s dU(s) U(Xe) - U(x) (x co) is the auxiliary function.

From the definition°of H we can see that if U(x) c IT with auxiliary function

U(x) - U
1
(x)

L(x)
c (x co) where c c R is a

constant, then U (x) e II with auxiliary function L(x).

For an extensive treatment of the class TI the reader is referred to 7).

Combining the results of de Haan (8) and Embrechts (5) we get

Theorem D : Suppose U : R
+ 

R
+ 
is non-decreasing, U(0+) = 0 and ti(s) is

finite for s > 0

Then the following statements are equivalent:

(i) U(x) c TI
Aft

(ii) U(I/x) 0 TI

(iii)
U(x) - U(1/x)

1
-- I s dU(s)
0

y + c°)

We give a second order version of Karamata's theorems A and B for non-decreasing

functions U. A necessary and sufficient condition for a function to obey the

second order relation is formulated in the following definition.

U(x)Definition U e HRV iff c IT where a c Ra
x
a

If UeHRV
a 

then we say that L is the auxiliary function of U if L is the

U(x)auxiliary function of e H.

We call the function U IT-regularly varying with exponent a. The TI-varying

functions with exponent a form a subclass of RV.
a

2. Results

Our main result is the following theorem
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+Theorem 1. Suppose a> 0, 8 > 0,U: R -* R, U(x)/xa non-decreasing

U(x)
lim   - 0, and U(t) exists for t > 0
x+0 xt3

144

Then the following statements are equivalent:

(i) UcTIRVa
(ii) 

aUcURVa+a

(iii) U(1/x) clIRV

They imply

(iv)

and

(v)

r(3+1)
767,7,1) u(x)

r(8+1) 03)x ,
8
 aa r(a+84.1)x f sd U(s)/e

0

1 -U(x) 171771-7 U(1/x)
(x -)

x8-1 7 sd
0 s"

where 00 = log r(x)dx

Conversely if (iv) with ac(0,1], a > 0 then (i)
and if (v) with 1 then (i)

Proof

(I) -4.- (iv) and (1) (ii)

L(t) coWe write U(x) = xa(L(x) + f dt) with L(x) = 
1 
--I sd-----_cRV

o t 
U(s) ()

x
0 s

a o
Then

U(x) r
(+1) U(x) U(tx) U(x)

a 
x
a - r(wisa 

aB
+1) 1 v$

r (1 t)a-1 ta t xI4(x) — dt -+= r(a)xBL(x)

1 -1+ 
I log t (i-t)a t$dt (x oz.)MO 0



The last step is justified since by substituting the expression for U(x) we
find

1 1 I1 r $ L(tx) L(sx) ds dtl1) dt f (1 t)a-*t'17E0 
L(x) L(x) s J0

cc
and 

s x L(sx) e
s
 
(x 4- co) uniformly on (0,1) where c > 0

x L(x)

(see de Haan (7) ).

Now (iv) and (i) imply (ii) as mentioned in the introduction.

(i) (v) and (i) (iii)

We write U(x) = L(x) L(t) K(x) where K(x) = x f dt.
0

By Karamata's theorem we have

.7t/x
xL(x) 

1  
c0 . 

P(34.1)
f e * dt L(t) = 0(x L(x))0

Substituting the expression for K(x) we find

0.16

1 tK(x) K(1/x)/17(B+1) L(tx) dt  1 
f e

-t 
f 

L(ux) du- I dt = (*)L(x) t r(f3+1) L(x) uxf3L(x)

1 -u _.. •Now we,write 1,0+0 e u du - GB(t)

1 co tL(tx)  dt L(ux) duThen (*) = I + f dGr (t) =L(x) t 
0 

L(x) u ao 

1
)= I ( 1-G 

L(tx  dt 
L(x) t 

f G (t) 
L(tx) dt
L(x) t0 1

ectxL(tx) Since uniformly on (0,1) and
x L(x)

t ex eL(tx) 
t-c uniformly on (1,0,) (see (7) cor 1.2.1.4)

x-eL(x)

1 Co
dt we find (*) -+ I {1-G

0 
(t)} --- - I 

G$ 
dt 

(t) ---t t0 1
4 00)
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By partial integration the last expression equals

log t f
r0+1) 

-t
tadt =

0 

Now we have analogously that (v.) and (i) imply (iii)

a^(ii) -3- (iii) follows immediately since aU(1/x) = x U(1/x)

and we can use (i) (iii)

(iv) 1 (i) We define L(x) = --I sd
U(s)

sa
Now we can reformulate (v) as follows:

as in the proof of (i) (v)

x 1
1

- —
t t L(t) — + f l (1-u)

a-1
u
B
du L(t) 

dtx a- s+i dt 1
(7c) t T(a)

17c7/) f0 (I 
x 0 t/x

r(B4-1)  X dtI L(t) EL(x) (x 00)r(a+a+1)
0

1.(B4.1) d j r(B+i) where E =
Novi-a+1) dB r(a+f!,4-1)

co
tOr L(t) k 

x d 
L(x) (x 03) where the kernel k is defined byt t0

7 a—ixa — (1-u)a-ljdu) for x < 1 and 0 for x > 1x 0

- .For ae(0,1] and B > 0 the kernel is non-negative since 
a I xa 

is

increasing on (0,1)

Moreover we have lim inf 
L(tx) 
L(x) 

i since xL(x) is non-decreasing.
x-÷00
t.+1+

Application of theorem 6.2 in (4) then gives the result since

1
p-1k(p)= I 1

t

40.6

dt is decreasing for p > —a-1 and so k(p) = E only if p = O.

(v) (i) We define L(x) as in the proof of (iv) (i)



Here we can reformulate (v) as follows:

00

k(•?-) L(t) EL(x) (x c3)
0

where E = I + *(04.1) and the kernel k is given by

1 x
k(

1
T) - ux e ---f u e du + 1 - I(0,1)(x)ro+i) x

o

-If P. > 1 this kernel is positive for all x > 0 since the term xBe
x
 is

increasing on (OM

Here we can also apply theorem 6.2 in (4).

U(x)(iii) Writing V(x) = we have by proposition P4 in (9)
xP

VEIT iff f t$(11/(t) c1117(°0) where $ > 0
0

Or : UcHRV iff U(x) - dt ERV(00)

0

This is equivalent to
-

U(1/x) - $x K(1/x) ERV(a° where 1((x) = 1L-1.

The last statement is equivalent to U(1/x) ETTRV , since

U(1/t) xT<(1/x f   dt by partial integration

The case $ = 0 is the result of de Haan (8).
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Remarks

(a) (iv) and (v) imply (iii) and (iv) in theorem C since

U (x) U(s)(x 00) if
x 

sP
xP-1 I sdU(s)/sP

0

is slowly varying

(b) The proofs of (i) (ii), (i) 4. (iv) remain valid for (3 > -1

That (ii) implies (1) for -1 <_P. < 0 can be shown as follows:

f t 
U(t) U(t)

= -U(x) -a I dt is f3-varying at infinity
x t

iff UcTIRV
a 
by proposition P4 in (9)

Integrating from 1 to x gives

x
U(s) (w)G(x): = -a I f ds dt - I U(t)dt c RV

1-f-B1 t 1

iff G(1/x) = x K(1/

00

where K(x) = f 
U(s)

ds. This proves the statement since

- xU(1/x) c RV (-)
14.(3

CO

K(1/x) = 
U(1/t)

dt.

For a < -1 a similar method can be applied.

) For the Abelian theorems (i) (ii) and (i) (iii) it is not necessary
'06that U(x)/x

a 
is non-decreasing, the Tauber part however cannot be derived

without extra assumption on U.

An alternative proof for the equivalence of (ii) and (ii D can be given as

follows. We have IIIMETIRV iff for a > 1 cpeRV (..) wherea-4-R

7 
(x-S)

fu(sa) u(o} ds
1

(p(x) = 
a13

a+13x

by the definition of ocIT and theorem 1.4.1 in (7).

(00) a+B a - 1Now cbERV
o iff x cp(x) cRV(0.) if x H(Td cRV(0.)

a+R a+R

U(ax) where H(x) - U(x) by theorem B.
a(3
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"
xThis is equivalent to x H(-) -  

x
(ax)a 

ax

cRVo
(ce) 1 

-- 
- 
U( 

1and so to ---)ell.
xa x

— Remark that x 
$ 

U(--) is non-decreasing, sincex
xB

is non-decreasing.

(e) The existence of U is implied by the regular variation of U for non-decreasing

U.

Indeed for s-varying U we have

2
n
xf -lx ix

;01x) = et 
U(t) dt = — e II(t) dt + E e

x
TJ(t) dt

0 0 n= n-ix

00 0,0

< U(x) + U(x) E 2
n(a+c) 

e
-n-1< U(x) + E U(2

n
x) e

-2n-1
< ...

n=1 n=1

(f) It is evident that (i) implies regular variation of

r(B+1) U(x)r(a+a+ 1)
xa

the converse statement holds true.

Example

a
U(x)

with exponent It is an open question whether

log r(x+1) ORVI with auxiliary function 1. This can be derived from

gx) - log x 0 (x 4- co) and log r(x+1) = f 11)(t+1) dt
0



3. Applications 

Our first application concerns the Stieltjes-transform. Suppose U is non-
decreasing and right-continuous. We define

U *(x) = 
dU(t)

0 (t+x)P
for p > 0, supposed the integral exists.

In 1931 Karamata proved the following theorem about U (see [11]).

Theorem 2 For p > 0 U *(x) x-aL(x) (x -+ co) where L(x) is slowly
varying, U non-decreasing

implies U(x) r(a) r(p-a+1)
  xp-a L(x)

It is obvious that the converse statement 
UERVP a 

rz.v E V_cy also holes.
- 

To extend this theorem for H-regularly varying functions we need a lemma.

Lemma 1 (a) Suppose U
1 
ERV is increasing and continuous (a > 0), U is non-

decreasing. Then UcTI iff   f U(t)dU
1 
WO. In this caseIT (x) 

1 0
x

1 1U(x) f U(t)d111 (t) ,1,--L(x) (x ÷c0) where L is the auxiliaryU (x)a0

function of U.

(b) Suppose 
U1clIV-a 

is decreasing and continuous (a > 0), U is non-
00

decreasing. Then  -1 
U ( 

f U(t)dU
1 

iff Hell. In this casex) 
1 x

CO

1  f 
1.,7 (X) 

U(OdU(t) U(x) ni--L(x) where L is the auxiliary function of U.a1 x

Proof We only prove the first part; the second part is proved similarly. Now

U
1 
(x)x 

1 1 U(x) - f U U(t)dU
1 
(0 = U(x) 

U ( 
f U(U, (s))ds =1(x) 

0 1
x) 
 0

1= M(U
1
(x)) where M(x) = U(U

1
-1(x)) - --f U(U

1 
(s))dsX 

0

From U
1
clIV

a 
and the definition of the class H we see that UcH with auxiliary

function L iff U U
1
-1

cH with auxiliary function M. The functions L and M
satisfy the relation L(x) aM(111(x)). This finishes the proof of part a.
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Theorem 3 Suppose p > a > u,   non-decreasing on R , lim = 0.xp_a _a
x+0 xP

Then the following statements are equivalent

(1) IJETTRV
1) -a

(ii) U 
*
ORV

-a

Both imply

U(x) 1'(p)
r(a) r(p-a+1

P-a-1 x
U(s)

sd
P-a

0

xPU *(x)

1P(a) 1P(P-0.4-1)

Co

-tT -XT p-1 ,
TF(p)

Proof Since for p > 0 (t+x G  fe e T 
0

-it follows that U 
*
(x) = f g(T)e

XT
 dT where

0

TP-1 -tTg(T) = 77r-7 I e dU(t)
"P) 0

(t)

By theorem 1 UCIRV is equivalent to U(1/x)ERRVp_a
P-a

1 1and since g(Tc-) = 
r(P)

1  
x

1-p 
U(1/x) we have g(TdORV i _o.

Writing 
-

H(x). = 
a
x 

1 g(!) we have by lemma I (1)

HO iff x
1/x 1/xa , 11(u) a

  du = x f g(t)dten iff I g(t)dteERV_Ga-J-1
x u 0

if we can show that H(x) 
=1,(p) 

xP U(----
1
) is non-decreasing and this is so

since U(x)/xP-a is non-decreasing

Thus g(1/x)EURV1  iff(i)
uEquivalently U (x) = R(m)htsTIRV

-a 
by interchanging the roles of zero

and infinity in (i) (iii) of theorem I. This proves the first part of

the theorem. By (0 and theorem 1 we have

P-U(x) - r(P)
r(p-a+1)

g(1/x)

x
xPaI I sdIT(s)/e-a

-Vp-a+1) (x .).
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01.From the last expression we can see that gkvEURV
1-a

with auxiliary function

This implies that

1  -
g(x)r(a)

x
r(p-a+1) 1 U(s) 

f sd
r(P) x p-a0 s

r(p-a4.1) 
x sd  r(p)

sP-a0

q)(a) (x + co)

Combining this with the last expression gives the desired result.

Remark The existence of U is implied by the regular variation of U. To

prove this we partition the domain of integration by the points

x, 3x, 7x,...,(2n-1)x

2
P-a/2If U is p-a varying then

U(2x)
for x > x

oU(x) --

Repeated application of this inequality yields
naco

U(t) 
+1 

co -.7
U (x) = Pf dt < c (x).x-P E 2 < 03,n

0 (t+x) n=0

The second application concerns the Lambert-transform

Suppose n: R
+ 

R and neL t(dt/t) on (n,c0)

co -us
We define n(s) =sf e  n(u)du for s > 0

01_e
-
us

,N0An Abel-Tauber theorem on regular variation of n, n is given by Yohlbecker (12),
a similar result for the class 11 is derived in (6).

We start with an Abelian result.

n(t)Theorem Suppose neURV (a > 0) and

Then n(1/x) cHRV
a

Moreover

c
1 
n(x) (1/x)

where cl = (84-1) r(B+1)

c -
2 dB (c(+1) r(B+1))

integrable on finite intervals of (0,0p)

and L is the auxiliary function of n.
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Proof For B > 0 we define c = “4-1) r(B+1)

1
=

-u m —u
e  B u e u du + r du

-u)

1 1-e
-u-e 

Substituting this we can write

x 

c8 

n(t) n(x) + ! dt n(1/x)
0 t

1
=

0

x f3L(x)

••••••

e
-u

1-e-u

n(xu) n(x) n(xu) n(x)
13.

x 
m a —u a

XU f'r ue   x u x du - 
L(x)

For x co the last expression tends to

1 -u co a -ue u e r ur3 j log u du-u I -u0 1-e 1 1-e

as in the proof of the main theorem

The Abelian side of the main theorem gives now

1 x n(t)
-i- n(x) - .r t dt

0  1

xN:,(x) 
± _ 7

e2

1 -e 
-U

log u du =

L(x)

d
cf3

Combination of the last results yields the theorem.

Remark This theorem is a refinement of Yohlbecker s result

(f3+1) r($+1) n(x) er'11(1/x) (x ± co) for B-varying n.

Theorem Suppose neTTRV (B > 0) and n(x)/x integrable on finite intervals of (0 00)

1 xIf we define x(x) = TE n(i) and suppose
1<k<x
r=

n(x)/x to be non-decreasing, then xeTTIVa'
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Moreover

cL') n(x) x(x) _ c103+1)
x8L(x)

where L is the auxiliary function of •

Proof We may suppose w.l.o.g. that n(x) = 0 on (0,1

CO CO 00

-kusThen. n(s) = s 7 e n(u)du = e
-US 

d(u)
1 k=1

By the pain theorem we have

x(x) -
1 

n(1/x)
1'( 41)

C(8+1) xlk(x)
-4- - 11)(8+1) -+ (o)

Combination with the last theorem then gives the desired result.

Corollary In this case we have 03+1) n(x) y(x) (x co)

For the Tauberian converse of the last theorem we need the following lemma.

Lemma If L is slowly varying and non-decreasing for x > n

L(x)
L(x -1) ,=

_
1 + x

y
 for some > 0, x > x(y), then

p(m) xI 
m 

IT(;) = o,(x L(x)) (x (0)
m<x==

where B > 0 and 11(x) = r t dL(t)
1

Proof As in (6) we define an = U(n) U(n- , n > 2,

We divide the sum into three parts.

Then
m<x-=

where N(x) =
m<x

11 (in)

11(m) 
1 a = I a N(--x)

m v TY1 M
X m<x

v< -
'--Iii



1 6

Since N(x) 4- 0 (x ccs) we have

E a N (3-) < c E a
m 
= c TT( [x]

M
M<X M<X

by Karamata's theorem A.

ao(x L(x)) 00)

x _ 1
Now TT(x) IT(x-1) = x8L(x) - (x-1)8 L(x- - f t8 dt

x-1

< x (L(x) L(x-1)) since L is non-decreasing.

Substituting this we find for x xo = x0(Y)

P(111) - ii( [-]
, m

x
.177...x

0

{L
mm

- L(.! - 0}
.7=IT

x/ xo
I x 13-"Y x 

L() 
xri-y .u}— {L(x) + u L(—)IT1 M

1

f -y
= xL(x) + r L(7)

= .0(x L(x))I-841
xo

by theorem A if we choose 0 < Y < B+1

The last sum is bounded since

P(m) T(
m
) ii( pi] ) <2

•

-o

(x co)

1 2 U(x0) E = 0(1) = 
8 
L(x)) (x 00)

X
--<M<X
X^

This proves the lemma.

1 xIT(—)
m m
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Theorem If x(x) =
1
m mI<m‹x

cTIRV > fl),

1 x(s) : = .r s   is non-decreasing on R
+

0

L(x)  < 1 + x-1 for some y > 0, xL(x-1) t

1 then n cIIRV with auxiliary function L(x)
“B+1)

Proof By the representation theorem in de Haan ( 7 ) we can write

- L(t) x(x) = x
R 
L(x) +•

B
x r   dt where L is slowly varying.

1

mObius inversion now gives

u-(m) x en(x) = 14 E(1)(71) + x V(x)
m<x m'+'

L(u) p(m) xwhere (1)(x) = f du and V(x) = E 1414 L(;)
1 m<x m

Substituting this gives

X X

n(x) r dt = 11P-' ,(11) N(21) du + R(x)
1 1

x
where R(x) = x V(x) ar e0-. V(t) dt and N(x) =

1 m<x

Now we have by dominated convergence

81 — 6r u L(u) N(2!-) du = x
1

  xf3I (x)8 ( 41) '

7:
N(v) x

L (—) dv x8L(x6 +I v
1 v

(x 4- 00) since

x 
N( v) d = 11(k  

x 
dv f  , E r

1 v ef 1 k - 5+1kx k v

and N(x) -- 0 (x 00).

N(v) r   dv
0+1

Iv

p(k) 
- 

N(x) 1 
E  c°)

1+8 8 Wl+B) 
(x

k<x k
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Application of the lemma now gives
x/mx

R(x) = x5V(x) - a ft f tdL(t) = b(xRL(x)
)r3-1 V(t) dt = E 

111(ylm)

11 m<x

This proves
x

n(x) $ n(t) 1 that - - f dt - L(x) (x ÷ co)
x
a t

xf3 1 6.0341)

Application of proposition P4 in (9) then gives nelIRV .

X1 
x
B L(u) Remark In this case we have n(x) f du (x ÷ co)03+1) u

1

x
1 x 0 Theorem Suppose R(x): = n(- = x- r u + 0(x1181,(x)) (x ÷ ..)m m u

L(u

m<x 1

with L slowly varying and 5 > 0.

If L(x): = f s d R(s), 
sB0

is non-decreasing on

L(x)
-L -1

and   < 1 xY for some y > 0, x > x (y)(x o

1then nciTRVa with auxiliary function c(5+1) L(x)

x L (0
* Proof We have R(x) = x5L* (x) -4- x5 f dt CIRV
t a1

where L
* 

satisfies the conditions of the last theorem.

This proves the theorem.

The author is indebted to dr. L. de Haan for his valuable advice and criticism.
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