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I-REGULAR VARTATION

by

J.L. Geluk

ABSTRACT

] + + . . . : i
A function U : R =+ R is said to be -regularly varying with exponent a if

there exists a positive function L such that

R

— +> log A (x » @) for A> 0
x L(x)

~ ©  =xs ©
—— )
Suppose U(s) : = s f -2 U(x)dx, U: (s) : = f dU(x)

0 1-e X8 0 (s+x)°

(-]
and U(t) : =/ e X dU(x) exist for s,t > 0 and some p > O.
0

. ~N
. * 0~
Furthermore we define x(x) = I i-UGE). We prove that U, U, Up , U and
1<m<x

X are II-regularly varying if one of them is fg-regularly varying, supposed some

extra assumptions are satisfied.
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Abel-Tauber theorems, regular variation.
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1. Introduction

First we give the definition of regular variation.

Definition: A function U is said to be regularly varying with exponent
p at infinity if it is real-valued, positive and measurable
on:(0,») and if for each A > 0 '

UQx) _ 0 . (=)
T(x) A" where pe R. (notation UeRV8 )

lim
X0
Remark. Regular variation of U at zero can be defined analogously.
Regularly varying functions with exponent zero are_gallgd_slqwly v;;xing.r
The theory of regularly varying functions has been developed by Karamata.
For some basic facts see Qy, (0), Q1).
A recent treatment of regular variation is also given in Seneta's book (13).

Karamata proved the following theorems on regular variation which are basic
in this theory:

‘ + e e
Theorem A: Suppose U : R+ * R 1is Lebesgue summable on finite intervals.

(1) If U varies regularly at infinity with exponent B > -1
then

lim ——EESEL—-
x> J U(t) dt
0

=8 + 1

xU(x) (=)
(ii) If lim - =f + | with B > -1 then UeRV

B
20 u(e) de
0

The second theorem concerns the Laplace-Stieltjes transform

U(t) = £ e %5 qu(s) of U,
0

Theorem B: Suppose U : RY > R is non-decreasing, right-continuous U(0+) =0

U(t) is finite for t > O,

For B > 0 the following assertions are equivalent:

(1) vUe RVém)
(ii) Ue vag)
Both imply

‘e . U(x) 1
(iii) lim = =
we U(1/x) | BHD

’




The converse statement that (iii) implies regular variation of U is well-
known. See e.g. Drasin (3).
For non-decreasing functions U we can combine the theorems A and B using

the notion of a fractional integral:

e el 1 x o ;
Definition: aU(x) e FTE:TT é (x-t)  du(t) where & > O,

+ L . . .
Theorem C: Suppose U : R + R is non-decreasing and right-continuous,

U(0+) = 0 and U(t) is finite for t > 0. For @ > 0 and B > O the

following assertions are equivalent:

(i) Ue RVB(°)

(1) e Rvaf;)

, U(x)
ceiy O- L(B+1)
(iii) CTET)

(x + =)
*2U (x)

(iv) Ue Rv_éO)

U(x) 1
T T+

(x + =)

-
U(1/x)

Remark that the case a = | yields theorem A with B > 0. For arbitrary a > 0
theorem C can be proved by using theorems A and B and the relation

aﬁ (1/x) = < G(l/x)

since U(x) is non-decreasing.

It only remains to prove that (iii) implies (i).

This can be done using a result of Drasin and Shea.




We write
U(x) 1

X -
ORI FAICIIET- RS - ML ICE

[--]

Oor [ U(t) k(%) 2% ~ ¢ U(x) where the Kerpel k is positive.
0

Application of theorem 6.2 of (4) then yields (i).

In 1963 Bojanic and Karamata (2) studied the class of functions U for which
lim U(Ax) - U(x)

X0 xGL(x)

exists for some function L(x) and showed that o can be

chosen such that L(x) is slowly varying.

In this paper we shall see that the theorems A and B can be sharpened for
functions U which satisfy the relation
TO%) _ yx)
20

lim 5 = H(A) for some function L(x)
X x L(x)

For A=0 this relation is also studied by de Haan who gives a refinement of
theorem B,

We need the following definitions and results which can also be found in (7) ,

Definition A function U : RV > AR+ belongs to the class I if U is measurable
and if there exists an auxiliary function L(x) which is strictly
positive such that for all A > 0

x> L(x)
The class T is a subclass of the slowly varying functions.

Note that the auxiliary function L(x) is determined up to asymptotic equality:
a positive function L(x) is an auxiliary function for U(x) € I if and only if
L(x) ~ U(xe) - U(x) for x + «=,Let L(x) be slowly varying and in Ll(dt/t) on
finite intervals. |

X

Then U(x) = [ EéEl dt is an element of T with auxiliary function L(x).
0

L{tx)/tx 1

This follows since T /x T

for x + = uniformly on compact subsets of (o,x)

Ax
UOx) - U(x) = g L fex g0
Hence for A > 0 X)L(x) o= t L(x)/x dt

dt
t

= log A




a
It can be shown that each function U € I for which / U(t)/t dt exists for all

0
Lx)+
a > 0 can be written as U(x) =\'f
0

L(t)

. dt where L is slowly varying.

Here also L(x) ~

x .
J s dU(s) ~ U(Xe) - U(x) (x + ») is the auxiliary function.
0

1

x

From the definition of I we can see that if U(x) € I with auxiliary function

U(x) - Ul(x)
L(x)

‘L(x), U,(x) is measurable and > ¢ (x> ») where ce R is a
constant, then Ul(x) € I with auxiliary function L(x).

For an extensive treatment of the class I the reader is referred to (7.
Combining the results of de Haan (8) and Embrechts (5) we get

Theorem D : Suppose U : Rt > r* is non-decreasing, U(0+) = 0 and U(s) is
finite for s > 0
Then the following statements are equivalent:
(1) U(x) e 1 ;
(ii) U(1/x) e T

(ili) U(x})( - U(I/X) >
1
- é s dU(s)

We give a second order version of Karamata's theorems A and B for non-decreasing

Yy (x+ )

functions U. A necessary and sufficient condition for a function to obey the

second order relation is formulated in the following definition.

Definition U ¢ HRVa e T where ¢ € R

If UeHRVa then we say that L is the auxiliary function of U if L is the

auxiliary function of Hﬁil e I,

We call the function U Nl-regularly varying with exponent o. The II-varying
(=)

functions with exponent a form a subclass of RVa

2. Results

Our main result is the following theorem




Theorem 1. Suppose o > 0, B 20, U: RY R+, U(x)/xB non-decreasing

lim Eﬁgl_ = 0, and U(t) exists for t > 0
xv0 X

Then the following statements are equivalent:

(1) UeHRVB

(ii) aUEnRVa+B

Gii)  U(1/x) Ry,

They imply

. r(g+1) V)
(lV) — U(x) - - .
Fla+g+l) SRR TP 123D M
_q X _ T3
717 sd ucsy/sP [ (a+B+1)
0

(x » =)

and

o um>-7%ﬁ U(1/x)

xs f sd U(S)

0 sB

> -g(B+1) (x> )

where Y(x) = 3% log I'(x)

Conversely if (iv) with ae(0, l], B > 0 then (i)
and if (v) with B > 1 then (i)

Proof

(i) » (iv) and (i) -+ (ii)

x
We write U(x) = xP(L(x) + £ 28 gey with nex) = L 1 st<S) ery_ ()
0 t X 0 58 0

Then

") pgay U(x) U(tx) _ U(x)
& I'(a+B+1) 1 } (1- t)a 1 B thB x8

xBL(x) P( ) L(x)

dt »

P! a-1,8
> T ) é log t (1-t) "thdt (x »> =)




The last step is justified since by substituting the expression for U(x) we
find

L{tx) ,

1
1 oyl 8 _ _ _eyo-l B
m[é (1 t) {———= L(x) 1} dt é (1 t)

£ €
s x L(sx) s> §F

x& L(x)

and (x + ®) uniformly on (0,1) where € > 0

(see de Haan (7) ).

Now (iv) and (i) imply (ii) as mentioned in the introduction.

(i) » (v) and (i) » (iii)

We write U(x) = x° L(x) + K(x) where K(x) = x° EéE_ at.

By Karamata's theorem we have
| ® -t/x

1 B
—_— e
F(B+1) 0

xBL(x) - dt L(t) = o(xBL(x)) (x » =),

Substituting the expression for K(x) we find

K(x) - K(1/x) /T (B+1)
xBL(x)

L(tx)

at _
L(x) ¢t

1
/
0 (B+1)

J e-uusdu = GB(t)

. 1
Now we write ?TEIT) .

Then (%) S‘{- d—ﬁ dG5(t) =

_ L t L(tx) dt
<1 GB(t) (t) T ¢

€€

t xL(tx) | . uniformly on (0,1) and
€

x L(x)

-€_—-€
E——§E—£££§l >t € uniformly on (1,») (see (7) cor 1.2.1.4)
x L(x)

1
we find (*)-»I{I-G (t)}-—-fG()——- (x + =)




By partial integration the last expression equals

log t
T (B+1)

o FePde = - ype1)

Now we have analogously that (v.) and (i) imply (iii)

(ii) » (iii) follows immediately since L/ = U (1/x)

and we can use (i) » (iii)

(iv) + (i) We define L(x) = :
S

1% u(s)
X / sd—=* as in the proof of (i) + (v)
0

Now we can reformulate (v) as follows:

17 %7 £ B Ly 48
Ty L - @ t

1

x 1
a-1 B dt
T(o) S 7 (1=u) u du L(t) <

0 t/x

r(g+1) * .- de
T T(a+B+1) J L(t) = - L) (x + ®)

0

where £ =

_T(B+1) + 4 T (B+1)
I'(a+B+1) dg8 | T(a+8+D)

Or S L(t) k (%) 2% T EL(x) (x + @) where the kernel k is defined by
0

- x -
k(%) = Fzgy {(l—x)a ]xB - é-é (l-u)a luedu} for x < 1 and 0 for x > 1

For ae(O,l] and B > 0 the kernel is non-negative since (l-x)a_lx8 is

increasing on (0,1)

Moreover we have lim inf Lé%§%=; i since xL(x) is non-decreasing.

oo
t>1+

Application of theorem 6.2 in (4) then gives the result since

-~ 1 -~
k(p)= [ k@%)tp'l dt is decreasing for p > -B-1 and so k(p) = £ only if p = O.
0

(v) > (i) We define L(x) as in the proof of (iv) + (i)




Here we can reformulate (v) as follows:

/R L) L. x>

where £ = | + ¥(@+1) and the kernel k is given by

B

B -x -u
ue du + 1 I(O,l)(x)

-1
X
If B > 1 this kernel is positive for all x > 0 since the term xBe-x is

increasing on (0,B)

Here we can also apply theorem 6.2 in (4).

U(x)

B

(1) (iii) Writing V(x) = we have by proposition P4 in (9)

X8 ()
Vell iff s/ t d¥(t) ERV,"" where 8 > 0
5 .

Or : UeMRV, iff U(x) - H—ét—) dt eRVé”)
This is equivalent to

U(x)

le/x).~ Bx i(l/x) sRVém) where K(x) = -

The last statement is equivalent to U(1/x) elRV,., since

B

(1/¢t)

XK(1/x) = .

dt by partial integration

The case 8 = 0 is the result of de Haan (8).




Remarks
(a) (iv) and (v) imply (iii) and (iv) in theorem C since

U(x)

x
B=1 J st(s)/sp

0

is slowly varying

(b) The proofs of (i) + (ii), (i) » (iv) remain valid for B > -1

That (ii) implies (i) for -1 < B < 0 can be shown as follows:

[+
= -U(x) -8B S Uét) dt is B-varying at infinity

iff UelRV, by proposition P4 in (9)

Integrating from 1 to x gives
X

X
G(x): = =B [ f (S) ds dt - ]r U(t)dt e vafg)

iff a(l/x) -8 x é(l/x) - xa(l/x) € RVifz)

©o

s . .
where K(x) é ) ds. This proves the statement since

R(1/x) =/ — dt

For B < -1 a similar method can be applied.

For the Abellan theorems (i) - (ii) and (1) + (1ii) it is not necessary

that U(x)/x is non-decreasing, the Tauber" | part however cannot be derived

without extra assumption on U.

An alternative proof for the equivalence of (ii) and (iid can be given as

follows. We have UellRV iff for a > 1 ¢eRV (=) where
a a+B o

B
a

X
$(x) = —— 1 (x-5)! {lis-i)— - IY(s)}de

xcl+B 0

by the definition of «!! and theorem 1.4.1 in (7).

(=) . a+B (=) . a o1 ()
Now ¢eRVo iff x ¢ (x) eRVu+B iff x H(;) ERVa+B

where H(x) = Eigil

a

- U(x) by theorem B.




This is equivalent to x—B H(%) =

(=) 0

1 1
eRVo and so to ;§ U(;)eﬂ.

B (x)

B

X

=B o1, . . . . .
Remark that x U(;) 1s non-decreasing, since 1s non-decreasing.

-~

The existence of U is implied by the regular variation of U for non-decreasing
U.

Indeed for B-varying U we have

-t/

t t
X u(e) dt + — J’ Ut) dt

U(1/x) T
X h=1 LA

(-]
I e
0

1 x x
- U(t) dt = J e e
X

0
X
©o

<UG) + T UQRYS) e 2! Cyx) + ux) ¢ oR(B¥E) omml

n=1. n=1

It is evident that (i) implies regular variation of

) U(x) - o) ith t B. It is a n question whether
T (o+B+ 1) X 0 w1 exponen . 1s an open q

the converse statement holds true.

Example

log T(x+1) eIIRVl with auxiliary function 1. This can be derived from

X
P(x) - log x+ 0 (x + ») and log T(x+1) = / P(t+1) dt
0




3. Applications

Our first application concerns the Stieltjes—transform. Suppose U is non-

decreasing and right-continuous. We define

U =) ———— for p > 0, supposed the integral exists.

In 1931 Karamata proved the following theorem about Up* (see [11]).

Theorem 2 For p > 0 > 0 Up*(x) ~ x_cL(x) (x > ») where L(x) is slowly

varying, U non-decreasing

implies U(x) - F(o)rézg—o+]) X L(x) (x + »)

It is obvious that the converse statement UeRVp_O=$ UD%ERV_O also holds,

To extend this theorem for -regularly varying functions we need a lerma.

Lemma 1 (a) Suppose U]eRVa is increasing and continuous (o > 0), U is non-
1 x
decreasing. Then Uell iff ——— [ U(t)dU, (t)ell. In this case
U](x) 0 1
X 1
U(x) = === f U(t)dU, (t) &~ — L(x) (x - ©) where L is the auxiliary
U](x) 0 1 a

function of U.

Suppose U]eRV_a is decreasing and continuous (@ > 0), U is non-

-]
decreasing. Then ﬁ‘%%i I U(t)dUl(t)eH iff Uell. In this case
1 X

-]

U, (x) I U(t)dq(t) = (%) ~ % L(x) where L is the auxiliary function of U.
1 x

Proof We only prove the first part; the second part is proved similarly. Now

| x Ul(x)
S = -1 -1 -
U(x) U](x) é U(t)dUl(t) = U(x) U](x) é U(U1 (s))ds

X
= MU} () where ¥(x) = U, (x)) - <7 u(, ™' (s))ds
0

From UleRVu and the definition of the class I we see that Uell with auxiliary
function L iff U U]_]eH with auxiliary function M. The functions 1T and M

satisfy the relation L(x) ~ aM(U](x)). This finishes the proof of part a.




. + .
Theorem 3 Suppose p > ¢ > 0, U(fg non-decreasing on R, lim

xp x+0 x

U(x)
p-o

= 0.

Then the following statements are equivalent

(1) UEHRVO_O

(ii) U FemRrv
o] -0
Both imply
L) L Fx0)

T'(o) T(p-o+1) o

p-o-1 x
1
s sdllfg
0 sp

U(x) -

> (o) - Y(p-o+1) (x »> =)

Proof Since for p > 0 (t:«-x)mp = e~tT e T Tp_l d

T (o) t

[o2]

it follows that Up*(x) = f g('r)e‘XT dt where
0

Tp—] >

JORR g e T an(e) x)

By theorem 1 UEHRVD_ is equivalent to U(]/x)eHRVp_0

g

and since g(%) = ! x]—p U(1/x) we have g(%)eHRV

(p) 1-0

r
G-
%"

Writing H(x): = l g(é) we have by lemma | (b)

o o 1/x 1/x
Hell iff x [ [ g(t)dtel iff f g(t)dteHRV_0
0 0

if we can show that H(x) =‘F?%7 §p+o U(%) is non-decreasing and this is so

since U(x)/xp-o is non-decreasing

Thus g(l/x)eHRVJ_G iff (i)

Equivalently U: x) = §(x)/stRV_U by interchanging the roles of zero |
and infinity in (i) - (iii) of theorem 1. This proves the first part of
the theorem. By (%) and theorem | we have |

U(x) - %%5%317) L7 o 1/%)

- > —ylp-o+1) (x » =),

xo~0-1 S sdu(s)/sP™°
0




. .1
From the last expression we can see that g(;)eHRVI_U
x
[ sd
0 s

U(s)

p—C

I'(p-o+1)

3 : . 1 ]
with auxiliary function T'(p) x

This implies that

Combining this with the last expression gives the desired result.

Remark The existence of Up* is implied by the regular variation of U. To

nrove this we partition the domain of integration by the points

x, 3x, 7x,...,(2n-l)x,...

U(2x)
Tx) =2

Repeated application of this inequality yields
no

If U is p-0 varying then p=0/2 for x 2 X

v ¥x) = of —HﬁEl—:] dt<cUx).x° 2 2 <o
P 0 (t+x)P n=0)

.

The second application concerns the Lambert-transform
+ +
Suppose n: R > R and nelL'(dt/t) on (0,w)

: ) n ©  us
We define n(s) = s / ——— n(u)du for s > 0
0 1-e U$

N, .
An Abel-Tauber theorem on regular variation of n, n is given by Kohlhecker 12y,

a similar result for the class N is derived in (6).

We start with an Abelian result.

n(t)

. integrable on finite intervals of (N,)

Theorem Suppose neHRVé ® > 0) and

Then g(l/x) eHRVB

Moreover

¢ n(x) - g(l/x)

> c (x + =)
xBL(x) 2

where ¢, g (B+1) F(B+1)

= - E% ((B+1) T (B+1))

the auxiliary function of n.




Proof For B > 0 we define c, = Z(R+1) F(B+1) - % =

B

Substituting this we can write

X

c n(x) + f n(t)

B8 o ¢t

xPL (%)

dt - g(l/x)

n(xu) _ n(x)
)Bs s
X u X

L(x)

For x > » the last expression tends to

! B8f 1 - > uBe‘u
fuf —- log u du - f
0

v l-e 1 l-e—u

as in the proof of the main theorem

The Abelian side of the main theorem gives now
x n(t)
1 nx) - 7 t d

B
0 > -1 (x > =)
XBL(X) g2

t

Comhination of the last results yields the theorem.
Remark This theorem is a refinement of Kohlbecker's result

Z(B+1) T(B+1) n(x) - g(l/x) (x » @) for B-varying n.

Suppose nsHRVB (B > 0) and a(x)/x integrable on finite intervals of (0,)

If we define y(x) = I 1 n(®) and suppose
1<k<x k

n(X)/x8 to be non-decreasing, then erRVB.




Moreover

Z(B+1) n(x) - y(x)
xBL(x)

+ = L' (B+1) (x > )

where L is the auxiliary function

We may suppose w.l.o.s. that n(x)

Then: g(s) =g . ) e—kus n(u)du
k=1

By the main theorem we have

x(x) - g(l/x)

1
T(R+1)
z (g+1) xPL(x)

> = P(gH) (x> )

Combination with the last theorem then gives the desired result.

Corollary In this case we have Z(B+1) n(x) -~ x(x) (x > =)

For the Tauberian converse of the last theorem we need the following lemma.

Lemma If L is slowly varying and non-decreasing for x > 0

L(x) -Y
Lix-1) < 1 +x  for some >0, x ;:xo(y), then

T A“ém) u(%) = 0 (x"L.(x)) (x > =)
m<x

x
where 8 > 0 and U(x) = f thL(t)
1

As in (6) we define a = U(n) - U(n-1), n > 2, a
We divide the sum into three parts.

Then I Eﬁﬂl

where N(x) = I
’ m<x




Since N(x) > 0 (x > ®) we have

T a NGE) < m = C U([_x] ) = O(XBL(X)) (x > =)
m<x ;

by Karamata's theorem A,

: x
Now 1(x) = U(x-1) = xPL(x) - (x-DB L(x-1) =g 7 87! L(t) de
x-1

Substituting this we find for x > Xy = x4 (Y)

bm) { v - u( [;g] )} <

B
1 x X X
IR TR BN

m

x/x

L&) < B {L(x) s s
1

B-y 0 -
= (‘;%) u 1-B+y L(—:—;—) du}

X

T o) + ; I]‘(—}Y— dy = o(L(x))  (x + =)
0

by theorem A if we choose 0 < ¥ < B+]

The last sum is bounded since

l’—(—"‘—)—{U(ﬁ) —U([;’;-])} <200 Lag

m
Tm<x
= =
0

1=0(1) = o(®LG)) (x>
X <mex
%0

This proves the lemma.




Theorem TIf y(x) ) 1 n(ﬁ)_eﬂRV B >0,

1<mex

B

. +
T(x): = f'sd x(s) is non-decreasing on R
X gB

L (X) =Y
T o1y + < 3 >0 >
Tax-1) = 1 x for some ¥ , X *=X0(Y)

. A . 1
then n eHRVe with auxiliary function L(x)

z(B+1)

By the representation theorem in de Haan (7) we can write

B . . .
x(x) = x L(x) + xB J tt) dt where L is slowly varying.

Mobius inversion now gives

B+1

m<x m

L(u)
u

x
wvhere ¢(x) = [
1

du and V(x) = T ufzz L(%)
m<x m

Substituting this gives

n(x) -B | F T L) NE) du + R(x)

x
where R(x) = gi(X) -Bf tB—] V(t) dt and N(x) = I Hém)
1 m<x

Now we have by dominated convergence

L v au = YD @ B 1)

1

dv .

EET%:T) xBL(x) (x > ©) since

(x » =)

) (k) 7 dv 1 p(k) _ N(x) 1
dv = 1§ 2222 == T > TE
B 1 k<x k v8+] B k<x k]+6 BxB Br(1+8)

and N(x) - 0 (x »> =),




Application of the lemma now gives

x/m :
rotfance) = exPLix)) -
1

* gl
R(x) = xv(x) - g / 87! v(e) ae
1

x
This proves that Eigl - EE ! S L(x)
x x 1 BL (g+1)

(x + =)

Application of proposition P4 in (9) then gives neHRVB.

L(u)

Remark In this case we have n(x) -~ f du (x » «)

C(B*‘)
x
Theorem Suppose R(x): = 7 l-n(--{) = P r Eéﬂl du + o(xﬁL(x)) (x » =)
m<x 1
with L slowly varying and g > 0.
g-R(s)

1
- [ s
x 0 sB

. . +
If L*(x): = is non-decreasing on R

L, (x)

G ~Y
and L*(x-l) 21 +x ' for some ¥ > 0, x > xo(y)

: . eq e . 1
then nellRVg with auxiliary function Z(BD) L(x)

8 x L,(t)

We have R(xX) = x L* (x) + xB r dt €llRV
p t B

where L* satisfies the conditions of the last theorem.
This proves the theorem.

The author is indebted to dr. L. de Waan for his valuable advice and criticism.
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