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ABSTRACT

In this paper we construct universal infinite dimensional formal group

laws and formal A-modules, This requires the consideration of formal

group laws and formal A-modules over topological rings because universal

infinite dimensional formal group laws and formal A-modules over

discrete rings obviously cannot exist.

The main motivation for these constructions is the classification theory

for formal A-modules. Two of the main operators in this theory

"q-typification" and fff, a Frobenius type operator, are defined via the

universal example making it desirable to have also infinite dimensional

universal objects. This is all the more desirable because the proofs for

the classification theory, even for finite dimensional formal A-modules

only, unavoidably involve infinite dimensional formal A-modules.

Sept. 4, 1978 Preliminary and Confidential



1. INTRODUCTION AND MOTIVATION.

Let B be a commutative ring with 1 E B. An n-dimensional commutative formal

group law over B is an n-tuple of power series F(X,Y) in 2n variables

XI, Xn; Y1, Yn with coefficients in B such that F(X,O) E X,

F(0,Y) E Y mod degree 2, F(F(X,Y),Z) F(X,F(Y,Z)) (associativity) and

F(X,Y) = F(Y,X) (commutativity). From now on all formal group laws will be

commutative.

Let A be a discrete valuation ring with finite residue field k. Let B E AlgA

the category of commutative A-algebras with I. A n-dimensional formal

A-module over B is a formal group law F(X,Y) over .B together with a ring

homomorphism pF: A -÷ EndB(F(X,Y)) such that pF(a) E aX mod degree 2 for all

a E A. One would like to have a classification theory for formal A-modules

which is parallel to the classification theory of formal group laws over

Z:
(p)

-algebras. Such a theory is sketched below and details can be found in

[2], section 29. As in the case of formal group laws over Zi (p)-algebras

the theory inevitably involves infinite dimensional objects. Now two

important operators for the formal A-module classification theory, viz. 6

and f, the Analogues of p-typification and Frobenius, are defined bywrr

lifting back to the universal case, and, for the moment at least, I know

of no other way of defining them, especially if char(A) = p > O. In case

char(A) = 0, cf. also [1].But by the very nature of the usual definition of

infinite dimensional formal group law and formal A-module there cannot exist

universal infinite dimensional formal group laws and formal A-modules, so

that the definitions of c and f break down. In [2] this problem is

surmounted by an ad hoc construction which works in the particular case

needed (Witt.vector like formal A-modules). But this method decidedly lacks

elegance. It is the second and main purpose of the present paper to remedy

this by showing that after all, in a suitable sense, universal infinite
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dimensional formal group laws and formal A-modules do exist (and have all

the nice properties one could wish for). As a byproduct one obtains then

of course such results as liftability to characteristic zero and existence

and uniqueness of logarithms also for infinite dimensional formal group

laws and formal A-modules.

2. SKETCH OF THE (COVARIANT) CLASSIFICATION THEORY

FOR FORMAL GROUP LAWS OVER ZZ -ALGEBRAS.

Let p be a fixed prime number. Let F(X,Y) be an m-dimensional formal

group law over a ZZ
(p)

-algebra B. A curve in F over R is simply an

m-tuple of power series y(t) in one variable t with coefficients in B

such that y(0) = 0.

Two curves can be added by means of the formula

(2.1) y(t) F(y(t),6(t))

giving us a complete topological abelian group t(F,B); the topology is

defined by the subgroups of curves y(t) such that y(t) E 0 mod(degree n),

n = 1,2,3,

b E B.

In addition one has operators yn, fn, <b> , for n

These are defined as follows

(2.2) V y(t) = y
=n

•

n F
<b>y(t) = y(bt), f y(t) = E y(t

1/n

where tn is a primitive n-th root of unity. This last definition must

be rewritten slightly in case n-th roots of unity make no particular

sense over B, cf.[2], section 16 for details.

A curve y(t) is called p-typical if igy(t) = 0 for all prime numbers

q p. The subgroup of p-typical curves, tp(F;B), is complete in the

induced .topology and stable under f and y and the operators <b>. Moreover
-P -P

using that B is a ZZ 0-algebra there is a projector e: t(F;B) (F;B)

given by the formula

(2.3)
-1
n p(n)V f

=n=n

where p(n) is the Maius function. We can assemble the operators f 
p-
. V <b>

=

into a ring of operators Cart (B) consisting of all sums

co

E Vi<b. .>fi
1'3 =P



with for all i only finitely many b. . # O. For the calculation rules in3.,3 
Cart (B), cf. [21,16.2, 28.1. The'subring { E Vi<b.>fl} is naturally isomorphicP 

i=o =P 1 =P

to W .(B), the ring of Witt vectors over B of infinite length associated toP,
the prime p. Using this we see that t (F;B) is a module over Wp,.(lais)(l,y)

P
with calculation rules fV = p, Vf = (0,1,0,...), fx = x

a
f, xV = Vx for all_ . .. . = . .

x E W p (R) where a is the Frobenius endomorphism of W (B). The functor

F(X,Y)1-4- tp(F;B) turns out to be faithful and its image can be described

without much trouble.

3. A CARTIER -DIEUDONNE MODULE CLASSIFICATION THEORY

FOR FORMAL A-MODULES (I).

Now let A be a discrete valuation ring with uniformizing element Tr and finite

residue field k of q elements, q = pr. Let K be the quotient field of A. We

are going to describe a classification theory for formal A-modules which is

completely analogous to the theory sketched in 2 above. In this theory f

gels replaced by f , y by V , W (B) by the appropriate ring of ramified=n = qn,00

Witt vectors WA _(13), B E Alg , and Z: (F,B) by t (F;B). Of course we shouldp
have f V = n, V f = (0,1,0,0,.), xV = V x

a
, f x xaf . In case A is=c1=71. =q =q =7T. =Tr

of characteristic zero., p = tor this shows that f and f should be 'related as=n =p

(3.1) if . fever-1

Here we shall not discuss the ramified Witt vector functor WA : Alg Alg

cf. [2[, [3], or [4]. It can be most easily obtained by taking q-typical curves

in the Lubin-Tate formal group law over A, justas W (-) can very nicely be

described via the p-typical curves in G, the multiplicative formal group

law. Alternatively WAH.(-) can be described via the polynomialsq,

(3.2)
n-1

X + +
o I II • + irriX , n = 0,1,2,

n-1
exactly as W .(-) is constructed via the Witt polynomials XP + pXP

P, 1 • • •

We shall concentrate on the definition of f and the "q-typification" projector

6 : 1:(F,B) I:q (Fp), partly also to illustrate the adagium "do everythingq 
first in the universal case", which appears to be particularly effective,

in fact even necessary, when dealing with formal A-modules.



Now there seems to be no obvious analogues of the definitions for f and=p
6 given in (2.2) and (2.3). Things become better if we restate these

definitions in terms of logarithms. Assume therefore that B is torsion free

and let f(X) E B 011IV[X]im be the logarithm of F(X,Y), i.e. f(X) is the

unique m-tuple of power series over B ej101 such that f(X) E X mod(degree 2),

F(X,Y) = f-/(f(X) + f(Y)). Setting

(3.3)

we then have

(3.4)

(3.5)

CO

f(y(t)) = .E x.t x. E B Ole
1=

co
f(tny(t)) = E nxniti

i=1

00

f c y(t))= E x .tP
•
j=o 

p3

Now let (F(X,Y),pF) be an m-dimensional formal A-module over B E

Assume that B is A-torsion free. An A-logarithm for (F(X,Y), is a power

series f(X) E B KE[X]fm such that f(X) 1i X mod degree 2 and such that
A

l a(X) + f(Y)) and p
F
(a) = f (af(X)) for all a E A. It is an

immediate consequence of the construction of a universal formal A-module

below in section 5 that A-logarithms exist. Uniqueness is then easy. Given

A-logarithms there are obvious analogues of (3.4) and (3.5) viz.

F(X,Y) = f

= 
f1f y(t) 

=TT

e y(t)

co
E 7TX it )

Co

= f ( E x
i=0 ql

It remains of course to prove that the m-tuples of power series thus defined

are integral (i.e. that they have their coefficients in B not just in B 0
A 
K).

This again will be done by proving this to be the case in the universal

example, which, fortunately, is defined over the kind of algebra to which

the functional equation (integrality) lemma applies. This lemma is our main

tool for proving integrality statements. It is remarkably "universally"

applicable, cf. also [3] for some other illustrations.



4, THE FUNCTIONAL EQUATION LEMMA.

The ingredients we need are the following

(4. 1 c L, Ot. c B, a L L, p, q, s • ••2'

5

Here B is a subring of a ring L, 01 is an ideal in B, a a ring endomorphism

= 1,2,3, ..•

are m x m matrices with coefficients in L. These ingredients are supposed

to satisfy the following conditions

(4.2) p €01. , a(b) E bq mod m for all b E B, ar ,k))Crt. c B for all

i,j,k,r

HeresiOXisthe(iXentryofthematrixs.,j,k E {1,...,m}.

If g(X) is an m-tuple of power series in Xi, Xn with coefficients in L

then we denote with ;g(X) the m-tuple of power series obtained by applying

a to the coefficients of g(X).

4.3. Functional Equation Lemma. Let f(X) E LHX11111 be an m-tuple of power

series in m determinates X1, • • • , X
m 

and 7(R) E Lj[R]im an m-tuple of power

series in n 
indeterminates1, 

x
2' '

. X
n
. Suppose that f(X) E b

1
X

mod(degree 2) where bl is a matrix with coefficients in B which is invertible

(over B). Suppose moreover that

. i 00 
m

(4.4) f(X) E s.41(0 ) E Bf[X]im, TOO E s4f(X4 ) E B[DO]1=1
•

•
i=]

where Xq and Xq are short for (Xq •••,0 ) and (X ?,...,X). 
Then we have1

F(X,Y) = f f(X) + 'f(Y)) E BHX;Yiim

f-l a(R)) E

Let h(X) E B[[X]ra, f(X) = f(h(X)). Then

co" ^ i
(4.7) f(X) E sigf(Xcl ) E 131[X]im

i=1
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.046

Let a(X) E 13[[X]] 13(X) E LL[X]iin and r = {

4.6

,2,3,

(4.8) a(X) E 13(X) mod aj 4.4 f(a(x)) f(13(X)) modal"'

For a proof c [2], section 10.

Then

5. A UNIVERSAL m-DIMENSIONAL FORMAL A-MODULE.

Foreachmultiindexa=oflengthm,n.EIN U {01 let

lal = n1 n
m 

and sa = (sni ,...,snm) for all s ElN U {0}. For each

a such that lal > 2 and i E {1,...,m} let U(i,a) be an indeterminate. We

denote with c(i) the multiindex (0,...,0,1,0,...,0) with 1 in the i-th spot.

We set U(i,c(j)) = 0 if i j and U(i,E(i)) = I. For each a qrE(i) for

all r = 1,2, ..., i E {1,...,m} we let U
a 

denote the column vector

U(1,a), U(m,a) and for each r € IN, U r denotes the m x m matrix

(U(i,qrc(j)). Finally let X
n

1
= X

1 
Xm
m
. For each multiindex

a such that lal >1 we now define the m-vector aa(U) E K[U]m by

(5.1)

r i
- (qA(

 
U) = E Tf

t 
U U

(r r 13)
r2

wherewhere the sum is over all

•• •

+...+r t-h (gr i t+..+r ,
'U,

,tElNU{}suchthat

ri
q q 

r
t 

.00 = a and fi grE(i) for all r i E {I,... ,m}. Here
(qi)

is the matrix obtained from U r by raising each of its entries to the

q1-th power. We now define

(5.2)
fA 
(X) = E a Xa E K[U][[X]im

ial>1 
a

Now let L = K[U] A[U]=B4 O1.--.TIA[U],S..---TT
-1

U . anda : L-*-Lthe

K-algebra endomorphism that sends each U(i,a) into its q-th power. Then the

conditions (4.2) hold. Also we have



(5.3 E X mod(degree 2),

It follows that if we define

m .
A q

* U
i=1

E A[U][[X]im.

-(5,4) F(X,Y) = (ft)-14(X)+4.(Y)), .(1(a) = (f
A
)

1
(af

A
(X))

U U

A A
then (F

u
(X,Y),p

u
) is a formal A-module over A[U] (by parts (4.5) and (4.6)

of the functional equation lemma 4.3).

5.5. Theorem.

A .
(F

U
A
(X
' 
Y)
' 

p
U 
) Is a universal m-dimensional formal A-module.

I.e. if (G(X,Y),p ) is any m-dimensional formal A-module over an A-algebra

B then there is a unique A-algebra hamomorphism (1): AN] B such that

F(X,Y) = G(X,Y) and 44(a) = PG(a) for all a E A.

For a proof cf. [2], section 25.

6. A CARTIER-DIEUDONNE MODULE CLASSIFICATION THEORY

FOR FORMAL A-MODULES (2).

For each n i E C1,...,m} let C(n,i) be an indeterminate. Let C
n 
be the

columnvector (C(n,1), C(n,m). Now consider the curve

(6.1)

00

IC(t) = E C
n
t
n

n=1

A
in the universal formal A-module (F (X,Y),P

A
) considered as a formal

A-module over A[U;C]. This is again the sort of ring to which the functional

equation lemma applies. It follows by part (4.7) of lemma 4.3 that the

m-tuple of power series in one variable

(6.2)
co •

fA(y (t)) = , :K. 1E K[U;C
U C 1

n=1

satisfies the functional equation condition (4.4). An easy check shows that

then the m-tuples of power series

00 
ni

E x .C1
j=0

00

E rrx 
qn

t
n

n=1

also satisfy this condition. It now follows from part (4.6) of the functional



equation lemma that

E
q
y
C
(t) =

(t) = (

A -1

A

00

( E x )
j=o q3

03

( E irx tn)

n=1 qn

8

have in fact their coefficients in A[U;Ci.
A

Now (F
u
(X,Y),

pA 
' 
y
C 
) over A[U;C] is (given theorem 5.5) clearly universalU 

for m-dimensional formal A-modules together with a curve.

Let (F(X,Y),PF) be a formal A-module over B E ,LilgA and let y(t) be a curve

in F(X,Y) over B. Let 4): A[U;C] B be the unique A-algebra homomorphism
AA

taking (Fu,pu) into (F,pF) and yc(t) into y(t). Then we define

E Y(t) = 4)*C Y

f y(t) = 44f y (t)

It follows immediately that this agrees with the tentative definitions

(3.6), (3.7) of section 3 above (if B is A-torsion free so that we have

a unique A-logarithm available).

Let (F;B) be the image of 6 : le(F,B) t(F;B). One now easily proves that

eq is the identity on t (F;B) and thatleg(F;B) is stable under

<b> for an b E B. (Recall that V y(t) = i(t(1), <b)-y(t) = y(bt)). one_q
checks that

(6.7) f V = [7T
=7T=q

where [11- is the operator induced by the endomorphism p (7) of F(X,Y).
Further

(6.8) f <b> = <0>f <b>V = V <13q>=7 =71- =q =q

We can assemble all these operators into a ring CartA(B)

(6.9)
00

Cart (B) = E Vi<b. .>13}
j=0 =q I" =Tr



with for every i only finitely many b. i O. The subset
00

{E V<b1>f,} turns out to be a subring naturally isomorphic to WA (B),
i=o 

q,

the ring of ramified Witt vectors associated to A with coefficients in

There results a classification theory of (finite dimensional) formal

A-modules in terms of WA .(B)[f 
q

,V modules which, both in statements

and proofs, is completely analogous to the theory for formal group laws

over ZZ -algebras. In particular there is an analogue of Cartier'sCP)
first theorem. It states that the formal A-module WA .(X;Y) represents

q,
the functor Ft-* (F;B) going from formal A-modules over B tO their

modules of q-typical curves. Here WA is the (infinite dimensional)q,c0

formal A-module with as A-logarithm the column vector

-I q -2 q
2

X + 7
-I

Xcl X + +
1 o 2 1 o '

• •

As in the case of formal group laws this theorem is important for the

proofs of the classification results. This makes it necessary to be able

to define 6 and f also for curves in WA , which can be done by an ad hocq,m

method. It would be nicer to be able to do it also for all other infinite

dimensional formal A-modules. It would also be more elegant to be able to

extend the classification theory sketched above to all formal A-modules.

To do this it is necessary to define 6 and f also in those cases. This,=1"
judging from, what we did in the finite dimensional case,will involve

something like universal infinite dimensional formal A-modules, a gadget

which, in terms of the usual definitions, obviously cannot exist. This, the

main topic of this paper, is what I take up next.'

Before I do so let me remark that the analogy: "formal group laws over

ZZ
()

-algebra" - "formal A-modules" also extends to give a "tapis de Cartier"

and related type results for lifting formal A-modules; cf. [2], section 30.

7. "CLASSICAL" INFINITE DIMENSIONAL FORMAL GROUP LAWS AND

FORMAL A'-MODULES.

Let 
(X.)iEI 

be a set of indeterminates indexed by an arbitrary index set I.

The formal power series ring B[[X.O.EI]] is now defined as the ring of all

formal (infinite) sums E c X
a 

where a runs through all functions
a
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a: I -*IN U {0} with finite support, i.e. supp(a) = {i C ila(i) 01 is finite.
a a

We shall call such functions multiindices. Here X is short for II X
(i)
. .

iCsupp(a) 1

One can now consider elements F(i)(X,Y) E B[[Xi,Yi;i E III and at first

sight one could define an infinite dimensional commutative formal group law

as a set of power series F(i)(X,Y) E B[[X;Y]] indexed by I such that

F(i)(X,Y) E Xi + Yi mod(degree 2), F(i)(X,Y) = F(i)(Y,X) and such that

(7.1) F(i)(X,F(Y,Z)) = i)(F(X,Y),Z) for all i €1

However, in general this associativity condition (7.1) makes no sense because

the calculation of the coefficient of a monomial XaYY' in F(i)(X,F(Y,Z)) or

F(i)(F(X,Y),Z) involves infinite sums of elements of B. The "classical"

solution is to require a finite support condition in the following sense.

7.2. Definition.

Let I and J be index sets. Let f(X) be an I-tuple of power series in the

indeterminatesX.,j E J. We say that f(X) satisfies the monomials have 

finite support condition if for all multiindices a: J U {0} there

are only finity many i E 
a 

such that the coefficient of X in f(i)(X) is

nonzero.

This property is stable under composition and taking inverses in the sense

of the following lemma.

7.3. Lemma.

Let I, J, K be index sets. Let f(X) be an 1-tuple of power series in the

X jEJand g(Y)aJ-tuple of power series in the Y
k'
kEK. Suppose

that f(X) and g(Y) both satisfy the monomials have finite support condition.

Then f(g(Y)) is well defined and satisfies the same condition. Further

if f(X) E X mod degree 2 then f 1 (x)is well defined and also satisfies

the monomials have finite support condition.

Proof. Write f(i)(X) = E ri,ja

(7.4) f(i)(g(Y)) = E r. s.
se'

a j
1 ,(3.1 sjt't

g(j)(Y) = E Formally one has

f3.
1 t

where the sum is over all a and sequences such that
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0, the zero. multiindexp ann j + + j
t 
= a, where j E J is identified

with the multiindex c(j): J U {0}, i 1, j'1-4 0 if j j'. Given

y: K 1N U {0} there are only finitely many sequences such

that 13. 0 0 and f3. + +
t 
= y. For each 13. there are only finitely

many j such that s4 0 0; finally a = j1 + + t.It follows thatJs Pi
in the sum (7.4) only finitely many coefficients of YY are nonzero

(for a given y). Thus f(g(Y)) is welldefined. Also for every y there are

only finitely many a, such that there exist nonzero sj , s.
1 I

such that a = j + 
1
+ ...+

t 
= y. For each a there are only

finitelymanyisuchthatrict iO. It follows that the coefficient of

YY in f(i)(g(Y)) is nonzero for only finitely many i. The second statement

of the lemma is proved similarly by comparing coefficients in f (f(X)) = X.

Using these ideas we can now give the "classical" definition of infinite

dimensional formal group laws and formal A-modules as follows.

7.5. Definitions.

An (infinite) dimensional formal group law F(X,Y) over B with index set I

is an I-tuple of power series F(X,Y) =

F(i)(X,Y) E B[EXi,Yi;i E I]] such that F(X,Y) satisfies the monomials

have finite support condition and such that F(X-,0) = X, F(0,Y) = Y,

F(F(X,Y),Z) = F(X,F(Y,Z)). If moreover F(X,Y) = F(Y,X) the formal group

law is said to be commutative. All formal group laws will be commutative

from now on. A homcrmarphism from F(X,Y) with index set I to G(X,Y) with index
set J is an J-tuple of power series a(X)'in Xi, i E I with coefficients

in B, which satisfies the monomials have finite support condition such

that a(F(X,Y)) = G(a00,a(Y)). Finally a formal A-module over B E AlgA

with index set I is a formal group law F(X,Y) over B together with

a ring homomorphism pF: A -* EndB(F(X,Y)) such that pF(a) = aX mod(degree 2)

for all a E A. (This implies of course that all the pF(a) satisfy the

monomials have finite support condition). Note that the various formulas

above like F(X,F(Y,Z)) = F(F(X,Y),Z) and a(F(X,Y)) = G(a(X),a(Y) make

sense because of lemma 7.3.

7.6. It is now immediately obvious that a universal formal group law with

infinite index set I cannot exist because there is no predicting for which
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finitelymany i E. I the coefficient of a given monomial XY in F(i)(X,Y)

will have nonzero coefficient. The way to remedy this is to extend the

definition a bit by considering complete topological rings B whose topology

is defined by a (filtered) set of ideals at, s E S such that (Ins = {0}

(so that B is Hausdorff).

7.7. Definition.

Let B be as above in 7.6 and let I and J be index sets. An I-tuple of power

series f(X) inX jEJwith coefficients inBis said to be continuous 

if for all multiindices a: J 4.1IN U {0} and all s E S there are only finitely

many i E I such that the coefficient of Xa in f(i)(X) is not in ms. It is

an immediate consequence of lemma 7.3 that the composite of two continuous

sets of power series is welldefined and continuous and that the inverse

power series f (X) of a continuous power series f(X) such that f(X) E X

mod(degree 2) is also welldefined and continuous.

7.8. Definitions.

Let B be as above in 7.6 and let I be an index set. A commutative infinite

dimensional formal roup law over B is now a continuous I-tuple of power

series overBin 
X,
.Y iEIsuch that F(X,O) = X,F(0,Y) = Y,

F(F(X,Y),Z) = F(X,F(Y,Z)), F(X,Y) = F(Y,X). Note that the condition

F(F(X,Y),Z) = F(X,F(Y,Z)) makes sense again (because it makes sense

mod
s 
for all s and because B is complete). The definitions for homo-

morphisms and formal A-modules are similarly modified by requiring all

I-tuples of power series to be continuous. The definitions of 7.5 correspond

to the case of a discretely topologized ring B (defined by the single ideal

0).

8. CONSTRUCTION OF AN INFINITE DIMENSIONAL UNIVERSAL

FORMAL GROUP LAW.

8.1. Let R be any ring. Let I be an index set. The first thing to do is

to describe the appropriate ring "of polynomials" over which a universal

formal group law with index set I will be constructed. For each multiindex

a : I -4-1g U {0} (with finite support) such that ial > 2 and each i E I

let U(1,a) be an indeterminate. Consider the ring of polynomials

E I, a: I U {0}, tat > 21.

Let T be the set of all functions on the set of multiindices on I to the
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set of finite subsets of I. For each T E T let yet c:R[U] be the ideal

generated by all the U(i,a) such that i T(a) We now denote with

R<U;I> the completion of R[11) with respect to the topology defined by

these ideals, and with OLT the closure of Ger in R<U;I> for all T E T.

If I is a finite set then R<U;I> is simply R(U(i,a)) because one of

the possible functions T in this case is T(a) = I for all a and then

Ot
T 
= 0. For each finite subset 'cc: I there is a natural surjection

& • R<U;I> -+ R<U;K> = REU(i,a)isupp(a) U {i} c:K]. In fact the kernel

is the ideal 
0/T(K) 

defined by the function T(K) E T, T(K)(a) = 0 if

supp(a) K and T(K) (a) = K if supp(a) c: K . The Ot 
T(K)' 

K C: 1, K finite

define another, coarser, topology in R[U(i,a)] which ist however, still

Hausdorff. This means that R<U;I> is a certain subalgebra of 4m R<U;K>,

which in turn is a proper subalgebra of the projective limit of the

polynomial rings in finitely many U(i,a)t s over R. For example ifco
I =11\1 then E U(i,2c(i)) where E(i) is the multiindex E(i)(j) = 0 if

i=1
j i, c(i)(i) = 1 is an element of 1..ka R<U;K> because for each K it is

a polynomial modet 
Toc„i 

But this element is not an element of R<U;N>

because it is not a polynomial modulo oft if T is, e.g.,the function

T(a) = supp(a).

The R-algebra R<U;I has an obvious freeness prOperty with respect to

topological R-algebras B as in 7.6. Let B be such an algebra. And for

every a: I 4-14 U {0}, al > 2 and i E I let b(i,a) be an element of B.

Suppose that for every a and every s E S there are only finitely many

b(i,a) ins. Then there is a unique continuous R-algebra homomorphism
R<U;I> -* B such that (1)(U(i,a)) = b(i,a) for all i,a.

8.2. Finite Dimensional Universal Formal Group Laws,

We recall the construction of an m-dimensional universal formal group law

in f2), section 11. Let I be a finite set. For each multiindex

a : I U (0} such that lal. > 2 and each i E I let U(i,a) be an

indeterminate. Let 72[U](= W.,<U;I> if I is finite) be the ring of

polynomials in these indeterminates.

In addition we define U(i,c(j)) = 1 if i = j and = 0 if i j where c(j)

is the multiindex c(j)(k) = 0 if k j, E(j)(k) =I if k = j. For each

multiindex a let U
a 

be the columnvector 
U(i,a)iEV 

For each prime power

q. p r p a prime number we use U to denote the matrix



U = 
(U(i,qc(j))i j. 

Using all this notation we now define for all,EI 
a : I -+E U {0} with lal > 1 a column vector aa with entries in Q[U]

by means of the formula

(8.3
q

(q1) (q
U U . U

(12 qt

where the sum is over all sequences

qt-1,qt) n(q )

t--

Pt-1

(q

Pt

,), t E {0},

qi =
S.
 si ElN, pi a prime number, a multiindex not of the form

r EDT, j E I, p a prime number, such that q1...q0 =

U is the matrix obtained from U by raising each of its entries to
q (s)the power r and U has the obvious analogous meaning. The numbers,

n(q i ,...,qt) are integers which can be chosen arbitrarily subject to

the conditions

(8.4

r .
= 1 mod pl if p

mod

= P2 =
• •

• • •

1
r+1'

Pr+

,I•••••

14

r <t

r < t

Sometimes, in order to have reasonable formula for the U's in terms of the
a's it is useful to choose the n(q i,...,q

t
) in a very special way, cf.

[2] section 5.6 and section 34.4.

We now define

(8.5) f (X) = E a Xa

la l>1 a

Then, as is proved in section 11 of j2 F (X,Y) is a universal formal
group law with finite index set I. The integrality of Fu(X,Y) is a consequence
of the functional equation lemma 4.3.

X,Y) = (f (x) + (Y))

8.6. Construction of an Infinite Dimensional Universal Formal Group Law.

Now let I be an infinite index set. Let M<U;I> be the ring constructed

above in 8.1.For each finite subset K C: I let a<U;ic >be the natural quotient

ZqU(04,i)Isupga) U fil c: K3 of a<U;I>. For each K let f,
u 

(X) and
,K

Fu,K(X,Y) be the power series in Xi, i E K and X.,Y., i E K defined by 8.5).

Fix a choice of the n(qi, ..,q) for all sequences of prime powers
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(q1 •

For each pair of finite subsets K,XC: I such that Kc: A we use

ZZ.<U;X> --+ 7Z<U;x, Q<U;A> 1-* q<U;K>, (1)<U;A>UXi;iE Ail -* CVU;A>[[Xi;iEK]]

7Z<U;X>[[Xi,Y1;i. E M<U;K>[[Xi,Yi;iEK)] to denote the natural

projections (U(a,i),-+ 0 if A :) supp(a) U {i} 4: K, U(a,i)t-4- U(a,i) if
supp(a) U c: K, Yi,Xe-+ 0 if i E A • K, XY if i E K).

Now note that (PA,KFu,A(X,Y) 
=FUK(X'Y) 

and hocfu,x(X) = fu,K(X). This
, 

means that we can define I-tuples of power series fu(X) and Fu(X,Y) as

follows. For each multiindex a: I 4-1IN U {0} and pair of multiindices

a,(3.: I -'-IN U {0} and element i E I consider the finite subsets K such

that K supp(a) U supp(i) U {i}. Now consider the coefficients

e 
K 
(i) and e 06K(i) of Xa and XaYl3 in f

U,K 
(i)(X) and F

U,K 
(i)(X,Y)a,  

respectively. In virtue of the compatibility of the fu,K(X) and F.„,
uK

(X,Y)
,

under the 4), the systems of elements e (i) and e (i) determineA,K a,K a0.15,K
welldefined elements e

a
(), ea(i) in 4.m 01<U;K> and 14.m Z.Y<U;K>

respectively.

We now define f (X) and F (X,Y) by

• = E e (i)Xa

ial>1 a

= E e (i)XaY
a 13

I claim that in fact e (i) E (1)<U;I> c: lim CII<U;K>.
a

Indeed we clearly have

q l
(8.7) ea(i) = E ))U(i1 ,q2e(i2)) .

q l ...qt-
ct-pq Eat))

q ...q1
,f3) '—"qt)

where d(qi,...,qt) = pi ...pt n(q i ,...,qt)n(q2,...,q
t
) 

t-1 t t
and where the sum is over all sequences (q 1 ,...,qt,(3) as in the sum 8.3

and all i
t 
E I. Let T E T. Because q1...q0 = a we have that

supp() = supp(a). So there are only finitely many it such that U(it,13)

for each of these it there are only finitely many it..1 such that U(it,qtc(it))

et . , and for each of the i
2 

there are only finitely many i1 such that
T"

U(ipq 6(i2)) * OLT. Finally there are only finitely many factorizations

qt13. = a. It follows that ea(i) is a polynomial modal. for all T
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proving that e 
a
(i) E q<U;I>. Because for every i1 there are but finitely

many i such that U(i,cli c(il)) atT it also follows that e
a
(
i
) 0 mod ft

for all but finitely many i. It follows that f (X) is a continuous I-tuple

of power series in the sense of definition 7.7. This in turn means that

+ f (Y)) makes sense and has itscoefficients in fil<U;I>. And thisU U
finally means that

(8.8) f
--1 

(X) + (Y)) = F (X,Y

so that Fu(X,Y) has its coefficients in a<U;I>c: lm a<U;K>c:

lm q<U;K>.

9. PROOF OF THE UNIVERSALITY OF THE INFINITE

DIMENSIONAL UNIVERSAL FORMAL GROUP LAW

Fu(X,Y) over V.,<U;I>.

•This proof is in it essentials exactly like the proof in [2], section 11.4

of the universality of the finite dimensional formal group law described

in 8.2 above.

If I -*]IN U {0} are multiindices we write a > a if a(i) > 13(i) for all

E I and lal > 1131. We use 0 to denote the mulEiindex 0(i) = 0 all i E I.

We define v(a) = 1 unless a is of the form a = pre(j), r €IN, j E I,

a prime number and v(prc(j)) = p. Then v(a) is the greatest common

divisor of the (
a
) = Hx(i)) for 0 < 13 < a.

iEsupp(a) (3()

For each a > 13 choose A E 72 as ina,

(9.1) E A (a) = v(a)
0<13<a

a,(3 a

11,3.5 such that

Then exactly as in [I, lemma 13.3.7 we have the following lemma

9.2. Lemma. Let a: I 4.1N U {0} be a multiindex, lal > 2, For each 0 < 13 < a

let X be an indeterminate and let Xa = X fr 
Then every X

fr 
0 < (3 < aa-- 

can be written as a linear expression with coefficients in ZZ of the

expressions

04a a,a 13+Y - y+6'
+ 1 + = a,13,y,6 > 0



9.3. Proof of the Universality of Fu(X,Y).

From formula (8.7) above we see. that

(9.4) f (X) = + E v(a)-1U
a 
Xa mod(degree n+ U(,j) with

It follows that

(9.5) F
u
(X
'
Y

mod(degree n+

(9.6

and define

(9.7

Y E V(a)
lal=n

U X
a

E V(a)

al=n

E
lal=n

) with < n). Now write

a

aY

F (i)(X,Y = X. + Y. + E e 
(i)Xa YB

1 1 
1(11,10> 

a,

y(i,a) = - E A e i)
a a -r30.<13<a "a

< n)

for all a: I.4.Z1 U {O}, JaJ > 2, I. It follows immediately from (9.6)

that

(9.8) yii,a U(i,a) mod(U(j,a) with JJ < fat).

Also y(i,a) is a polynomial =din, for all T, i.e. y(i,a) E M<U;I>,

because (9.7) is a finite sum. From this it follows that we can, so to

speak, describe W.,<U;I> also as Z'4<y;I>, or, mother words, the y(i,a)

are a "free polynomial basis" for M<U;I> meaning that the images of the

y(i,a), i E T(a) are a free polynomial basis for a<U;I>/all, for all T.

Now let G(X,Y) over B, where B is as in 7.6, be any formal group law

(in the sense of 7.8) with index set I. We write

(9.9) G(i)(X,Y) = Xi + Y. + E b (i)XaYB

lakIBI>1 a'13

We now define a continuous homomorphism a<U;I? B by requiring that

17

(9.10), = E A obo (i)
0<(3<a a,P "a-
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for all i,a. This (I) is welldefined and determined uniquely because of 9.8

and the remarks just below 9.8. The homomorphism is continuous because

G(X,Y) is continuous I-tuple of power series in the sense of definition

7.7, and because the sum on the right of (9.10) is finite.

Certainly cp is the only possible continuous homomorphism M<U;I> -÷- B

such that 4Fu(X,Y) = G(X,Y). It remains to show that (1)(ea,(0) = ba (i)

for all ct,3,i This is obvious if la+ = 2. So by induction let us

assume that this has been proved for all a,a with la+al < n. Commutativity

and associativity of F (X,Y) and G(X,Y) mean that we have relations.

e
a 

(i) = e (i)
,a

(i)
a C3,,Y

(a+a) 
y
(i)c043,

(34.4-Y
I

(3+Y

b 
a

(i) = 
a
(i), , 

) = Qry

(i) = Qa,(3,1,
( y f3+1,0t

where the Q y,i are certain universal expressions involving only the

b6,6(y) with 16+61 < Ict+f3+-Y1 • By induction we therefore know that

a+Y)e 
+Y,a(i)) = (T)bco-f3,i(i

ea+a,y ( )b(i)

for all a,3,y > 0 with la+a+y1 = n. We also have by the definition of (I)

gb( E A- opeop,,a(i)) E0<a‹a a,0<ei<a p

for all a, i with lal = n. Using lemma 9.2 it follows that

= b (i) for all a,a,i with la+al = n. With induction thisa,13 ,a
finishes the proof.

9.11. Corollary.

Every infinite dimensional formal group law in the classical sense

(cf. definition 7.5) can be lifted to characteristic zero.

Indeed these formal group laws correspond to continuous homomorphisms

(1): Z7,<U;I> -4- B where B has the discrete topology. This means that got ) = 0

for a certain T and 7L<U;I> /In is a ring of polynomials.

9.12. Corollary.

Every infinite dimensional formal group law over a torsion free ring has



19

a unique logarithm.

10. INFINITE DIMENSIONAL UNIVERSAL FORMAL

A-MODULES.

Let A be as in section 3 above. Let I be an index set, The construction of

an infinite dimensional formal A-module is completely analogous to the

constructions of section 8 above. For each finite subset K let fy, K(X)u, 
be the logarithm of the universal formal A-module with indexset K over A

[U(a,01supp(a) U {i} c:K, lal > 2]. By taking projective limits of the

coefficients we obtain a formal power series f
A
(X) over

lm A[U(a,i)Isupp(a) U {i} c:K] and by making use of the explicit formula

(5.1) one shows that in fact the coefficients of f
A
(X) are in the sub-A-algebra

A<U;I> and that f
A
(X) is a continuous I-tuple of power series. Now let

-(10.1) F
A 
X,Y) = ( u

A 1
X) f

A
(Y)), p(a) = [a](X) =

f X)) all a E A

A
Then (Fu(X,Y),P) is a formal A-module over A<U;I>. This can be shown either

by performing the same projective limit construction with respect to the
Afinite dimensional objects F_ 

K
(X,Y), [a](X) and observing that theU, 

relations (10.1) hold in lip AlU(i,a) isupp(a) U {i} c: Kl. This is what

we used in section 8 above. Or one can state and prove an appropriate

infinite dimensional version of the functional equation lemma. This version

is simply obtained by requiring all I-tuples of power series to be continuous.

The proof that the formal A-module (10.1) is indeed universal is an entirely

straightforward adaptation of the proof in [2], section 25.4 that the finite

dimensional formal A-modules described in section 5 above are universal.

10.2. Corollary.

Every infinite dimensional formal A-module in the sense of 7.5 above can

be lifted to formal A-module over an A-torsion free A-algebra,

10.3. Corollary.

Every infinite dimensional formal A-module over an A-torsion free algebra B

has a unique A-logarithm.
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10.4. The A-logarithm fu(X) of the universal formal A-module 4(X,Y) over

A<U;I> is of functional equation type, and there does exist a topological

analogue of the functional equation lemma 4.3. In the case of A<U;I>

and a<U;I> this analogue is probably most easily proved by first

remarking that the proofs in [2] also work in the infinite dimensional

case provided that all the I-tuples of power series involved satisfy

the monomials have compact support condition. The topological version

alluded to above then results by proving things over A<U;I>/trit and

for all T.
AThis permits us to define 6 and f for curves in F
U 
(X.Y) and hence by=7T 

specialization for curves over arbitrary infinite dimensional formal

A-modules.

The construction of the infinite dimensional formal group laws F (X,Y)

over M<U;I> and the infinite dimensional universal formal A-modules

over A<U;I> also permit us to extend the Cartier-Dieudonne module .

classification theory of [2], chapter V to cover infinite dimensional

case. The proofs are entirely straightforward adaptations of the proofs

given in [2].
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