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ABSTRACT

In this paper we construct universal infinite dimensional formal group
laws and formal A-modules, This requires the consideration of formal
group laws and formal A-modules over topological rings because universal
infinite dimensional formal group laws and formal A-modules over
discrete rings obviously cannot exist,

The main motivation for these constructions is the classification theory
for formal A-modules. Two of the main operators in this theory
"q-typification" and £, 2 Frobenius type operator, are defined via the
universal example making it desirable to have also infinite dimensional
universal objects. This is all the more desirable because the proofs for
the classification theory, even for finite dimensional formal A-modules

only, unavoidably involve infinite dimensional formal A-modules.
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1. INTRODUCTION AND MOTIVATION,

Let B be a commutative ring with 1 € B, An n-dimensional commutative formal
. group law over B is an n-tuple of power series F(X,Y) in 2n variables

Xis oo Xn; Y, oo, Yn with coefficients in B such that F(X,0) = X,
F(0,Y) = Y mod degree 2, F(F(X,Y),Z) = F(X,F(Y,Z)) (associativity) and
F(X,Y) = F(Y,X) (commutativity). From now on all formal group laws will
commutative, '

Let A be a discrete valuation ring with finite residue field k., Let B €

the category of commutative A-algebras with 1, A n-dimensional formal
A-module over B is a formal group law F(X,Y) over B together with a ring
homomorphism Ppt A > EndB(F(X,Y)) such that pF(a) = aX mod degree 2 for all
a € A, One would like to have a classification theory for formal A-modules
which is parallel to the classification theory of formal group laws over
Z!(p)—algebras. Such a theory is sketched below and details can be found in
[2], section 29, As in the case of formal group laws over Zi(p)—algebras
the theory inevitably involves infinite dimensional objects. Now two
important operators for the formal A-module classification theory, viz, eq
and £n, the analogues of p-typification and Frobenius, are defined by
lifting back to the universal case, and, for the moment at least, I know

of no other way of defining them, especially if char(A) = p > 0. In case
char(A) = 0, cf. also [1].But by the very nature of the usual definition of
infinite dimensional formal group law and formal A-module there cannot exist

universal infinite dimensional formal group laws and formal A-modules, so

that the definitions of eq and gﬂ break down, In [2], this problem is

surmounted by an ad hoc construction which works in the particular case
needed (Witt.vector like formal A-modules). But this method decidedly lacks
elegance, It is the second and main purpose of the present paper to remedy

this by showing that after all, in a suitable sense, universal infinite
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dimensional formal group laws and formal A-modules do exist (and have all
the nice propefties one could wish for). As a byproduct one obtains then
of course such resultsas liftability to characteristic zero and existence

and uniqueness of logarithms also for infinite dimensional formal group

laws and formal A-modules.

2. SKETCH OF THE (COVARIANT) CLASSIFICATION THEORY

FOR FORMAL GROUP LAWS OVER Z “ﬂ—ALGEBRAS.

Let p be a fixed prime number. Let F(X,Y) be an m-dimensional formal
group law over a Z!(p)-algebra B. A curve in F over R is simply an
m-tuple of power series Y(t) in one variable t with coefficients in B

such that y(0) = 0.

Two curves can be added by means of the formula
(2.1) Y(t) +5 8(t) = F(y(t),8(t))

giving us a complete topological abelian group &(F;B); the topology is
defined by the subgroups of curves Y(t) such that Y(t) = 0 mod(degree n),

n=1,2,3, ... In addition one has operators Xn’ £, <b>, for n €W,
b € B,

These are defined as follows

n F

X Y(C
i=1

i J/n

(2.2) v Y(e) = y(th, <b>y(t) = y(bt), £ v(t) =

)

1

where %n is a primitive n-th root of unity, This last definition must

be rewritten slightly in case n-th roots of unity make no particular

sense over B, cf,[2], section 16 for details.

A curve y(t) is called p-typical if £ Y(t) 0 for all prime numbers

q # p. The subgroup of p-typical curves, C (F;B), is complete in the
induced topology and stable under f and ¥p and the operators <b>. Moreover
u51ng that B is a Z:(p) algebra there is a projector ep: C(F;B) » tp(F;B)
given by the formula

(2.3)

where lu(n) is the Mobius function. We can assemble the operators gp’ Xp, <b>
into a ring of operators Cartp(B) consisting of all sums

. )
1,] =p




with for all i only finitely many b i,] # 0. For the calculatlon rules in

Cartp(B), cf. [2],16.2, 28.1. The subring {150 Vp<b >f } is naturally 1somorph1c.
to Wp, (B), the ring of Witt vectors over B of infinite length associated to
the prime p. Using this we see that C (F;B) is a module over w (B)[f V]
with calculation rules fV = p, Vf = (O 1,0,004), fx = x f XV = Vx for all
x € Wp (R), where 0 is the Frobenius endomorphism of W (B) The functor
F(X,Y)— t (F;B) turns out to be faithful and its 1mage can be descrlbed

without much trouble,

3. A CARTIER-DIEUDONNE MODULE CLASSIFICATION THEORY
FOR FORMAL A-MODULES (1).

Now let A be a discrete valuation ring with uniformizing element 7 and finite
residue field k of q elements, q = pr. Let K be the quotient field of A, We
are going to describe a classification theory for formal A-modules which is
completely analogous to the theory sketched in 2 above. In this theory b

ge.ts replaced by f T VbyV =q’ «(B) by the appropriate ring of ramified
Witt vectors W: (B) B € AlgA, and C (F;B) by C (F;B). Of course we should
have £ﬁ¥q =T, =q=ﬂ = (0,1,0, 2,.), xgq = quo, £ X=X f « In case A is

of characteristic zero, p = um, this shows that £n and £ should be related as

ever—l
=T|'_p

(3.1) ' ]f -

Here we shall not discuss the ramified Witt vector functor WA o' AlgA -+ AlgA,

. [2[, [3], or [4]. It can be most easily obtained by taklng q-typical curves
in the Lubin-Tate formal group law over A, just as Wp, (=) can very nicely be
described via the p-typical curves in G .o the multiplicative formal group
law, Alternatively WA (=) can be descrlbed via the polynomials

g n n-1
(3.2) xg + Trxcll.- + e, + nnxn, n=0,1,2, ...

n—-1
P +

exactly as Wp (=) is constructed via the Witt polynomials Xgn + PX|

+p K, ’ -

We shall concentrate on the definition of f and the "q-typification" projector
: C(F;B) ~ C (F;B), partly also to 111ustrate the adagium '"do everything

first in the unlversal case'", which appears to be particularly effective,

in fact even necessary, when dealing with formal A-modules.




Now there seems to be no obvious analogues of the definitions for £p and

Ep given in (2,2) and (2.3). Things become better if we restate these

definitions in terms of logarithms. Assume therefore that B is torsion free
and let £(X) € B @ RI[X]]™ be the logarithm of F(X,Y), i.e. £(X) is the -
unique m-tuple of power series over B 2 ) such that f(X) = X mod (degree 2),
F(X,Y) = £ 1(£(X) + £(Y)). Setting |

[~<]

(3.3) £(y(e)) = & xitl, x; €8 Q"
i=1

we then have

(3.4) FEe) - T et
° j

(3.5) Ee,y(t)) = I x P
j=o p

Now let (F(X,Y),pF) be an m-dimensional formal A-module over B € é;gA.
Assume that B is A-torsion free., An A-logarithm for (F(X,Y), pF) is a power
series f(X) € B.QAK[[X]]m such that f(X) = X mod degreewz and such tha;
F(X,Y) = f-](f(X) + £(Y)) and pp(a) = f-](af(X)) for all a € A, It is an
immediate consequence of the construction of a universal formal A-moduie
below in section 5 that A-logarithms exist, Uniqueness is then easy. Given

A-logarithms there are obvious analogues of (3.4) and (3.5) viz.

(3.6)

3.7

It remains of course to prove that the m-tuples of power series thus defined
are integral (i,e. that they have their coefficients in B not just in B QA K).
This again will be done by proving this to be the case in the universal
example, which, fortunately, is defined over the kind of algebra to which

the functional equation (integrality) lemma applies. This lemma is our main
tool for proving integrality statements. It is remarkably "universally"

applicable, cf. also [3] for some other illustrations.




4, THE FUNCTIONAL EQUATION LEMMA,

The ingredients we need are the following
(4.1) Bel, UL&©B,0:L~>1L, p, q, S5 Sos eee

Here B is a subring of a ring L, @ is an ideal in B, ¢ a ring endomorphism
of L, p is a prime number, q is a powerof p and the S5 i=1,2,3, «0o
are m X m matrices with coefficients in L. These 1ngred1ents are supposed

to satisfy the following conditions

(4.2) pe€Eam , o(b) = b4 mod gy for all b € B, or(si(j,kQ)OL < B for all
i,j,k,r

Here si(j,k) is the (j,k) entry of the matrix S;» i,k € {1,...,m}.

If g(X) is an m-tuple of power series in X], cees Xn with coefficients in L
then we denote with g, g(X) the m—tuple of power series obtained by applying
0 to the coefficients of g(X).

4.3, Functional Equation Lemma., Let f(X) € L[{X]]m be an m-tuple of power

series in m determinates Xl’ sees X and £(X) € L[[X]I™ an m-tuple of power

series in n indeterminates X 2, ooy Xn. Suppose that £(X) = b X

1’
mod (degree 2) where b] is a matrix with coefficients in B which is invertible

(over B). Suppose moreover that

(o2

i
(4.4) £(X) - . q,f(xq ) € LI, F0 - T s, F&T) € BIIXII"
i=1 i=1 ’

i i i i i _ i
where X9 and X9 are short for (X? ,...,Xg ) and (X? ,...,Xg ). Then we have

(4.5) F(X,Y) = f"'(f(x) + f(Y)) € B[[X;Y]]m
(4.6) £ E®) € BIIRII™

Let h(X) € BIIX]I™, £(X) = £(h(X)). Then
~ A © vm ~ 1 ~ n
(4.7) £(X) - I s.qf(x?) € B[Ix]]
- 1=]




Let a(X) € B[[ij]m, B(X) € LIIXIT™ and r €N = {1,2,3, ...}. Then
(46.8)  a(X) = B(X) mod aF e= £(a(X)) = £(B(X)) mod af
For a proof cf., [2], section 10.

5. A UNIVERSAL m-DIMENSIONAL FORMAL A-MODULE.

For each multiindex o = (nl,,..,nm) of length m, n. €EN U {0} 1et

la| = n + ... +n and so = (snl,...,snm) for all s € N U {0}. For each

a such that |a] > 2 and i € {1,.,.,m} let U(i,a) be an indeterminate, We
denote with €(i) the multiindex (0,...,0,1,0,...,0) with 1 in the i-th spot.
We set U(i,e(j)) = 0 if i # j and U(i,e(i)) = 1, For each a # q'e(i) for
all r = 1,2, ..., 1 € {1,...,m} we let U, denote the column vector

u(l,a), cees U(m,a) and for each r €N, U . denotes the m x m matrix

n, ¢ n

U = (U(i,qu(j)). Finally let x% = Xll. e Xmm. For each multiindex

q

o such that |of >1 we now define the m-vector aa(U) € k[ul™ by

(5.1) ’ A (D) = z
¢ (rl,...,rt,B) qrt

where the sum is over all (rl,...,rt,g), r. EN, t €EN U {0} such that
r . r r

1 "2 . . »
qQ q cee q tB =0 and B # qrE(l) for all r €N, i € {1,...,m}. Here
i
U(Z ) is the matrix obtained from U r by raising each of its entries to the
q q

ql~th power. We now define

A o m
(5.2) : f (X)) = & a X € x[ulllx]]
U lalf_l o

Now let L = K[U] o A[u] = B, ov= mA[U], 8; = n_lU ; and ¢ : L »~ L the
q
K-algebra endomorphism that sends each U(i,a) into its gq-th power. Then the

conditions (4.2) hold. Also we have




. i
(5.3)  £5(X) = X mod(degree 2), £3(X) - iilsic,:“fﬁ(xq ) € AlUI[[X]I™.

It follows that if we define

(5,4)  Fyx,1) = (T EN (M), ph(a) = (EH 7 agh(x))

then (Fé(X,Y),pé) is a formal A-module over A[U] (by parts (4.5) and (4.6)

of the functional equation lemma 4.3).
5.5. Theorem.

(FS(X,Y),pg) is a universal m-dimensional formal A-module.

I.e. if (G(X,Y),QG) is any m-dimensional formal A-module over an A-algebra
B then there is a unique A-algebra homomorphism ¢: A[U] » B such that
By FQ(X,Y) = G(X,Y) and Q*pg(a) = pG(a) for all a € A.

For a proof cf. [2], section 25.

6. A CARTIER-DIEUDONNE MODULE CLASSIFICATION THEORY
FOR FORMAL A-MODULES (2).

For each n €N, i € {1,...,m} let C(n,i) be an indeterminate. Let Cn be the
columnvector (C(n,!), ..., C(n,m). Now consider the curve

o]

(6.1) ‘ : yc(t) = X Cnt
n=1

n

in the universal formal A-module (Fg(X,Y),pé) considered as a formal
A-module over A[U;C]. This is again the sort of ring to which the functional
equation lemma applies. It follows by part (4,7) of lemma 4.3 that the

m-tuple of power series in one variable

‘ A e 1 .~
(6.2) ‘ fu(yc(t)) = nilxit , x; € K[U;c]

satisfies the functional equation condition (4.4)., An easy check shows that
then the m-tuples of power series
=) j )

r x .td I 7x nt
j=o qJ n=1 q

n

also satisfy this condition. It now follows from part (4.6) of the functional




equation lemma that

(6.3) gg&o-&$”<ij
J=o0 ¢q

A1, o
(6.4) £ () = () (nii“antn)

have in fact their coefficients in A[U;cC].

Now (FS(X,Y),D%,YC) over A[U;C] is (given theorem 5.5) clearly universal
for m~dimensional formal A-modules together with a curve.

Let (F(X,Y),DF) be a formal A-module over B € é;gA and let y(t) be a curve
in F(X,Y) over B. Let ¢: A[U;C] + B be the unique A-algebra homomorphism
taking (Fﬁ,pﬁ) into (F,pF) and Yc(t) into Y(t). Then we define

(6.5) €qY(t) = ¢*€qYC(t)

(6.6) EV(E) = Guf ¥, (1)

It follows immediately that this agrees with the tentative definitions
(3.6), (3.7) of section 3 above (if B is A-torsion free so that we have

a unique A-logarithm available).

Let‘tq(F;B) be the image of eq: €(F,B) *'f(F;B). One now easily proves that
Eq is the identity on EH(F;B) and that tq(F;B) is stable under gﬂ, Xq,
<b> for all b € B. (Recall that v oY) = v, <p>y(e) = Y(bt)). One
checks that

(6.7) £r¥, = 7]

where [T] is the operator induced by the endomorphism P, (T) of F(X,Y).
Further

(6.8) £ <b> = <pI>f |, <>y =y <pd>

We can assemble all these operators into a ring CartA(B)

w . .
6. = 1 sfd
(6.9) CartA(B) {. ?_ Zq<bi,3>£n}
i,j=o




with for every inonly finitely many bi 3 # 0. The subset
b

o]

{z Y;<bi>£;} turns out to be a subring naturally isomorphic to Wg o (B)
i=o0 ’

the ring of ramified Witt vectors associated to A with cdefficients in B.
There results a classification theory of (finite dimensional) forﬁal
A-modules 1in terms of Wg’w(B)[gﬂ,gq] modules which, both in statements
and proofs, is completely analogous to the theory for formal group laws
over Zi(p)-algebras. In particular there is an ana}ogue‘of Cartier's
first theorem. It states that the formal A-module Wg o (X5Y) represents
the functor Fe> ta(F;B) going from formal A-modules ;ver B ta their

~

modules of gq-typical curves. Here Wﬁ « 15 the (infinite dimensional)
b
formal A-module with as A-logarithm the column vector

1 2

2
...] -
Xg, X, +1 XV 4+ Xg s aes)

(X,» Xy +m 2 1

As in the case of formal group laws this theorem is important for the
proof; of the classification results. This makes it necessary to be able

to define Eq and £n also for curves in ﬁg’w, which can be done by an ad hoc
method. It would be nicer to be able to do it also for all other infinite
dimensional formal A-modules. It would also be more elegant to be able to
extend the classification theory sketched above to all formal A-modules.

To do this it is necessary to define Eq and f_ also in those cases. This,
judging from what we did in the finite dimensional case,will involve
something like universal infinite dimensional formal A-modules, a gadget
which, in terms of the usual definitions, obviously cannot exist. This, the
main topic of this paper, is what I take up next.

Before I do so let me remark that the analogy: "formal group laws over
Zi(p)-algebra" - "formal A-modules" also extends to give a "tapis de Cartier"

and related type results for lifting formal A-modules; cf. [2], section 30.

7. "CLASSICAL" INFINITE DIMENSIONAL FORMAL GROUP LAWS AND
‘ FORMAL A-MODULES.

Let (Xi)iEI be a set of indeterminates indexed by an arbitrary index set I.
The formal power series ring B[[Xi;iel]] is now defined as the ring of all

formal (infinite) sums I caXa where o runs through all functions




a: I >N U {0} with finite support, i.e. supp(a) = {i € Ilu(i) # 0} is finite.

We shall call such functions multiindices. Here X> is short for I X?(l).
i€supp(a)

One can now consider elements F(i)(X,Y) € B[[xi’Yi;i € I]] and at first
sight one could define an infinite dimensional commutative formal group law
as a set of power series F(i)(X,Y) € B[[X;Y]] indexed by I such that

F(1) (X,Y) = Xi + Yi mod (degree 2), F(i)(X,Y) = F(i)(Y,X) and such that

(7.1) F(i) (X,F(Y,Z2)) = F(i)(F(X,Y),Z) for all i €I

However, in general this associativity condition (7.1) makes no sense because
the calculation of the coefficient of a monomial XOLYBZ.Y in F(i) (X,F(Y,2)) or
F(1) (F(X,Y),Z) involves infinite sums of elements of B. The 'classical"

solution is to require a finite support condition in the following sense.

7.2. Definition.

Let I and J be index sets. Let f£(X) be an I-tuple of power series in the

indeterminates Xj,j € J. We say that f(X) satisfies the monomials have

finite support condition if for all multiindices a: J + N U {0} there

are only finity many i1 € I such that the coefficient of x* in f(1)X) is

nonzero.

This property is stable under composition and taking inverses in the sense

of the following lemma.

7.3. Lemma.

Let I, J, K be index sets. Let f(X) be an I-tuple of power series in the

Xj’ j € J and g(Y) a J-tuple of power series in the Y, , k € K. Suppose

k’
that £(X) and g(Y) both satisfy the monomials have finite support condition.
Then f(g(Y)) is well defined and satisfies the same condition. Further
if £(X) = X mod degree 2 then f—l(X) is well defined and also satisfies

the monomials have finite support condition.

Proof. Write £(i)(X) = I r. Xa, g(i)(¥) = T s. YB. Formally one has

1,0 j,B
B]+...+B

s S Y t
i,0°3,,8, 7" %38,

(7.4) f(1)(g(¥)) =X ¢

where the sum is over all a and sequences (jl""’jt)’ (81""’Bt) such that
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Bi # 0, the zera multiindex,and j]+ ces * jt = 0, where j € J is identified
with the multiindex €(j): J >N U {0}, j~ 1, j'=> 0 if j # j'. Given

Y: K >N U {0} there are only finitely many sequences (Bl""’Bt) such

that Bi # .0 and Bl+ oo + Bt = Y. For each Bi there are only finitely

many j such that Sj,B- # 0; finally a = j] L jt. It follows that

in the sum (7.4) onlylfinitely many coefficients of Y' are nonzero

(for a given Y). Thus f(g(Y)) is welldefined. Also for every Y there are

only finitely many o, such that there exist nonzero s. s eess S»
1,58 I8,

such that a = j]+ A jt, B]+ eoot Bt = Y. For each o there are only

finitely many i such that ri,a # 0. It follows that the coefficient of

YY in f(i)(g(Y))_is nonzero for only finitely many i. The second statement
of the lemma is proved similarly by comparing coefficients in f—](f(X)) = X.
Using these ideas we can now give the "classical" definition of infinite

dimensional formal group laws and formal A-modules as follows.
7.5. Definitions.

An (infinite) dimensional formal group law F(X,Y) over B with index set I
is an I-tuple of power series F(X,Y) = (F(i)(X’Y))iEI’

F(1)(X,Y) € B[[Xi’Yi;i € I]] such that F(X,Y) satisfies the monomials
have finite support condition and such that F(X;0) = X, F(0,Y) = Y,
F(F(X,Y),Z2) = F(X,F(Y,Z)). If moreover F(X,Y) = F(Y,X) the formal group
law is said to be commutative. All formal group laws will be commutative

from now on. A homomorphism from F(X,Y) with index set I to G(X,Y) with index

set J is an J-tuple of power series a(X) in Xi’ i € I with coefficients

in B, which satisfies the monomials have finite support condition such

that a(F(X,Y)) = G(a(X),a(Y)). Finally a formal A-module over B € éigA
with index set I is a formal group law F(X,Y) over B together with

a ring homomorphism Ppi A EndB(F(X,Y)) such that pra) = aX mod(degree 2)
for all a € A. (This implies of course that all the pF(a) satisfy the
monomials have finite support condition). Note that the various formulas
above like F(X,F(Y,Z)) = F(F(X,Y),2) and a(F(X,Y)) = G(a(X),0(Y) make

sense because of lemma 7.3.

7.6. It is now immediately obvious that a universal formal group law with

infinite index set I cannot exist because there is no predicting for which




finitelymany i € I the coefficient of a given monomial XOLYB in F(1) (X,Y)
will have nonzero coefficient. The way to remedy this is to extend the
definition a bit by considering complete topological rings B whose topology

is defined by a (filtered) set of idealsdhy s € S such thatl10% = {0}

s
(so that B is Hausdorff).

7.7. Definition.

Let B be as above in 7.6 and let I and J be index sets. An I-tuple of power
series £(X) in Xj, j € J with coefficients in B is said to be continuous

if for all multiindices a: J >IN U {0} and all s € S there are only finitely

many i € I such that the coefficient of X in f(i)(X) is not in a%‘ It is

an immediate consequence of lemma 7.3 that the composite of two continuous
sets of power series is welldefined and continuous and that the inverse

. -1 . . _
power series f (X) of a continuous power series f(X) such that f(X) = X

mod (degree 2) is also welldefined and continuous,

7.8. Definitions.

Let B be as above in 7.6 and let I be an index set. A commutative infinite
dimensional formal roup law over B is now a continuous I-tuple of power
series over B in Xi’ Y., i € I such that F(X,O)_= X,F(0,Y) = Y,

F(F(X,Y),Z) = F(X,F(Y,2)), F(X,Y) = F(Y,X). Note that the condition
F(F(X,Y),Z) = F(X,F(Y,Z)) makes.sense again (because it makes sense

mod oL for all s and because B is complete). The definitions for homo-
morphisms and formal A-modules are similarly modified by requiring all
I-tuples of power series to be continuous, The definitions of 7.5 .correspond

to the case of a discretely topologized ring B (defined by the single ideal
0).

8. CONSTRUCTION OF AN INFINITE DIMENSIONAL UNIVERSAL
FORMAL GROUP LAW.

8.1. Let R be any ring. Let I be an index set. The first thing to do is

to describe the appropriate ring "of polynomials" over which a universal
formal group law with index set I will be constructed. For each multiindex
o : I->NU {0} (with finite support) such that [ > 2 and each i € 1

let U(i,0) be an indeterminate. Consider the ring of polynomials
RU(,0)|i € I, a: T >N U {0}, |a] > 27.

Let T be the set of all functions on the set of multiindices on I to the




set of finite subsets of I. For each T € T let o < R[U] be the ideal
generated by all the U(i,a) such that i ¢ 7(0). We now denote with
R<U;I> the completion of R[U] with respect to the topology defined by
these ideals, and withmT the closure of cq in R<U;I> for all T € T.

If I is a finite set then R<U;I> is simply R[U(i,a)] because one of

the possible functions T in this case is T(a) = I for all & and then
o, = 0. For each finite subset K< I there is a natural surjection

¢K ! R<U;I> » R<U;k> = R[U({, a)lsupp(a) U {i} = k]. In fact the kernel
is the ideal @1 (K) defined by the function T(k) € T, T(k)(a) = ¢ if

supp(a) & k and T(k)(a) = k if supp(a) < k. The 0 Kk <« I, k finite

s
define another, coarser, topology in R[U(i,a)] whléh)ls,however, still
Hausdorff. This means that R<U;I> is a certain subalgebra of 1im R<U; k>,
which in turn is a proper subalgebra of the projective limit of the
polynomial rings in finitely many U(i,a)'s over R. For example if

I =N then Z U(i,2e(i)) where €(i) is the multiindex e(1)(3) =0 if
i=]
j# 1, e(i)(i) = 1 is an element of 1im R<U;k> because for each k it is

a polynomial modGLrGo. But this element is not an element of R<UIN>
because it is not a polynomial modulo o if v is, e,g.,the function
T(a) = supp(a).

The R-algebra R<U;I> has an obvious freeness property with respect to
topological R-algebras B as in 7.6. Let B be such an algebra. And for
every o: I - IN U {0}, Ia[ > 2 and i € I let b(i,0) be an element of B.

Suppose that for every o and every s € S there are only finitely many

b(i,a) ¢ Ol . Then there is a unique continuous R-algebra homomorphism

¢: R<U;I> + B such that ¢(U(i,0)) = b(i,a) for all i,a.

8.2. Finite Dimensional Universal Formal Group Laws,

We recall the construction of an m-dimensional universal formal group law
in [2], section 11. Let I be a finite set. For each multiindex

o : I +NU{0} such that la[-z_z and each i € I let U(i,0) be an
indeterminate. Let Z [U] (= Z<U;I> if I is finite) be the ring of
polynomials in these indeterminates.

In addition we define U(i,e(j)) =1 if i = j and = 0 if i # j, where €(j)
is the multiindex e€(j)(k) = 0 if k # j, €(j)(k) = 1 if k = j. For each

multllndex o let U be the columnvector U(i,a). For each prime power

ie1”
q = p » * €N, p a prime number we use Uq to denote the matrix




(U(1,q€(3)) jer Using all this notation we now define for all
a: I->NU {0} w1th la| > 1 a column vector a, with entries in Q[U]

by means of the formula

n(q] PRI ’qt) n(qt"l ’qt) n(qt)'

(8.3) o X . N
(q],""qt,B) p] . Pt"'l t’

(q,) (q,..4q,_,) (q,-
U 1 U 1 tlUBl

where the sum is over all sequences (q],...,qt,B), t €EN U {0},

s.
q; = pil, s; € I, p; a prime number, 8 a multiindex not of the form

B = prs(j), r €EN, j € I, p a prime number, such that ql...th = aj

Uér) is the matrix obtained from Uq by raising each of its entries to

(s)

the power r and UB has the obvious analogous meaning. The numbers.

n(q],...,qt) are integers which can be chosen arbitrarily subject to

the conditions

r .
n(ql,...,qt) = 1 mod p| if Py =Py = . = P_ # Prypr |

(8.4)

n(q],...,qt) = 0 mod p§ if P, # Py = ... =D # p 2 _

r+l’
Sometimes, in order to have reasonable formula for the U's in terms of the

a's it is useful to choose the n(q]5...,qt) in a very special way, cf.
[2] section 5.6 and section 34.4.

We now define
8. £ - a = ¢!
(8.5) v & R aaX > Fy(X,Y) £y E &)+ £,(0))

Then, as is proved in section 11 of [21, F (X,Y) is a universal formal
group law with finite index set I. The 1ntegra11ty of F (X,Y) is a consequence

of the functional equation lemma 4.3.

8.6. Construction of an Infinite Dimensional Universal Formal Group Law.

Now let I be an infinite index set. Let Z <U;I> be the ring constructed

above in 8.1.For each finite subset ¢k « I let Z <U;g >be the natural quotient
?Z[U(oc,l)lsupp(a) U {i} = k] of Z<U;I>. For each  let £ (X) and

U K(X Y) be the power series in X. T i € k and X LY. i i E K deflned by (8.5).

Fix a choice of the n(ql,...,qt) for all sequences of prime powers




(q],...,q ), t EN.

For each pair of finite subsets K,A € I such that K € X we use ¢A K :
Z<U3A> > Z<Uj;r>;, Q<U;A> > Q<U;k>, Q<U; A>[[x ;i€ A1] - q<u; A>[[x ;i€xl1],
Z <U; )\>[[Xi,Yl,1€)\]] > Z<U,K>[[Xi,Yi,1€K]] to denote the natural
projections (U(a,i)= 0 if A D supp(a) U {i} ¢ K, U(a,i) U(o,i) if
supp{a) U {i} =k, ¥,,X =+ 0 if i € AN K, X, Y XY, if 1€ K).

Now note that ¢A’KFU’A(X,Y)=fFU,K(X,Y) and ¢A,KfU,l(x) = fU,K(X)' Thisl'
means that we can define I-tuples of power series fU(X) and FU(X,Y) as
follows. For each multiindex o: I N U {0} and pair of multiindices

a,B: I >IN U {0} and element i € I consider the finite subsets K such
that Kk © supp(a) U supp(B) U {i}. Now consider the coefficients

. a8, (D) of X* and x*¥? in £y (DX and Fy () (X,1)
respectively. In virtue of the compatibility of the f U,k (X) and F (X Y)

(i) and e

under the ¢A the systems of elements e (i) and e (1) determlne

o,K 0,B,K
welldefined elements e, (i), e, B(1) in 1$m @<U;k> and lim Z5<U K>
respectively.

We now define fU(X) and FU(X,Y) by

. . . OB
£E)X) = I e (D)X F ()XY = Le ()XY
U o[> o U  a,B a,B

I claim that in fact ea(i) € Q<U;I> c‘lim Q<U;k>.

Indeed we clearly have

q
(8.7) e (i) = T U(i,qe(i))U(i;,q,E(i,)

qp--q

q,e.+q _
1 el B) d(ql,-n,qt)

U(1t_1,qt€(1t)) U(lt’

-1 -1
where d(q],...,qt) =P, -..P, n(ql,...,qt)n(qz,...,qt) . n(qt_],qt)n(qt)
and where the sum is over all sequences (q],...,qt,B) as in the sum 8.3

and all il’ cees it € I. Let T € T. Because q]...th = o we have that

supp(B) = supp(a). So there are only finitely many it such that U(it,B) ¢U%,

for each of these it there are only finitely many 1 such that U(it,qte(it))

t-1
T ot s and for each of the i2 there are only finitely many il such that
U(il,qle(iz)) ¢ ULT. Finally there are only finitely many factorizations

qp .- th = qa. It follows that ea(i) is a polynomial mmdak_for all T




proving that ea(i) € Q<U;I>. Because for every i  there are but finitely

1
many i such that U(i,qle(i])) ¢ UlT it also follows that ea(i) =0 modmT
for all but finitely many i. It follows that fU(X) is a continuous I-tuple
of power series in the sense of definition 7.7. This in turn means that

(f (X) + £ (Y)) makes sense and has itscoefficients in Q<U;I>. And this

flnally means that
1 -
(8.8) £y (G0 + £,(1) = B (,Y)

so that FU(X,Y) has its coefficients in Z<U;I> c lim Z <U;k> <
lim @<U;k>.

9. PROOF OF THE UNIVERSALITY OF THE INFINITE
DIMENSIONAL UNIVERSAL FORMAL GROUP LAW
FU(X,Y) over Z<U;I>.

This proof is in it essentials exactly like the proof in [2], section 11.4
of the universality of the finite dimensional formal group law described
in 8.2 above.

If B,a: I >N U {0} are multiindices we write a > 8 if a(i) > B(i) for all
i €I and |a] > [Bl. We use O to denote the multiindex 0(i) = 0 all i € I.
We define v(0) = 1 unless o is of the form q = pre(j), reEN, jEI, p

a prime number and v(pre(j)) = p. Then v(a) is the greatest common

divisor of the (a) = 1l (z(l) or 0 < B < a.
i€supp (o) (i )

For each o > B choose Aa 8 € Z as in [2], 11,3.5 such that

’

9.1) o . = v
0<B<a o,BB o

Then exactly as in Cﬂ » lemma 11.3.7 we have the following lemma

9.2, Lemma. Let a: I +N U {0} be a multiindex, ]a|-> 2, For each 0 < B < ¢

let XB be an indeterminate and let XB = Xa—B' Then every XB’ 0<B<a

can be written as a linear expression with coefficients in Z of the

expre351ons

B+ Y+5 -
0<§<GXG,BXB’ ( )X ( )X B + Y + 6 = G,B,Y,6 >0

B+y Y+’




9.3. Proof of the Universality of FU(X,Y).

From formula (8.7) above we see that

(9.4)  £,(X) = X+ I v(a)—]UaXa mod (degree n+l, U(B,j) with |g| < n)
a .

It follows that

(9.5 FED ZX+Y+ £ ov@ U+ 3 v ' y®
. a o
|a|=n |a|=n

-1 v T
la|=n

mod (degree n+l, U(B,j) with IBI < n). Now write

9.6) P EY) =X 4y, 4 ea’B(i)XaYB

Y Jal, ]8>

and define

(9.7), ' yi,0) = - I A

e (1)
0<B<a CI.,B B,OL“B

for all a: I >IN U {0}, ’QI‘Z 2, i € I. It follows immediately from (9.6)

that
(9.8) y(i,a) = U(i,a) mod(U(j,B) with |B| < |a|).

Also y(i,a) is a polynomial mod o for all T, i.g. y(i,a) € Z<U;I$,
because (9.7) is a finite sum. From this it follows that we can, so to
speak, descfibe Z <U;I> also as Z<y;I>, or, in.other words, the y(i,a)
are a "free polynomial basis" for Z <U;I> meaning that the‘images of the
y(i,a), i € t(a) are a free polynomial basis for ZST<U;I>/01T for all T.
Now let G(X,Y) over B, where B is as in 7.6, be any formal group law

(in the sense of 7.8) with index set I. We write

. OB
(9.9) C()(X,Y) = X, + Y, + I b ()XY
N TR T

We now define a continuous homomorphism Z <U;I> + B by requiring that

(9.10) ¢(y(i,e)) = - A

o< 88,8




18

for all i,a. This ¢ is welldefined and determined uniquely because of 9.8
and the remarks just below 9.8. The homomorphism is continuous because
G(X,Y) is continuous I-tuple of power series in the sense of definition
7.7, and because the sum on the right of (9.10) is finite.

Certainly ¢ is the only possible continuous homomorphism Z <U;I> + B

such that ¢*F (X,Y) = G(X,Y). It remains to show that ¢(e B(1)) B(i)
for all a,B,i. This is obvious if [a-+8| = 2. So by 1nduct10n let us
assume that this has been proved for all a,B with |a+8| < n. Commutativity

and associativity of FU(X,Y) and G(X,Y) mean that we have relations.

ea,B(i) = eB,a(;) ba,B(i) = bB,a(i)

a+f . B+Y .
Cg )ea+B,Y(l) - ( Y )eB+y,a(1) =%, ,Y,1 i (e E(J))

o+B By o\ L .
( )bu+B,Y(1) ( )bB+Y, (i) = Qa,B,y,i(bG,e(J))

where the Q B,v.1 are certain universal expressions involving only the
b ’

s E(j), b €(Y) with |8+e| < |a+B+y|. By induction we therefore know that
P ) 2 .

0 (CEhrey, (D) - M egpy 0@ = Cobib o ¢ @ = Ebg )

for all a,B,y > 0 with lu+8+yl = n. We also have by the definition of ¢

o L A

0<B<a

0,8%8,0-8) = B Ao,6%,0-6D)

for all a, i with |a| = n. Using lemma 9.2 it follows that

¢(ea B(i)) = ba 8(i) for all a,B,i with ]a+8[ = n, With induction this
b ’

finishes the proof.

9.11, Corollary.

Every infinite dimensional formal group law in the classical sense

(cf. definition 7.5) can be lifted to characteristic zero.

Indeed_these formal group laws correspond to continuous homomorphisms
¢: Z<U;I> » B where B has the discrete topology. This means that ¢(°lr) =

for a certain t and Z<U;I> /m"r is a ring of polynomials.

9.12. Corollary.

infinite dimensional formal group law over a torsion free ring has




a unique 1ogari£hm.

10. INFINITE DIMENSIONAL UNIVERSAL FORMAL
A-MODULES.

Let A be as in section 3 above, Let I be an index set, The construction of

an infinite dimensional formal A-module is completely analogous to the
constructions of section 8 above. For each finite subset k let fU,K(X)

be the logarithm of the universal formal A-module with index set k over A
[U(a,i)|supp(a) U {i} < «k, la] > 2], By taking projective limits of the
coefficients we obtain a formal power series fﬁ(X) over

lim A[U(a, i)lsupp(a) U {i} = ] and by making use of the explicit formula

(5.1) one shows that in fact the coefficients of f (X) are in the sub-A-algebra

A<U;I> and that f (X) is a continuous I-tuple of power series. Now let

(0.1 FyxY) = (507 R + Aw), ol - (a1 () =

= (fﬁ)”(afﬁ(x)) all a € A

Then (Fa(X,Y),p) is a formal A-module over A<U;i>. This can be shown either
by performing the same projective limit construction with respect to the
finite dimensional objects F (X Y), [a](X) and observing that the

relations (10,1) hold in 1im A[U(l a)[supp(a) U {i} < «x]}. This is what

we used in section 8 above. Or one can state and prove an appropriate

infinite dimensional version of the functional equation leﬁma. This version

is simply obtained by requiring all I-tuples of power series to be continuous.
The proof that the formal A-module (10.1) is indeed universal is an entirely
straightforward adaptation of the proof in [2], section 25.4 that the finite

dimensional formal A-modules described in section 5 above are universal.

10.2. Corollarz.

Every infinite dimensional formal A-module in the sense of 7.5 above can

be lifted to formal A-module over an A-torsion free A-algebra,
10.3. Corollary.

Every infinite dimensional formal A-module over an A-torsion free algebra B

has a unique A-logarithm.




10.4. The A—logafithm fg(x) of the universal formal A-module FS(X,Y) over

A<U;I> is of functional equation type, and there does exist a topological
analogue of the functional equation lemma 4.3. In the case of A<U;I>
and Z <U;I> this analogue is probably most easily proved by first
remarking that the proofs in [2] also work in the infinite dimensional
case provided that all the I-tuples of power series involved satisfy

the monomials have compact support condition. The topological version
alluded‘to above then results by proving things over A<U;I>/6‘Lr and
Z<U;I>/m.,r for all T.

This permits us to define Eq and £w for curves in FS(X;Y) and hence by
specialization for curves over arbitrary infinite dimensional formal
A-modules.

The construction of the infinite dimensional formal group laws FU(X,Y)
over Z <U;I> and the infinite dimensional universal formal A-modules
over A<U;I> also permit us to extend the Cartier-Dieudonné module
classification theory of [2], chapter V to cover infinite dimensional

case. The proofs are entirely straightforward adaptations of the proofs

given in [2].
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