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OPTIMIZATION METHODS BASED ON PROJECTED VARIABLE METRIX SEARCH

DIRECTIONS

2) 1)

J.F. Ba]]intijnl), G. van der Hoek™/, C.L. Hooykaas

Summary.

As a first ster to the realization of a new
computer program to solve general nonlinear optimization
problems, as a possitle replacement of M.A.P. (Method
of arproximate programming, see Griffith and Stewart
[12],  we have developed a computer code which minimizes
a nonlinear objective function subjected to a set of
linear equality and/or inequality constraints. The method
we have chosen 1is a generalization to linearly
constrained probdlems of the variable metric technique
upon wvhich the well known algorithms for unconstrained
optirization of Davidon [2], Fletcher and Powell [4], Broyden [1]

and many others are based. This choice was based
on the fact that quasi Newton (=variadble metric)
technlques compared very favorably with the optimization
methods wused in the past. We therefore expect the new
algorithm to ©be faster and more rodbust than the
algorithms dealing with uncorrected gradient
information.

Part I of this report describes the mathematics and
theoretical backgrounds behind our nev linearly
constrained optimization code, which we have called :
VLICO ( a Variabdvle metric method for Llnearly
Constrained Optimization.)

In part II we discuss the extension of the linearly
constrained ortimization code VLICO, to the case of the
general nonlinear programming problem. We have used for
this extension the two phase method described by J.B.
Rosen [22]. The resulting algorithm has  been
implemented in a computer program called VANOP (VAriable
metric Nonlinear OPtimization) which has shown a fast
and robust convergence behaviour on a broad class of
test problems, and therefore may bYe a possibdle
replacement for the MAP code which is now often used.

1)
2)

Koninklijke Shell Laboratorium, Amsterdam

Econometric Institute, Erasmus University Rotterdam




Contents

Fart I : A varlatle metric method for linearly
constrained optimization.

Introduction

Chapter I : Variable metric methods for
unconstrained optimization.

Section 1 Relations for finding the
optimum of quadratic objective
functions.

Section 2 Principles of variable metric
methods.

Chapter II Quasi Newton methods with
linear constraints.

Section 1 GoldfarlUs method.
Section 2 Murtagh and Sargent's algorithm.

Chapter III : Description of the implemented
algorithm. '

Section 1 Differences with other algorithms.
Section 2 The algorithm.

Fart II : A method to solve the general nonlinear
optimization problem with nonlinear constraints.

Introduction.

Chapter I : Theoreticé} backgrounds.

Chapter II : The implemented algorithm.
3
\

1

3
R

3
\.

L

page ii




page iii

art III : Decomposition methods to ensure numerical
stability, and derivation of update formulae.

Chapter I : Matrix notations used in Part III
Chapter II : Decomposition mrethods for matrices.

Section 1 General introduction to the applied
decompcsition methods.

Section 2 A method for LU-decomposition.
Section 3 Cholesky decomposition.
Section 4 Examrle for making a LU-decomposition.
Section 5 Example for making a Cholesky
decomposition.

Chapter III : The rark one updating formulae.
Section Derivation of the rank one formulae.
Section 2 The relation between the updates for

the hessian matrix and the inverse
hessian matrix.

Chapter IV : Updating methods for the Cholesky
decompositions.

Section'1l An algcrithm for applying the rank

one corrections to the Cholesky
decompcsitions.

Section Modifying the Cholesky decompositions
when a constraint is dropgped from
the active constraint set.

Acknowledgment

References and Testproblems

References

Testproblems

Appendix A Example for VLICO
Appendix B Example for VANOP




A variable metric method for linearly
constrained optimization.




Introductionl)

Since we expect the future to show a growing use

f the nonlinear optimization technique, we have Ddeen

.ooking for new candidate algorithms, which can possibly
erlace the MAP code. The MAP code was developed

1966 by Griffith and Stewart [12], and is often

for solving general nonlinear optimization

roblems. It seeks a local minimum to the general nonlinear

rogramming problem by solving a sequence of linear

rogramming problems. The linear programming problems are

benerated by linearizing both the nonlinear objective

unction and the nonlinear constraints, around the current

fteration point, while stepsize restrictions are added every

teration. Although the MAP code is a very robust method,

.t has as a disadvantage its rather slow convergence.

Since in the field df unconstrained optimizatioh the
ntroduction of the quasi-Newton techniques has  shown
emarkable good results, it seems quite natural to try to

xtend these techniques to the field of constrained
rtimization. _

As a first step in this direction we have been looking
or an algorithm, which implements the idea of the variable
etric rmethods in the constrained optimization prodlem,
here the objective function is nonlinear and the restrictions
re linear functions of the problem variables. This report
herefore describes a method to solve the linearly
onstrained optimization rroblem:

)

The authors are indebted to Mrs. Anke J, Muller-Sloos for editing this
report.
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Minimize f(x)
Subject to :
aio = . 1::1,2’..-0-0.“!1

i=m1+ 1,ocoaoo,m

Here f(x) 1s a convex sufficiently smooth (twice
continuously differentiable) function.

In the past methods to solve this type of problems already -
existed, such as the method of Frank-Wolfe [6], ©dut their
performance was rather poor. One of the reasons for this
unattractive behaviour 1is the fact that the underlying
methods for solving unconstrained optimization prodblems of
these algorithms are sometimes very inefficient.

Recently new unconstrained optimization algorithms have
teen developed, and of these especially the variable metric
methods have proven to be very valuable. Compared with,
for example, the related method of steepest descent,
variable metric algorithms show both a faster convergence
and an ability to solve wunconstrained optimization
protlems for which the method of steepest descent failed to
find a solution.

The basis of the variable metric methods is the fact
that in an iteration point ,x,, the search direction , ke 1s
comruted using information on the gradient ,Vf(x,), and some
arproximation of the hessian ,V’f(xk), the matrix of second
order derivatives of the objective function, in that point.
Alorg this direction the minimum of the objective function
is determined, giving a new iteration point. From the
differences in the gradient of the current and previous
iteration point, an updated approximation of the
hessian matrix 1s then calculated, etc....

In the case that f(x) 1is a quadratic function quasi
Newton (=variable metric) methods converge in at most n
sters, where n is the dimension of the vector x.

For the case that f(x) is not quadratic, ©but possesses
the prorerties given bdvefore, convergence has been proven
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(18], when started with an approximation which is
sufficiently close to the optimunm.

In 1969 Goldfard [10], [11] and Murtagh and Sargent [20]
extended the "unconstrained” variable metric method to the
case of a nonlinear objective function with 1linear
constralnts. Starting from a feasible point, they both used ° '

a set of active constraints, restricting the search
directions to hyperplares rarallel to those defined by the
active constraints, thus generating a sequence of feasibdle
poilnts x,.

The set of active constraints consists of a set of
linearly 4independent constraints, that are binding in the
current iteration point. Not all bdinding constraints have
tec be in the active constraint set, but only those which we
expect to be active at the optimum.

In our code we have 1implemented a slightly modified
version of the algorithm of Murtagh and Sargent. This choice
was based on_experiments reported by M. Lenard [18] and
Himmelblau [13]. To clarify the principles wunderlying the
Tesulting algorithm we have taken the following approach :

In part I (This part of the report), the optimization
method for the nonlinear programming problem with linear
constraints is discussed. The contents of this part is:

In Chapter I we discuss some aspects of the quasi
Newton methods for unconstrained optimization.

Chapter II deals with the extension of these
methods to the case of linear comstraints.

In Chapter III the algorithm as implemented in the
computer program VLICO (Variable metric method for
Llnearly Constrained Optimization), is explained.

In part II of this report the extension of the linearly
constrained algorithm to the case of nonlinear

constraints with its theoretical backgrounds is
discussed. -

Part I and Part II have both also appeared in the form
of a SHELL report [16],[17].

Introduction.




Part III treats the matrix factorizations and the update
formulae we have used in the computer program VLICO.

In the appendix a sample problemis given.
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Charter I : Variable metric methods <for unconstrained
optimization. :

Section 1 : Relations for finding the optimum of
quadratic objective functions.

As every smooth (=twice continuously differentiable)
otjective function can bte approximated by a quadratic
function 1in a neighbourhcod of its minimum, variable metric
methods have been designed to solve the following
unccenstrained minimization prodlem:

(1.1) Minimize q(x)=.5% r'A-x + b"x + c ,

vhere A is a positive definite symmetric n*n matrix, ¢ is a

knovn scalar and the constant vector b and the vector of

unknowns x belong to E". Then the gradient vector is:
(1.2) Vaq(x) = &x +1b ,

and the difference of two gradients of the objective
function can be given as:

(1.3) Vh(zl) —,Vﬁ(;z) = A-(x;- x,) .

A necessary and sufficient condition for x”* to bde
rinimum of q(x) is:

(1.4) Va@i*) =¢ .

* Chapter I ;
Variable metric methods for unconstrained optimization.




Fror (1.3) and (1.4) it now follows that :

(1.5) Vq(x) = a4 (x - x"), or

(1.6) x*=x - 4~Vaq(x)

In the _case that A is a positive semidefinite matrix,
the matrix A in the expression (1.€) does not exist. In
this case however, we can obtain a good approximation of x°
by adding a perturbance matrix to the matrix A, to obtain
and consequently compute R and use this matrix in
‘relation (1.6). According to relation (1.6) the minimum L X
, of a quadratic function can be calculated if in a point
,X, the gradient ,77(x), and the 1inverse of the hessian
ratrix ,B (or V'f(x)=A in this case), are known. '

Section 2 : Principles of variabdle metric méthods.

Sometimes however, we do not have any knowledge about
the elements of the matrix A' , or our approximation of this
ratrix is highly inaccurate. In this case the relations we
nave derived above are not of much help, and a set of
rutually related algorithms, called quasi Newton or variabdle
retric methods, based on these relations have been
developed to find the minimum of the function.

For the given quadratic function minimization problem,
the variable metric methods generate conjugate search
directions, and therefore convergence in at most n steps is
guaranteed.

However in general the objective function ,f(x), will
not be a quadratic function. For this case convergence has
also been proven [19), when started with an initial estimate
of x* which is sufficiently close to the optimum, and vwhen
the function £(x) 1s a twice continuously differentiable
function. In practice the behaviour of the variable metric
methods has proven to be rather insensitive for the quality
of this initial estimate. The sensitivity for scaling of
the objective function or the variables is extensively
treated in Dijkshoorn en Van der Hoek [3].

. _ Chapter I
Variable metric methods for unconstrained optimization.




The variable metric methols are based on the followlng
ldeas:

i) An approximation Hy to the hessian H and an
estimate x, of the optimum x* are given.

1i1) According to (1.6) the direction ,p,, in which the
optimum will be looked for is calculated by:

~B A VE(x, ).

Because H, is only an approximation to the hessian
matrix H, a line search along the search direction
px has to be performed, in order to find the exact
minimum along this direction. This 1is mnecessary
because the proof for finite convergence is based
on this exact line minimization. If o, 1is the
value o0f « minimizing the objective function f(x)
along the line x, +xp, , then we can calculate the
next iteration pcint as:

(1.7) Xz, = X% %Dy -

iii) Because in the neighbourhood of the optimum 5*,
vhere the objective function can be approximated
accurately by a quadratic function, for the real
hessian matrix H the relation:

(1.8) B-(x,,, - X.) = VE(x,,)- Vi(x,)

holds, the approximation to this hessian matrix H
is now updated by adding a matrix C, of lower rank,
so that:

(1.9) H,, = H, + C, , and

(1'19) H\(.\.\'(zk-ﬂ - SK) = Vf(;

Vi(x )

HH)-

for all preceding values of k.

Normally for the correction matrix C, some matrix of
rank one or rank two is taken.

Chapter I
Variabtle metric methods for unconstrained optimization.




Instead of updating the arrroximation H,, one can of course
also work with an approximation H;' to H™ , and update this
estimate in accordance with the relation: '

(1.11) x,, - x, = BE-{Ve(z,) - Vi(x )} ,

2 st

to obtain o
(1‘12) X T X, T H;‘ﬂ {Vf(—zk;l) - Vf(-x-x)}'

From the many_ different possibilities to wupdate the
matrix H, or B, we have chosen the rank one correction
formulae. For an exact formulation and a complete derivation
of these formulae see Part III, Chapter III. Reasons for
choosing the rank one corrections are :

i) Rank one methods are less sensitive for an inexact
line minimization.

i1) Less computational work is required.

11i) In the case of lipnearly constrained optimization it
leads to simpler recurrence relations.

IR Chapter 1 ,
Variable rmetric methods for unconstrained optimization.




Chapter II Quasi Newton methods with linear constraints.

Section 1 : Goldfard's method.

In 1669 Goldfard [3,4] and PMurtagh and Sargent (5]
extended the principle of quasi Newton methods to the case
of the linearly constrained problem :

(2.1) : ' Minimize f(x)

Subject to :

T

"! i=1’octoo' m'

(X
-:*_X__Sb;_ 1 m"*' 1,...-.,!’“

‘Where f£(x) is a twice continuously differentiable function,
8 i=1,.....,m are known constant vectors, b, i=1,......,m
are known scalars and X is the vector of unknowns.

Given a feasible initial point X, %oth methods
determine which constraints are active in X, » and form a
matrix N, of full rank, whose columns are the qQ linearly
independent normals of these active constraints.

Goldfarb’s idea was to start with ap approximation H'
of the inverse hessian matrix, that has the property :

(2.2) NCE =g .

i t

Chapter 1II
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Thus the matrix B, is not of full rank. It then holds for
the first search direction, Pt

(2.3) ~ p= -B''Vf(x,) , that
(2.4)  NTp,=-N-B'Ve(x,) =8 .

This implies that the search direction p, is parallel to the

hyperspace ' spanned by the active consfraints. Now for the

urdate of the approximate inverse hessian H update formulae

are chosen in such a way that whenever no changes 1in. the

active constraint set occur the followlng imgplication holds
T g~ - -l

(2.5)  NTE! =0 = NjH] = N-Hj=

ks K+l

Z L]

When the .approximate inverse hessian matrix H is
urdated according to the principle given in (2.5) it then
follows that as long as the active constraint set does not
charge, the relation :

(2.6) N;-BK = @ , where p = -HQEVf(;k) ,

holds for all k. The search direction will then stay
parallel to the hyperplane defined by the set of active
constraints. S

A useful initial guess for Hf‘, given a set of active
constraints and corresponding matrix N, , 1is according to
[7], the projection matrix : ‘

(2.7) H"'-I—N(NN)N

|

Also in the case where a constraint is added to or
remcved from the active comstraint set update formulae for H
are needed .to guarantee the parallelity of the search
direction ,p, , with respect to the hyperplanes defined by
the active constraints.

For the case where a new constraint with corresponding
norral vector n. is added to N, this implies that H, has to
te formed in such a way that : ’

K4 =T

' Chapter II
Quasi newton methods with linear constraints.




This condition ensures that the search direction Dy 1s
not only parallel to the previous active constraints, hut
also to the new active constraint.

In the case of deletion of a constraint with normal
vector n, , '

(2.9) oo, # 2 ,

should hold. This condition, which increases the rank of the
matriz H' with one, is necessary to ensure that the search
direction Dy, 1s no 1longer parallel to the now inactive
constraint.

Section 2 Murtagh and Sargent's algorithm.

Murtagh and Sargent [20] developed ' a similar algorithm
as Goldfardb, but, instead of updating a matrix H. of rank
n-q , they suggest to use an approximation of full rank of
the Hessian matrix, and to project the search direction on
the space spanned bty the set of active constraints.

They first compute an unconstrained quasi - Newton search
direction :

(2.10) pr= -, Ve(x,)

and then project it, by Fremultiplying it with a projection

matrix P, in the metric induced by the positive definite
matrix H_ , : v

-4 T oyt - T
(2011) Pk = I - HKNK(N“H“N“) Nk

to ottain the constrained search direction, Pk » In a
porral iteration, when the set of active constraints does
not change, any variable metric updating formula can be used
for modifying H, . Recurrence relations are also used for
urdating (N H/N)" "after a quasi Newton correction in H, ,
4 ths avolding the need to recalculate (N:H:Nkf‘ in each new
iteration. Also for the case where the set of active

constraints and 1its corresgpnding matrix N,is modified,
srecial update formulae for (N,,-H;“Nk)"l are avallabdle. The
algorithm of Murtagh and Sargent is :

i Chapter II
Quasi newton methods with linear constraints.




STEP 1 Take a feasible initial point x, ( One can always
find a feasible point using either a phase 1 of an
LP-algorithm or some specially designed algorithm. )
Determine the set of active constraints in X, » and form
the matrix N, , whose columns are the normals of the
active constraints. Take H' = I as an initial
approximation of the inverse of the hessian matrix. Set
the iteration counter k =1. SE L L e S e o

STEE 2 | Compute the unconstraiﬁed Seafch di}ection :
'(2.12)' PN = -HMVE(x ) CoET e |
and prerultiply py with the matrix g
(2.13) B = I - EINJNEDN N

to project p* on the srace spanned by the set of activ
constraints to obtain the real search direction : '

(2.14) P« = P 1! B SRS
The set of Lagrange multipliers corresponding to the
active constraints, can bve calculated during the
computation of p, [I5]. The Lagrange multipliers are
given dy T T A Rt o

(2.15) ‘. D= (NTEDN, Y NIEVe(x,,)

STEP 3 Check if the constraint with the 1largest ‘Lagrange
- rultiplier can bYe dropped from the set of active
constraints. If it is drogged«the,matriwak‘willﬁlose a
colurn and the matrix (N HY N, )" will have to be
corrected accordingly. (Murﬁagh and Sargent describe a
method for this correction but because we do  not use
this method we will not repeat it here. ) Set k=k+1
after this correction and return to step 2.

v Chapter II :
Quasi newton methods with linear constraints.




If no constraint can bve dropped, perform a test on
glcbal comnvergence :

1f “Ek“ <g Stop.
Ctherwise go on to ster 4.

STEP 4 Execute a minimization along the search direction p,
, taking into account that the mazimum step size , =,
vhich can be taken is equal to the distance from the

current iteration point to the nearest constraint along
the direction Ek :

(2.16) %= min. {(b.- alx)/alp, ) alp,> o},

vhere g, 1is the normal of the i-th constraint.
Set Xy, = It %D, vhere <, 1is the minimzing step size.

STEF 5_ Perform a variable metric correction to H.' and

(Ng By N )™ to obtairn Hy), and (N5 B N, J respectively,

vhere N, = N.as no changes in the active constraint set
have occured.

STEF 6 If the step size o«,,determined in step 4 was equal
to the maximum step size, the set of active constraints
is increased with the restricting constraint.
Consequently a column is added to the matrix N, to
obtain the matrix N,, and the matrix (N{ HD N, )™ is

modified accordingly, wusing the method describded by
Murtagh and Sargent. We thus obtain (N W, N, )"
Set k=k+1 and return to step 2. “

Chapter II
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Chapter III : Description of the 1mblémented algorithm.

~ Section 1 : Differences with other aigorithms.

In our computercode we have used an adapted version of
algorithm of Murtagh and Sargent. The differences are :

1. We only test whether a constraint has to be dropped
from the active constraint set in some specilal.
situations, where the algorithm of Murtagh and Sargent
test every iteration. The situations in which we test are:

a. The variabdle metric optimization converged
within the current active constraint set.

b. We have to reinitialize the approximation of the
hessian matrix, because of accumulated calculation
errors.

c. After any changes in the set of active
constraints, inderendent whether a constraint is
added to it or drcpped from it. '

2. To obtain an 1increased numerical stability the
approxiration H, to the hessian matrix and the matrix
Ng BHD N, are used _in stead of the matrices H and
(NJHDN, )™ . B, and NSH(N, are stored in the form of
their fholesky decompositions. '

Chapter III
Description of the implemented algorithm.




( By Cholesky decomprosition of a positive definite
ratrix is meant the factorization :

C = L-D-LT

where I is a unit lower triangular matrix ard D 1is a
diagonal matrizx. For more information concerning
Cholesxy decompositions, and for a method for making a
Cholesky decomposition, see Part III Chapter 1II,
Section 3.7 )

Using Cholesky decompcsitions offers 3 advantages :

a. Calculations can be executed with greater speed.

P}
b. Positive definiteness of H, and Ny H, N, can
easily be controlled.

c. A greater pumerical stability is obtained, by
ordering the diagonal elements and corresponding
rows and columns on their absolute magnitude.

Because update formulae are given [] for EH, and N;EH,N,
and not for their Cholesky factorizations, other
modification formulae were needed in this case. Gill, Golubd,
Murray and Saunders [8,9] have developed an efficient
algerithr to update the Chclesky factors of a matrix, when a
ratrix of the form v.v' is added to the original matrix or
subtracted from it. We have used this algorithm because the
corrections we have to apply to the matrices H, and NKTHR Ny
are indeed of the fOrm v.v'.See Part ITI Chapter IV

As no suited wupdate formulae could be found in
literature to update the cholesky decompositions of NJEJN, ,

vhen changes in N, occur, special update relations had to be
developed for this situation.

Adding & column to the matrix N, does not give many
rrobtlems in modifying the matrix NJ H/N. , because, this
arounts to adding a colump and a row to the matrix N H, N
and ve can simply take one more step in the original process
of making a cholesky decomposition, see herefore [21], and
Fart III Chapter II, Section 3 of this report. Removing
column i from the matrix Nk hovever, amounts to deleting
column 1 amd row i in the matrix NJ HJ N, to obtain
N, B N..= N H'N ~

K KN K Kol T kep®

Chapter III
Description of the implemented algorithm.




No method to calculate the cholesky factors Ly, and D,
of the matrix N H,“,NmJ was avalilabdble. However, an algorithm
for this mod1f1cat10n is” developed in this report. The method used. in
the program "is described extensively 1in Part III, "Chapter IV, Section 2.

Section 2 The algorithm

The proposéd algorithm for our 1linearly constrained
minimization now works as follows:

Step 1 Initlalize a feasible starting point x , with its
gradient V£(x, ). Take the unit matrix I as the
first approximation H, to the hessian matrix of the
objective function f(x) - Determine the set of
active constraints and the corresponding matrix N
consisting of the normals of the active
constraints. Corpute the Cholesky decomposition of
N, BN, , and set the iteration counter k=1.

2 Determine the search direction :

pk = "P“ H;"Vf(_lgk) ’

where P, = I - By N (N Hy N )'NS

~and compute the raximum steplength . along p,, SO
that for 8 < x <Xy, x +xp,_ is a feasidble point.
(for an exact formulation 6? x,see formula (2.16)).
Also calculate the approximation of the lagrange
multipliers:

A= (N BN NG B VE(x,)

If INJ pl) D6 , where € is a small user supplied
constant, the search direction is not parallel to
the active constraints; Go to step €.
If 'Hpku <€ , or if in iteration k-1 the set of

Chapter III
Description of the implemented algorithm.




active constraints was changed, go to step 7.
Ctherwise go to step 3.

5]
¥

ind the steplength o ( @ <x<KX) that minimizes

F
f(Z,+ =p,) -

4 Set X, + Kkpk, and modify the Cholesky
decompositions of ﬁ and -H'-Nyg to obtain H,,
and Ng, Hi N, - It e =%, goto step 5. Otherwise
set k=k+l and return to step 2.

5 A nev constraint has ©become active. Add the
normal of the new active constraint to the matrix Ny
to obtain the matrix Nk“ ' and modify the Cholesky
factors of the matrix N, B N, accordingly. Set
k=k+1 and return to step 2.

6 Reset the approximation of the hessian matrix B,
, to the unit matrix I, and the matrix N H; N. to
Nk N, -

7 Select the largest lagrange multiplier )\(j)and
calculate (3 =.5 \j)/ b(jj) , where ©b(jj) is the
j-th diagonal element of (NJ-E; N,)7 . [3 can be
interpreted as the expected improvement when

constraint j 1is dropped from the set of active
constraints. :

Stop the procedure if both lp I<€ and P <& . If
Wplt <@ drop the j-th constraint fror the set of
active constraints. Update the matrix Ny and
modify the Cholesky factors of N H., N using the
method describved in Part III Chapter IV. “section 2,
to obtain the matrices Ny, and N B . N, - set
Xyy = X, and k=k+15 Return to step 2. If no
change occurred in the set of active constraints,

continue the k-th iteration with step 3.

Because this algorithm needs a feasible initial point,
twvo phases are needed. In phase 1 the initial point
supplied by the user, is modified to obtain a point which is
feasible with respect to the equality constraints. Then a
renalty function is formulated, which after minimization
yields a feasible point to start the second phase with. The
construction of this penalty function is as follows:

Chapter III
Description of the implemented algorithm.




Let Vr be the set of indices i for which the constraints

a.-x < b

=L L
are violated. Then wexhoase:as penalty function:

%
p(x) =2{aj x - b+ .1% (1. + lpyf )}
LEY
We now use the above described algorithm to solve a
protlem with p(x) as objective function:and the non violated
constraints as restrictions. Therefore some differences in the
procedure are .needed:

- We check every iteration if any of the violated
constraints is satisfied after the last step, and
we change Y if any constraints did become
feasible.

Because the set Y can change every iteration, we
do not have the same function every iteration, and
it_does not make sense to update the matrices H, and
N,Eg N, if no changes in the set of active
constraints occur. :

If a feasible point to the linear constraints exist, the
rmethod described above is guaranteed to find a feasible point.

Note that the penalty function is constructed so that a
point in the interior of the feasible region 1s generated,
if it exists. Reason for this construction is the slow
convergence of the quadratic penalty function if one- wants
to generate a- point which 1lies on the edge of the
constraints. '

As soon as all constraints are satisfied the phase 1 is
stopped, and we use the resulting feasibdble point as an
initial point for the second phase.

Chapter III
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4 rethod to solve the general nonlinear optirization
protlem with nonlinear constraints.




Introduction.

In recent years the field of nonlinear programming has
received very much attention. Cne reason for this may be that
thrcugh the now widespread wuse of linear programming the
demand is growing for methods that solve nonlinear problems,
which give a bYetter representation of reality. Another
irrertant reason may bYe that the knowledge of the theory
underlying nonlinear programming has grown, thus providing
the ground on which better algorithms can be developed.

This code is developed as a possible improvement of the MAP code of
Griffith and Stewart [12] to solve the following nonlinear programming problem:

(1.1) Minimize f(x)

Subject to

h; (x) = @ J=l,evece.,mh
gt(g) <@ i=1,.ceee.,mB

~ where f(x), hj (x) and g (x) are nonlinear or linear,
twice continuously differentiable functions of x e E".

The VMAP code transforms this problem to a sequence of
linear programming problems, generated by linearization of
toth the nonlinear objective function f£(x) and the nonlinear
constraints b; (x) , j=1,.....,mA and g (x) , 1i=1,.....,mB,
in a neighbourhood of the current iteration point. The
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solutions of these LP-rrodblems converge under certain
conditions to the solution of (1.1).

Pecause in these 1lirearizations all information about
the nonlinearity of objective function and constraints is
discarded, this method has as a disadvantage 1its slow
convergence.

The method we propose in this report may be a possible
rerlacement for the MAF code. This method, based on a
repcrt of J.B. Rosen [22], also generates a sequence of
protlems, the solutions of which will converge to a local
minimum of (1.1). The problems generated in  the 1latter
rethod are created by linearization of the nonlinear
constraints only, whereas the original objective function is
rerlaced by a modified Lagrangian function:

m(x) = £(x) +

_Sij[ bj(x) = 1;(x,y) ]+

g?/ql g (x) - ki (x,y5) ]

Where N\; and m{ are the lagrange multipliers of the
nonlinear cConstraints h; and g{ , and 1;(x,y) and ki (x,y)
are the linearizations of these constraints with respect To
the roint y. ’

Contrary to MAP this method thus preserves information
regarding the nonlinearity of both the objective function,
and the active ronlinear constraints, in this way obtaining
a faster and robuster convergence. Where MAP generates a

sequence of LP prodblems, the proposed method creates a
series of problems of the form: '

(1.2) minimize m(x)

Subject to :
g x = v  J=1,......mt

3 x < by i=ml+l,.....m2

Where m(x) is a nonlinear function.
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The method we have used for solving problem (1.2) is the
program VLICO, which is discussed in Part I of this report ,
tvt the program VLICO can be replaced by any other method
that solves problem (1.2).

Chapter I of this rpart will gife some theoretical
backgrounds of the algorithm, whereas Chapter II treats the
implementation of the algorithm.

Introduction.
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Chapter I Theoretical backgrounds.

If we make a distinction between linear and nonlinear
constraints in the general nonlinear optimization probdblem ,
ve€ can define the regions S1 and S2 as follows:

alx - b =0; i=1,...m
(1.1) S1 =4x

3, x - b €@ ; i=mi+l,...m2

—

S1 1s the feasible region defined by the linear
constraints only, and:

(1.2)

-—

hj(&) = @ J=1...-m3
S2 =4{x
g (x) €0 1=1,...ms

S2 1is the feasible region defined by the nonlinear
constraints only ,

We can write the problem we want to solve now as:
(1.3) VMinimize f(x)

subject to :
x € S1\sz2

Rosen's method uses the 1linear apprbximations to-
the nonlinear <constraints, and generates the following

Séquence of problems, the solutions {x,} of which converge
to a solution of problem 1.3

Chapter I
Theoretical backgrounds.
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(1.4) Minimize m(x) = f£(x) + s(x,x,_, )
subject to :
x € S1/) T2(z,., )

where T2(X.., ) is the region created by linearization of
nonlinear constraints:

1.(.;9.; - ) = @ ; J=1 ooom3
(1.5) Tz(;k_l )={L J K-t ’ }

| ki(g,gk_i) =0 ; i=1,...md

where the linearization of h;(x), 1;(x,X,., ), is defined

)

k: (x,x,,) is defined in the same way as linearization of

g (x). Rosen’[22] has proved that if a solution x, to (1.4) is a

i xed point of the mapping of E% E'defined by the algorithm then x.is also
a Kuhn-Tucker point of peoblem (1.3). The convergence of the series {X.}
to a’solution of (1.3) of course dependsheavily on the function s(x,X, , )-
Further we want the function s(x,x, ) to possess the
following properties:

-—

(1.6) 1;(x,x, ) =h (x) + (x - x., )-Vh(x,

\

(1.7) S(Xy_ 1Xy-r) = @
(1.8)  Vs(x,., +Zy. ) = 2.

—

- Because when X, = X.. ,i.e. the solution to (1.3) is found,
we want the following relations to hold:

(1.9) m(x,) = f(x,) , and

(1.1€)  Vm(z,) = VE(x,).

The modified Lagrange function is an objective function m(x) that possesses
properties (1.9) and (1.10), and of which fast convergence is proven for the
sequence {xy}. : » P LrooT. ..

But because- we do not know the exact values of the Lagrance. ~
multinliers = we have to ‘use the approximations available. Using
‘the modified Lagrange function as objective function corresponds with- taking:

Chapter I ,
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(1.11) s(z,x,_ )=i)\i(§m Mb(x) - 1 (x,_, »x)}+

i)

Yy
+ :!::\:/"j(?éu_, ) lej(x) - kjlzx, | )}

vhere A (x,, ) and m; (x,, ) are approximations to the
Lagrange multipliers of the constraints h.(x) and %j (x) 1in
the point X,., . MNote that the functiom s(x,x,_ ) contains
information concerning the nonlinearity of the constraints.
Convergence proofs for this objective functlon exist, when
the starting point x 1is “sufficiently close” to a local
minimum of (1.2). Starting from an arbitrary point x ,
hovever, no convergence can be guaranteed.

To overcome this difficulty, we introduce a first phase
tc obtain a good starting point x,, with corresponding
estimates of the lagrange multipliers X.(x, ) and Mm(x, ).
The method we have used for this first phase, is solving the
rrotlem:

(1.12) Minimize f(x) + p(x)
subject to :
X € 51,
vhere p(x) is defined as:
(1.13) »p(x) = .ﬁ-n‘-[g{hj<z)}z+§ CHEN NP
vhere TI, is a penalty parameter, and gf(;) i1s defined as:
(1.14) g (x) = max. {2, g (x)}

The objectiw function of problem (1.12) is the external
penalty function of the SUMT procedure of Fiacco and
McCormick [6] , but, where the SUMT methods generate a
sequence of points {gk} that converges to a 1local minimum,
ty 1increasing the value of the penalty parameter 1, every
ster, we take only one SUMT step. After this SUMT step we
solve a series of the form (1.4). Besides providing a good initial
estimate x,the solution to problem (1.12) also gives

good approximations of the Lagrange multipliers X{(x,) and
/wﬁg‘) in x, given as:

. Chapter I
Theoretical backgrounds.
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(1.15) )\L(I\) "' Tr|‘hL(_X.‘)
(1.16) Mix,) =TT.-g3'(gt_l).

It can be shown [22], that if v, is chosen greater than
some constant, the sequence {x,} will converge to a local
ripirum of (1.3). Therefore the algorithm consists of a
SUMT step followed by a sequence of linearized problems.

Chapter I
Theoretical backgrounds.




Chapter II The implemented algorithm.

The algorithm as we have implemented it in our computer
code is:

The input data are :

Initial approximation x,5 the 1inear constraints
the nonlinear constraints (x) and g; (x);
Parameters for VLICO and VANOP R such as precision
parameters and penalty parameters.

1 Solve with VLICO the problem :

(2.1) Minimize f£(x) + p(x) ,

subject to X ¢ 81,
wvhere S1 1is defined in (1.1) and p(x) in (1.13),
starting in point x, to obtain x, and Al . Set
Xy = X, S NMTX and k=1. If no point xeSl can be
found stOp because it is an infeasbdble problem.

2 Given x, and X, generate the feasible region
T2(x,) as defined in (1.5).

Chapter II
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Step 3 Solve with VLICO the problem :

(2.2) Minimize f(x) + s(x,x.)
subject to x€T2(x, )N S1

where s(x,x, ) 1is given in (1.11), to obtain the
vectors x,, and ), -

Step 4 1t lx,, - x, <€ , where € is some predetermined
constant, stop because the method has converged.

Step 5 Set x,.= X, 3 A,=). and k=k+1, and return to
step 2.

It should be noted that the principle of the algorlithr
is independent of the VLICC code. The VLICO program can be
rerlaced by any other computerprogram which solves the
linearly constrained problem. '

Possible extensions which can easily be incorporated in
this algorithm are:

Termination in case ¢f infeasibility caused Dby the
.nonlinear constraints.

Early recognition of optimal 1hitia1 points.

Termination in case of exceeding a predetermined
maximum number of iteration steps.

Linearization of only a subset of the mnonlinear
constraints, instead of linearizing all nonlinear
constraints.

Chapter II
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Decomposition methods to ensure numerical
stability, and
derivation of update formulae.




Part III

Chapter I Matrix notations used in part III

1. A 1lower trapezoidal matrix L is a m*n (m2n) matrix
1(1,3), for which the following relation holds:

1(1,J) = @ for j=i+1 to n, and i=1 to n.

In a picture :

figure 1

Chapter I o
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2. A lower triangular matrix I is a n*n matrix 1(1,))
for which the following velation holds: :

1(1,3)=0 for j=i+1 to n, and i=1 to n.

"In a yicture :

figure 2

2. An uppef triangular matrix 1is a transposed lower
trianpgular matrix. :

4. A unit lower (or uprer) triangular matrix is a 1lower

(or wupper) triangular matrix with all diagonal elements
equal to 1. .

Chapter I
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5. A ‘special” triapgular rmatrix M(p,b,c) 1is a
triangular matrix m(i,j) for which the following
relations hold:

m(i,J)=¢ for j=i+1 to n, and i=1 to n

m(i,j)=c(i) for j=i, and i=1 to n.

m(i,J)=p(1)ka) for j=1 to i-1, and i=1 to n.

€. An elementary matrix Ek is a n*n triangular matrix
e(i,j), for which the following relations hold:

e(i,J)=1 for j=1, and i=1 to n

e(i,3)=0 for j=1+1 to n, ard i=1 to n
e(1,3)=0 for i=j+1 to n, and j=1 to k-1
e(1,3J)=0 for i=j+1 to n, and j=k+1 to n

In a picture :

Chapter I
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7. A diagonal matrix D is a n*n square matrix d(i,}J),
for which the following releation holds:

d(1,j)=0 for j#1 , and i,j=1 to n

In a picture :

figure 4

8. The unit matrix I, is a diagonal matrix with all
diagonal elements equal to 1.

Chapter 1I
Matrix notations.
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9. A permutation matrix P is a n*n matrix p(i,J); fo
vhich the following relations hold :

E% p(i,3) = - J=1 ton
Ep(ij) 1=1 to n
p(i j)=0 or p(i J)=1.

Picture for an example wvith n=4 :

10
00
0 0
OO

Chapter 1
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Chapter II Decomposition methods for matrices.

Section -1 General introduction to the applied
decomposition methods.

By a decomposition of a certain matrix we understand a
procedure that forms a numter of matrices (usually two or
three) with some srecial features , e.g. triangularity, such
that the product of these matrices yields the original
wratrix.

In our optimization method, we have made use of
LU-decomposition and {holesky decomposition. The
LU-decomposition of a m*n (m2n) matrix A consists of a  m*n

lowver trapezoidel matrix L and an n*n unit upper triangular
ratrix U, such that:

(2.1.1) A =10

The elements of a Cholesky decomposition of a positive

definite symmetric matrizx B, are a n*n unit lower triangular
matrix I,

and a diagonal matrix D, such that:
(2.1.2) B=LDL™
The advantage of the decomposed form of a matrix is that

many - operations with matrices can be executedin’'a simpler:way

vith a greater speed and accuracy vwvhen a matrix is of some
srecial form.

Chapter II
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To compute the inverse of a nonsingular n*n matrix A,
for example, is very simple if the LU—factorization (2.1.1)
of this matrix 1is known. The matrix L' is then equal to
A" = UL and the matrices U and L™ can be computed by
simple recurrence formulae. o

In our ' research we have used LU- and Cholesky
deccrpositions to obtain numerically stable solutions of the
set of equations.

(2.1.3)  A-x =1t

If A is a positive definite symmetric n*n matrix, and we
have its Cholesky decomposition, then this set of equations
is equivalent to:

(201 cé) IJDLT'; = b

We can solve x from (2.1.4) by solving the following
sequence:

(2.1.5) solve y from Ly = b

(2.1.6) compute w = D'y

(2.1.7) solve x from L'x = w

Here the solutions of (2.1.5) anmd (2.1.7) can easily be
obtained by means of a simple backsubstitution thanks to the
lower and "upper triangular structure of I and I'. To
comrute ¥ in (2.1.6) also forms no problem because D is a
diagonal matrix.

~ In the case that A in (2.1.3) is not a square matrix but:
a r*m. rpatrix (mdn), we make a LU-factorization of A and
solve only the first n variables of x and leave the rest -of
the variables unchanged.

‘In the sections 2 and 3 of this chapter we will treat
rethods for making a LU-factorization and a Cholesky
decomposition. In sections 4 and 5 examples of the
decomposition methods are given.

A
\

3
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Section 2 A‘method for LU-éecomposition.

This method [21] for finding a m¥n lowver trapezoidal
matrix I and a n¥n unit upper trianmgular matrix U ,such
that: A=LU ’ generates a sequence Love, Livl,
I1zU2y¢eeeesesy InlUn, vwhere L=Ln and U=Un, and the relation
A=1L1U%l always holds; for a practical example see section 4
of this chapter. '

Start with LO=A and UG=I, and form the elementary matrix
El such that for the matrix L1=LB.E1 it holds. that the elements
Li(1,j) for j>1 are zero. Now compute the matrix E1” (This
is also an elementary matrix E1°.) and premultiply U@ with
this matrix to obtain Ul=E1l .U@.

Now L1.U1=L6.E1.E1 .Ug=A.I.I=A. After this we form in
the same way matrices: : ~ ' .

(2.2.1) Lk=L@.F1.E2.....Ek , and
(2.2.2) Uk=Ek .Ex-1"......E1”.U@

~

Where every time the matrices E1 to Ek, and E1~ tb Ek
are chosen im such a way that the relation:

Lk(1,j)=0 for j>i, and i<k ,

holds for the matrix Lk, and E1.Ei"=I for i=1 to k. Now for
the matrix Uk it then holds that : '

Uk(i,i)=1 , and
Uk(1,j)#0@ only for i1<Jj and i<k,

and all other elements are equal to zero. Proceeding in
this vay vwve obtain IL=Ln and U=Un.

For the stabdility we do not make a LU-decomposition of

the matrix A itself, ©but of the matrix PA, where P is a
permutation matrix, which can be written as:

’

(20203) P=PD.PH*1.....P1

vhere each matrix Pk is a matrix that interchanges two rows

in a matrix. Now each matrix Pk is chosen in such a vay that
in the matrix ’

Chapter Il
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L*k-1=Pk.Fk-1....P1.10.E1.....Ek-1 ,

the absolutely largest element in the k—-th column is placed
on the k-th diagonal place.

The total number of required multiplications for making
a LU-decomposition is:

(2.2.4) .&*mn* - n’ y6 +O(n*)

Section 3 Cholesky decomposition.

The wmethod we have used for finding a unit lower triangular
ratrizx L and a diagonal matrix D such that the symmetric
positive definite matrix A can be written as:

(2.3.1) A =1DL",

is a recursive method. For a practical example of this
rethod see section £ of this chapter.

Suppose that a n*n symmetric positive definite matrix An
can be vwritten as:
(23.3.2) An =
wvhere we know the Cholesky decomposition of the (n-1)*(n-1)
matrix An-1 :
(3.3.3) An-1 = In-1.Dn-1.Ln-1"

Ther we can find the Cholesky-factors Ln and Dn of the
ratrix An in the following wvay:

If we put : .

Chapter II
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Then we derive the following relation:

An-1 b ~ |tn-1.Dn-1.12-1) In-1.Dn-1.g
(3.83.4) = =+---| =An = Ln.Dn.In"= - -=---goom ok oo o
¥ ann . ¢’Dn-1.Ln-1 ., g’'Dn-l.c +x

Now we can compute ¢ from the relation

(3.3.5) Ln-1In-1.¢c = b ,

by a backsubstitution because Ln-1 is a triangular matrix.
We can compute x from:

(3.3.6) ¢'Dn-1l.c+ x =

The relation between the positive definiteness of An and
the sign of x can easily be derived :

If An is positive definite, then so is An-1, and:
g<det (An) = det(In).det(Dn).det(Ln”)=det(Dn-1).x ,

so x is positive because both det(Dn) and det(Dn-1) are
positive. Now the Cholesky factors can easily be computed
using the above derived recurrence relations, because L1=1,
and Di1=A(1,1). ‘ ’

.»To ensure stability it 1is advisable to order the
diagonal elements of the matrix A on their magnitude, i.e..
form the matrix P.A.P°, where P is a permutation matrix.
The total number of multiplications required to make a
€holesky decomposition of a matrix of order n is:

(3.3.7) 1n°/3 + O(n*)
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Section 4 Example for making a ILU-decomposition.

Suppose we want to make a LU-decomposition of the matrix:

(2.4.1) A =

DN = =20 N

Ther we will have to start with the following matrices L@
and U@ :

1 = A , and U8 = I.
Now for the first step we look for the largest element
in the first column, and ve interchange the rows 1 and 2.

After this we postmultiply L€ by the elementary matrix E1l,
and premultiply U@ by E1" , where E1 and E1” are:

2 @

1 -3/5 -2/¢ 1 3/5 2/5
(z.4.2) E1 = |eg 1 ¢ |, and E1"' ={0 1 /)
1

e o 1
And we obtain : Ul = E17 , and :

2 2
7/5 -2/5
(2.4.3) L -7/5 7/5
-1/5 21/5

2 2

For the second step we first select the absolutely
largest element in column 2, and accordingly interchange
rov 2 and rov 5. Novw we rostmultiply L1 by the matrix E2,
and premultiply Ul by E2™', where E2 and E2” are given by:

1 ¢ 0 \ 1 0
(2.4.4) E2 = |@ 1 -1 ; E27 =@ 1
. 2 ¢ 11 p 0

After this step we obtain :
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2 # |, and Uz = |0 1 1

(2.4.5) 12 = -7/5 14/5 7} g 1
: -1/8 22/5
7/5 -9/5

o ) [1 3/5 2/5]

For the case of numerical stability, wve now 4interchange
rov 3 and row 4 in L2 to £ind the matrix L3=L to find the
matrix U vwve do not have to change the matriz U2 anymore. The
rroduct of the matrices L and U now gives the matrix A with
a mcdified row sequence

(2.4.6)

= DN DR
N DO

Section 5 Example for making a Cholesky decomposition

Suppose we vant to make a Cholesky decomposition of the
positive definite symmetric matrix A:

124/75 1 13/16
(2.5.1) A = { 1 3 3/2 }

i3/18 3/2 11/4

.To:: ‘ensuma—-stabﬂ1¢y “L..i.i.y, we will first have to
order the matrix on its diagonal elements, and we obtain:

2 3/2 1
(2.5.2) B =(3/2 11/4 13/10
1 13/10 124/75

Now we can start making the Cholesky decomposition.
first take I1=1 and T1=B(1,1)=3. We now know that:

‘ Chapter II
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' 1 @ 3 9
(2.5.3) L2 = , and D2 =
el 1 . g x2

Apnd we can solve cl frcm the equation :
(2.5.4) 3c1 =3/2 =cl =1/2
and x2 from : | :_ :
(2.5.5) 3/4 + x2 = 11/4 => 12 =2
Cur third step consists of computing L and D as:
: 1 2 0 3 o 0
(2.5.6) 1 =]1/2 1 |, and T =|@0 2 ]
1 ¢1 c2 1 @ 0 x3

If we take ¢ = (c1, c2)T , we can compute ¢ from
1z2Dz.¢c = ( 1, 13/18)7T, this ccrresponds with:

(2.5.7) 2cl =1, and
(2.5.8) 3cl/2 + 2c2 = 13/10.

and solution of these two equations gives ¢1=1/3, and
c2=z/5. We can now calculate x3 from: ‘

(2.5.8) g¢’D2g + x3 = 124/75 =>x3 = 1

We now have the matrices L and D such that the
product IDL” = B. :

Chapter II
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Chagpter III The rank one updating formulae.

Section 1 Ierivation of the rank one formulae.

Suppose wve denote the k-th approximation of the hessian
matriz by Ak, and ve wvant to derive the Simplest correction
matrix Ck such that the matrizx:

(3.1.1) Ak+1 = Ak + Ck ,
satisfies the equation :
(3.1.2)  Ak+1-(x,, - x,) = Vf(§k+i) - Vg(x,).

This equation springs from the requirement that, if the
object function were a quadratic function, the matrix Ak+1
must have one of the properties of the real Hessian matrix,
that the matrix Ak did not possess. Then if we use the
following relations:

(3.1.3) z .., ~ X., and

=K+

(3.1.4) Ve(x,.. ) - Ve(x,) , and
(3.1.5) ¥ Y. — Akz,

inserting (3.1.1) in (2.1.2) yields :

Chapter III
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(3.1-6) CK"Z"‘( = Y‘k . .
This equation does not determine Ck uniquely since it
cortains only n conditions for the n(m + 1)/2 unknown
variables of the symmetric n*n matrix Ck.
The sirplest possible matrix Ck that fulfills condition
(2.1.6) is a matrix of the form:

(3.1.7) Ck = r W W T,

where u, 1s an n-dimensional vector, and r. is some
constant. The correction of this form 1s called the rank
one modification formula, and the scalar r,and the vector W,
are uniquely determined.

Inserting (3.1.7) in (2.1.6) yields :

(3.1.8) r.¥, ¥, 2, = T, ,thus

(3.1.9) W, = q¥,

where g = 1/(r v, ’z,) is some unknown scalar. Using (3.1.9)
on its turn in relation (2.1.8) yields:

(3.1.18) r,q,v, v, 2, = ¥,
fror which expression we can derive :
(3.1.11) 1. = /(v ’z)

Substituting (3.1.9) in (3.1.7) and using (3.1.11) now gives
the desired formula : Sk

- 2 , _ ’ ’
(3.1.12) Ck = nq v v, " =y 5 /(3 "z

)

This suffices..if.we want. to update the approximation of the
‘Hessian matrix. Qn the other hand if wewant - to wupdate an
arproeximation of the inverse of the hessian matrix, we can
easily derive a related modification formula.

let the k-th approximation of the inverse of the Hessian
te the matrix Bk and let the k+l1-th approximation be given
as: .

Chapter III
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(3.1.13) Bk+1 = Bk + Dk .

1ep we can write the equivalence of equation (3.1.2).

(3.1.14) 2y = Ek+1 LAVER

> if we use the notation :
(3.1.18) 5, = z, - Bky, ,

id insert (3.1.13) in (3.1.14) we can write:
(3.1.16) Dky, = 5, -

)r the rank one update formula wve can write Dk as:

(3.1.17) Tk = a,3,t, "

ere a, 1is a scalar and %, a n-dimensional
bstituting (3.1.17) in (3.1. 16) give :

(3.1.18)» akgkgkg&‘ =5, , Or

(3.1019) ‘§k = en§k 1

as:

vector.

.ere e, = /(a,t Q 1s some unknown scalar. Substituting

',1.19) 'in (3 1. 18) gives:
(3.1.20) a,e;s.5,.7y.= Sy
\d we can conclude that

(3.1.21)  acex = 1/(s, “y.) .

serting (3.1.1¢) into (3.1.17), and wusing (3.1.21) now

ves us the desired expression for Dk :

(3.1.22) Dk = aels,s,” = 5,5, /(s )

Chapter III
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Section 2 The relation between the updates for the Hessian
matrix and the inverse Hessian matrix.

In this section we will prove that, if we have
arrroximations Ak and Ek for the Hessian matrix and the
inverse of the Hessian matrix respectively, such that BkAk =
I, this relation will also hold for the matrices Ak+1 and
Bk+1 if the rank one correction formulae, which have. been-derived
in the first section of this chapter, are used.

Suppose we have: 8 ‘

(3.2.1)  BleAk = I
(3.2.2)  Bk+l = Bk + 5,5,"/(s,"y,) + and
(3.3.3) Ak+1 = Ak + ¥, ¥, "/(1,. 2.) .
thern we can write Bk+1Ak+1l as :
(3.2.4)  Bk+IAk+1 = BkAk + s s “Ak/(s "y ) +
Bky, v, /(v z,) +
5.8 3,5 /(s "y ¥,72)

According to relatioms (3.1.5), (3.1.15) and (3.2.1) we can
vrite :

(3‘2.5) ’ ‘ 4 - IK’BK).AK = —Z'K’Ak - Ik = —!b\’

,and

K =%

when we apply (3.2.1), (3.2.5) and (3.2.6) to (3.2.4) we
cbtain:

(2.2.6) Bkv = Bk(y, - A-z,) = Bky - z, = -s

(2.2.7)  Bk+lAk+1 =1+ §k!k'{§k'!k/(§k'lklk’gk) -
- 1/(s,3) - 1/(1,°5,)) |
The term {.....} can also te written as:

(¢.z.8) {(s, "% -s,%, -¥v 2.)/(s.7%y "2)}

Chapter III ,
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Using equations (3.1.5) and (3.1.15) gives the relations:

(2.2.8) s,'v, = (z, -Bky ) (y, - Akz}) =
= 22, 'Y, " LBE¥. - 2."Akz, ,
(3.2.10) s, 'lu = (z, -Bky, ) ¥ = 2./¥, ~ Y BEY, |
(3.2.11) 3, "%, = (gg - Akzk) 2, = 23,0 - ikffkik .
| Ingerting these relations in (3.2.8) reduces the term

betveen bdbrackets to zero, and from this <fact follows . that
Bk+¥Ak+1 = I, and we have completed the proof. ’

 Chapter III
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Chapter IV Updating methods for the Cholesky decomposition.

Section 1 An algorithm for applying . the rank one
corrections to the Cholesky decompositions.

In the optimization method for 1linearly const-iained
rrotlems which- we have used in our program, an approximation
Ak of the Hessian matrix of the objective functian #s+ wupdated
every 1iteration by adding some matrix of rank one to it.
This correction matrix has the form :

(4.1.1)  Ck = r W N~

where r, 1s a scalar and w, is a n-dimensional vector.
;. -As in our program we store the matrix Ak in the form of
its Cholesky decomposition:

(4.1.2) Ak = LkDkLk® , where Lk is a unit lower
triangular matrix, and Lk is a diagonal matrix, vwe need a
set of modification formulae for the Cholesky factors Lk and
Tk which correspond with the correction of the matrix Ak:

(4.1.3) Ak+1 = Ak + r, W, ¥ " .

Chapter 1V
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, In (8] Gill, Murray and Sauvanders show simple recurrence
relations vhich yield the Cholesky factors Lk+1 and Dk#l of
the matrix.

(é 1.4) Ak+1 = Lk+1®k+$£k+1' .
given the equations (4.1.3) and (4.1.2) where the matrices

Lk and Dk, the vector w_ and the scalar r,are supposed to be
hnown magnitudes.

Let us first treat the case where 5>0.

In this case the method Gill, Murray and Saunders
cropcse works as follows : ,

First form the vector v = w( r,. After we have solved p
from: ‘ -

(é 1. 5) Lkp = ¥,

the following relation holds'
(4.1.6)  Ak+1 = Lk+1Dk+11k+1’ = LkDklk’ + r.um’ =
= LkDklk” + gy’ = Lk(Dk + pp )Lk’

We pow make a Cholesky decomposition of the matrix Dk + pp ’
and we obtain°

(¢.1. 7) Dk + pp’ = MDM”.
Gill, Murray and Saunders cohtinue by showing that the

matrix M is a “special’ lower triangular matrix M(p.p,i)o
This means that:

(4.1.8) M(i j) = o for 1<3 1 for i=§ ; p(1)v(J) for 134.

The vector p in formula (4 1.8) 1is known from equation
(4.1.5), and Gill, Murray and Saunders supply an efficient
forward recurrence algorithm for computing b®(j) J=1,....n.
The combipation of (4.1.6) and (4.1.7) gives us an
expression for the Cholesky decomposition 0f Ak+1:

(4.1.9) Ak+1 =(LkM)D{(LkM)" = Lk+1Dk+1Lk+1"

Chapter IV
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tecause the product LkM is a unit lower triangular matrix.
Gill, Murray and Saunders also give a forward recurrence
method for computing the product of the matrices Lk and M.
Wher we combine this method with the algorithm for computing
the variables ©bv(j)), we can calculate the matrix Lk+1
directly without having to compute the matrix M first.

The case r<9

In this case we can compute a vector p in a similar way
as descrived above, so that the relation

(4.1.10) Lk+1Dk+1Lk+1’ = Lk(Dk-pp’)Lk’eholds.

Proceeding in the same vay ve intend to compute the Cholesky
decomposition of Dk—gp . However, now we can not be sure
that the matrix Tk-pp” s positive definite. On the other
hand the determinant of the matrix is:

(4.1.11) det( Dk-pg’) = q. det(Dk),

where q=1-p“Dk ~Py» and it can be shown that a necessary and
sufficient Condition for the matrix Dk- to bYe positive
definite, 1is that q>@. Accordingly tgg second step in the
algerithm of Gill, Murray and Saunders 1is computing the
scalar q. : «

If q appears to be neqative, we can either stop the
entire procedure and not perform a modification at all, so
that Ak+1=Ak (This is what we have done in our program), oOr
set q equal to some small constant e, for 4instance the
.computerprecision, and proceed with the algorithm. 1In this
case we do not perform the original modification to the
rmatrix Ak, but we perforr apn adapted modification in order
to keep the matrix positive definite.

When q>@,0or 1if we have chosen to €0 on with the
algerithm, the rest of the algorithm 1s similar to thefcase
18>0 except that now backward recurrence formulae are used
for computing the coefficients b(j), and for multiplying the
ratrices Lk and M, thus resulting in a backward recurrence
algorithm. :

Chapter IV
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Section 2 Modifying the Cholesky decompositions when a
constraint is dropned from the active constraint
set.

. _Suppose the Cholesky decomposition LkDk1k”® of the matrix
N HYN 1is given, and we want to, calculate the Cholesky
decomposition of the matrix Ng,, Hy Ng. , where N, 1s
ferred from the matrix N, by deleting the i-th column. This
change in the matrix Ny amounts to deleting row i and column
i in the matrix NGH;N, . If we analogously delete the i-th
row in the matrix Lk to obtain the matrix Lk , the relation:

(4.2.1) IkDkik’ = N, HN. ,
holds, ©but the matrix Ik 1is not a unit lower triangular

matrix, which is necessary for the 6Gholesky decomposition.
The structure of the matrix Lk is the following:

q:’

figure 1

Here we have partitioned the matrix Lk into:

. ) Chapter IV
Updating methods for the Cholesky decomposition.




Part III

i) The (i-1)*(i-1) unit lower triangular matrix L11
ii) The (q,-i)*(i-1) matrix f%l, and
i11) The (g -1)%(q,-1+1) matrix L22.
Ir a similar way we can partition the matrix Tk into:
i) A (i—l)*(i-l) diagonal matrix P11
11) A (q -i+1)*(q -1+1) diagonal matrix D22.

When we apply these partitions to the matrix N;ﬂ Hy Ny o
ottain:

- )
' A ) A

L2 By

o— S
Ly D

- T - [ ~— L
(4.2.3) N E'N,, =IkDkIk P

Suprose pow that the real Cholesky decomposition
ratrix N, H'N,, can be written as:

(4.2.4) Ny, H'N,,, = Lk+1Dk+11k+1’ ,

where we partition the (q _-1)%(q,-1) matrices Lk+1 and Dk+1
in a similar way as the matrices ik and Dk, we obtain:
L, Dy Ly D L/
LL -
(4.2.5) Lk+1Tk+1Lk+1 =f—--— fl-fn.}t-l‘-ﬂ o
Ly Dy Lll b L \\Ll\ +L11 AR

If we combine (4.2.3), (4.2.4) and (4.2.5) with the fact
that the cholesky decomposition is unique, we derive:

(4.2.6) 111=I11 ; 1L21=I21 and D11=D11 ,

(4.2.7) 122D22122° = L22D22122°

Relation (4.2.6) indicates that the first i-1 columns of the
ratrices Lk and Lk remaip unchanged. From relation (4.2.7)
we_can conclude that to ottain the Cholesky decomposition of
Niow BNy, 1t suffices to compute the Cholesky decomposition
of the matrix L22D22L22° . After we have computed this
decomposition, we can form the matrices Lk+1 and Dk+1 as:

Chapter IV
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TESTPROBLEMS

The programs were run on the XEROX SIGMA 7 computer of Shell Research -
Laboratories Amsterdam.

On the following pages a set of testproblems is given on which the computer
programs were tested. The set is not complete insofar that we have used many
other testproblems, but because we saw no point in giving many testprobliems
without much variety, we have chosen some problems, that show the diverse
nonlinearities we have tested. We do not give any statistics such as number
of iterations and number of search directions or function evaluations. The

reason for this is that those statistics are not yet available because the
program continually changed until some time ago, and that the programs were
written for testing the methods as to their robustness, not as to their
speed. But all problems in the 1ist have actually been solved by our programs.
On the next pages you will find the testproblems.

Testproblems




References and testproblems

Testproblem 1

Quadratic obj. function.

4 variables

3 linear inequality constr.
trivial constr.

. 2 2 2 2
Min. f(x) = "Xy " 3x2 t X3 T Xyt 5(2x1A- 2x1x3 T Xy * 2x3 + 2x3x4 + x4)

subject to

- 2x +5>0

X 2 T X3 T Xy
-1.5>0
0 i=1,...,4

3, 3, 3, 3)
(.272, 2.09, .0, .545) f(x*) = -4.682

Testproblem 2

Nonlinear obj. function

3 variables

2 linear inequality constr.
trivial constr.

Min. f(x) = vI1Y%

X1
subject to:
=Axy - Txy - 3x5 + 10 2
-3x1 - 4x2 - 5x3 + 8

. >0 i=1, ...,

(-10., -10., -10.)
(.755, .568, .691)  f(x*) = 5.412

Testproblems
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Testproblem 3

Nonlinear obj. function
4 variables
8 bounds

Min. £(x) = 100(x, = x5)% + (1 - x;)

£10.1((xy - 1) + (xg - 1)?) + 19.8(x, - 1)(x, - 1)

2

2,2 2
+ 90(x, - x3) + (1= x3)" +

subject to:
-10 < X; < 10 i=1, ..4
O = (-3., -1., -3., -1.)

x¥-= (1,1,1,1)  f(x*) = 0. (the objective function possesses non optimal
stationary points).

Testproblem 4

Nonlingar obj. function
2 variables
2 linear inequality constr.

Min. f(x) = 100(x2 - xi)2 + (1 - xl)2

subject to:

Xp/3 + % + .1 >
-x1/3+ Xo * .12
O = (-1.2, 1.)

x¥ = (1., 1.)  f(x*) = 0

Testproblems
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Testproblem 5

Nonlinear obj. function
3 variables
6 bounds

. 2 .
Min. f(x) = = ) - 0.011] s ug =25 + (-50270.01.4)"

subject to:

0.1
0.0 <
0.0 < X, < 5.0

0 = (100.0, 12.5, 3.0)

x* = (50.0, 25.0, 1.5)
Testproblem 6

Nonlinear obj. function
10 variables
20 bounds

0 10
Min. £(x) = £ ((In(x; - 2))% + (In(10 - x:))%) - ( 7 x.)02
i=1 ! ! i=1

subject to:

2.001 < X; < 9.999 i=1, ..., 10

cees 10 f(x*) = -45.778

Testproblems




References and testproblems

Testproblem 7

Quadratic obj. function
3 variables

3 bounds

1 quadratic inequality

2

Min. f(x) = (x; - x2)2 (% + %) - 10)/3)2 + (x

3 %)

subject to:
-4.5 4.5
-4.5 4.5

5.0
2 2
T Xy - X3+ 48>0

(1., 1., 1.)
(3.650, 3.650, 4.620) f(x*) = .953

Testproblem 8

Quadratic obj. function
2 variables
2 nonlinear constraints
trivial constraints

. _ 2 2
Min. f(x) = X] + X5
subject to:

2

11 - X1 + 6x, - 4x

1 2
XqXo = 3x2 - exp(xl_

(4,3)
K*_: {;XT solution of x? - 9x§ + 7x1 +29+4 exp(x1 - 3)

2
X% = (11 - X + 6x1)/4

Testproblems
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Testproblem 9

Quadratic obj. function

9 variables

6 bounds

12 nonlinear inequality constraints
. 2 2 2 2 2 2

Min. Xg + Xg + X6 + X4 + Xg + Xg

subject to:

1)
2)
3)
4)
5)
6)

7) Xq

o O O O O O o o o o o o

0, -100.0, -.1997, -151, 379., 421., 460., 426.)

= 523.3
= -156.9
= -.1997
. undetermined. 1 = ...» 9, not important.

Testproblem 10

Quadratic obj. Function

9 variables

6 nonlinear equality constraints

Same problem as problem 9, but without bounds and with constraints
1-6 as equality constraints.

Testproblems -
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Testproblem 11

Quadratic nonconvex obj. function
9 variables
14 quadratic inequality constraints

,5(x1x4 = XoXg t XgXg = XpgXg t XpgXg - x6x7)

1 - -
1
1

= (.9971,- .0758, .553, .8331, .9981, -.0623, .5642, .8256, .0000024)

£(x*) = .8660

Testproblems
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Testproblem 12

Nonlinear obj. function -
14 nonlinear inequalities
6 bounds

3 variables

Min. f(x) = —.063y3y6 + 5.04x1 + 3.36y4 + .035x2 + 10.0x3

subject to:
0 <y, < 5000
0 <y, < 2000
85 <y, < 93
90 < 95
3. < 12
4
162

2000
16000
120

For the calculation of Y5 i=2, ..., 7 see next page
O = (1745, 12000, 110)

~x* = [1728.37, 16000., 98.13]
£(x*) = 1162.036

Testproblems
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Fortran Description of Calculation of Y2 -

1.6%X(1)
1.22%Y(2) - X(1)
Y(6) = (X(2) + Y(3) )/X(
Y2CALG = X(1)* (112.0 +
IF(ABS(Y2CALC - Y(2)) -
Y(2) = Y2CALC

GO TO 10

CONTINUE

93.0 '

86.35 + 1.098%Y(6) - 0.038%Y(6)**2 + 0.325%(Y(4) - 89.0)
-133.0 + 3.0%Y(5)
35.82 - 0.222%Y(8)
= 98000.0%X(3)/(Y(2
IF(ABS(Y4CALC - Y(4)) - O.
Y(4) = Y4CALC -
GO TO 100

CONTINUE

1)
13.167*Y(6) - 0.6667*Y(6)%** 2)/100.0
0.001)30,30,20

)¥Y(7) + X(3)*1000.0)
0001) 300,300,200

Testproblems
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Testproblem 13

Quadratic obj. function

3 variables

1 lin. equality constraint

1 quadratic equality constraint
trivial constraints

. _ 2,2 2 _
Min. f(x) = 1000 - x4 2Xo = Xg = XqXp T XXg

subject to:

2 2 2
Xt Xy F X3

8x1 + 14x2 +

. 0 i=
&

0
X =

x* = (3.512, .217, 3.552) f(x) = 961.715

Testproblem 14
Quadratic obj. function
4 variables

3 quadratic inequality constraints
2 2 2 2

Min. f(x) = X{ + X ¥ 2x3 + Xy " 5x1 - 5%, - 21x4 + 7%,

subject to:

2 2
Xt Xy X
2

X1 + 2X
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Suppose we want to solve the f011owingnprob1em:

Minimize f(x) = .01(x(1) + 1)% + 100(x(2) - 12 + exp(2 - x(3) - x(2) + x(1)

+ (x(2)2 - x(4))2-ﬁvv(x(5) + 1) - 2.01

subject to:

-x(1) + x(3) + x(4)
x(2) + x(4) > 1
-x(1) + x(2) + x(5)
-x(1) + x(2) + x(3) <
x(2) -
x(3)
x(2)
x(1)
starting from the point: (-1, -1, -1; -1, -1).
Then the problem input for VLICO will be as on the following pages. The
solution VLICO gives is given after the problem inputs.

Example for VLICO

FUNCTION F(X, PAR, NPAR)
DIMENSION X(1)
Fo= 0L%(X(1) + 1.)%x2 + 100.%(X(2) = 1.)%x2 +

EXP(2. - X(3) - X(2) + X(1)) + (X(2)#s2 - X(8))s2
‘ 2 + (X(5) + 1.)**.5 -2.01

RETURN
END

Example for VLICO
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Example for computer program VLiCO

coL. VAR .

VAR2
VAR3
VARG
VARS

EQ1
EQ2
EQ3
LESS
MORE

EQ1
EQ2
EQ1
MORE
LESS
EQ1
EQ1
EQ2
EQ2
EQ2
EQ3
EQ3
EQ3
LESS
LESS
MORE

EQ1
EQ2
EQ3
LESS
MORE

VAR3
VAR2

VAR1
VAR2
VAR3
VAR4
VARS

TRIV
EOF
.0005 .00005

The trivial constraints X(I) GE O are added to the constraint set.

Examb]e for VLICO
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Number of real parameters for function: O
Number of integer parameters for function: 0
Number of variables = 5

Number of equality constraints =

Number of inequality constraints

The equality constraints

Constraint EQ1

VARIABLE VAR1 COEFFICIENT .100000E
VARIABLE VAR3 COEFFICIENT .100000E
VARIABLE VAR4 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .200000E

Constraint EQ2

VARIABLE VARZ2 COEFFICIENT .100000E
VARIABLE VAR3 COEFFICIENT .100000E
VARIABLE VAR4 COEFFICIENT .100000E
VARIABLE VAR5 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .100000E

Constraint EQ3

VARIABLE VAR1 COEFFICIENT .100000E
VARIABLE VARZ2 COEFFICIENT .100000E
VARIABLE VARS COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .100000E

The inequality cohstraints

Constraint less

LESS THAN OR EQUAL CONSTRAINT

VARIABLE VARl COEFFICIENT .100000E
VARIABLE VAR2 COEFFICIENT .100000E
VARIABLE VAR3 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .200000E

Constraint more

GREATER THAN OR EQUAL CONSTRAINT

VARIABLE VAR2 COEFFICIENT .100000E
VARIABLE VAR4 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .100000E

Example for VLICO
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Constraint UPPR

LESS THAN OR EQUAL CONSTRAINT
VARIABLE VAR3 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .200000E

Constraint LOWR

GREATER THAN OR EQUAL CONSTRAINT
VARIABLE VAR2 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .990000E

Constraint VAR1

GREATER THAN OR EQUAL CONSTRAINT
VARIABLE VARl COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .000000E

)
Constraint VAR2

GREATER THAN OR EQUAL CONSTRAINT
VARIABLE VAR2 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .000000E

Constraint VAR3
GREATER THAN OR EQUAL CONSTRAINT

VARIABLE VAR3 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .000000E

Constraint VAR4
GREATER THAN OR EQUAL CONSTRAINT

VARIABLE VAR4 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .000000E

Constraint VAR5

GREATER THAN OR EQUAL CONSTRAINT
VARIABLE VAR5 COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .000000E

The initial values

VARIABLE VAR1 VALUE .100000E
VARIABLE VAR2 VALUE .100000E
VARIABLE VAR3 VALUE .100000E
VARIABLE VAR4 VALUE .100000E
VARIABLE VAR5 VALUE .100000E

Stepsize used to compute gradient approximation: .500000E-03
Precision parameter used for convergence criterion:  .500000E-04

Example for VLICO




Appendix A

ITERATION
CONSTRAINT
CONSTRAINT
CONSTRAINT
- ITERATION
CONSTRAINT
CONSTRAINT
ITERATION
CONSTRAINT
ITERATION
CONSTRAINT
CONSTRAINT

ITERATION
CONSTRAINT
ITERATION
CONSTRAINT
ITERATION

CONSTRAINT

ITERATION
CONSTRAINT
ITERATION

1
VAR4
VAR2
MORE

2
LOWR
VAR3

3
LOWR

4
VARS
VAR1

1
VAR1
2
LESS
3
LOWR
4
VAR5
5

NUMBER
NO LONGER
NO LONGER
NO LONGER
NUMBER
NO LONGER
NO LONGER
NUMBER
NOW ACTIVE
NUMBER
NO LONGER
NO LONGER

FUNCTION V
NOW ACTIVE
FUNCTION V
NOW ACTIVE
FUNCTION V

OF VIOLATED CONSTRAINTS:
INFEASIBLE
INFEASIBLE
INFEASIBLE
OF VIOLATED CONSTRAINTS:
INFEASIBLE
INFEASIBLE
OF VIOLATED CONSTRAINTS:

OF VIOLATED CONSTRAINTS:
INFEASIBLE
INFEASIBLE
ALUE: .87197161E 00
ALUE: .35501671E 00

ALUE:

.15088916E - 01

NO LONGER ACTIVE

- FUNCTION V

NOW ACTIVE
FUNCTION V

ALUE: .15088916E -01

ALUE: .16801059E - 05

Example for VLICO




OPTIMUM FOUND AFTER 5 ITERATIONS
OPTIMUM FUNCTION VALUE IS  .168011E-05

THE VARIABLES

VARIABLE ACTIVITY COMPUTED FIRST DERIVATIVE
.101931E 01
-.999372E 00
-.999095E 00

.316184E-06
.100000E 01

VARIABLE VAR1
VARIABLE VARZ

Yy xipuaddy

VARIABLE VAR3
VARIABLE VAR4
VARIABLE VAR5

THE CONSTRAINTS

THE INDEPENDENT EQUALITIES

TYPE
CONSTRAINT EQ2  EQ
- CONSTRAINT EQ1 EQ

THE ACTIVE INEQUALITIES

TYPE
CONSTRAINT VAR1 GT
CONSTRAINT LESS LT
CONSTRAINT VAR5 GT

THE INACTIVE INEQUALITIES

CONSTRAINT VARZ
CONSTRAINT MORE
CONSTRAINT VAR4
CONSTRAINT VAR3
CONSTRAINT LOWR
CONSTRAINT UPPR

THE DEPENDENT EQUALITIES

TYPE
CONSTRAINT EQ3 EQ

.999996E 00
.999991E 00
.372529E-08

ACTIVITY
.999987E 00
.200000E 01

ACTIVITY

.316184E-06
.200000E 01
.372529E-08

ACTIVITY

.100000E 01
.199999E 01
.999991E 00
.999996E 00
.100000E 01
.999996E 00

ACTIVITY
.100000E 01

RIGHT HAND SIDE
-.100000E 01
.200000E 01

RIGHT HAND SIDE
.000000E 00
.200000E 01
.000000E 00

RIGHT HAND SIDE
.000000E 00
.100000E 01
.000000E 00
.000000E 00
.990000E 00
.200000E 01

RIGHT HAND SIDE
.1000000E 01

-.476839E-03
.498772E 00

SLACK ACTIVITY

- -.129379E-04

.000000E 00

SLACK ACTIVITY

-.316184E-06
.000000E 00

-.372529E-08

SLACK ACTIVITY

-.100000E 01
.999991E 00
.999991E 00
.999996E 00
.999999E-02
.100000E 01

SLACK ACTIVITY
.000000E 00

LAGRANGE MULTIPLIER
-.914752E-03
- 130171E-02

LAGRANGE MULTIPLIER
.193042E-01
-.998616E 00
.499685E 00

LAGRANGE MULTIPLIER

.000000E 00
.000000E 00
.000000E 00
.000000E 00
.000000E 00
.000000E 00

LAGRANGE MULTIPLIER

.000006E 0C
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Suppose we want to solve the following problem:
Minimize £(x) = .1x(1)% + x(2)% + 10x(3)% + 100x(4)°
subject to:

x(3) < -1

x(1) > 1

x(1) + x(2) + x(4) > 2

-x(2) + x(3) + x(4) > -2

x(2) + x(3)2 3
(x(2) + x(3) + x(4)
x(2)% - x(3)° - x(4) < 10

3 + x(4)3 <7

(2)2 + x(3)% > 2.5

x(2)x(3)x(4) - 2x(1)x(3) > 3

)2

+ x(l)2 = 3 |

x(1)

starting from the point: (-10, -10, -10, -10)

Then the problem input for VANOP will be given on the following pages.
The solution VANOP gives is given after the problem inputs.

Example for VANOP
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FUNCTION F(X,P,NP)
DIMENSION X(1)

F=. 1%X(1)%%2+X(2)**2+10. #X(3)**%2+100 . *X(4)**2
RETURN

END

FUNCTION CON(X,P,I)

DIMENSION X(1)

GOTO (10,20,30,40,50,60), 1
CON=X(2)+X(3)**2-3.

RETURN |
CON=(X(2)+X(3)+X(4)p*2+X(1)**2-3.
RETURN

CON=X(2)**3-X(3)**3-X(4)-10.

RETURN

CON=X(1)**3+X(4)**3-7.

RETURN

CON=2.5-X(2)**2-X(3)**2

RETURN
CON=-X(2)*X(3)*X(4)+2.*X(1)*X(3)+3.
RETURN

END

Example for VANOP
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Example for computer program VANOP

CoL
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Example for computerprogram VANOP

NUMBER OF REAL PARAMETERS FOR FUNCTION: 0
NUMBER OF INTEGER PARAMETERS FOR FUNCTION: O
NUMBER OF VARIABLES: 4
NUMBER OF LINEAR EQUALITY CONSTRAINTS: 0

- NUMBER OF LINEAR INEQUALITY CONSTRAINTS: 4
NUMBER OF NONLINEAR EQUALITY CONSTRAINTS: 2
NUMBER OF NONLINEAR INEQUALITY CONSTRAINTS: 4
NUMBER OF PARAMETERS FOR CONSTRAINT FUNCTION: 0

STEPSIZE USED TO COMPUTE GRADIENT APPROXIMATION: .100000E-02
PRECISION PARAMETER USED FOR CONVERGENCE CRITERION .100000E-03
SUMT PARAMETER: .500000E-01 '

THE LINEAR INEQUALITY CONSTRAINTS

CONSTRAINT LIN1

GREATER THAN OR EQUAL CONSTRAINT

VARTABLE X(1) COEFFICIENT .100000E
VARIABLE X(2) COEFFICIENT .100000E
VARIABLE X(4) COEFFICIENT .100000E
RIGHT HAND SIDE ELEMENT .200000E

CONSTRAINT LIN2

LESS THAN OR EQUAL CONSTRAINT
VARIABLE X(2) COEFFICIENT - .100000E
VARIABLE X( ) COEFFICIENT .100000E
VARIABLE X{4) COEFFICIENT .100000E
" RIGHT HAND SIDE ELEMENT -.200000E

CONSTRAINT UPBO

UPPER BOUND : X(3) .LE.  .100000E 01
CONSTRAINT LOBO

LOWER BOUND:  X(1) .GE. .100000E 01

THE INITIAL VALUES

VARIABLE X(1) VALUE  -.100000E . 02
VARIABLE X(2) VALUE  -.100000E 02

Example for VANOP
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VARIABLE X(3) VALUE -.100000E 02
'VARIABLE X(4) VALUE  -.100000E 02

NAMES OF THE NONLINEAR CONSTRAINTS:

NL1
NLZ
NL3
NL4
NL5
NL6

Example for VANOP




AFTER THE SUMT STEP THE PROBLEM STATISTICS ARE:
LINEARLY CONSTRAINED OPTIMUM FOUND AFTER 36 MINOR ITERATIONS.
TOTAL NUMBER OF MINOR ITERATIONS UNTIL NOW: 43

FUNCTION VALUE AFTER THIS MAJOR ITERATION IS: .110719E 02  PENALTY VALUE IS: .200272E-04

THE VARIABLES .
COMPUTED  GRADIENT, CALCULATED FROM LAGRANGE

VARIABLE ACTIVITY GRADIENT  MULTIPLIERS AND CONSTRAINT NORMALS

g XLpuaddy

VARIABLE X(1) .120707E 01 .241328E 00 .244418E
VARIABLE X(2) .989987E 00 .197997E 01 .196948E
VARIABLE X(3) -.996852E 00 -.199372E 02 -.199374E
VARIABLE X(4) -.944820E-02 - -.188950E 01 -.190015E

THE LINEAR CONSTRAINTS
(CONSTRAINTS MARKED WITH ** ARE LINEARIZED NONLINEAR CONSTRAINTS.)

THE ACTIVE INEGUALITIES

TYPE ACTIVITY RIGHT HAND SIDE SLACK ACTIVITY LAGRANGE MULTIPLIER
CONSTRAINT LIN2 LT -.199629E 01 -.200000E 01 -.371202E-02 -.186882E 01
CONSTRAINT UPBO LT -.996852E 00 -.100000E 01 -.314760E-02 -.178415E 02

m
x
Y
3
o
—
D
-+
2
3
<=
>
=2
2
io}

THE INACTIVE INEQUALITIES

TYPE ACTIVITY RIGHT HAND SIDE SLACK ACTIVITY LAGRANGE MULTIPLIER
CONSTRAINT LIN1 GT .218760E 01 .200000E 01 -.187605E 00 .000000E 00
CONSTRAINT LOBO GT .120707E 01 .100000E 01 -.207067E 00 .000000E 00

VALUES OF THE NONLINEAR CONSTRAINTS ARE:

CONSTRAINT NAME ACTIVITY ‘CONSTRAINT NAME ACTIVITY CONSTRAINT NAME ACTIVITY

NL1 -.101630E 01 NL2 -.154272E 01 NL3 -.802971E 01
NL4 -.524129 01 NL5 .526212E 00 NL6 .584142E 00




3K 7K O K 3K R 36 R ROR AR R A e

- LINEARLY CONSTRAINED OPTIMUM FOUND AFTER 8 MINOR ITERATIONS.
TOTAL NUMBER OF MINOR ITERATIONS UNTILL NOW: 51

g Xipuaddy

FUNCTION VALUE AFTER THIS MAJOR ITERATION IS: .143160E 02 PENALTY VALUE IS : -.138490E 00

THE VARIABLES
' VARIABLE ACTIVITY COMPUTED GRADIENT, CALCULATED FROM LAGRANGE

GRADIENT MULTIPLIERS AND CONSTRAINT NORMALS

VARIABLE X(1) .185912E 01 .371914E .417985E 00
VARIABLE X(2) .199627E 01 .399148E .400961E 01
VARIABLE X(3) -.999262E 00 -.199837E -.198912E 02
VARIABLE X(4) .547979E - 03 .109613E .224322E 00

THE LINEAR CONSTRAINTS
(CONSTRAINTS MARKED WITH ** ARE LINEARIZED NONLINEAR CONSTRAINTS.)

THE INDEPENDENT EQUALITIES

TYPE ACTIVITY RIGHT HAND SIDE SLACK ACTIVITY LAGRANGE MULTIPLIER
CONSTRAINT NL2 EQ .445539 01 .445714E .175095E-02 .112418E 00
CONSTRAINTS NL1 EQ .398836E 01 .399363E .527000E-02 .378641E 01

THE ACTIVE INEQUALITIES

: TYPE ACTIVITY RIGHT HAND SLACK ACTIVITY LAGRANGE MULTIPLIER
CONSTRAINT UPBO LT .999262E 00 -.100000E -.737548E-03 - -.125494E 02

m
- X
o
3
o
—
(0]
—h
o
-
<
p]
=
(@]
)

THE INACTIVE INEQUALITIES

TYPE ACTIVITY RIGHT HAND SLACK ACTIVITY LAGRANGE MULTIPLIER

CONSTRAINT NL4 LT .812564E 01 .105170E .239135E 01 .000000E 00
CONSTRAINT NLS LT .594478E 01 -.447377E .147101E 01 .000000E 00
CONSTRAINT NL6 LT .614618E 01 -.542500E .721188E 00 .000000E 00
CONSTRAINT LINI GT .385594E 01 .200000E -.185594E 01 .000000E 00
CONSTRAINT LINZ LT .299499E 01 -.200000E .994986E 00 .000000E 00
CONSTRAINT NL3 LT .884765E 01 .139215E .507390E 01 .000000E 00
CONSTRAINT LOBO GT .185912 01 .100000E -.859124E 00 .000000E 00

VALUES OF THE NONLINEAR CONSTRAINTS ARE:

CONSTRAINT NAME ACTIVITY CONSTRAINT NAME ACTIVITY CONSTRAINT NAME ACTIVITY
NL1 = -.520325E-02 NLZ = .145146E 01 NL3 = -.104742E 01
N _ 07492 NLS = -.248362E 01 NL6 -.714412€ 00




LINEARLY CONSTRAINED OPTIMUM FOUND AFTER 4 MINOR ITERATIONS.
TOTAL NUMBER OF MINOR ITERATIONS UNTILL NOW: 56

FUNCTION VALUE AFTER THIS MAJOR ITERATION IS: .142625E 02 PENALTY VALUE IS: -.161295E-01
THE VARIABLES

VARIABLE ACTIVITY COMPUTED GRADIENT, CALCULATED FROM LAGRANGE
. GRADIENT MULTIPLIERS AND CONSTRAINT NORMALS

VARIABLE X(1) .147872E 01 .295676E 00 .895101E
VARIABLE X(2) .199994E 01 .399915E 01 .405902E
VARIABLE X(3) -.999993E 00 -.199998E 02 -.189375E
VARIABLE X(4) -.210189E - 01 -.420366E 01 -.420279E
THE LINEAR CONSTRAINTS
(CONSTRAINTS MARKED WITH ** ARE LINEARIZED NONLINEAR CONSTRAINTS.)
THE INDEPENDENT EQUALITIES
TYPE ACTIVITY RIGHT HAND SIDE SLACK ACTIVITY LAGRANGE MULTIPLIER

** CONSTRAINT NL2  EQ .744975E 01 .744979E 01 .000000E 00 -.672945E 00
**x CONSTRAINT NL1  EQ .399763E 01 .399768E 01 .000000E 00 .534709E 00

m
b
Q
3
o
—
(¢]
-
o
=
<
=
=
o
e

THE ACTIVE INEQUALITIES

TYPE ACTIVITY RIGHT HAND SIDE SLACK ACTIVITY LAGRANGE MULTIPLIER
** CONSTRAINT NL6 LT -.671326E 01 -.671334E 01 .000000E 00 -.144268E 00
CONSTRAINT UPBO LT -.999993E 00 -.100000E 01 .000000E 00 -.259913E 00

THE INACTIVE INEQUALITIES

TYPE ACTIVITY RIGHT HAND SLACK ACTIVITY LAGRANGE MULTIPLIER
** CONSTRAINT NLS LT .998117E -.748141E .249976E 01 .000000E 00
CONSTRAINT LIN1 GT .345765E .200000E -.145765E 01 .000000E 00
CONSTRAINT LINZ2 LT .302096E -.200000E .102096E 01 .000000E 00
** CONSTRAINT NL4 LT .153328E .198513E .451848E 01 .000000E 00

CONSTRAINT LOBO GT .147872E .100000E -.478724E 00 .000000E 00
*%CONSTRAINT NL3 LT .269201E .278998E .979660E 00 .000000E 00

VALUES OF THE NONLINEAR CONSTRAINTS ARE:

CONSTRAINT NAME ACTIVITY CONSTRAINT NAME ACTIVITY CONSTRAINT ACTIVITY
NL1 = -.696182E-04 NL2 .144930E 00 NL3 .979677E 00
i/ - -.249976E 01 NL6 .537645E-03




LINEARLY CONSTRAINED OPTIMUM FOUND AFTER 30 MINOR ITERATIONS.
TOTAL NUMBER OF MINOR ITERATIONS UNTILL NOW: 87

FUNCTION VALUE AFTER THIS MAJOR ITERATION IS:  .143151E 02 PENALTY VALUE IS:  .180435E-02

THE VARIABLES

GRADIENT, CALCULATED FROM LAGRANGE
MULTIPLIERS AND CONSTRAINT NORMALS

COMPUTED
GRADIENT

VARIABLE ACTIVITY

.315945E 00
.399333E 01

.291695E 00
.395506E 01

.145861E 01
.197768E 01

VARIABLE X

VARIABLE X
VARIABLE X(4)

(1)
VARIABLE X(2)
(3)

-.100515E 01
-.296368E - 01

-.201065E
-.592737E

02
01

-.200731E
-.588883E

02
01

THE LINEAR CONSTRAINTS
(CONSTRAINTS MARKED WITH ** ARE LINEARIZED NONLINEAR CONSTRAINTS.)

THE INDEPENDENT EQUALITIES

LAGRANGE MULTIPLIER
-.116902E 01
.614307E 01

SLACK ACTIVITY
-.148954E-01
.119762E-01

RIGHT HAND SIDE
.614393E 01
.399942E 01

ACTIVITY
.615883E 01
.398744E 01

TYPE
*%CONSTRAINT NL2 EQ
**CONSTRAINT NL1 EQ

m
x
o
3

o
—
(1]
_h
o
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=
=
o
o

THE ACTIVE INEQUALITIES

LAGRANGE MULTIPLIER
-.185339E 01

SLACK ACTIVITY
-.851727E-02

RIGHT HAND SIDE
-.604150E 01

ACTIVITY
.603298E 01

TYPE
**CONSTRAINT NL6 LT

THE INACTIVE INEQUALITIES

LAGRANGE MULTIPLIER
.000000E 00
.000000E 00
.000000E 00
.000000E 00
.000000E 00
.000000E 00
.000000E 00

RIGHT HAND SIDE SLACK ACTIVITY
.134662E 02 .389855E 01
-.749838E 01 .242107E O1
.200000E 01 -.140665E 01
-.200000E 01 .101247E 01
-.100000E 01 .515175E-02
.100000E 01 -.458609E 00
.279940E 02 .122255E 01

ACTIVITY

.956768E 01
.991945E 01
.340665E 01
.301247€ 01
.100515E 01
.145861E 01
.267714E 02

TYPE

**CONSTRAINT NL4 LT
**CONSTRAINT NL5 LT
CONSTRAINT LIN1 GT
CONSTRAINT LINZ LT
CONSTRAINT UPBO LT
CONSTRAINT LOBO GT
*%CONSTRAINT NL3 LT

VALUES OF THE NONLINEAR CONSTRAINTS ARE:

ACTIVITY
-.121968E 01
.884059E - 02

ACTIVITY CONSTRAINT NAME
.165850E-01 NL3
-.242155E 01 NL6

CONSTRAINT NAME ACTIVITY CONSTRAINT NAME
NL1 -.119896E-01 NLZ =
NL4 -.389678E 01 NL5




m

x

)

3
o
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o
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LINEARLY CONSTRAINED OPTIMUM FOUND AFTER 5 MINOR ITERATIONS.
TOTAL NUMBER OF MINOR ITERATIONS UNTILL NOW: 92

FUNCTION VALUE AFTER THIS MAJOR ITERATION IS:  .144225E 02 PENALTY VALUE IS:  .276566E-03
THE VARIABLES

VARIABLE ACTIVITY COMPUTED GRADIENT, CALCULATED FROM LAGRANGE
GRADIENT MULTIPLIERS AND CONSTRAINT NORMALS

VARIABLE X(1) .145521E 01 .290933E . .288354E 00
VARIABLE X(2) .197941E 01 . 395869E .395460E 01
VARIABLE X(3) -.101013E 01 -.202037E -.202349E 02
VARIABLE X(4) -.298259E - 01 -.596518E -.599194E 01

THE LINEAR CONSTRAINTS
(CONSTRAINTS MARKED WITH.** ARE LINEARIZED NONLINEAR CONSTRAINTS.)
THE INDEPENDENT EQUALITIES

TYPE ACTIVITY RIGHT HAND SIDE SLACK ACTIVITY LAGRANGE MULTIPLIER
**CONSTRAINT NL2 EQ .601591E 01 .601569E 01 .000000E 00 -.119905E 01
**CONSTRAINT NL1 EQ .401045E 01 .401045E 01 .210762E - 03 .615135E 01

THE ACTIVE INEQUALITIES

TYPE ACTIVITY RIGHT HAND SIDE SLACK ACTIVITY LAGRANGE MULTIPLIER
**¥CONSTRAINT NL6 LT .605054E 01 -.605094E 01 -.405312E - 03 -.187001E 01

THE INACTIVE INEQUALITIES

TYPE ACTIVITY RIGHT HAND SIDE SLACK ACTIVITY LAGRANGE MULTIPLIER
**%CONSTRAINT NL4 LT .928767E 01 .132061E 02 .391841E .000000E
**¥CONSTRAINT NL5 LT .985973E 01 -.742130E 01 .243843E .000000E
**%CONSTRAINT NL3 LT .263157E 02 .274996E 02 .118394E .000000E
CONSTRAINT LIN1 GT .340480E 01 .200000E 01 -.140480E .000000E
CONSTRAINT LINZ LT .301937E 01 -.200000E 01 .101937E .000000E
CONSTRAINT UPBO LT .101013E 01 -.100000E 01 .101318E - 01 .000000E
CONSTRAINT LOBO GT .145521E 01 . 100000E. 01 -.455214E 00 .000000E

VALUES OF THE NONLINEAR CONSTRAINTS ARE:

CONSTRAINT NAME ACTIVITY CONSTRAINT NAME ACTIVITY CONSTRAINT NAME ACTIVITY
NL1 = -.222206E-03 NL2 .220597E-03 NL3 -.118399E 01
NL4 = -.391840E 01 NL5 -.243844E 01 NL6 .449453E-03



TOTAL NUMBER OF MAJOR ITERATION STEPS: 5
TOTAL NUMBER OF MINOR ITERATION STEPS: 100

FUNCTION VALUE IS:  .144244E 02
LAST PENALTY FUNCTION VALUES WAS:

g xLpuaddy

.325203E - 03

THE VARIABLES

GRADIENT, CALCULATED FROM LAGRANGE
MULTIPLIERS AND CONSTRAINT NORMALS

COMPUTED
GRADIENT

VARIABLE ACTIVITY

.290933E .290368E 00
.395858E .395838E 01
-.202076E -.202074E 02
-.597103E -.597534E 01

.145521E 01
.197937E 01
-.101023E 01
-.298550E - 01

VARIABLE X
VARIABLE X
VARIABLE X
VARIABLE X

THE LINEAR CONSTRAINTS
(CONSTRAINTS MARKED WITH ** ARE LINEARIZED NONLINEAR CONSTRAINTS.)

THE INDEPENDENT EQUALITIES

LAGRANGE MULTIPLIER
-.119517E 01
.614748E 01

SLACK ACTIVITY
.000000E 00
.000000E 00

RIGHT HAND SIDE
.599906E 01
.402037E 01

TYPE ACTIVITY
*kCONSTRAINT NLZ EQ .599899E 01
**CONSTRAINT NL1 EQ .402033E 01

m
- X
o
3
o
—
)
_f’
o
=
<
=
=
o
o

*¥CONSTRAINT
THE INACTIVE

**CONSTRAINT
*¥CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
CONSTRAINT
*%CONSTRAINT

NL6

TYPE
LT

INEQUALITIES

NL4
NL5
LIN1
LINZ
UPBO
LOBO
NL3

TYPE
LT
LT
GT
LT
LT
GT
LT

ACTIVITY

-.605918E 01

ACTIVITY
.924338E
-.987645E
.340473E
-.301945E
-.101023E
.145521E
.263876E

RIGHT HAND
-.605929E

RIGHT HAND
.131618E
-.743795E
.200000E
-.200000E
-.100000E
. 100000E
.275716E

SLACK ACTIVITY
.000000E 00

SLACK ACTIVITY
.391839E 01
.243850E 01

-.140473t 01
.101945 01
.102262E - 01

-.455209E 00
.118401E 01

LAGRANGE MULTIPLIER
-.186542E 01

LAGRANGE MULTIPLIER
.000000E 00
.000000E
.000000E
.000000E
.000000E
.000000E
.000000E

VALUES OF THE NONLINEAR CONSTRAINTS ARE:

ACTIVITY
-.118412E 01
.121638E-03

ACTIVITY CONSTRAINT NAME
-.975132E-04 NL3
-.243848E 01 NL6

ACTIVITY CONSTRAINT NAME
-.696182E-04 NLZ
-.391843E 01 NL5

CONSTRAINT NAME
NL1
NL4
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