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Introduction

Following earlier work by Landau [1] and others, Ingham proved [2]) the

following theorem:

Theorem A

Suppose that

(i) f(x) is povc: and non-decreasing for x

(ii) F(x)= L,
a

> 1

axlog x + bx + o (x) x-*co)

where a and b aro constants. Then

(a) f ax (.":":4c*)

(b)

CO

f(x)-ax----r___

where y is Eulers constant.

Moreover, for any function f(x), bounded and integrable over every finite interval

(I,X) hypothesis (ii) implies conclusion (b). More recently Jukes [1.] extended

,results of Segal (see [3], [4]) and proved the following theorem which can be

considered as a generalization of theorem A. For a proof of this theorem see also

Theorem B

[5] •

Let f(x) be bounded and integrable on every finite subinterval of [I,m) and suppose

that

E f(2-cn
n<x

= xg(x) +0 (x2g t (x)) (-*co)

where g(x) E C2 ,co) is positive and satisfies

(i) g' (x) > 0 for all xf [1

(ii) for some real r, xg'(x)(log x)-r is non-increasing for x >
0

(iii) for some real s, xg'(x)(log x)s Eq(x) is non-decreasing for x > xl and

cl(x)44. (x4m)
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Thrl --dt = g(x) y xg'(x) o (xe(x)) (x400)

1

If we suppose f(x) to be positive and non-decreasing we also have f(x) x2e(x)

(x400)

In this note we consider the situation in theorem B where g(x) is allowed to grow

faster than in (ii).

We use the concept of regular variation as introduced by Karamata to formulate

natural conditions on g(x) and prove a theorem similar to theorem B. Moreover, an

application is given which gives a second order condition in a relation considered

by Parameswaran in W. See our corollary 1 and the remark after theorem 4..

Parameswaran proves the following theorem ([6], theorem II).

Theorem C

If f
0

du exists in the Lebesgue sense for every positive R

CO

f(s)  exp s
-su

-SU
n(u)du

for all positive s and n(u) non-decreasing, then the relation

l/s

log f(s)1 
L(u)

u as s4o+ implies the relation

a
4

n(u) L(u) as u-Ko, provided L(x) is a slowly oscillating function defined for

x .> a such that

L(x) K exp / as x400 where 6 is a non-increasing function and

K is a positive real number.

We use our theorem 3 to get a theorem similar to theorem C.
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Results

First we define the subclass of slowly varying functions we want to consider.

Definition: The non-decreasing function q : R
+ 

R belongs to the class H if there

L(t)exists a slowly varying function L such that q(x) dt L(x)

1

It can be shown that the class H consists of all non-decreasing functions q : R
+ 

R

for which there exist functions a R
+ 

R and b : R
+ 

R such that for all positive x

lim q(tx) - b(t) 
= log xt+co a(t)

If the last relation holds, then it is true with b(t) = q(t) and a(t) = q(te) q(t).

The function a(t) is of course determined up to asymptotic equivalence and is called

the auxiliary function. As a consequence of these facts we mention the following

result: if q(x) n with auxiliary function L(x), (x) is non-decreasing and

q(20 (x)

L(x) 
C (x where

C e R is a constant, then (11 E IT with auxiliary function L(x).

It is easy to see that if L(x) slowly varying, theni L(t)dt is an element of

with auxiliary function L(x). 1

The class H is a subclass of the slowly varying functions at infinity. Moreover, for

each function gel' it is possible to find a function L* such that q(x) =

I
(t)

dt o (L(x)) (x.+0,)

where L L is slowly varying.

For the proofs of these statements and further properties see [10], [ii] and
We start with two Abelian results.

12].



Theorem 1

+ +
Suppose n : R . R is s n( )awly varying, - is (Lebesgue) integrable on finite

subintervals of (0,03)

I
Then n (-) e n with auxiliary function n(s

n(s) =

Moreover,

Proof:

jr n(t)-d
0

-us
s e  

n(u)du
-us

1
0 

-e

(s

We have Jr
0

varying functions and since --

n(su)
du =

OWN.

where n is defined by

1 
j C n(t)

t

n(s)

e
-u

n(su)
n(s)

o

n(v)dv

lemma.

For

ti(s) sn(s)

1-e-u

-u

1-e -u

-u
n(su)

-u
1-e 

• n(s)

40*) by Karamata's theorem

is bounded on (0,1) we can

-c
the second part we ilave 

(su) n(su) 
-c
s n(s)

1.2.1.4 of [10.

So we have s
Tn(t) iu 1

- n(-)
t

0

The right side is zero

-c

1-e-u

du

on regularly

apply Pratt's

uniform on (1 by co rollary

e-u

1-e-u

as is shown by elementary integration.

W (Ifs) 11 with auxiliary function n(s), since

This implies that

dt e n with auxiliary function n(s) and n (1/s) is non-decreasing.
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Remarks: I. The case neRV
a (a>0) (regularly varying at infinity with exponent a)

gives analogously 
n 
n(s) 
(1/0,

+ C (a+1) r(a+1) (s-co). See pi], theorem 1.

2. The statement of the theorem implies (1/s)

s
0( Jr RILL dt) by Karamata's theorem.

0

.See theorem I of [6].

n(t)
dt since n(s) =

I Theorem  . If we define T(s) = E --n(—
s
) where n satisfies the conditions of theoremm m

ml(s

I and xn(x) is of bounded variation on intervals of the form (I, x0), then

T(0 n(t) dt
t

n(s)

Proof We give the proof by an Euler-Maclaurin kind of argument

n

v-1

dt xn(Ev) - xn(;24-1-.) - td 2- n as

v- I

x x Jr {t} di. n (T.v v
v-1

where we use the notation {t} =

Summing over v gives

Li I n ( ) - I n t n(x)
Ikv< x9

Now with M=sup n(x) we have
x •(1,2)

n (2c-) dt

n(x)

since (x-1) n (x) is 1-varying at infinity.

dt + {t} n

M log —

(1)

—n(x)(x-1)
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Furthermore

since

} d 1
n (21) d {t} -n(x) d {t}t t

1
x x
n (—)

xn(x)
t uniform for te(1,c0) (see r11 cor. 1.2.1.4)

and p
r

i- dt = 1-y see e.g. [71)2
1

This proves theorem 2.

T(tx) T(t) .+ log x (t)Remarks: 1. The theorem implies
T(te) T(t)

where x>0 is fixed. If T is non-decreasing we have Tell.

2. With the additional supposition that T is non-decreasing

a simpler proof is possible:

(s) - 
sir -us 

s e 
us 

co
-k -n   n(u) du = 2] n(u) du =fe

us d'1(u)-u 
1-e k=10 1 0

Since lint
s403

by theorem

Hence

-u/s 11
j("

e 
7-71-17i n(u) 

du 
=nt(112) 

du w h
a
ve

0 e 0

co
fe-u/s

d'1(u) ell with auxiliary function n.

0

n(l/s) - T(s) 
n(s) y(s4'w) (see [10], theorem 1)

Combining this with theorem 1 gives the desired result.

3. The case neRV
a 
) (a>0) in remark 2 gives

÷ a (a+1) (s403)
T(s)

]'n(t) dt

0

s 
n(t)4. The statement of the theorem implies T(s) dt since n(s) =

0

o(.1 n(t) dt) (s.÷co)
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As a consequence of remark 2 we mention the following:

R
(u)

Corollary 1. Suppose n : 
R++4- 

satisfies the conditions Jr 1---- du < co for R > 0
u

0

and I] 1 s 
is non-decreasing for s > 0.

m<s

The assertions E 1. n e II with auxiliary function L(s) -* (s4co)
m<s

and n (1/s) e n with auxiliary function L(s) + co (s-*co) are equivalent.

Both imply:

N
La n

m
- n (1/s)

m 
m<s

(s-
L(s)

For the Tauberian counterpart of the theorems I and 2 we need three lemmas.

Lemma 1: If

(i) L(x) is non-decreasing for x > 0.) slowly varying, L(x) + co (x-oco)

(ii

then

M < X

L(x) -a
< 

L(x1) 0 x>x
0 

1 + x for some a> =x
0 
(a)- == ' == 

E u(m) x
= o (L(x)) (x400)m m

Proof: We define an = L(n) L(n-1) for n2._2, al = L(1)

Then

where

E p(m)
in<x m

(N) 8' 1: U(m) I] a E a N(i)
m<x x m<x
==

N(x) = E 2121. Since IN(x)I < c for x > x (see 1
M<X

E a
m 
N(2-c-)
m

m<—

< c am = c L (rx < c(l+c) L (x)

we have:
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and

xe
<m<x=

a
m
N(2-c <c

— <m<x
x —
C

a <c L(x) -
m—

)1o(L(x))  x

•

For x>x
0 
(a) we have by

— 

L(x) - Lqxpi L(x) - L(x-1)i

E p(m) x
{L(m) L

1<m<a-c
— =x0

Kf X
f 0

m<

L(x

x
a

since L is non-decreasing. Hence:

1 L(x/m) 
m a, a

x in

1 u
L() du(x)} = f L(v) 1 

1-a v + o(L(x)) = o(L(x))
1+a

o v

if we choose 0<a<1.

We estimate the last sum as follows

u(m) [7.-])1
<m<x=.-. X

— <m<x
X -
o

0(1) = o(L(x)) (x-÷03). This proves the lemma.

2 L(x0

<m<x
X ==

Remark: The conclusion of the lemma is incorrect for arbitrary

slowly varying functions.

There exists a function L(x) C (00) (x÷00) such that:

p(m)
m‹x (!) 0o(1) (x-0)

See e.g.[4]example 2.

Lemma 2 Suppose :E:in
m<x

L(u
du + L(x) where L satisfies the

conditions of lemma 1. Then n(x) L (x÷c0).
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Proof: MObius inversion and lemma 1 gives:

Ichn

m
n (x) = ti(n) r L(u) du + U(m) L

J m M
1115,C

L(u)

m<x

X

1--5-) du + o(L(x)) — dv + o(L
x N(v)

1

(x4.03) by dominated convergence, since

E u(k) dv
k<v

(see 5] ).

u(k)

k<x k k

.dv
m log X. E 11(k)

k<x

Remark: The proof of lemma 2 implies the following:

) L
N(v

dv L(x)

V 11(k) , —
1 
„Log K "r(x403)

k<x

If h(x) L(u)du + L(x) where L satisfies the conditions of lemma 1, then

1

Euon
m<x

sdh(s), which is the auxiliary function of h(x). For
x j

1

functions h(x) of the form r L(u) 
----du, L slowly varying the conditions of lemma
u

1

1 are not necessary for this result. Compare with theorem I of [4]

The following lemma gives the same statement under

1 ,x
Lemma 3. Suppose i_d n

m m
m<x

Then n(x) L(x) x4cp)

Proof:  We write L(x)

Then MObius inversion gives:

c L(u)
U

1

n(x)
m<x

du + L(x)

different conditions on L(x).

where L(x) co and L(x)

ILL du + o(y(x)) where y is slowly varying.

x/m
L(u) 

?(11) du +
m<x

1



I0

The first part is asymptotic to L as in lemma 2 since

y(x) = o(L(x)) (x±c0).

For the second term we proceed as follows:

Suppose lo(y(x))1< c y(x) for x>x 
o
. Then we have:

= 

11(m) 

1 nlEi<x 
m (i(2.))1 < e Ex 

1- -m y ( II ) + 1 1 Y !))1
m

<m‹x
x

—x0 0 
—

where c = sup
xe (1 x
' 0

Now we have
M< X̂

the lemma.

Theorem 3. Suppose

(i) 
fL(u)

u
1

where L(x

(ii) It(x)

(iii)

L(x)

L(x-1

then n(x) L(x) (x.+00).

Proof: We have R(x) =

+ c

(y

<

m<x
0(1)

L(x) x4-00) by theorem 2. This proves

du + o(L )) E l
m<x

(!)

x co) is slowly varying

E_ n —m m
In< X

is non-decreasing

, X

E = )( t dR(t) is non-decreasing

1

+x 
a

L*(t)

with a > 0 for x > x

  dt + L (x)where L*(x) is defined as

1

above (see [11] theorem 1.3.4.) ; 4
(x) L(x) satisfies the
:

conditions of lemma 2. This proves the theorem.
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Theorem 4. Suppose (i) and (ii) of theorem 3 and L*(x) eTI

Then L(x) n(x) (x-00*)

Proof: We use now lemma 3. The rest of the proof is as in theorem 3.

Combining corollary I with the theorems 3 or 4 gives the following Tauberian theorem.

Theorem 5.
s Tf

If ii(l/s) =,f "t̀lui du + o(L(s)) (s-4-co) with L(s)400

1

slowly varying and n : Raf R+ satisfies the conditions

n(u) .
(i) is integrable on (0,R) for every R > 0

n ei) is non-decreasingm m
m<x

(iii) L
*
(X)E Jr tdR(t) is non-decreasing

1

and (iv) L
*
(x) eII

L
*
(x)or

• (v) 1 + x-aL (1) with a>0 for x > x (a)x- == ==*

fs r-Y-9-- dt -.I.
s

then L(t) dt

1 
t 

1 
t

+ 0 (s440
L(s)

Proof: Applying corollary 1 and theorem 3 or 4 we have n(x) t, L(x)

Application of theorem 1 yields the result.

For regularly varying functions the following analogue of theorem 5 is well-known.

Theorem 6. If ri(l/s) (a+1) r (a+1) sa L(s) where

L(s) e RV ol1(°D) with a>0 and n(u) satisfies the following conditions

n(u) n(u)
(i) and log u are integrable on (0,R) for every R>0u u

(ii) n(u) is non-decreasing

then n(u) ix, uat(u) (u-'03) •

For a proof see 13 theorem 2.
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