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AN ABEL-TAUBER THEOREM ON CONVOLUTIONS WITH THE MOBIUS FUNCTION

by

J.L. Geluk

ABSTRACT

n(x)

Suppose n: R* 5 Rr* ang is integrable on (0,00 ).

oo

~S e-us . 0]

Then n(s)= s —— n(u)du exlsts{or S>o.
o 1-e Y%

In this paper an Abel-TaubeY theorem is proved concerning

this transform.

Moreover the relation between E%s) and ggg 1 n(%) is studied.
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Introduction

Following earlier work by Landau [1] and others, Ingham proved (in [2]) the

following theorem:
" Theorem A

Suppose that
(i) £(x) is positive and non-decreasing for x > 1

(ii) F(x)= E: f(%) = axlog x + bx + o (x) (x+=)
¢ n<x=

where a and b are constants. Then

(a) £(x) ™ ax (z)

(b)f__z__f(:)-ax d: = b-ay
]

where Y is Eulers constant.

Moreover, for any function £(x), bounded and integrable over every finite interval
(1,X) hypothesis (ii) implies conclusion (b). More recently Jukes E{] extended
;results of Segal (see [3], [4]) and proved the following theorem which can be

considered as a generalization of theorem A. For a proof of this theorem see also [5].

- Theorem B

Let £(x) be bounded and integrable on every finite subinterval of [l,m) and suppose

that

2 EQ) =xglx) +o (x%'(x))  (xw)
n<x

where g(x) € C2 [l,m ) is positive and satisfies

(i) g'(x) > 0 for all xe[l,w)

(ii) for some real r, xg'(x)(log x)-r is non—-increasing for x > %,

(iii) for some real s, xg'(x)(log x)s =q(x) 1is non-decreasing for x > X, and

q(x)+o (%)




-

L

‘ X
Th?“f f‘g(?t')' dt = g(x) - v xg'(x) + o (xg'(x)) (%)
!

If we suppose f(x) to be positive and non-decreasing we also have f(x) ~ x2g" (x)
(xe)

i‘In this note we consider the situation in theorem B where g(x) is allowed to grow
faster than in (ii).
We use the concept of regular variation as introduced by Karamata to formulate
‘natural conditions on g(x) and prove a theorem similar to theorem B. Moreover, an
application is given which gives a second order condition in a relation considered
by Parameswaran in [6] . see our corollary 1 and the remark after theorem 4.
Pérameswaran proves the following theorem ([6], theorem II).

- Theorem C

R

1f U/ﬁ nﬁu) du exists in the Lebesgue sense for every positive R

o

@

‘ -su
f(s) = exp.g s[ ——e—-_-_?; n(u)du

1 -e

for all positive s and n(u) non—decreasihg, then the relation
1/s
L(u) . . .
log f(s)n e du as s»o+ implies the relation

a

By
v

. {‘ n(u) n L(u) as u+», provided L(x) is a slowly oscillating function defined for

x> a such that
X

L(x) ~ K exp z g/.éégl dui as x+» where § is a non-increasing function and

'K is a positive real number.

We use our theorem 3 to get a theorem similar to theorem C.




Results

First we define the subclass of slowly varying functions we want to consider.

Y, . . + .
Definition: The non-decreasing function q : R -+ R belongs to the class I if there
p 3

exists a slowly varying function L such that q(x) =“/~£%£l dt + L(x)
1

. . . +
It can be shown that the class Il consists of all non-decreasing functions q : R + R

. . . + + + s e
for which there exist functions a : R - R and b : R -+ R such that for all positive x

lim q(tx) - b(t)
oo a(t)

= log x

If the last relation holds, then it is true with b(t) = q(t) and a(t) = q(te) - q(t).
The function a(t) is of course determined up to asymptotic equivalence and is called
the auxiliary function. As a consequence of these facts we mention the following
result: if q(x) eIl with auxiliary function L(x), ql(x) is non-decreasing and

a(x) - q,(x)
""'—"'I:'(—;{'S‘T"“ + C (x+=), where

C € R is a constant, then ql(x) € T with auxiliary function L(x).
x

' It is easy to see that if L(x) slowly varying, theQJ/.L%El dt is an element of I
with auxiliary function L(x). l

The class T is a subclass of the slowly varying functions at infinity. Moreover, for

each function qell it is possible to find a function L_ such that q(x) =

*

% L, (t)
f — dt + 0 (L(x) ()
/

where L* v L ois slowlybvarying.
For the proofs of these statements and further properties see [10], ﬁ!] and [IZJ.

We start with two Abelian results.




Theorem 1

n(x)

Suppose n : R > R" is slowly varying, ”

is (Lebesgue) integrable on finite

subintervals of (0,=)

Then n (é) € 1 with auxiliary function n(s), where n is defined by

©
-=us

'!\{(8) = sf & n(u)du

-us
0 1-e

Moreover,

n(su) du

- n(s)

{rvx(v)dv‘

sn(s)

n(su).

n(s)

1
We have J'
0

) e o l .
varying functions and since — -

+ 1 (s#=) by Karamata's theorem on regularly

du ?

-u _ .
— is bounded on (0,1) we can apply Pratt's
, _ l-e ‘ '
lemma.

. - |
(su) n(su) e

For the second part we have s
SR s n(s)

uﬁe (s+=) uniform on (1,») by co rollary

1.2.1.4 of [11].

So we have "s KR ' g _
ot st :

u
) du- f E—du  (s)

n(s)-- S lfe-u ) 1-e

The right side is zero, aé‘is shown by elementary integration. This’implies that

% (1/8) €l with auxiliary function n(s), since
s - (N

.['EéEZ dt € Il with auxiliafy function n(s) and 3_(1/3) is non-decreasing.
0 A o ! _




Remarks: 1. The case neRVa(m) (a>0) (regularly varying at infinity with exponent a)

A ‘
gives analogously P—t(l—z-g-)-» z (a+l) r(a+l) (s»=). See DB], theorem 1.

)
2. The statement of the theorem implies g(l/s) ~ f nﬁt) dt since n(s) =

0

s
o f n(z) dt) by Karamata's theorem.
0

. See theorem I of [6].

Theorem 2., If we define ¥(s) = L %n(%) where n satisfies the conditions of theorem

m<s
1 and :;n(x) is of bounded variation on intervals of the form (1, xo), then

v(s) £44d
t

n(s)

>y (8+)

Proof We give the proof by an Euler-Maclaurin kind of argument

\Y \Y
[ An @ e n - n - [ wla -
-1 ‘ v-1

\Y
\V]

X X X x
-\;n(-\-’-) - f {t} dgn (?)
v-1
where we use the notation {t} = t-[t:]

Summing over v gives

. x &

oL l X ] X 1 x
I<Zv<; n(-\;) - "1. Tr (T:’) dt = n(x) - f i (-t-) det + J; {t} d'En (.E)
- (4

x
: 1 X
Now with M=sup n(x) we have [;g? n (P de] log = }
X £ (1,2) ! > 0(x
=3 n(x)m a1 T 06

n(x)

since (x-1) n (x) is l-varying at infinity.




lﬁ ] X 1 [x X X [? 1 |
Furthermore {t} d i (?) -5 Tn (EJ d {t} v -n(x) T d {t} v (y-1) n(x)

1 1 1
¥

t l_uniform for te(l,») (see [1ﬂ , cor. 1.2.1.4)

This proves theorem 2.

Y(tx) - ¥(t)
Y(te) - ¥(t)

Remarks: 1. The theorem implies + log x (to=)

where x>0 is fixed. If ¥ is non-decreasing we have VeI,
With the additional supposition that Y is non-decreasing

a simpler proof is possible:

-us

‘ © Ll o0
v e -kus -us
n(s) - s n(u) du = s Z: e n(u) du = [ e d¥ (u)
-us

0

1 -u/s 1

Since % f n(u) du =fnt(1u) du we have
0 0o -

[ 4

by theorem 1 U/ﬁe_u/ d¥(u) €l with auxiliary function n.

0

Hence n(l/s)nzsf(s) Y(wa) (see [10], theorem 1)

Combining this with theorem | gives the desired result.
() . .
The case neRVa (¢>0) in remark 2 gives

-——“—’—(-sl—_-*a 'c(a+l) (s+)

T,

0

s
The statement of the theorem implies ¥(s) «:/ﬁgéil dt since n(s) =

0
0(7 n(t
0




As a consequence of remark 2 we mention the following:
R
+ + : pe . s
Corollary 1. Suppose n : R - R satisfies the conditions f &u(i)- du < @« for R >0
0

and Z i—n (-3—) is non-decreasing for s > 0.
m<s

The assertions E -Z‘l;n (-:—1) € T with auxiliary function L(s) + = (s+w)
m<s

and 3 (1/8) € I with auxiliary function L(s) + « (s+=) are equivalent.

Ziad-1asm
Both imply: m<s

+y (s+)

L(s)

For the Tauberian counterpart of the theorems | and 2 we need three lemmas.

-~

Lemma 1: If

(1) L(x) is non-decreasing for x > 0’ slowly varying, L(x) » o (x>=)

_L(x) <O

(ii) T < 1 + for some a > 0, x > x. = xo(a)

0

2, wim) L(—) = 0 (L(x)) (x+)

m<x

='=

Proof: We define a = L(n) - L(n-1) for n > 2, a = L(1)

Then
ETCIAE IND YIS 1D SR D

m<x m<x m<x
= \V) (._-
=m

N(x) = Z -umel. Since \N(x)‘ < ¢ for ;: 2 X (see [15] ) we have:
m<x

2 a, N.(ﬁ) <e€ > a =¢elL ([l;- ] ) < e(l+e) L (x) (x>x€)'

€

X

n<X m<=

=x ==
€ €




a, N |ze F° agge (Lx) - L<§€)} = o(L(x)) (x+=)
E <m<x
x IS
€

For x;go(a) we have by (ii)

L(x)

o
X

Z grgi){l‘(ﬁ)—l‘([ﬁ])} < Z l_L_(_X_/.E_).;

X ™ x%/n®
1<m<= m<

L(x) - L([x]); L(x) - L(x-1)< since L is non-decreasing. Hence:

X
. X
REL L(F)du + L(x)} [ LOV) gy + o(L(x)) = o(L(x))

1+a
ov

if we choose 0<o<l1.

We estimate the last sum as follows:

D nm oy x I R DI R IFERICR I

X

— <m<XxX

x =
[0}

X
e <m<x - <mZXx
X = X =
o o

= 0(1) = o(L(x)) (x+»), This proves the lemma.

Remark: The conclusion of the lemma is incorrect for arbitrary
slowly varying functions.

There exists a function L(x) - C (#0) (x»«) such that:

2 BB 1 () fo(1) (x0w)

m
m;x

See e.g.[é]example 2.

X

Lemma 2 Suppose :E: 1. &) =‘/~££El du + L(x) where L satisfies the
—_— Lt m m u

conditions of lemma 1. Then n(x) ~ L(x) (x»=).




Proof: Mobius inversion and lemma 1 gives:

2 (x) = Zu(:) LG g Zu_(EQ_L &
' m<x 1 mex

x/m

o Nf,") v v L)

L) (-jf) du + o(L(x)) =f L(-:-) -’-‘;‘,—‘Q dv + o(L(x)) ~ L(x) f
, 1 1

(%) by dominated convergence, since

f Z u(k) dv = —-2- f — = log x. Z u(k) Z ulk) log k *+1 (x)
k<x ’

k<v k<x

(seek [15] ).

Remark: The proof of lemma 2 implies the following:

X _
If h(x) = [ L(w) du + L(x) where L satisfies the conditions of lemma !, then
- u _ ,

1

m

x
Zm h(%(ﬁ) '\:-:E f sdh(s), which is the auxiliary function of h(x). For
1

m<x

. x p ‘
functions h(x) of the form j' -Ii(l)-du, L slowly varying the conditions of lemma
. 'l :

1 are not necessary for this result. Compare with theorem 1 of [4] -

The following lemma gives the same statement under different conditions on L(x).

Sl N1 X x L(u)
Lemma 3. Suppose ZE n (-a-) = f B2 qu + L(x) where L(x) + = and L(x) €1
- m<X :
Lo 1 ‘

Then n(x) ~ L(x)v (x+)

Proof: We write L(x) = ERACIRFIEN o(y(x)) where y is slowly varying.
Zroof: , u . »
, 1 A

Then M3bius inversidn' gives:

x/m
n(x) = Zu(m) f L(u) + 1(u) du + Z u(m) (Y( %)

m<x B 1 m<x




The first part is asymptotic to L(x) as in lemma 2 since
y(x) = o(L(x)) (x>=).
For the second term we proceed as follows:

Suppose Io(y(x))|< e vy(x) for x2x . Then we have:

v 1 '
D am (X)) ;ez; Lo+ )] ;\o(ﬂ;’f;))\

m< X
=X ; <m<x
0

DolyE o

xe(],xo)

m

Now we have § :l-y(%) v L(x) (x»») by theorem 2. This proves
m<x v

the lemma.

Theorem 3. Suppose

' X
(i) .Jfééﬁl du b o) = D ta &

1 m<x

where L(x) > o (x+=) is slowly varying

(ii) R(x) 2 :% n (%) is non-decreasing
- mgx

. X ‘
(ii1) L, (x) = + Jf ¢ dR(t) is non-decreasing
1

L (%)

-a
— <
L*(x-l) =

1 + x with a > 0 for x ¥ xo(a)

(iv)
then n(x) ~ L(x) (x5%).

L*(t)

T dt + L*(x) where L*(x) is defined as

Proof: We have "R(x) = J[
: 1

above (see []]] theorem 1.3.4.) 3 L*(x) v L(x) satisfies the

conditions of lemma 2. This proves the theorem.




Theorem 4, Suppose (i) and (ii) of theorem 3 and L*(x) €1

Then L(x) ~ n(x) (x+=)
Proof: We use now lemma 3. The rest of the proof is as in theorem 3.

Combining corollary 1 with the theorems 3 or 4 gives the following Tauberian theorem.
Theorem 5, '
s
If 8(1/s) = [ L) 4u + o(L(s))  (s=) with L(s)+w
1

* + + L3 * . .
slowly varying and n : R > R satisfies the conditions
.y n(u) .
(1) =

is integrable on (0,R) for every R > 0

(ii) R(x) = 21-]6 n (——) is non-decreasing
m<x

L*(x) E= - f tdR(t) is non-decreasing

1

L, (x)

L (x) -
m X with a>0 for x ;xo(a)

(t
t dt

L(s >0 (s>=)

Proof: Applying corqllary ! and theorem 3 6r 4 we have n(x)  L(x)

Application of theorem 1 yields the result.

For regularly varying functions the following analogue of theorem 5 is well-known.

Theorem 6., If K(l/s) '\;; (a+1) T (a+l) g% L(s) where

L(s) ¢ RV (=) with 0>0 and n(u) satisfies the following conditions

(i) n(u) ni“) log u are integrable on (0,R) for every R>0

(ii) n(u) is non-decreasing
then n(u) ~ u’L(u) (u+e)

For a proof see [13] theorem 2.




The author wishes to express his gratitude to dr. L. de Haan for helpful and

stimulating discussion which led to improvements on several parts of this paper.
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