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Abstract

This paper studies the Mean Squared Error (MSE) properties of .a

proposed family of Ordinary Ridge Estimators (OREs) of the coefficients

in the linear regression. We make extensive use of G( ) functions to

provide both exact and asymptotic approximations to the MSE. Using these

results we propose a new set of OREs whose MSE is smaller than that of

the Ordinary least squares (OLS) estimator. These improved estimators

can be used when faced with the multicollinearity problem. A simulation

study is also done to further analyse the MSE of the proposed estimators

compared with some of the existing OREs.
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1. INTRODUCTION

Hoerl and Kennard [1970] proposed a biased estimator called the Ridge

Regression estimator for the general linear model which dominates the OLS

estimator. Vinod [1978] surveyed the growing literature on the subject.

When the biasing parameters ki of Ridge Regression are all equal to say k,

we have the so called "Ordinary" Ridge Regression. Recently various authors2

e.g., Hoerl et al.[1975], Lawless and Wang [1976] have considered the problem

of determining the biasing parameter k in the ORE. Invariably, different

formulae presented by various authors for k have depended on unknown para-

meterss namely, the regression coefficient and residual variance. The usual

practice then is to estimate k by substituting sample estimates of the unknown

parameters involved. Use of this estimated k certainly makes the ORE opera-

tional. However, since k is now stochastic it is no longer definite that

ORE will dominate OLS. Vinod's survey [1978] notes that some Monte Carlo

studies have been carried out to see the performance of the MSE of ORE for

different choices of k.
1
 Though these studies do indicate a fairly good

performance of ORE, the researchers are still neither certain about the

operational range of the parameter k nor its optimal value. Further, in

the authors' knowledge, no analytical study is available which analyses

exact or approximate MSE of the ORE.

In this paper we present various ways of determining k and then develop

a family of "double h-class" estimates of k. This double h-class estimate

depends on two arbitrary scalars hi and h2 which could be stochastic or non-

stochastic.
2 

Using the double h-class estimate of k in ORE we formulate a



new family of double h-class OREs. It has been noted that many of the

biased estimators in the literature can be considered as special cases

of this new family. Section 3 studies the MSE properties of the double

h-class estimator using G ( ) functions. Further, using the approximate

expressions for MSE, we propose a range of values for hl and h2 for which

the double h-class ORE dominates OLS. When multicollinearity is severe

in the sense that the smallest eigenvalue (Am) of the correlation matrix

among regressors is close to zero there is ample theoretical and Monte

Carlo evidence which suggests that some form of ridge estimator will

reduce the MSE of OLS. The values of h
1 
and h

2 
obtained show that even

when multicollinearity is moderate (d > 2 defined in (3.16)) it is possible

to reduce the MSE of OLS. Many other interesting results together with

comparisons among various well-known members of this family are summarised

in Section 3.4. To analyse further the MSE of the proposed estimators

we give a brief description of a simulation study. It has been found

that (Table 2) the percentage of occurances, where the proposed estimators,

have strictly a lower MSE than OLS, is always larger than corresponding

percentage for the estimators by Hoerl, Kennard and Baldwin [1975) and

Lawless and Wang [1976]. Also, it is indicated that the proposed estima-

tors perform better than Hoerl et al., and Lawless and Wang estimators

for large values of noncentrality parameters.



2. THE MMEL AND ESTIMATORS

Let us write the standard linear regression model as

= Xf3 + u

where y is a T x 1 vector of observations on the dependent variable, X is a

T x p matrix of p explanatory variables, p is a p x 1 vector of unknown

regression coefficients and u is a T x 1 vector of unknown disturbances.

We state the following conventional assumptions:

Assumption 1 The matrix of explanatory variables is nonstochastic and of rank p

Assumption 2 The disturbance vector u is distributed as multivariate normal with

mean vector zero and variance covariance matrix or
2
I i.e.,

u (0, or
2
I)

Assumption 3 The sample size T is reater than the total number of explanatory

variables p in (2.1).

The ordinary least squares (OLS) estimator or maximum likelihood estimator

of p in (2.1) is written as

(2.2) b = (K'X)-1X'y

such that

(2.3) Eb = , V(b) = E(b-p)(b-p), = cr2(X'X

and

(2.4) MSE(b) = E(b-(3) 03-0 0-2Tr(X 1X

-1

where Tr represents the trace of a matrix. Further an unbiased estimator of

2
is given by

(2.5)

where

(2.6)

2 1 •• A
s = — u,

u = y Xb .

n= T - p



(2.7)

where

(2.8)

The model in (2.1) can be written in the canonical form as

y = Za + u

Z = XG, =

andGisapxpmatrix of normalized eigenvectors corresponding to the

eigenvalues of XiX such that

(2.9)

and

(2.10)

G'G = GG' = I

Z'Z = A, X'X = G A G'

where A, a p x p diagonal matrix of eigenvalues of XlX, is

(2.11)

(2.12)

= Diag.[All..-,Xp] •

The OLS estimator of a in (2.7) is

-
a = 

A1 
Z'y

and its mean, variance and MSE are, respectively, given as

-
(2.13) Ea = a , V( a) = 

2 
a 
A1

and

2 P
(2.14) MSE( ) = cr E 1/Xi

1

Further, we note from (2.8) that

(2.15)

such that

(2.16)

a = G b

MSE(a) = MSE(b)

The generalized ridge estimator (GRE) of a in (2.7) given by Hoer1 and

Kennard [1970], is formed by adding kl,...,kp the "additive eigenvalue inflation

factors" to AI ...,Ap. Specifically, it is written as
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(2.17) aKA = [i\+ K]-1

whereKisapxpdiagonal matrix of constants as

(2.18) K = Diag. .

For k = k2 = k = k the ordinary ridge estimator (ORE) can be written

as

(2.19) c; = IA +

= La

whereAisapxpdiagonal matrix as

(2.20) A = Diag. Pti/Xi+k,...,1/4/Xp+k)

and a is the OLS estimator given in (2.12).

as

(2.21)

and

(2.22)

Using (2.8) we can write the GRE and ORE, respectively, of p in (2.1)

A A

i3K = Gal( = (X 'X + GKG

(X 'X + kI) 'y

2.1 Determination of k 

Let us write the 11SE of ai, the 
1th

component of the OLS estimator a,

from (2.12) as

(2.23) MSE(ad = g2/Ai i=1,... p •

Similarly, it can be easily verified that

(2.24) MSE(ak

(X +k.
i

k. a. cr
2 

X.
2 2
1 1 

(Xi+ki)



A .th
where ak is the 1 component of the GRE ar Thus

(2.25)

1.

2
A 

2 2
k.X.(k.a. - 2a

.2
)

MSE(a„ ) - MSE(a 
1 1 1 1 1 i) - .n.i. 

Xi(Xi +k.)

It follows from (2.25) that for

(2.26)

A

0 <k. <
1 2 2 -1

a. -cr X.1 1

2o
-2

MSE(ai ) is smaller than MSE(ai).

MSE(ki) MSE(ai) is that

(2.27)
2cr0 < <

a.
1

In fact a sufficient condition under which

The upper bound of k. in (2.27), however, is more conservative than in (2.26).1

An alternative conservative range of ki, given in Hoerl and Kennard [I.TM, is

2
(2.28) 0 k.

2 •
1

2 2 AI /a. is the optimal value of ki for which MSE(ak )

is minimum.

The k. values in (2.26), (2.27) and (2.28) for which the GRE dominates1

OLS estimator can be written in a compact and general form as below:

h g
2

1
(2.29)

2 2-1
a. -huX
1 2 i

,

where h
1 

and h
2 
are arbitrary scalars which could be stochastic or nonstochastic.

For 0 <111 < 2 and h2 = 1 we get (2.26) and similarly (2.27) and (2.28) are

special cases of (2.29).



,•

In the case of ORE where k
1 
= 0 0 0 = k = k we can determine k by considering

the harmonic mean of k. in (2.29). This can be verified as

(2.30) k =
ph

1 
a-
2

a'a h 0
-2 
Z X

-1
2

-1
where 

a-2 
EX.= Tr V(a), V(a) is as given in (2.13).

Different choices of k suggested for ORE in the literature can be

seen as special cases of (2.30). For example if hl = 1 and h2 = 0,

k = p 2kVa,whichistileharmonicmeanofk.= u 2/2u .This is given by

Hoerl, et al. [1975]. If h = 1/p and h
2 
= 0 we get k = u

2
keot which is

suggested by Farebrother [1975]. Further, if 0 h <
2 

and h = 0 we

2cT2
1 p 2

have 0 <k < 77; as given by Theobald [1974]. It has been shown by

Theobald that for this range MEV is smaller than MSE(a). Also, the
2

2
max

range of k suggested by Hoerl and Kennard, i.e., 0 <k <

as a special case of (2.30).

can be seen

We note that, since k in (2.30) depends on unknown parameters a and u
2

A

it would not determine ORE ak or pk, in (2.19) and (2.22). However, we can

2
use unbiased estimators a of a and s of or

2 
as given in (2.12) and (2.5

respectively. The k in (2.30) can then be determined as

2

A c
p h

1 
s

(2.31) lh 
,h 

= 
-1 2

= s2 
1

= U,2 
2 a' - h2s Z Xi

U = y - za.

Again if h = 1 and h
2 
= 0 we get k as suggested by Hoerl, et al. [1975]. If

h
1 
=land h = 0 we get k as given by Farebrother [1975]. Further, if

p

hl - and 
h2 

-1- 1. = a'(I A)a/s
2 
Z X. , which is stochastic, then we obtain ip 

which is suggested by Lawless and Wang [1976] in the Bayesian framework.



2.2 A Family of Double h-Class ORE

If we substitute (2.31) in (2.19) we can write a family of operational

ordinary ridge estimator (00RE) as

(2.52)

where

(2.33)
A
A = Diag.

such that for i=

(2.34)

and

(2.35) h1.

= A a

A

2.11002P

A

)00028p]

A A

A h 
&u8.ii

1 A

a'a h •;;;:;

h
h p
1

- 
h2 
E x-1

T i

•]
i

We note that h
1 

and h
2 
are arbitrary scalars which could be stochastic or

nonstochastic and the same is true for h
li 

and h
2i. 

The estimator in (2.32)

can be termed as a family of double h-class ordinary ridge estimators.
.

The 
th

component of this double h-class estimators can be written

as

(2.36

6h1 2)i

A

h u'u
11

a'a h
2i
aya

If h
2 
is stochastic and given by

(2.37) h2 =
a'(I A)a
2 -1
s E Xi

.ththen the 1 component of can be written as
'
h
2 

(2.38) =
;Lelia



This can be considered as a family of empirical Bayes estimator which

depends on h
1 
only.

If h2 = 0 we get another set of estimators which depend on h
1

only; it is written as

(2.39)
hIva
li

a'a h

It is interesting to note that for ,hi = 0, (2.32) is an OLS estimator,

lee., a = a. For hl = 1 and h2 = 0,0 a1,0 all KB (HKB represent Hoerl,
•-• ~

,h2

.Kennard and Baldwin [1975] estimator) whose 
th 

component can be written as

(2;40) pUu = UL n. p u'u
,AJ a.

X. 'a
1

X.a'a ps
1

2

Next, for h1 
= 1/p and h

2 
= 0 a

1/p 0 
is the estimator suggested by Farebrother, B,' , 

th[19751. Its 
. 

component can be written as

(2.41)
X.a'a
1

X.a'a + s
2

Further, for h
1 

=• 1 and h
2 

as given in 2.37)

of 
alh 
 can be written as

e.J

(2.42)

the it component

pd'a 

nka A a + p

This is the estimator suggested by Lawless and Wang [1976
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Finally, if h
1i 

and h
2i 

are any arbitrary stochastic or nonstochastic

values, not constrained by (2.35), then for 1111 = cl for all 1=1,...p and

h
2 

= e(A - I)agi'a for all i, the estimator 
(ah1,h2) 

is the James andi • 

Stein [1961] estimator in the regression context. This can be written as

(2.43) (8",Ts)i
c
1 

a'A a3ai

The difference between the Stein-rule estimators and the double h-class

ORE is then with respect to the coefficients of ai for i=1,...,p. While

in Stein-rule these are the same, in double h-class they differ. The MSE

properties of the JS estimator, in the regression context, have been

analysed extensively in Ullah and Ullah [1978], Baranchik [1964] and

Zenner and Vandaele [1975] among others, therefore it will not be studied

in this paper.
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3. THE BIAS AND MSE OF ORE

In this section we shall analyze the exact and appromimate bias and

MSE of the double h-class ORE ahlo,

present results for the case when h2 
= 11 is stochastic and then more generally,

when h2 is any nonstochastic scalar. 146 note-agaili-that aim in (2.42).is a member

of ah while aim and an i (2.40 and (2.41), respectively, are members

of ah o. Finally we point out that though both the exact and approximate

results are presented for ah fi, only approximate results using small a--approach
1'

of Kadane [1970, 1971], are obtained for all This is because the exact
h
2

results are complicated to be analyzed, although they can be obtained for

in the same way as forahl  ah fi .

3.1 The Enact Results for ail

in two different cases. We first

Firstly, we write the sampling error of the estimator in 2.38) as

(3.1) el
JA h
1

opOi h iciai

where, using the fact that at A a = y - va,

(3.2)
yl bi y 

c.
Yt NiY 1

and M and N are both TxT matrices given as

(3.3) = I - z A71 N. = I - (1-h)M

Further, M is an idempotent matrix with rank n and N is a now-negative defi-

nite matrix for h 0.
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(3.4)

Secondly, according to Assumption 2 we observe that

- 
y N(y, u

2 
I), y- = Za

From (3.1) we note that to derive the bias and MSE of tt ^ we re
15
n-

2 2
quire the expectations of c.a., c.a., etc. The conditions for the exist-

11 11

ence of these expectations and their values can be obtained from Ullah and

U11ah [1978]. They are not reproduced here for the sake of space.

We now introduce the following notations and functions for the sake

of simplicity of exposition:
3

(3.5) g.
1,

where

= G(1. -
ii

o
expL2 0 t/1 

-411-v
-co [1 -2t]2 [1-2h •t

24.,v
2

= 05 • • 0

t A a
(3.6) 0 -

2 u
2

is a noncentrality parameter. The following results can then be stated.

Theorem 1. The exact bias of the double h-class ORE of a for h
1 
> 0 exists;

it is given by

(3.7) E(Vh - a) =
h p

2,1 A a

where g2,1 is the column vector of g

for p = 2 and v = 1.

.th
Note': The component of (3.7) can be written as

(3.8) ). n 
h 

g.
2 21 i

is as W.ven in (3.5)

It can be shown that the relative bias in (3.8), for a given sample size, lies

in the following range
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n h
  E
T+2

Oth
s 0 i=1,...„p

Further, the relative bias is an increasing function of the noncentrality

parameter 0.

Theorem 2. The exact MSE of a component of the double h-class ORE of a for h
1 
> 0

exists_; it is given by

2 u2 2 
(3.9 E6 -a - n 

n.04.2) 
111,; . 

,2)]n X. 
g. 
1,2,1 

- h
li 4 gi,3 2

h in(n+2)
- n h1. (g. 31 - g ,2,1) 4 (gi,4,2 gi,3,2

where h1. = h1pfnX. as given in (2.35).

Note:

(3.10) Erah a 
" t( 

a E -a.)2.
l' 1;1' i=1

3.2 Large, 0-Asymptotic Expansion for

In the earlier section we were able to analyze the exact bias of

. However, the expression for HSE was too complicated to draw any mean-
1'

ingful result. To analyze HSE, we therefore obtain the asymptotic expansion

in terms of the inverse of O. We note, however, that the results below re-

quire sufficiently large 0, which according to (3.6) means sufficiently small

u
2
. Thus, we consider the terms of order l/e 1/0

2 
as the terms of order u

2

and u respectively.

4
The following results can now be stated.



it

Theorem 3. The asymptotic expansion of the bias of the double h-class ORE

eatimator of a. in (3.7) up to order lie is given by

(3.11) EGh101 - a.

when h > O.

a,

Theorem 4. The asymtotic expansion of the MSE of a component of the double

h-class ORE of a in (3.9) for h1 
> Os up to order 1/9

2 
is given by

(3,12) EGh 
fi m

1

where h1. =
1 
p/nX

i 
.

Note: Using (3.12 ),the MS E

(3.13)

2
cr

xi

nh
[

492
a, cc

(4 + h1i(n+2))
n
A
i

can be written as

h p

Eahl ahi,fi - =rA-1 + 1
[ 

1 A a, h 
1 
p(n+2) 

n
CG a,

Adl

or alternatively as

(3.14) E CCI,h
-

- a) = 02TA
h p
1

49
2

a,

ct'Act -2

cGIA 
TrA - 2)].

-1p(n+2,) 2  
in

a, A 2a,

Corollary. The double h-class estimator of a, in (3.7) dominates ordinary least

squares estimator a in (2.12) in large e asymptotics up to the order 1/92 in

the sense that

(3.15).

for

1iii9
(FGhl hs

2rain'

(3.16) 0 <h1 s   (d -
p (n+2)

- E(a - a)1(a - a)] <0

E 1
i=1

2 2 2
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5
where Xm iS the minimum value of x1,...sx .

3.3 Large 9 - Asymptotic Expantion for ahvh2

Let us write the sampling error of the estimator in (2.41) as

(3.17) (15h1 h 
)i = ( - a)i - hlidiai

where

(3.18) d = ?NY
i y'Riy '

M =I Z A lZt and

(3.19) R = Z A- Z h2 t1.

If we compare (3.17) from (3.1) we can observe that ah t. and ah h differ
2

only with respect to the matrices N. and R.. Thus, one could obtain the

exact moments of 1 by using the results in the Appendix of Ullah and •
h h
l' 2

Ullah [1978]., though it may not be as straight forward as in the case of

ah 1.1. However, since the exact moments would again be in terms of the
1'

complicated mathematical functions from which any useful result is difficult

to be obtained, we present here the asymptotic expansion of the moments by

using• Kadane's small cr expansion approach.
6
 The following theorems can

therefore be stated for h
2i 
> O. We require h

2i 
> 0 for the existence of

the moments.

Theorem 5. The asymptotic expansion of the bias of the

double h-class ORE ahl

(3.20) Eahl,

where 01 = atm/2a
2

ef a, up to order 1/9/ is given by



Theorem 6. The asymptotic expansion for a component of the MSE of the

estimator a , up to order  
, is given byhl 

21)

Note:

(3.22)

4
2 u.h

2 _ o- li
i X CG a,

i

n(n+2) m
ii a'ct xi

Using (3.21), the MSE of 
h h up to the order 1/0

2
CG

4
or u ) can be written as

h p
, - m 4. h p(n+2 

- m) =
2
T
r
A
- 
+ 

1 2 -
2m

2 1 n0
1

2a,tocciTr A-2]

where e is as defined in Theorem 5.

Corollary. The double h-class ORE  ah
1'112

dominates ordinary least 

2
squares estimator a in large e asymptotics up to the order 1/01, in the sense

that

(3.23)

for

(3.24)

7

2n 
0 < h

1, p(2) 
(d - 2), d > 2

where d is as given in (3.16).

E(a - m)'(a - a)] < 0

3.4 Conclusion: In Section 3 we have first analysed the bias and MSE of a
hl, h2

when h2= fi is a stochastic variable and then when h2 is any nonstochastic scalar.

The h
1 
in both cases was a nonstochastic scalar. For h

2 
= fi ah is a set

of empirical Bayes estimators which belong to ah h . Since the form of
l' 2

ah h 
gets slightly different from that of ah h the results are presented

l' 2

separately.

With respect to ah 11, we have noted in the corollary that it dominates the OLS
1'

estimator for the values of h in

2nX
0 < 

h1p(n+2)
< m (d-2), d > 2 ,
'k 

where d, as given in (3.16), can be considered as a measure of overall multi-

collinearity in the data matrix.
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In the case of zero multicollinearity d=p and when there is a high

degree of collinearity d is close to zero. The range of hi given above

suggests that even for moderate multicollinearity (d > 2) there exist

estimators a 
h• h' 

- whose MSE are smaller than the OLS. We note here that
1'

the estimator ails, = eilm, which is a member of ,t, would
111 11

dominate OLS if, for given n, the data matrix is such that the upper

bound of hi is at least one. Thus the estimator al,1.1 may not always do
better than OLS. We therefore suggest that • h

1 
could be chosen from

the above mentioned range since, this ensures a lower MSE as compared to

OLS. In fact, the simulation study in the following section indicates

that 
al_/1/1

,t for a choice of hi = nXial(d - 2)/p(n + 2) performs better than
1 

OLS as well as a 
1 -1' The optimal h1 

' in the given range, however, remains, 1 
to be a subject of future studies.

It is interesting to note that in the case of zero multicollinearity,

i.e. when d = p the range of hi in (3.16) reduces to

(3.25) 0<
< 2n(p-2)

- (n+2)p

Now with regard to ah ,h we have shown in the corollary that it
1 2

dominates the OLS estimator for the values of h
1 
in

0<
<  2n 
- p(n+2)

-2)

and for any nonstochastic h2 for which h2i in (2.35) remains positive.

Thus ah ,0 also dominates OLS. Considering the two cases hi = 1 and
1

h
1 
= 1/p we observe that, for some data matrices they may not be in the

range of hi given above. Thus 
, = 

a 
aHKB and al/ p,0 = aFB 

might not
-10 

always dominate the OLS estimator. However, since hi = 1/p < 1 gives

shorter range for k as compared to h
1 
= 1, aFB would be more conservative

than a Like in the case of ah si the simulation study indicates that
HKB.

a 
0 
for a choice of h

1 
= n(d - Wp(n + 2) performs better than bothh1, 

OL8 and a

Comparing 
n 
a, with al, we find that ah s would be more or less
, 

"1'" 
,

conservative than a 
h
1 
0' 

depending on the value of X . Since more often
, 

Xni is small, a - would be more conservative. In the special case when

1,h

111 = 1, al,o = aHKB would be better than or worse than a, ,n = depen-

ding upon the values of X
1' 
... X . This follows by comparing the expressions

p
of MSE for al,0 and ai,1-1 from (3.22) and (3.1)4) respectively.



4. A SIMULATION EXPERIMENT

A simulation study was conducted in order to draw some further

conclusions about the comparative performance (MSE) of the estimators

listed in Table 1 with appropriate references over a wide class of re-

gression problems. Since there is no need to merely verify mathematical

proofs the setting of the simulation study is chosen to be intuitively

appropriate for regression problems.

Two data sets are used. One is a four regressor (p=lt, n=13)

structure due to Hald, and second is a ten-factor (p=10, n=36) structure

due to German and Toman used by Hoerl and Kennard [1970), and many re-

searchers for illustrating ridge regression. This simulation is similar .

to Hoerl, Kennard and Baldwin [1975], and Vinod [1976 and 1977].

For the purpose of our simulation we consider the following trans-

formation of (2.7)

• y = Za + u = Hea + u = H + u

where the regressors are orthogonal: H'H = I. Let L =

the squared length of the parameter vector n = ea. Let 8 denote a non-

centrality parameter defined by 28 = L2
 
/c 2 Eight values of 8 in the

interval (1,450) are chosen. It may be argued that a large part of the

action insofar as which of the estimators dominates OLS is taking place

on a "sphere" selected to have the same L and a . Hence we select

2 2
a = 1 and L = 2e in all our experiments.

Given L
2
 we choose p random numbers from a uniform distribution

the range -1 to +1 and call them w.. Then n. = Lw./ E1Z 32 satisfy L2•

Thus, the true n. are selected from a scaled unit cube. This conforms

with the practitioner's notion that the true regression coefficients can

be anywhere in the selected range. The alternative procedure of selecting

. from a scaled unit ball of radius L was not adopted.ni

n'n a'A denote

in

Next, a vector u of T random normal deviates with mean zero and

variance a 
2
 is created using the so called "super duper" random number

generator developed at the McGill University, Canada, by G. Marsaglia

et al. [1973]. The !Tvalues of the dependent variable are found by

y = Hn + u of (4.1). The OLS estimate is n° = (H'H)-/H'y = Wy. Next,

the squared length of y, yiy, is computed for each case. The squared
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• • 2 ' 0 
0 Omultiple correlation coefficient is R = n H'Hn /Y'Y 11 n/Y'Y.

For a fixed set of true ni values 500 sets of random y vectors were

created. For each y the weighted sum of squares of error is computed as:

WSSED(.)]
p/

= = E b.
. 1
1=1 i)

2

L
where b(-) represents one of five estimators. The first is the usual

OLS estimator. Second, HKB is Hoerl, Kennard and Baldwin's [1975]

k = ps
2
/a

la
, i.e, hl = 1 and h2 = O. Third is LW for Lawless and Wang's

097(61 choice hl = 1 and h2 = h. The fourth is Felpirical Bayes (EB) esti-

mator of equation (2.38) having hl = nAlal(d - 2)/(pn + 2p), where d is

from (3.16) and h2 = h from LW. Fifth is a double-h class (DH) estimator

with h = n(d - 2)/(pn + 2p), and h
2 
= 
°
.

1 
( • ) •The MSE(b ) is then the simple average of WSSE(b(.)) for our 500

replications. To assess the variability of WSSE(b ) over 500 replica-

tions their standard deviation, SDE(b )), was computed.

In Tables 1 and 2 we report the results for the structure having
( • ( • )p = 4. The MSE(b ) ) is reported for each b in Table 1. There are

eight rows associated with each of the eight 0 values. A mark 60 is

included in the Table for the lowest MSE in each row.

It is clear that OLS is a poor estimator for low 0 values, and the

"room" for improvement over OLS becomes less and less as 0 increases. In

Table 1 the double h-class estimator DH wins the most number of (i) marks.

For law 0 values the HKB or LW estimators have lower MSE than the pro-

posed EB or DIE estimators. However, for large 0 values the MSE for EB

and DH estimators remains always lower than that of OLS, which is not

true for HKB or LW. Also for large 0 values EB and DH estimators perform

better compared to HKB or LW. These findings are consistent with our

theoretical conclusions in Section 3.4. Table 2 gives the percentage of

Times MSE of various estimators is strictly less than that of OLS. The

mark (V) is placed on the estimator with the highest percentage. Again

it is clear that the chances of having higher MSE than OLS with the HKB

or LW estimators in a given problem are large. By contrast, our EB or

DH estimators improve upon OLS more often. The results for the ten-factor

example are essentially similar and omitted to save space.

To assess whether the reduction in MSE by using HKB, LW, EB or DH

rather than OLS is merely due to sampling variability we compute SDE



(b(-))/(500)2 for several MSE(b
(*)
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values. Detailed reporting of these

results seems unnecessary. We find that SDE values for various b(-) are

adequately summarized by those for OLS reported in the last column of

Table 1 entitled variability. Had we simulated 10000 times we would have

SDE/100 as a measure of variability which is an order of magnitude smaller

than ours. However, the cost of such a large sample would be too high.

A more ambitious simulation would have varied Xi 
over a wider range of

possibilities. It is hoped that our simulation does give at least a li-

mited guidance about what might be expected in a practical (regression)

settling.

Table 1

Mean Squared Error for p=4 Structure *

OLS HKB LW EB DH
vari-

a=d
0,h2 

a ability
111,0h

1'

0.5 4.51 1.32 1.31V 3.95 3.79 .143

4.5 4.09 3.11 3.1ove 3.92 3.86 .130

12.5 4.21 4.24 4.20 4.21 4.19 .129

24.5 4.01 3.97 3.91%, 4.04 4.02 .141

40.5 4.09 4.42 4.45 4.07 W 4.07 ve .133

100 4.37 4.55 4.61 4.35 vo 4.35 vo .129

200 4.35 4.53 4.61 4.34V 4.34 V .139

450 4.42V 4.47 4.46 4.42 v, 4.42 %/ .142

* NOTE: The eigenvalues i=1,...,4) are 1.4, 1, 0.9 and

0.7. These imply less severe multicollinearity than

in the original problem and satisfy d>2, where d is

defined in equation (3.16). 20 has been named as

signal to noise ratio in the earlier simulation

studies on Ridge estimators.
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Table 2

Percent of Time MSE of Various Estimators Strictly

Less than OLS in 500 Samples

HKB LW EB DH

a1,0 1,h hi %1,0

-5 97 97 99'" '99w'

4.5 66 66 83, 82 $4,..

12.5 55 56 Ti vo TO

24.5 56 57 68v 68V

110.5 48 47 59" 59,#

loo 49 48 57 v

200 47 45 54 V 54 le

45o 45 45 149/ 49 ,

Footnotes

1
For further detail see Vinod [1978].

2
The name h-class is reminiscent of Theil's [1971] choice of the

notation h instead of Hoerl and Kennard's k.
3 
Alternatively the G( ) function is written as (See Sawa [1972,

p. 678], and Ullah and Ullah [1978]),

G(k, n; a,c) = c-n [(a-1) 
E (k)h r(c+h 

r( 
I

h=0 
F1(a- ;a+h,n

c) r(a+h) II

where IF I( ) is the well known confluent hype.rgeometric function (see

Slater [1960]).
4 
All the results follow by noting that a

2 
= a'Aa/20, which is of order

l/e in magnitude and using the asymptotic expansion formula for G( )

as (See Sawa [1972, p. 6671),

G(k, n; a, c) = + ( k-a+2
1
2

(c+1)k2 -

3- 2c(a-2)k + ( -2)( -3)]

5
In arriving to this result we have used the result that

a'Aa
Min. of

a'Ba
a
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is the min. value of IA - ABI = 0, see Rao [1973, p.74].
6

The proofs and detail are not presented for the sake of space but can

be obtained from the authors on request.

7 We note that the values of h1 
for which 

dh ,h 
and ah h - dominate the,

1 2 1
OLS estimator differ with the value of the corresponding scalar c1 

in

the James and Stein estimator given in (2.)43). In fact, for the James

and Stein estimator to dominate the OLS estimator we require
2(d*-2) 

0 < ci <  , where d* = (E 1/A )A > 2 (see e.g., Ullah and Ullah

[1978], and Judge and Bock (197h).
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