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Abstract

This paper studies the Mean Squared Error (MSE) properties of a
proposed family of Ordinary Ridge Estimators (OREs) of the coefficients
in the linear regression. We make extensive use of G( ) functions to
provide both exact and asymptotic approximations to the MSE. Using these
results we propose a new set of OREs whose MSE is smaller than that of
the Ordinary least squares (OLS) estimator. These improved estimators
can be used when faced with the multicollinearity problem. A simulation
study is also doné to furthér analyse the MSE of the proposed estimators
comparéd with some of the existing OREs.
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1. INTRODUCTION

Hoerl and Kennard [1970] proposed a biased estimator called the Ridge
Regression estimator for the general linear model which dominates the OLS
estimator. Vinod [1978] surveyed the growing literature on the subject,
When the biasing parameters ki of Ridge Regression are all equal to say k,
we have the so called "Ordinary" Ridge Regression, Recently various authors,
e.g., Hoerl gg_gl.[1975], Lawless and Wang [1976] have considered the problem
of determining the biasing parameter k in the ORE, Invariably, different
formulae presented by various authors for k have depended on unknown para-

meters, namely, the regression coefficient and residual variance, The usual

practice then is to estimate k by substituting sample estimates of the unknown

parameters involved, Use of this estimated k certainly makes the ORE opera-
tional, However, since k is now stochastic it is no longer definite that
ORE will dominate OLS, Vinod's survey [1978] notes that some Monte Carlo
studies have been carried out to see the performance of the MSE of ORE for
different choices of k.l Though these studies do indicate a fairly good
performance of ORE, the researchers are still neither certain about the
operational range of the parametef k nor its optimal value, Further, in
the authors' knowledge, no analytical study is available which analyses
exact or approximate MSE of the ORE,

In this paper we present various ways of determining k and then develop
a family of "double h-class" estimates of k, This double h-class estimate
depends on two arbitrary scalars hi and h2 which could be stochastic or non-

stochastic.2 Using the double h-class estimate of k in ORE we formulate a




new family of double h-class OREs. It has been noted that many of the
biased estimalors in the literature can be considered as special cases

of this new family. Section 3 studies the MSE properties of the double
h-class estimator using G ( ) functions. Further, using the approximate
expressions_for MSE, we propose a range of values for h1 and h2 for which
the double h-class ORE dominates OLS. When multicollinearity is severe

in the sense that the smallest eigenvalue_(lm) of the correlation matrix
among regressors is close to zero there is ample theoretical and Monte
Carlo evidence which suggests that some form of ridge estimator will
~reduce the MSE of OLS. The values of h1 and h2 obtained show that éveﬁ
when multicollinearity is moderate (d > 2 defined in (3.16)) it is possible
to reduce the MSE of OLS. Many other interesting results together with
comparisons among various well-known members of this family are summarised
in Section 3.4. To analyse further thevMSE of the proposed estimators

we give a brief description of a simulation‘study. It has beeh found

that (Table 2) the percentage of occurances, where the proposed estiﬁatofs,
have strictly a lower MSE than OLS, is always larger than corresbonding
percentage for the estimators by Hoerl, Kennard and Baldwin [1975] and
Lawless and Wang [1976]. Also, it is indicated that the proposed estima-

tors perfofm better than Hoerl et al., and Lawless and Wang estimators

for large values of noncentrality parameters.




2, THE MODEL AND ESTIMATORS

Let us write the standard linear regression model as
(2.1) y=Xg+u
where y is a T x 1 vector of observations on the dependent variable, X is a
T x p matrix of p explanatory variables, B is a p x 1 vector of unknown

regression coefficients and u is a T x 1 vector of unknown disturbances,

We state the following conventional assumptions:

Assumption 1 The matrix of explanatory variables is nonstochastic and of rank p

Assumption 2 The disturbance vector u is distributed as multivariate normal with

. . e 2o L -
mean vector zero and variance covariance matrix o I, i,e,,

u -~ (0, 021)

Assumption 3  The sample size T is greater than the total number of explanatory

variables p in (2,.1),

The ordinary least squares (OLS) estimator or maximum likelihood estimator
of B in (2,1) is written as
1oy =1
(2.2) b= (X'X) X'y
such that
2, -1
(2.3) Eb = B, V(b) = E(b-B)(b-B)' = o (X'X)
and

-

(2.4)  MSE(b) = E(b=p)'(b-B) = o Tr(X'K)""

where Tr represents the trace of a matrix, Further an unbiased estimator of

2, .
o is given by

(2.5) s2 = %'G' G,

where

(2.6) 4=y -Xb .




The model in (2.1) can be written in the canonical form as

(20 7) y Za + u

where

(2.8) o =G'B

and G is a p x p matrix of normalized eigenvectors corresponding to the
eigenvalues of X'X such that

(2,9) G'G=GG' =1

and

(2,10) 2'Z =A, X'X=GAG

where A, . a p x p diagonal matrix of eigenvalues of X'X, is

(2,11) A= Diag.[kl,...,lp] .

The OLS estimator of o in (2,7) is

(2,12) a= A~1Z'y

and its mean, variance and MSE are, respectively, given as

(2.13) Ea = ¢ , V(é) = 02 Am1

and

P
(2.14)  MSE(a) = o° % U
' 1

Further, we note from (2,8) that
(2,15) a=G'b
such that
(2,16)  MSE(a) = MSE(b) .
The generalized ridge estimator (GRE) of « in‘(2.7), given by Hoerl and
Kennard [1970], is formed by adding kl"”’kp’ the "additive eigenvalue inflation

factors" to Al""’kp‘ Specifically, it is written as




@11 G o= +xIT 2y
where K is a p x p diagonal matrix of constants as

(2.18) K =Diasg. [kp,e.k]

For k1 = k2 ces = kP = k the ordinary ridge estimator (ORE) can be written
as

(2.19) &k = A+ k1]l

= Aa
where A is a p X P diagonal matrix as
(2.20) A= Dlag. [Al/kl"'k,. oo ,)](/Xp‘i'k]

and a is the OLS estimator given in (2,12),

Using (2.8) we can write the GRE and ORE, respectively, of B in (2,1)

as

~

2 = = ' |"l|
(2.21) B, = Gx = (X'X + GKG") X'y
and

~

(2.22) B, = ®'X+kD7xry ,

2.1 Determination of k

Let us write the MSE of a;, the ith component of the OLS estimator a,

from (2,12) as

(2.23)  MSE(a) = o?/A, ,  i=l,...,p .

Similarly, it can be easily verified that
2 2 2
n k o oA,
(2.24)  MSE(qy ) = S——y 4 ——
L Oyt OV )




where Qk is the ith component of the GRE Qk' Thus
i

~ k, A, (k,a? - 20'2) - o-zk?
(2,25) MSE(Qk ) - MSE(ai) _ i1 i i
i

2
Ai(ki + ki)

It follows from (2,25) that for

2cr2

2 2 -1
o = 0O Ai

(2,26) 0 < ki <

MSE(&k ) is smaller than MSE(ai). In fact a sufficient condition under which

1
MSE(&k ) <MSE(a,) is that
i

2cr'2

2
Q.
i

(2,27) 0 < ki <

The upper bound of ki in (2,27), however, is more conservative than in (2,26).

An alternative conservative range of ki’ given in Hoerl and Kennard [1970], is

2
o
2

a.
1

(2,28) 0 < ki <

It is to be noted that ki‘= 02/05 is the optimal value of ki for which MSE(&k )
i

is minimum,
The ki values in (2,26), (2;27) and (2,28) for which the GRE dominates

OLS estimator can be written in a éompact and general form as below:

2
hla
(2.29) ki F) i=1,ooo,p

2 2.1
o = hyo

where h1 and h2 are arbitrary scalars which could be stochastic or nonstochastic,

For 0 < h1 < 2 and h2 = 1 we get (2,26) and similarly (2,27) and (2,28) are

special cases of (2,29).




In the case of ORE where kl = 60 = kP = k we can determine k by considering
the harmonic mean of ki in (2,29), This can be verified as

2

P h1 o)

(2,30)
a'oa - hzo'2 bY k?l
1

where o2 bX A;l = Tr V(a), V(a) is as given in (2.13),
Different choices of k suggested for ORE in the literature can be

seen as special cases of (2,30), For example if h. = 1 and h, = 0,

1 2
k = pgz/a'a, which is the harmonic mean of ki = oz/ai o This is given by

Hoerl, et al, [1975], 1If h1 = 1/p and h2 = 0 we get k = cz/a'a, which is

suggested by Farebrother [1975], Further, if 0 < h1 <<% and h2 = 0 we
2

have 0 < k < éga as given by Theobald [1974], It has been shown by
Theobald that for this range MSE(&k) is smaller than MSE(a), Also, the
2

range of k suggested by Hoerl and Kennard, i,e,, 0 <k < g can be seen

o'
as a special case of (2,30), max

2
We note that, since k in (2,30) depends on unknown parameters ¢ and ¢

it would not determine ORE ak or Bk in (2,19) and (2,22), However, we can

use unbiased estimators a of ¢ and s2 of o'2 as given in (2,12) and (2,5),

respectively, The k in (2,30) can then be determined as

R o Phys
(2.37) =k =
h -
khl’ 2 a'a - h252 2 kil

Again if h1 = 1 and h2 = 0 we get k as suggested by Hoerl, et al, [1975].

1

= ; and h2 0 we get k as given by Farebrother [1975]. Further, if

= %-and h2 = a'(1l - A)a/s2 = A;l , which is stochastic, then we obtain k

which is suggested by Lawless and Wang [1976] in the Bayesian framework,




2,2 A Family of Double h-Class ORE

If we substitute (2,31) in (2,19) we can write a family of operational

ordinary ridge estimator (OORE) as
(2,32) ' =Aa
- Thphy

where

(2.33) A = Diag, [61300-36p]

such that for i=1l,.,.,p

. ' hl' G‘u
(2.34) , = 1 -—=2 ——1
1 a'a+ h, .,u'u
2i

and

h h

1.
2i

(2. 35) h,, = _lf ; h,. = l-[ 1P h.Z A.]
= ERYW nth, Tt M

A

We note that h1 and h2 are arbitrary scalars which could be stochastic or

nonstochastic and the same is true for hli and hZi'

can be termed as a family of double h-class ordinary ridge estimators,

The estimator in (2,.32)

‘The ith component of this double h-class estimators can be written

as

@36 @y =

If h2 is stochastic and given by

-~ 1 -
(2.37)  h,=h=2{-Da
Sz)\i
then the ith component of 6% p can be ﬁritten as
1272

o ]
hliu




This can be considered as a family of empirical Bayes estimator which
depends on h1 only.

Iif h2 = 0 we get another set of estimators which depend on hi
only; it is written as

(2.39 (@ ) =[L -
“h,,0 ;

It is interesting to note that forjh1 = 0, (2.32) is an OLS estimator,

= a, For hl =1 and h2 =0, &1 0 = %ixs (HKB represents Hoerl,
b

Kennard and Baldwin [1975] estimator) whose ith component can be written as

(2340)

Next, for hl = 1/p and h2 =0, ai/p 0 is the estimator suggested by Farebrother, FB,
b .

[1975]. 1Its 3 th component can be written as

. A.a'a

A.a'a + 82
i

Further, for h1 =1 and h2 as givén in (2.57);Vthe ithméoﬁponent -

~

~ can be written as '
1,h v

)= - Ld g

h 1 a,

242 @) = @
i >

1 1A
4 nAia Aa+pda'd

-This is the estimator suggested by Lawless and Wang [1976].




Finally, if h.. and h,. are any arbitrary stochastic or nonstochastic

11

values, not constrained by (2.35), then for h,. = ¢, for all i=1,...p and

11

h,. = a'(A - I)a/4'd for all i, the estimator (&

). is the James and
21 1

h ,h2

Stein [1961] estimator in the regression context. This can be written as
(2.43) (&

The difference between the Steinfrule estimators and the double h-class

ORE is then with respect to the coefficients of a; for i=1,...,p. While

in Stein-rule these are the same, in double h-class they differ. The MSE

properties of the JS estimator, in the regression context, have been
analysed extensively in Ullah and Ullah [1978], Baranchik [1964] and

Zellner and Vandaele [1975] among others, therefore it will not be studied

in this paper.




3. THE BIAS AND MSE OF ORE
In this section we shall analyze the exact and appromimate bias and

MSE of the double h-class ORE 8h h in two different cases, We first
‘ 1272

present results for the case when h2 = f is stochastic and then more generally,

when h2 is any nonstochastic scalar, Wé‘note»agaiﬁﬂthat aLW in (2.42) is a member

results are presented for &h fis only approximate results using small c-approach
1’
of Kadane [1970, 1971], are obtained for Eh h* This is because the exact
1272

results are complicated to be analyzed; although they can be obtained for

~

ahl’hz in the same way as for ahl’ﬁ .

3.1 The Exact Results for ~
s th,h

Firstly, we write the sampling error of the estimator in (2.38) as

(3.1) 1,ﬁ - a)i = (g - a)i - hliciai

where, using the fact that at Aa
(3.2)

and M and Ni are both TxT matrices given as

1o gl =T - (1-
(3.3) M=I-2A'2',N =I-Qh, M.

Further, M is an idempotent matrix with rank n and Ni is a non-negative defi-

nite matrix for h1i 2 0.




Secondly, according to Assumption 2 we observe that

Ly _
(3.4) Yy~Ny, 0°I), y=20

From (3.1) we note that to derive the bias and MSE of ﬁh £ We re-
2

quire the expectations of ;a5 ciai, etc. The cﬁnditions for the exist-
ence of these expectations and their values can be obtained from Ullah and
Ullah [1978]. They are not reproduced here for the sake of space.

We now introduce the following notations and functions for the. sake

of simplicity of exposition:3

T n
(3.5) g; = G(1 - hli,e; 3 + W, 7 +V); @V = 0,1,..,

s sV

2_[‘0 exp[2 e t/1-2t]

n
~o [1- 2t]"+“ V[1-2h, t]i*”

where
At A O

(3.6) 9 =
2 cr2

is a noncentrality parameter. The following results can then be stated:

Theorem 1. The exact bias of the double h-class ORE of O for h1 > 0 exists;

it is given by

LT
e T I

where gz’l is the column vector of gl,2,1’°'°’gp,2,1; gi,2,1 is as given in (3.5)

for y =2 amd v =1,

Note: The ith component of (3.7) can be written as

h

_li
308 E ~ - =
3.8 Gjhlh 2 2 8i,2,1%

It can be showh that the relative bias in (3;8),”£or'a given sample size, lies

in the following range




nh
-—T-'-T;ls SO F] i=1,ooo,p .

Further, the relative bias is an increasing function of the noncentrality

parameter 6.

Theorem 2. The exact MSE of a component of the double h-class ORE of O for hl- >0

exists: it is given by

h2 n(nt2)

2 g - (s -g, . )l
1i%1,2,1 T Mi T & 8i,3,2 7 Bi 2.2

2.
(o}
(3.9) E('&'hl’h -a); -)\—1[1 -nh

2
h1 in(n+2)

_7_(31,4,2 - gi,3,2)] .

- Ot?[nh
i

1185 3,1 " 81,010 F

whe;g hli = h]_P/n)\i as given in ‘2.35).

Note :

(3.10) E@, 8 - '@, & - )

3.2 large O-Asymptotic Expansion for h

. 13
In the earlier section we were able to analyze the exact bias of
dh_ ﬁ » However, the expression for MSE was too complicated to draw any mean-
1° o . .

ingful result. To analyze MSE, we therefore obtain the asymptotic expé,nsion

in terms of the inverse of §. We note, however, that the results below re-

quire sufficiently large 0, which according to (3.6) means sufficiently small

0”. Thus, we consider the terms of order 1/g, 1/92 as the terms of order o?

and 0'4 » respectively.

' 4
The following results can now be stated.




Theorem 3. The asymptotic expansion of the bias of the double h-class ORE

estimator of o in (3.7) up to order 1/8 is given by

hlp

(3.11) _ E('é(',hl’i‘1 -a) = - TR A

-1

when h1 > 0,

Theorem'h. The asymtotic expansion of the MSE of a component of the double

h-class ORE of a in (3.9) for h; > 0, up to order 1/92, is given by

: o“hl,ﬁ L Y 492 ) 11 } 2—,‘1

i

where hl = hlp/nxi.

Note: Using (3.12)the MSE of '&'h g can be written as
' . 12

2

' o _ h.p _ ;
(3.13) . ' ‘AcrzTrA Ty L [4a'A 1or, + hl.E(_IH'r.l_zl a'A 2or,

48

-2
- 1
20" Aot A 7]

h P | t ‘1

- GZT A 1 1 'A 2a,[h p(nt2) .9 A
r 2 1 n ] "2

49 a A a

a'Aa
he

T A2 - 2}1.
1 T
oA o

Corollary. The double h-class estimator of o in (3.7) dominates ordinary least

squares estimator a in (2.12) in large 0 asymptotics up to the order 1/92, in

the sense that

(.15)  1im’[EG, f - '@ f -®) - E@-a)'@-al<0
1° 1’

%

2n)\m )

| R 2,.2
0<hlsm)(d -2); d= ‘(ii 1/)\1))\u>2

1




5

whero xm 18 the minimum value of ll""’kp’

3.3 Large § - Asymptotic Expantion for Eh h
: 1°7°2

Let us write the sampling error of the estimator in (2.41) as
3.17) (ahl’hz - a)i = (a - m)i - hlidiai

where

R, =2 A2

1
1 Zz' + h2

i

If we compare (3.17) from (3.1) we can observe that 5h f and &h h differ
: 1° 1272

only with respect to the matrices Ni and Ri' Thus, one could obtain the

exact momenté of &h h by using the results in the Appendix of Ullah and
1 9 . :

2 .
Ullah [1978] , though it may not be as straight forward as in the case of

&h e However, since the exact moments would again be in terms of the

1’
complicated mathematical functions from which any useful result is difficult
to be obtained, we present here the asymptotic expansion of the moments by

using Kadane's small o expansion approach.6 The following theorems can

therefore be stated for hZi > 0, We require h2

i > 0 for the existence of

the moments,

Theorem 5, The asymptotic expansion of the bias of the

double h-class ORE & ,  ef a, up to order 1/8; is given by
1 - ~

2

by 4

(3.20) E@ -a) =-7w— A a
“hl,hz @ 26,

where 0, = a'm/Zcz,




Theorem 6, The asymptotic expansion for a component of the MSE of the

estimator &h p » Up to order‘cr4 s 1s given by
172

a2
e

(3.21) EG g - @ =T 2a2n
9

1 _'1)]
i i Xi a'a

Note: Using (3,21), the MSE of &h h_ Up to the order l/é%(or 04) can be written as
22

~ '~ — 2 —1. ESI‘H’Z? "2
3.22 E - Q ! - =0 ]

- 20'aiTr A2

where 9, is as defined in Theorem >.

Corollary, The double h-class ORE dh h dominates ordinary least

squares estimator a in large © asymptotics up to the order 1/91, in the sense

that

(3.23) 1im @ [E( -a)' @ -a) -E(@-a)'(a-a)] <0
9_["'°°1 “hysh, “hysh,

for

2n

(3.24) 0 < h < PYCT)) d -

2), d>2
yhere d is as given in~(3.16).7

3.4 Conclusion: In Section 3 we have first analysed the bias and MSE of & A
’ x 12%2
when h2= h is a stochastic variable and then when h2 is any nonstochastic scalar.

The h1 in both cases was a nonstochastic scalar, For h2 = f, ah f is a set
>

of empirical Bayes estimators which belong to &h h . Since the form of
. : 1 4
Eh ﬁ gets slightly different from that of &h h the results are presented
1? s
. separately,

With respectto &h f we have noted in thé'corolléfj'fhat it dominates the OLS
3
estimator for the values of h1 in

2nx

0 < h (n+2

) (d )’ d>2’

vwhere 4, as given in (3.16), can be considered as a measure of overall multi-

collinearity in the data matrix. -




17

In the case of zero multicollinearity d=p and when there is a high
degree of collinearity 4 is close to zero. The range of h1 given above
suggests that even for moderate multicollinearity (d > 2) there exist
estimators_&h ,ﬁ’ whose MSE are smaller than the OLS. We note here that

the estimator a1’ﬁ = G which is a member of & ’ﬁ, would

h
dominate OLS if, for given n, the data matrix is such that the upper

bound of h1 is at least one. Thus the estimator &1 4 may not always do
9

better than OLS. We therefore suggest that : h1 could be chosen from
the above mentioned range since, this ensures a lower MSE as compared to
OLS. In fact, the simulation study in the following section indicates

that &h 2 for a choice of h1 = nlm(d - 2)/p(n + 2) performs better than
b

OLS as %ell as &1 e The optimal h{ in the given range, however, remains
9

to be a subject of future studies.

It is interesting to note that in the case of zero multicollinearity,

i.e., when @ = p the range of h, in (3.16) reduces to

‘ 2n(p-2)
(3.25) 0 < h, f-TEIETE_ s P23

Now with regard to & we have shown in the corollary that it

h,,h

dominates the OLS estimator f&r the values of h1 in

2n
0 < By Ty (@-2)

and for any nonstochastic h, for which . in (2.35) remains positive.
Thus &, o also dominates OLS. Considering the two cases h1 = 1 and

9
h1 = 1/p we observe that, for some data matrices they may not be in the

range of h1 given above. Thus a1’0 = aHKB and & D, = aFB
always dominate the OLS estimator. However, since h1 = 1/p < 1 gives

would be more conservative

might not

shorter range for k as compared to h1 =1, aFB
than &HKB' Like in the case of &h a the simulation study indicates that

b
&h o for a choice of h, = n(d - é)/p(n + 2) performs better than both
b

and &1 o
9
i ot i & ~ ] 0. -~ less
Comparing ah1,0 with ah1,h we find that ah1,h would be more or s
conservative than &h 0° depending on the value of Am. Since more often
1°
Am is small, &h a would be more conservative. In the special case when
1° :

= 8. = § ad, ~=4d depen-
h1 1, a1,0 Gokn would be better than or worse than 1,0 oy 4ep .
ding upon the values of AT,...,AP. This follows by comparing the expressions

of MSE for a, o &nd &1 Z from (3.22) and (3.14), respectively.
' ’ s ' .




4, A SIMULATION EXPERIMENT

A simulation study was conducted in order to draw some further
conclusions about the comparative performance (MSE) of the estimators
listed in Table 1 with appropriate references over a wide class of re-
gression problems. Since there is no need to merely verify mathematical
proofs the setting of the simulation study is chosen to be intuitively
appropriate for regression problems.

Two data sets are used. One is a four regressor (p—h n—13)
structure due to Hald, and second is a ten-factor (p=10, n=36) structure
| ‘due to German and Toman used by Hoerl and Kennard [1970], and many re-
searchers for illustrating ridge regression. This simulation is similar
to Hoerl, Kennard and Baldwin [1975], and Vinod [1976 anda 19771.

For the purpose of our simulation we consider the following trans-
formation of (2.7)

;
(4.1) Y = Za +u=H\a +u=Hn+u

2

where the regressors are orthogonal: H'H = I. Let L = n'n = o'Aa denote
1 : X

the squared length of the parameter vector n = A%q. Let o denote a mnon-

centrality parameter defined by 26 = La/oz. Eight values of @ id the

interval (1,450) are chosen. It may be argued that a large part of‘the

action insofar as whlch of the estimators dominates OLS is taklng place

~on a "sphere" selected to have the same L2 and 02. Hence we select

= 1 and L2 26 in all our experlments.

Given L ~we choose p random numbers from a uniform dlstrlbutlon in

- the range -1 to +1 and call them LIE Then n; = Lwl/(2w§)% satisfy L

Thus, the true ni,are selected from a scaled unit cube. This conforms

with the practitioner's notion that the true regression coefficients can

be anywhere in the selected range. The alternative procedure of selecting'

ny from a scaled unit ball of radius L was not adopted. '
Next, a vector u of T random normal deviates with mean zero and

variance 02 is created using the so called "super duper" random number

~ generator developed at the MCGlll University, Canada, by G. Marsaglla

et al. [1973]. The T values of the dependent varlable are found by

y = Hn + u of (k.1). The OLS estimate is n® = (2'H) 'H'y = H'y. Next,

the squared length of y, y'y, is computed for each case. The squared
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multiple correlation coefficient is R2 = nO H'Hno/y'y = nO no/y'y.
For a fixed set of true n; values 500 sets of random y vectors were

created. For each y the weighted sum of squares of error is computed as:

P 2
wssE(p' '] = ii1(b§ ). Bi) "11
()
0LS estimator. Second, HKB is Hoerl, Kennard and Baldwin's [1975]
= psz/a‘a, i.e., h1 = 1 and h2 = 0. Third .is LW for Lawless and Wang‘s.
[1976]] choice h, = 1andh, = h. The fourth is Empirical Bayes (EB) esti-
mator of equation (2.38) having h, = nxm(d - 2)/(pn + 2p), where 4 is
from (3.16) and h, = i from LW. Fifth is a double-h class (DH) estimator
with h, = n(d - 2)/(pn + 2p), and h, = 0.
The MSE(b( )) is then the 31mple average of WSSE(b( )) for our 500
replications. To assess the variability of WSSE(b( )) over 500 repllca—

tions their standard deviation, SDE(b(.)), was computed.

represéhﬁs one of five estimators. The first is the usﬁal

“where b

In Tables 1 and 2 we report the results for the structure having

= L. The MSE(b( )) is reported for each b( *) in Table 1. There are
elght rows associated with each of the eight 6 values. A mark (V) is
included in the Table for the lowest MSE in each row.

It is clear that OLS is a poor estlmator for low 6 values, and the
"room" for improvement over OLS becomes less and 1ess as 0 increases. In -
Table 1 the double h-class estlmator DH wins the most number of (V) marks.
For low 0 values the HKB or LW estimators have lower MSE than the pro-
posed EB or DH estimators. However, for large 6 values the MSE for EB
and DH estimators remains always lowér than that of OLS, which is not
true for HKB or LW. Also for large 6 values EB and DH estimatorslperform
better compared to HKB or LW.,Thése findings are consistent with our |
theoretical conclusions in Section 3.4. Table 2 gives the percentage of
Times MSE of various estimators is strictly less than that of OLS. The
mark (V) is placed on the estimator with the hiéhest percentage. Again
it is clear that the chances of having higher MSE than CLS with the HKB
or LW estimators in a given problem are large. By contrast, our EB or
DH estimators improve upon OLS more often. The results for the ten-factor
example are essentlally similar and amltted to save space.

To assess whether the reductlon in MSE by using HKB, LW EB or DH

rather than OLS is merely due to sampllng variability we pompute SDE
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(b( ))/(500)2 for several MSE(b( )) values. Detailed reporting of these

results seems unnecessary. We find that SDE values for various b(+) are
adequately summarized by those for OLS reported in the last colamn of
Table 1 entitled variability. Had we simulated 10000 times we would have
SDE/100 as a measure of variability which is an order of magnitude smaller
than ours. However, the cost of such a large sample would be too high.

A more ambitious simulation would have va?ied Ai over a wider range of
possibilities. It is hoped that our simulation does give at least a 1li-
mited guidance about what might be expected in a practical (regression)

settling.

Table 1

Mean Squared Error for p=4 Structure *
oLS HKB , EB DH o
G vari-
o a a ability

a‘=°‘o,1~12 “1,0 “,h h1,ﬂ h, 50

4,51 1.32 1.3V 3.95 3.79  .143
4.09 3.11 3.10  3.92 3.86  .130
L.21 L2k k.20 L.21 L.19 .129
4.01 3.97 3.91v  L.ok 4.02‘ L1 ,
5.09 W2 W45 L.oTv L.oT v .133
537 455 4.61 435 v 4.35 v .129
4.35 4.53 L4.61 L.3h v 4,34 v L139
b.hov' L LT L.46 L.h2 v Lh2 v L1k2

The eigenvalues'(li, i=1,...,4) are 1.4, 1, 0.9 and
0.7. These imply less severe multicollinearity than
in the original problem and satisfy d>2, where d is
defined in equation (3.16). 26 has been named as
signal to noise ratio in the earlier simulation

studies on Ridge estimators.




Table 2

Percent of Time MSE of Various Estimators Strictly
Less than OLS in 500 Samples
HKB EB : DH

X
. R R :
%1,0 - %1,h 1 hys

o7 o7 99 v*

66 66 83 82 v
55 56 70

56 5T

48 L7

Lo L8

L 45

L5 45

0

Footnotes

For further detail see Vinod [1978].

The name h-class is reminiscent of Theil's [19T71] choice of the
notation h instead of Hoerl and Kennard's k.

Alternatively the G( ) function is written as (See Sawa [1972,
p. 6781, and Ullah and Ullah [1978]),

G(k, n; a,c) = ¢ ™ a=1) z (k)h (cth

[(c) I [(a+h)|F|(a_1;a+h’n)

where |F|( ) is the well known confluent hypergeometric function (see
Slater [1960]). ,
All the results follow by noting that o2 = a'Ao/26, which is of order

1/8 in magnitude and using the asymptotic expansion formula for G( )
as (See Sawa [1972, p. 6671),

1 .
G(k, n; a, c) =4+ (ck—a+2)l§ + [c(c+1)k2 -

n

- 2c(a-2)k + (a-2)(a-3)}5
n
In arriving to this result we have used the result that

o'Aog,

Min. of o Bo

(0]




is the min. value of |A - AB| = 0, see Rao [1973, p.T4].
The proofs and detail are not presented for the sake of space but can
be obtained from the authors on request.

7 We note that the values of h, for which & and &8, s dominate the

1 h.,h h.,h
OLS estimator differ with the value of the corresponding scalar ¢, in
the James and Stein estimator given in (2.43). In fact, for the James
and Stein estimator to dominate the OLS estimator we require
2(a*-2) * =
0<ec, < (ar2) ° where d* = (& I/Ai)km > 2 (see e.g., Ullah and Ullsh

[1978], and Judge and Bock [197%]).
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