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ON. THE (INTERNAL) SYMMETRY GROUPS OF LINEAR DYNAMICAL

SYSTEMS

by

M. Hazewinkel

ABSTRACT

Let x = Fx Gu,y = Hx, u y ERP, x EiRn be a linear

dynamical system of state space dimension n with m inputs and p outputs.

The input-output operator f(E) associated to this system E,

u(t)i-* y(t) = I H Gu(T)dTt is invariant under the following action

of GL OR): (F,G,H) = (SFS
-1

,SG,HS
-1
), S E GL OR). Thus the external

description of E by means of the operator f(E) is degenerate, much as

e.g. in atomic physics an energy level may be degenerate. Or, again,

there is an (internal) symmetry group, viz. GLnOR).. This paper, which

will be a chapter in a forthcoming book on "Groups in many body physics

and systems" (to be published by Viewet;) is concerned with those aspects

of the theory of linear dynamical systems which immediately relate to

the presense of this symmetry group (or degeneracy). The paper is

mainly expository, though it does contain some new results (e.g. on

how to "split" the degeneracy mentioned above) and some new proofs.
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1. INTRODUCTION AND STATEMENT OF THE MAIN DEFINITIONS

AND RESULTS.

A time invariant linear dynamical system is a set of equations

= Ex + Gu

y = Hx

(continuous timel (E)

x(t+i) = Fx(t) Gu(t)

y(t) = Hx(t)

(discrete time)

where x E X =IR
n
, u E U =1111m, y E Y =3RP and where F,G,H are matrices

with coefficients in1R of the dimensions n x n, n x mo p x n respectively.

We speak then of a system of dimension n, dim(E) = n, with m inputs

and p outputs. Of course the discrete time case also makes sense over

any field k, (instead ofiR). The spaces X,U,Y are respectively called

state space, input space and output space. The usual picture is a

"black box".

That is the system E is viewed as a machine which transforms an m-tuple

of input or control functions ul(t), u
m

 (t) into a p,ituple of output

or observation functions yi(t), y(t). The formulas expressing

y(t) in terms of the u(t) are

(1.3) y(t) = He
Ft
x(0) + I Be

F(t-T

0
Gu(T)dT,

t-1
y(t) = HF x(0) + E t"ki-iGu(i)

i=0

where x(0) is the state of the system at time 0 (and where we start

putting in input at time t = 0). Thus the input-output behaviour of our

box depends of course on the initial state x(0), One is particularly

interested in the input-output behaviour of E when x(0) = 0. We shall

write f(E) for the associated input-output operator. Thus



t-1 t 4
t F(t-T)

.4) f(E): u(t)i-÷ f ' -Gu(T1dT f(E): u(01-*
0 i=°

It is now an important fact that the input-output behaviour description

of the machine (1.2) is degenerate much as, say, energy levels in atomic

physics may be degenerate, More precisely the matrices F7G,H (and the

initial state x(0)) depend on the choice of a basis in state space and

from the input-output behaviour of the machine there is (without

changing the machine) no way of deciding on a "canonical" basis for

the state space X
-
=]R

n 
More mathematically we have the following, Let

GL
n
OR) be the group of all invertible real n X n matrices and let

OR) be the space of all triples of matrices (F,G,H) of dimensions

n x n, n x m, p x n respectively. The group GL
n
OR) acts on Lm

,n,p
andiR 

OR)
n 
= space of initial states as

(1.5) F,G,H)
s 
= 

(SFS1- - 
,SG,HS

1
x(0) = Sx(0)

and as is easily checked the associated input-output behaviour of the

corresponding machine as given by (1.3) and (1.4) is invariant under

this action of GL OR). i.e., in particular f(E ) = f(E), This actionn
corresponds to base change in state space. Indeed if xl = Sx and

-. -= Fx + Gu, y = ilk then S
1 

= FS
1 
x' + Gu, y = HS-Axl so that

;0= SFS-1x + SGu, y = HS 
1
x' and x'(0) = Sx(0),

This chapter is concerned with those aspects of the theory of

linear dynamical systems which are more or less directly related

to the presence of the internal symmetry group GLnOR) of the internal

description of linear dynamical systems by triples of matrices

(cf. (1.1)) as compared to the degenerate external description by

means of the operator f(E) (or (1.3)). This is not really a research

paper (though it does in fact contain a few new results) but rather

a graduate level expository account of some of the material of [3 - 8]

and immediately related matters,

In the remaining part of this introduction we give a slightly

informal description of most of the main results of sections 2-8 below.

We shall concentrate on the continuous time case.



1.6. Feedback and how to resolve the external description degeneracy.

In the case of atomic physics a degenerate energy level may be

split by means of, e.g., a suitable magnetic field. One can ask whether

there exist something analogous in our case of degenerate external

(=observable) descriptions of linear dynamical systems. There does

in fact exist some such thing. It is called state space feedback.

Consider the system (1.1). Introduction of state space feedback L

changes it to the system E(L)

( .7) = (F+GL)x + Gu

y = Hx

u(t

t)

y(t)

In thinking about these things the author has found it helpful

to visualize a linear dynamical system with (variable) feedback as a

set of n-integrators, 1, ..„ n, interconnected by means of the matrix

F, a set of m input ports connected to the integrators by means of

the matrix G, a set of p output ports connected to the integrators

by means of the matrix H and a set of connections from the integrators

to the input ports (feedback) which maybe varied in strength by the

experimentator (as in atomic physics the splitting magnetic field may

be varied). Cf. also the picture below.

u(t) 
•

22

23

g h
21

f 
31 ..7

C

1

- 4-- 33

Ei 0
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interconnections between the integrators as given

by the matrix F. 0 1 0
F = f

21 
f
22 

f
23

f
31 

0 f33

connections from the input ports to integrators

as given by the matrix G

0 1

connections from the integrators to the

output ports as given by the matrix H

/0 h
12 

h
13

H = h21 
0 0

i 
0 0 0

connections from the integrators to the

---> - -* -* input ports (can be varied in strength by

the experimentator) as given by the matrix L

L=11 
0 k

1\

0 0
23

Now let E =(F,G,H) and El = (F 1 ,G i , In be two linear dynamical systems,

and suppose that E and E' are completely reachable and completely

observable. (This is an entirely natural restriction in this context,

cf. 1.9 below; for a precise definition of these notions, cf. 2.1 below).

Suppose that E E' but f(E) = ,f(E'). Let E(L), E'(L) be the systems

obtained by introducing the feedback L, i.e E(L) = (F+GL,G,R),

E T(L) = (Ft+G'L,G',H!). Then there is a suitable feedback matrix L,

which can be taken arbitrarily small (so that E(L) and El(L) are still

completely reachable and observable) such that f(E(L)) f(E'(L)).

I.e. feedback splits the GLnOR) - degenerate external description of

linear dynamical systems.

1.8. Realization theory. Let E be a linear dynamical system (1.1).

Then, if we leave E unchanged, from our observations we can deduce the

operator f(E)or, equivalently, we can find the sequence of matrices

A(E) = (A 
o 
,A A

2". 
.), A. = HF1G. To obtain these use 6-functions and

derivates of 6-functions as inputs. Another way to see this is to apply
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Laplace transforms to 1.1), This gives

(1.9) s(s) = F( s) Ga(s) 9(s) = H2(s)

so that the relation between the Laplace transforms 9(s),11(0_ of the

outputs y(t) and inputs u(t) is given by multiplication with the socalled

transfer matrix T(s)

(1.10) (s) = T(s)ti(s) T(
-1

= H(s-F) G

The power series development of T(s) in powers of s (around s = 00)

is now

(1.11) T(s) = Aos--1 +
-2 

+ A
2
s
-3

0

The question now naturally arises: when does a sequence of p x m

matrices (A= (A 
o ,Al'" 

.) come from a linear dynamical system OM

or, as we shall say, when isA realizable.

1.12. Theorem (i) If64 is realizable by an n-dimensional system E then

it is also realizable by an n' < n dimensional system E' which is moreover

completely reachable and completely observable.

(ii) The sequence of is realizable by an n dimensional system E if and only
if rank((4)) < n for all s EN U {0}.

HereN
s
A is the block Hankel matrix

s
•

cr,co L , co r1.13. Invariants and the structure of 
mm,n,p 

ER) OR)/GL
n
OR).

m,n,p

Let 
Lm,n,p 

OR) be the space of all triples of matrices (F,G,H) of

dimensions n x n, n x m, p x n respectively. The group GL OR) acts on
.n

L
m,n,p

OR) as in (1.5), The input-output matrices A. =EF G are clearly
invariants for this action and the question arises whether these are the

only invariants. Here an invariant is defined as a function
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p: L OR) -*II (or possibly a function defined on an invariant open
m,n,p

dense subset of Lmn,pOR)) such that p((F,G,H)
s 

= p(F,G,H) for all

triples (F,G,H) (in the open dense subset).

1,14. Theorem. Every invariant of GL
n
(ER) acting on 

Lm,n,p
OR1 is a function

of the entries of A A
o" 2n-1'

,cr
Let L

c°(m) be the subspace of all triples (F,G,H). Lm
,n,p

OR) which
m,n,p

are both completely observable and completely reachable, This is an open

and dense subspace of 
Lm,n,p

OR). On this subspace GLn(ER) acts faithfully

and a more precise version of theorem 1.14 describes the quotient space

Lco,cr
ORVGL

n
OR) explicitly and gives an algorithm for recovering

m,n,p

(F,G,H) up-to-GLn(ER)-equivalence from Ao, A2n_ 1 (cf. 4.25 below). It

A_,
turns out 

thatmco.cr 
vx) is a smooth differentiable manifold and that the

co a'n'P co cr
projection L ' OR) y ' OR) is a principal CL (ER)-bundle (cf. 6.4

m,n,p hm,n,p 
n 

below).

1.15. Canonical forms. For many purposes (prediction, construction of

feedbacks, identification and, not least, for proving theorems) an

internal description of a black box by mans of a triple of matrices

(F,G,H) is preferable over knowledge of the input-output operator f(E),

As was remarked in section 1.13 above there do exist algorithms for

calculating some E'= (F,G,H) which realizes f(E) or c4() from the

matrices A
o'' 

A
2n-1. 

Onesuch algorithm is described in 4.25 below.

All these algorithms have the drawback that they are discontinuous in

general. This is a nontrivial difficulty, because after all one calculates

the (F,G,H) because one wants to use them as a basis for further

calculations, design, predictions etc., and the A
o
, A2n_ i are after

all subject to (small) measurement errors. Thus the question arises

whether there exist continuous methods of recovering (F,G,H) up-to-

CL(ER)equivalence from from A
o'' 

A
2n-1' 

Or, in other words, because
leo,croR,

) is explicitly describable subspace of the space of all sequences
m,n,p

whether there exist continuous canonical forms on 
Lco,cr
m,n,p

OR), where a

,cr co
of 2n p X m matrices and M

co 
OR) = L

cr 
' ORVGL

n
OR), the question arises

m,n,p m,n,p

continuous canonical form is defined as follows.

1.16. Definition. A continuous canonical form on a GLn
(ER)-invariant

subspace L' c:m,n,p(ER) is a continuous map c: L' L' such that

(i) c((F,G,H)') = c((F,G,H)) for all (F,G,H) E LI

(ii) if c((F,G,H)) = c((F',G',H')) then there is a S E GLn
OR) such that

(F',G',H') = (F,G,H)S, and
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(iii) for all (F,G,H) E L' there is an S E GLnOR) such that

c(F,G,H) = (F,G,H)S.

For some additional remarks on the desirability of continuous

canonical forms cf. [2] and also [15]. Also our proof of "feedback

suspends degeneracy" theorem mentioned in 1.6 above is based on

the use of a suitable canonical form. It turns out that there exist
cr

open dense subspaces U
a 
c:Lm

,n,p
OR), which together cover Lco 

' OR),
m,n,p

on which canonical forms exist. Cf. 3.10 below. On the other hand

1.17. Theorem. There exists a continuous canonical form on all of
o,cr

Lc OR) if and only if m = 1 or p = 1.
m,n,p

1.
cr

10. On the geometry of" VK). Holes. Now suppose we have a_-__-__

black box (1.2) which is to be modelled by a linear dynamical system

of dimension n. Then the input-output data give us a point of
co cr

1" ' OR) and as more and more data come in we find (ideally) am,n,p
co,cr

sequence of point
sm,n,p

(TO representing better and better

linear dynamical system approximations to the given black box, The

same thing happens when one is dealing with a slowly varying black

box or linear dynamical system. If this sequence approaches a limit

we have "identified" the blaek box. Unfortunately the space
co,cr
M
m,n,p

OR) is never compact so that a sequence of points may fail to
co crconverge to anything whatever. There are holes in ' OR). Consider
m,n,p

for example the following family of 2-dimensional one input, one

output systems

(1, 19) (
1
) F = (

-z 

z-

-z
), H

z 
= (Z2,

1 0 
z = 1,2,3, ...

Let u(t), 0 < t < t
o (E be a smooth input function, then y(t) = lim f

z
)u(t)

z-*00
exists and is equall to y(t) = u(t). This operator can not be of the

form f(E) for any system E of the form (1.1) (because the f(E) are always

bounded operators and is an unbounded operator). A characteristic

feature of this example is that the individual matrices F
z
,G
z'
H
z 

do not

have limits as z 00.- (A not unexpected phenomenon, because after all

we are taking quotients by the noncompact group GLnOR)). This sort of

situation is actually important in practise, e.g. in the study of

very high gain state feedback systems k = Fx + Cu, u = cLx, where c is

a large scalar gain factor. Cf. [12].



Another type of hole in lqc°' 
cr trn. .
) corresponds to lower dimensional systems,

m,n,p v"

and in way these two holes and combinations of them are all the holes

there are in the sense of the following definitions and theorems.

1.21. Definition. We shall say that a family of systems Ez 
= (F

z'
G
z'
H
z
)

converges in input-output behaviour to an operator B if for every m-vector

of smooth input functions u(t) we have lim f(E)u(t) = Bu(t) uniformly

z-÷co z
in t on bounded t intervals.

1.22. Definition. A differential operator of order r is an operator of

d
r

-d
the form u(01-4- y(t) = Dy(t) = a u(t) + 1 

--,u(t) It, a
dt rd

where the a
o
, ..„ a

r 
are p X m matrices with coefficients in ]R, and

a
r 

0. We write ord(D) for the order of D, By definition ord(0) =

1.23. Theorem. Let (E ) be a family of systems in Lm,n,p
OR) which

z z
converges in input-output behaviour, Let B be the limit input-output

operator. Then there exist a system E' and a differential operator D

such that

Bu(t) = f(El)u(t) + Du

and ord(D) < n-1.

1.24. Theorem. Let D be a linear differential operator and El E Lm,n,p
OR)

and suppose that ord(D) + dim(E') < n-1, Then there exists a family of

systems (Ez)z

u(t)

Ez E 
Lc° ulx) such that for every smooth input vector
m,n,p -

lim f(E)u(t) = f(El)u(t) + Du(t)
z-->00

uniformly on bounded t-intervals,

1.25. Concluding introductory remarks.

Many of the results described above have their analogues in the

discrete case and/or the time varying case, cf. [3-8, 9-1 1,14]. But not all.

For instance the obvious analogues of theorems 1.23 and 1,24 fail utterly

in the •discrete time case, In this case lim f(E )u(t) exists for all inputs
z-÷00

u(t) if and only if the individual matrices A1(z) = H z 
FiG

z 
converge for

z 

z co. This means that in the case of input-output convergence the limit

operator is necessarily of the form f(P) for some, possibly lower

dimensional, system E'. The same answer obtains in the continuous time

case if besides input-output convergence one also requires that the

F ,G , H (or more generally the Ai(z)) remain bounded.
z z z
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2. COMPLETE REACHABILITY AND COMPLETE OBSRVABILITY,

Let (F,G,H) E 
Lm,n,p

OR) be a real linear dynamical system of state

space dimension n, with m inputs and p outputs. We define

(2.1) Rs(F,G G FG . FsG), s = 0,1 R(F,G

the n x(s.+1)mmatrices consisting of the blocks G, FG,

dually

(2.2) Qs(F,H) =

We also define

(2,3) Its(F,G,H

00,

HF

Qn(F,H)s = 0,1,2,,.,, Q(F,H) =

HF
s

(
A
o 

As

A
1

= 71s(E)

A
s 

000 A
2s

where A. = HFiG, i = 0,1,2„..

It is useful to notice that

=

= R
n 
F,G)

and,

F,H)Rs(F,G),

S = 0,1,

(2.41 Rk((F,G)S) = SRk(F,G), VF,H)S) = Qk(F7H)S

t

-1
where of course (F,G) = (SFS

1 
,SG), (F,H)

s 
= (SFS

- 
,HS
- 
. It follows

that

(2.5) It ak(F G'H ((F G H)1 =Cft
k " k

for all S E GL
n
OR), which is of course also immediately clear from (2,3)

2.6. Definitions of complete reachability f complete observability.

The system (F,G,H) E L OR) is said to be completely reachable iff
rank(R(F,G)) = n. The system (F,G,H) is said to be completely observable

iff rank(Q(F,H)) = n. These are generic conditions; in fact the subspace
Leo , cr
m,n,p

QR) of L
m,n,p

OR) consisting of all systems which are both completely

reachable and completely observable is open and dense. We note that
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2.10. Theorem. The pair of matrices (F,G), F E]R
nxn
, G E1Rnm is

completely reachable iff every symmetric set with multiplicities

of size n occurs as the spectrum of F + GL for a suitable (state

feedback) matrix L.

I.e. the system (F,G,H) is cr iff we can by means of suitable

state feedback arbitrarily reassign the poles of the system. For a

proof cf.t e.g.,[18, section 2.2].

3. NICE SELECTIONS AND THE LOCAL STRUCTURE OF

Lc OR) /GL ØR).
m,n,p 

n

3.1. Nice Selections. Let (F,G,H) E L
m,n,p

OR). We use I(n,m) to denote

the ordered set of indices of the columns of the matrix R(F,G).

I.e. I(n,m) = {(i,j) I i = 0, n; j = 1, ml with the ordening

(0,1) < (0,2) <...< (OA < (1,1) <...< (1,m) <...< (n,l) <...< (n,m).

A nice selection ac: I(n,m) is a subset of I(n,m) of size n = dimE such

that (i,j) E a=> (i-1,j) E a if i > 1. Pictorially we represent I(n,m)

as an (nx1) x m rectangular array of which the first row represents

the indices of the columns of G, the second row the indices of the

columns of FG,... etc.... We indicate the elements of a subset

with crosses. The subset of the picture on the left is then a nice

selection (m=4,n=5) and the subset a' of the picture on the right

below is not a nice selection

•

•

•

•

•

If 13 is a subset of I(non) we denote with R(F,G) the matrix obtained

from R(F,G) by removing all columns whose index is not in 13. We use

L
m,n

OR) to denote the space of all pairs of real matrices (F,G) of

dimensions n x n, n x m respectively.

3.2. Lemma. Let (F,G) E Lm,nOR) be a completely reachable pair of matrices.

Then there is a nice selection a such that R(F,G)a 
is invertible.
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Remark. Complete reachability means that rank R(F,G) = n, so that there

is in any case some subset 13 of size n of I(n,m) such that R(F,G)13

is invertible. The lemma says that in that case there is also a nice

selection for which this holds.

Proof of the lemma. Define a nice subselection of I(n,m) as any subset

13 (of size < n) such that (i,j) E 13, i > 1 = (i-1,j) E f3. Let a be a

maximally large nice subselection of I(n,m) such that the columns in

R(F,G)a are linearly independent. We shall show that rank(R(F,G)a) =

rank(R(F,G)), which will prove the lemma because by assumption

rank R(F,G) = n.

Let a = {(0,j), (i1,j1);...; (°,i5), (i5'i5)1. Then by the

maximality of a we know the columns of R(F,G) with indices (0,j),

j E {1 , • . •,m} N, Lip

(i
t
+1,j

t
), t = 1, ..

...,js} and the columns of R(F,G) with indices

s are linearly dependent on the columns of

With induction assume that all columns

k < r' t = 1, 0,41,

R(F,G)a. So we have relations

with indices

and (k-1,j), k < r,

linearly dependent on the columns of

a(i,j)Fg.
i,j)Ea

i
t
+r

F g. = E
(i,j)Ea

b(i,j)Fig.,

jE{

t = 1,

where 
g 
. denotes the j-th column of G. Multiplying
J

find

F
r
g.

i
t
+r+1

g. = E b(i,j)F
i+1 

.
gJ(i,j)Ea

We have already seen that the F
i+1 

.

of the column of R(F,G).
a
. It follows that also the F" g.gj

N,

• • ,

on the left with F we

(i,j) E- a are linear combinations
i +r+1

and F t g.
Jt

are linear combinations of the columns of R(F,G) . This finishes the
a

induction and hence the proof of the lemma.
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3.3. Successor indices. Let a c: I(n,m) be a nice selection. The

successor indices of a are those elements (i,j1 E I(n,m1 • a for

which i = 0 or for which (i',j) E a for all < i if i > 1. For every

j
o 
E {1,...,m} there is precisely one successor index of a of the form

(i,j0); this successor index is denoted s(a,j0). In the picture below

the successor indices of a are indiced by *'s (and the elements of a

with x's).

Columns of G x * x x1 e
1 

x
3 

e
2

Columns of F G . x . x . e
3 

. e
4

.• X •* . e5 .. x4

, . * • • . x
2 

.

Columns of F
5
G

3.4. Lemma. Let ac: I(n,m) be a nice selection and xl, xm and

m-tuple of n-vectors. Then there is precisely one pair (F,G) E Lm,n0R)

such that

R(FG)
a 
= Inxn' 

the n n unit matrix, 

R(F,G) for all j = 1, ..., m

Proof. Let f. be the i-th column of the matrix F, i = 1,2,.., n. Then

in theexamplegivenabovethevaluesoftheg.,j = 1, m and

i = 1, n can simply be read of from the diagram. One has in

this case

g =x, e
21 1 

g 
2 
=e a = 

1 -3 = x

f
1 
= e

3' 
f
2 
= e

4' 
f
3 
=e 
' 

f
4 
=xf

4' 5

It is easy to see that this works in general and to write down the

general proof though it tends to be notationally cumbersome.

cr
3.5. Local structure of 

Lm,n,p
ORVGL OR). Let a c I(n,m) be a nice

selection.

We define

(3.6)

= {(F,G,H) ELni,n,p(1R) I det R(F,G) O}

= {(F1G,H) Lm,n,p0R) I -R(F,G)ot. inxn
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3.7. Lemma. (i) U =V x GL
n
OR)

a a

(ii) V
a 
=IRmill-nP

Proof. (i) Let (F,G,H) E U. We assign to (F,G1111_ the pair

((F,G,H)S,,5-1) where S = -R(F,G);t1. Then (F,G,H1S E Va
- -because R(SFS 

1 
,SG) = SR(F,G) and hence R(SFS

1 
,SG)a =_ 

SR(F,G)a. Inversely given ((F,G,H),S1 E Va x GLIIORI we

assign to it the element (F,G,H)S. This proves (i).

Assertion i) follows immediately from lemma 3.4. Indeed, let Eimn1-11P

and view z as an m + p tuple of n-vectors z = (x v

Then there are unique F,G,H such that R(F,G)a = I
nxn1 

R(F,G)s(a,j =1  xj,

h = y
k 
where h

k 
is the k-th row of H.

,3.8. Local structure of 
Lcocr 

OR)/GL
n
OR). Let again a be a nice selection.m,n,p

Then we define in addition.

(3.9) co 
= L

C
"

o,cr A
kl
D) 

9 
vco =u u n

a a m,n,p a a 
co 

oR)
,cr

V n Lm,n,p

Then one has clearly that V
a 

co
 

is an open dense (algebraic) subset of Va and

x GL
n
OR).

= vco
that co

a a

3.10. The local nice selection canonical forms c . Lemma 3.7 defines us
a

a (local) continuous canonical form on U
a 

for each nice selection a.

It is

S 
-1(3.11) c

a
((F,G 

a 
,H)) = (F,G,H) E V

a'
S
a 
= R(F,G)

a 
,(F,C,H) E U

a

The U
a 

are open dense subsets of 
Lcr 
m,n,p

OR), and by lemma 3.2 the union

of all the U
a' 

a a nice selection, covers all of L
cr OR). This is
m,n,p 

thus a set of local canonical forms which can be useful in identification

problems (it leads to statistically and numerically well posed problems,

cf [15, section II].

3.11. The dual results. Dually we consider the set I(n,p) of all row

indices of Q(F,H), which we also picture as an (n+1) x p array of dots.

Now the first row represents the rows of H, the second row the rows

of HF, . A nice selection is defined as before and one has the obvious

analogues of all the results given above. In particular if (F,G,H) E L
m,
co 
m,n,p

there is a nice selection P..c: I(n,p) such that Q(F,H)13 is invertible.

Here Q(F,H) is the matrix obtained from Q(F,H) by removing all rows
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whose index is not in 13.

One also has of course local canonical forms c (defined on U)

for every nice selection P. c: I(n,p):

SR
(3.12) y(F,G,H)) = (F,G,H) , St3 = Q(F,H) , (F,G,H) E U(3.

ii.

(3.13) U = {(F,G,H) E LI11
,n,pQ

R)I Q(F,H) is invertible}
P.

4. REALIZATION THEORY.

Let ef= (A 
,A1 

,A
2' 
...) be a sequence of p x m matrices. We shall0 

say that the sequence ei is realizable by an n-dimensional linear system
if there exist a system (F,G,H) E LOR) such that A. = HF G,

m,n,p 1
i = 0,1,2,... . It follows immediately from (the proof of) theorem 2.6

above that if c,' is realizable by means of (F,G,H), then there is also

a possibly lower dimensional system E'
= (F,,G,,H,) E 0R), n, < n.

m,n ,p

which also realizes e4 and which is moreover completely reachable and

completely observable.

For each sequence of p x m matricese4 we define the block Hankel

matrices

A
o
A
l

(4.1)

• • •

s = 0,1,2 ...

4.2. Theorem. The sequence of real p x m matrices Ot= 
,A1". 

.) is
o 

realizable by means of a completely reachable and completely observable

n-dimensional system if and only if rank tg
s
641 = n for all large enough

-
s. Moreover if both E, 

E, E Lco,cr
Jig realize64 then El = ES for somem

,n,p
( 

S E GL
n
OR).

This theorem will be proved below. First, however, we mention a

consequence.

4.3. Corollary. If the sequence of p x m matricesdt is such that

rankUi
s
(4) = n for all sufficiently large s, then rank) = n for

all s > n-1.
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ProOf. If E = (F,G,H) realizes64 and E is co and cr and of dimension n,

then rank Rn_1(F,G) = rank Qn_1(F,H) = n, so that rankgtn_i =

rank(Rn_1(F,G)Qn_ 1(F,H)) = n.

A first step in the proof of theorem 4.2 is now the following lemma

which says that if rank Vts“) = n for all s > r-1, then the Ai for

> 2r are uniquely determined by the 2r matrices A
o
, ..., A

2r-1*

4.4. Lemma. Let 04-= (A0,111 ,...) be a series of p x m matrices such that

rank (As) = n for all s > r-1. There are m x m matrices S So' r71
and p xp matrices T

o
, • • • , T

r- 
such that for all i = 0,1,2,...

(4.5) A. = A.S + A. S +
i+r 1 o 1+1 1

= T A. + T A.
01 1 1+1

••• A.
i+r-1 r-1

+ T
r-1

A
i+r-1

Proof. Because rana
r-1

64) = n and ranka
r
(c4) =

A
o 

A
1 

*4 A
r-1

fA

n = ranka
r-1 = rank

•

A
r -1 

a A • A
2r-2

n we have

A-

•

•

•

A
2r-1/

so that there are m x m matrices S
o' 

S such that

A. = A.S + + A.i+r 1 o l+r- r-1'

Similarly, it follows from

n = rank
r-

i = 0, ,•., r-1

A
o 
• •• A

r-1
=rank

A ., A
r- ' 2r-2

A A
r 2r-1

that there are matrices T , .00, T such thatr-1

(4.6) A . = T A. + + T A. i = 0, ..., r-1r+1 o 1 r-1 i+r-1 '



Suppose with induction we have already proved (4.5) for

i < k-1, k > r.

(4.7)

Consider the following submatrix ofW
k
04)

A A

A°1

A
i-1

A
r

1

• • •

A
r-

A
2r-2

A
r

•

•

A
2r- 

...Ak+r_i

0 3 A
2r-1
AA.
2r '" 

Ak+r
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Using the relations (4.5) for i < k-1 we see that the rank of 4.7 is equal

to the rank of

(4.8)

A
l 
.•.A

r-1
A

1

A
r- 

• . 6 A
2r-2

A
r 

.. • A
2r-1

•• 0

0 e 0

0 
41 •

where X = 
A,K+ 

- S
o
Ak - ... - Sr_ lAk+r_i. Using (4.6) we see by means

r
of row operations on (4.8) that the rank of (4.7) is also equal to the

rank of

o r-1

A
r-1

A

A
2r-2

•

0 • • • 0

0 • • • 0 0

0 •• • 0 0

O '• ') 0 X

Now the rank of (4.7) is n = rank Y Of). Hence X = 0 which proves
r-1

the induction step. This proves the first half of (4.5); the second

half is proved similarly.

More generally one has the following result (which we shall not need

in the sequel).

*4.9. Lemma: Let A. A. be a finite series of matrices and suppose0,

there are i,j ENU{0} such that i'+j=s-land



rank

A
o

A.

0 0 •

• • •

=rank

/A A.

A. A. .
\ 3 1+3

IA
o

= rank

A.

• • •

20

A.
1

•

A. •
1+3

A. , +1" A1+j+1

for some n E]N U {0}, then there are unique A5+1, A
.s+2' such that

ratikW ‘4) = n

for all t > max(i,j).

Proof. By hypothesis we know that there exist matrices So,

such that

(4.10)

• • •

A
i+r+1 

= A S + + A .S 
' 

r = 0, jr o r+1 i 

Now define A
t 
for t > s by the formula

(4.10 A = . S + + A S.t-i- o t-1 1

S.
1

Also by hypothesis we know that there exist '110,.,'T. such that

(4.12 A. = T A + + T.A. , r =j+r+1 o r j j+r

To prove that rank%
t
(L4) = n for all t > max(i,j) it now clearly

suffices to show that (4.12) holds in fact for all r > 0. Suppose

this has been proved for r < q-1, q > i+1. Consider the matrix

(4.13)

A..+2

• • •

•
•

A.

=n

By means of column operations, the hypothesis of the lemma, and (4.10) -

(4.11) we see that the rank of the matrix (4.13) is n. Using row operations

and (4.12) for r < q-1 (induction hypothesis) we see that the rank of

(4.13) is equal to the rank of
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A
o 
. . . A. A. ...

1 1+1

(4.14) .
. .. •
. . .
A. ... A. . A. . ... A.

0 4°. 0 0 •'. OX
1+ 1+ +1

where X is the matrix Ai - TA ... - T.A. . Now use column+.44.1 oq 
j ji-ci

operations and (4.10), (4.11) to see that the rank of (4.14) is equal

to the rank of

(4.15)

A
o

•

A.
a 

• • •

• • •

0 • "

It follows that X = 0.

A.
1

A. .1+3

000 0 0

a

0 000 0 0

0 
ai 0 X

a

4.16. Proof of theorem 4.2 (first step: existence of a co and cr

realization). Let r EiN be such that r > n amd ranklt (oh = n for all

s > r-1. We write

IA° .. • A .
r-i

Vt = gtr-1 (4) = ••
A
r- ••• A2r-2

and for all s,t EN we define

a(k)

E
sxt 

= (1
sxs 1 °sx(t-s) if s t

if s = tE
sxs = 

I
sxs

if s > t
sxt

Ak ... A
r+k-1

A
r+k-1 • • 

. A
2r+k-1/

where Iaxa 
is the a x a identity matrix and 0axb 

is the a x b zero matrix.

Becausea is of rank n, there exist an invertible pr x pr matrix P an
d

an invertible mr x mr matrix M such that

(4.17) PU{M=

II
nxn 

I 0
nx(mr-n)

0
(pr-n)xn

o
(pr-n) x (mr-n)

=E E
prxnnxmr



Now define

(4.18) F = E
nxpr

H=

ME G=E PE
mrxn ' nxpr mrxe

Epxpr nrxn

We claim that then (F,G,H) realizes4 , i.e. that

(4.19) A. = HF
i
G

1

To prove this we define

•

0

= 0,1,

01 0041 o, .\
•

• • • 0

0'
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where 0, I, 0', I' are respectively the m x m zero matrix, the

m x m identity matrix, the p x p zero matrix and the p x p identity

matrix and where the S
'' 

S
r-1 

and T T are such thato o' ' r-1
(4.5) holds for all i. Then

(4.20) t(k) = Ckgt = glOk, k = 1,2, ...

Leta* = MEm
rx

nEnxprP. Then 71* is a pseudoinverse of in that

(4.21 a vex =

ME(Indeed using (4.17) we have Vi* X. = P E
prxn

E
nxmr mrxn nxpr

PE
...1
P E

prxn
E
nxmr

M = 74 because

M
-1
M = I, PP

-1 
= I, E E = I

nxmr mrxn nxn' nxpr prxn nxn

We now first prove that

(4.22) E P C gtm E =nxpr mrxn , k= $ • • •

=
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. In view of (4.20) this is the definition of F (cf. (4,18)) in the case

k = 1. So assume (4.22). has been proved for k < t. We then have

E
nxpr

P C
t+1
aM Emr

xn 
= E

nxpr
P CtD M

xn 
(by (4.201

= E
nxpr

P C
tgt 7i,* LD 11 E (by(4.20)mrxn

=E nxprP C m 
EmrxnEnxpr

Pgf,DME
mrxn

(by the definition of,(*)

= FtE 
nxpr 

P CgtM
Emrxn 

(by the induction

hypothesis and (4.20))

= F
t
F (by (4.20))

We now have for all k >0

Ak 
= E 

k)
E (definition of a )pxpr mrxm

= E C pxpr mrxm
atE (by (4.20))

= E C
k
a a*RE (by (4.21))pxpr mrxm

=E C
k
aME E PE (by the definition of C*)pxpr mrxn nxpr mrxm

= E 
pxpr RDkM E mrxnG (by the definition of G and (4.20))

=E 
pxpr 

Rav* 
mrxn

wokmE G (by 4.21))

(by the definition ofrX*)pxpr
= E 

1/M 
E
mrxn

E
nxpr
PD

kM 
E G 
mrxn

= H EnxprP CM E
mrxn 

(by the definition of H and (4.20))

= H F
k
G (by (4.22))

This proves the existence of an n-dimensional system E = (F,G,H which

realizes. Now for all s = 0,1,2,...



where

ws =

Qs(F,H) =
•

HF t

F,H)R(F,G)

R(F,G) = G YG
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Both Q
s
(F,H) and R

s
(F,G) have nece-s-s-aiilyrank < no It follows via the

Cayley-Hamilton theorem that (F,G,H) is completely reachable and

completely controllable, because rank;Rs(4) = n for s > r-1.

4.23. Proof of the uniqueness statement of theorem 4.2. 

Let E = (F,G,H) and .2m = (F,E,R) be two co and cr realizations

ofei Then dim(E) = rankg
r/n-1 

= dim(s). By hypothesis we have

(4.24) A. = HF 9G=HFG 1 =
1

9 • • •

According to lemma 3.2 and 3.11 there exists a n;ce le.fecEion c4 of

I(n-1,m), the set of column indices of 
R1 n-1 

(F,G) and7 (F,G,H) and there
n- 

exists a nice sefechion p of the set of row indices of

en-1
(F,H) and gt (F,G,H), such that

n-1

rank(R
n-

,Ga ) =rank(Qn_(F,H) ) 7 n
Leta 

n1 1
(F,G,H) be the matrix obtained from X (F,G,H) by removing

- 
all rows whose index is not in 13 and all columns whose index is not in a.

Then

F,G,H)a,f3 ,(13. a

so that (F,G,H)
a, 

is an invertible n x n matrix. Also
n- 

so that Q
n-

Wh_ 1(F,G,H)adi (F,E,R = Qn_ 1(P,Iben_ 1(P,E)a

-
F,H) and R 

1 
(F G) are also invertible. Now let.F3 n- d
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El = (F1,G1,H1) = (F,G,H) T = Qn_1(F,H)a

El = (F,1,a ,1711) = (ef,G,H)T T = _1(F,R)a

Then of course E1 
and f

I 
also realize . Moreover, using 2.4) we see

Qn-l(F1'H ) 
=

1 l' 1)13

It follows that

R(F1,G1) )(3, =;Rn( )c3, = = = R(F1

and, in turn, this means that F1 = F1 and G1 = G1 by lemma (3.7) (i)

combined with lemma (3.4). Further the matrix consisting of the first

p rows of :IL(E 1)= Zn 
(if

1 
) is equal to

,G1) = R T

so that also H
1 
=

1 
because 

R(F1 ,G_1 
) = R(F

1 
,G

1 
) is of rank n. This

proves that indeed = ES with S = 1 7,1- T.

4.25. A realization algorithm. Now that we know thate4 is realizable

by a co and cr system of dimension n iff ranklifs* = n for all large

enough s it is possible to give a rather easier algorithm for

calculating a realization than the one used in 4.16 above (which is the

algorithm of B.L. Ho). It goes as follows. Because04 is realizable by

ca
:

n
cr An.

a E E Lr,pyA) there exist a nice selection ac: I(n,m), the set of column

indices of R(F,G) andIR(E), and a nice selection 13(= I(n,p), the set of

row indices of Q(F,H) andlk(E), such that

(4.26) an(dba, = s

is an invertible n x n matrix. Consider

s n(04)

This n x(n+l)m matrix is necessarily of the form R(F,G) for some

(F,G) E Lcr 
n
OR) and moreover by (4.26)

m, 
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=1
nB a

so that F,G can simply be written down from S 41 as in the
n

proof of lemma 3.4. The matrix H is now obtained as the matrix

consisting of the first p rows of:Ifn cx
After choosing al this algorithm describes the unique triple .

(F,G,H) which realizesA such that moreover R(F,G) = I
n
.

a

*4.27. Relation with ratiOnal functions.

Suppose thatc4)is of rank n for all sufficiently large k. Then by

theorem 4.2 the sequence dt is realizable. Using Laplace transforms
(cf. 1.8 above) we see that this means that the p x m matrix ofco --1 

i ipower series E A.s
i

s n fact a matrix of rational functions.
i=o 1

(4.28)

CO

E A.s
-i-1 

= (s
n
-a 

n-l_
1 n-1i=o

= d (s1-113(s)

411 • • - a
1
s -a

-1
B(s) =

where B(s1 isapxmmatrix of polynomials insof degree < n-1.

Inversely if

(4,29) -i-
E A.s 

1 
= df(s) 111 (s)._1

i=o

CO

for a matrix of polynomials B' Cs). and a polynomial d' (s).

r-1= s al

then

s - - a' s - a' with r = degree(d 1(s)) > degree 131(s),r-7

A. = a'A. + a'A. + + a' A.i+r o 1 1 1+1 r-1 i+r-1

for all i = 0,1,2,... . And this, in turn implies that

rank WI( 64) = rank pr._ 64)

for all k > r-1, so thatA is realizable. It follows that.' is realizable
-1-1iff EA.s represents a rational function which goes to zero as s -± CO1
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5. FEEDBACK. SPLITS THE EXTERNAL DESCRIPTION

DEGENERACY.

In this section we shall prove the result described in section 1.6

To do this we first discuss still another local canonical form.

•
5.1. The Kronecker nice selection'of .a .system. Let (F,G,H1 E 

Lcr
m,n,p

We proceed as follows to obtain a "first" nice selection K such that

(F,G,H) E

Consider the set of column indices I(m,n1 in the order

(0,1) < (0,2) <...< (0,m) < (1,1) <...< (1,10 <...< (n,1), <... (n,m).

For each (i,j) we set (i,j) E K4** Fig. is linear independent of the

it
F g„ with (i1,P) < (i,j). We shall call the subset K of I(n,m) thus

3
obtained, the Kronecker selection of (F,G,H) and denote it with

cr
K(F,G,H). It is obvious that K has n elements if (F,G,H) E L p

OR).

5.2. Lemma. The Kronecker selection K defined above is a nice selection.

Proof. Let (i,j) E K and suppose i > 1. Suppose that (it,j) K, it < i.

This means that there is a relation

gJ 
b(k,F

it 
• = E 

k
OF g

k  (k,k)<W,j)

Multiplying with Fi-i' on the left one obtains

b(k,OF
i-i'+k

F
i
g. g9,3 (k,k)<(i',j)

showing that F1g. is linearly dependent on the 
g3 

with

A contradiction, q. e.d.

5.3. Lemma. Let (F,G,H) E Lcr OR) and S E GLn
OR), then

m,n,p

K(F,G,H) = K((F,G,H)S)

,j') < (i,j).

5.4. Lemma. Let F,G,H) E 
Lcr 
m,n,p

OR) and let L be an m X n matrix. Then

K(F,G,H) = K(F+GL,G,H)

The proof of lemma 5.3 is immediate. As to lemma 5.4 we define



(5.5)

X0(E) = subspace of X =IR
n 

generated by g ,

X ( ) = subspace of X =]Rn generated by gl,

•

X
n
(E) = subspace of X ER

n 
g
e
nerated by gl, ..., gm

P 000) F •, F
n 
g 

„in 
, •.., , g

g1 gm
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Let E(L) = (F+GL,G,H) and let F = F + GL. Then one easily obtains by

induction that

(5.6) Xi(E(L)). = X(E), i = 0, n

and that

(5.7) Fig.E.Fi
gJ
.mod Xi-1(E), i = 0,1,

(where, by definition, X-1(E) = {0}). Lemma 5.4 is an immediate consequence

of (5.7). (Note that a basis for Xi(E) is formed by the vectors Fkg t

with (k,k) E K(E) and k< i; the classes of the Fkg with (k,k) E K(Z),

k = i are a basis for the quotient space Xi(E)/Xi-1(E), i = 0, n).

If E = (F,G,H) E 
co

n,p
OR) then K(F,G,H) can be calculated from

atn(F,G,H). Indeed in that case Q(F,H) is of rank no Therefore, because

k(F,G,H) = Q(F,H)R(F,G)) the dependency relations between the columns of

CF,G,H) and between the columns of R(F,G) are exactly the same.w',11

5.8. Remark. If (F,G,H) E Ler OR) then also (F+GL,G,H) E Ler OR)m,n,p m,n,p

as is easily checked. But if (F,G,H) E L
co 
111,n,pOR), then (F+GL,G,H) need

not also be completely observable. Though of course this will be the case

for sufficiently small L (because Lc OR) is an open subset of Lin
,n,p

OR)).m,n,p

*5.9. The Kronecker control invariants. The invariant K(F,G,H1 depends

only on F and G, so that we can also write K(F,G). For each j = 1, m,

let k. be the number of elements (i,2) in K(F,G) such that k = j. Let

Ki(F,G) m' = rank(G), be the sequence of those k. which

are 0 ordered with respect to size. It follows from lemma's 5.3 and 5.4

that the K(F,G) are invariant for the transformations



(5.10) (F,G) (F,G)S
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(SFS-1,SG) (base change in state space)

(5.11) (F,G) (F+GL,G) (feedback)

One easily checks that the K.(F,G) are also invariant under

(5.12) (F,G)P-÷ (F,GT), T E GLmOR) (base change in input space)

This can e.g. be seen as follows. Let Xi(E) = dim X1(E) - dim X1-1(E)

for i = 0,1,...,n. Consider an rectangular array of (n+1) x m boxes

with the rows labelled 0, n. Now put a cross in the first Ai(E)

boxes of row i for i = 10, n. Then K.(E), j = 1, ..., m' is the
3

number of crosses in column j of the array. Obviously the A(E) do

not change under a transformation of type (5.12), proving that also

the K.(F,G) are invariant under 5.12.

The group generated by all these transformations is called the

feedback group. Thus the k,i(F,G) are invariants of the feedback group

cr
acting on L OR). It now turns out that these are in fact the only

m,n
invariants. I.e. if (F,G), (F,G) E Lc 

n
OR) and K.(F,G) =

i = 1, ..., m', then (F,G) can be obtained from (F,G) by means of

a series of transformations from (5.10) - (5.12). Cf. [11] for a

proof , or cf. 5.30 below.

The K(F,G) are also identifiable with Kronecker's minimal

column indices of the singular matrix pencil (zIn - F I G), cf [11].

Still another way to view the K.(F,G) is as follows.

Consider the transfer matrix T(s) = H(sIn-F)
-1
G of the linear

dynamical systemE= (F,G,H) considered asapxmmatrix valued

function of the complex variable s. One can now prove (cf. [141).

Theorem.Thereexiistmatrices N(s) and D(s) of polynomial functions of s

such that (i) T(s) = N(s)D(s)-1, (ii) there exist matrices of polynomials

such that X(s)N(s) + Y(s)D(s) = Tm, (iii) N(s) and D(s) are unique up

to multiplication on the right by a unit from the ring of polynomial

m x m matrices. Moreover degree(det D(s)) = n = dim(E).

Now for each s EE, one defines

h(s) P+m= {(N(s)u, D(s)u) Eel} ct 



30

If e Er is such that D(s)
-1 

exists, then also 4)
E 

=

= {(T(s)u,u)lu Eel cem. In any case h(s) is a p-dimensional

subspace ofEll4m. In addition one defines h(oo) = {(0,0 
+m

1u Elm} ,

which is entirely natural because lim T(s) = O. This gives a continuous
s+032

map of the Riemann spherer U = S to the Grassmann manifold .

111 134111 
OE) of m-planes in p + m space. Let Era Gm,P+111 

OC) be the canonical
, 

complex vector bundle whose fibre over z E 
Gm,P+m 

OC) is the m-plane

represented by z. Pulling back E 
m2 

along .4)
E 
gives us a holomorphic

complex vector bundle E(E) over S .

Now holomorphic vectorbundles over the sphere S
2 
have been classified

by Grothendieck. The classification result is: every holomorphic vector-

bundle over S
2 
is isomorphic to a direct sum of line bundles and line

bundles are classified by their degrees.

It now turns out that the numbers classifying E(E), the bundle

overS2 definedbythesystemElarepreciselytheK.(E), i = 1, m,

where 'K.(E) = 0 for i > m' = rank(G). One also recovers n = dim(E)
2

as the intersection number of sgS ) with a hyperplane in G OE).X m,m+p
These observations are due to Clyde Martin and Bob Hermann,

cf. [13].

As we have seen the K(E) are invariants for the transformations

(5.10), (5.11), (5.12). Being defined in terms of F and G alone they are

also obviously invariant under base change in output space:

(F,G,H)k-+ (F,G,SH), S E GL OR). The K(E) are, however, definitely
not a full set of invariants for the group G acting on LOR), where

m,n,p 
G is the group generated by base changes in state space, input space
and output space and the feedback transformations.

5.13. The canonical input base change matrix T(E).

Let E = (F,G,H) E Lcr OR) and let K = K(E) be the Kronecker nice
m,n,p

selection of E. Let (i,j) = s(K,j) be a successor index of K.

By the definition of K we have a unique expression of the form

(5.14) Fig. = E a.(P)Fig. + E a(k,)F
k
g

(1,DEK 3 3' (k,,Q)EK
i'<i

Now define recursively



(5.15)

and

31

= g. - •E a. (j ')g,, G= (gi,
J .1 J

J <3

(5.10T(E)=034k b.=lif=k,.bjk =-ak(j), if j < k,

= 0 if j > k,
bjk

then G = GT(E), and T(E) is an upper triangular matrix of determinant L.

cr
5.17. Lemma. Let E E (F,G,H) E

,n,p
(ER), then

T(E) = (E
s
), T(E(L)) = T(E)

for all S E GL (ER) and all feedback matrices L Ei
mxn

Proof. Obvious.(Use (5.7)).

5.18. Example. Let m = 5, n = 9,and let F,G,H) E Lcr (ER) have

Kronecker selection K(F,G,H) equal to

X

K =

•

•

X

•

where we have omitted the last five rows of dots.

Then T(E) is an upper triangular matrix of the form

T(E)

1 0

0 1

0 0 1 0 0

0 0 0 1

0 0 0 0 1

Note that Tal
-1 

is of precisely the same form.

This is a general phenamon. Indeed by (5.14) and (5.15) cf. also

example (5.18)) Ej is of the form



(5.19) 2. = g. + E b. .g. , T(E) = (bij)
3 3 k.>k• 

13 1
1 3
i<j

Sothatboirmilessi=j(andthenb.
j 
=-1) or i < j and k

i 
• > k.

l 3

Let t1, • 0 •, tm be the columns of T(E) and e1,  • • • $ em the standard

basis fore. Then

(5.20) t. = e. + E b..e.
k.>k• 13 1
1
i<j

32

Using induction with respect an ordening of the , Till satisfying

< j =>k. > k. it readily follows that— 3

e. := t. + E
3 3

i 
.
<3
k. >k.1

b! .t.
13 1

which proves that T(E)
-1 

also has zero entries at all spots (i,j)

with i > j or i< j and k. < k..
1--

5.21. The block companion canonical form. Let K be a nice selection.

We are going to construct a canonical form on the subspace WK of all

E 
Lcr.,cooR)m

,n,p 
with K(E) = K. We shall do this only in full detail for

the case that K is the nice selection of example 5.18. This special

case is, however, general enough to see that this construction works

in general. Let (F,6,H) E WK and let G = GT(E). Now consider the

system (FAH) which is also in WK as is easily checked. This system

has the property that for each successor index s(K,j) = (i,j) of K with i 0

we have

(5.22) F1 . = E at(k,k)Fkgo
(k,50EK
k<i

(i.e. T(F,G,H) = Im). Indeed using (5.14)

Fi-. = F
i
g.

gJ
a.(j')Fi g., E a(k,k)FkgR, = E a' (4)F 2,

i l<i 3 
3 (k,k)Ek (k,50EK

k<i k<i
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(Cf. (5.5)). Now define a new basis for]Rn as follows. Let

K =

kt = it 4, 1, t = 1, r, and 1(1+ + kr = no For the successor

indices s(c,j ) = (k ,j ), t = 1, r, write
t t

(5.23) F 2. = - E b
t 

g
k

(k,50EK
k<k

t

(ivy; • • • (0,4), (irjr).

•

Then

Setting bt(k,k) = 0 for all (k,k) K we now define a new basis for

e by

= F
k
1
-1
2 
.. .E 

b1 
(k1-1, jt)F

k1-2

J1 1=1

e
2
=F

f•

•

1

e.K. 
=

1 1

(5.24)

E b
1

i=1

k
2
-1
,

e
k +1 

= F gj + E b
. 2
1=1

e
k+ •

= g.
k

1
+...+k

r Jr

3-t
E b (1,j )g.

t jt
i=1

k
1 

• ...
-3

jc+ E b (1,it)g°R 
Jt i=1 Jt

k
2
-2
^

-1, .)F g. + E b
i=1 2 jtYgi t

Let X
o
c: Rill be the space spanned by the vectors g. , i.e.

31. Jt

X0 = X0(F,G,H) = X0(E). Then we see from (5.23) that for the vectors
•

defined by (5.24) above we have
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F 'E X(G), F(e) E e . mod X for i =e
1 

i l_i

F
e 

E X(G), F(e) E 1_1 mod X0 for i = k +k2 2 •••2 k1+2

•

•

F E X(G), F(ei 0

r-1 

) = ei_ mod X for i =e • r,•••,k1+•••
k+...+k+1

It follows that with respect to

are of the form

(5.25) F =

(5.26)

0 1 O.:0

o
• •

0 „ 01

r *

0 e, 0

0 e

0 e •

0

a

+k +2
r-1

the basis e1, F and G

0

ISS $

0 e • 0 0

0 Fc*:
• . . •

• • '0
• • a,,

•

0 0 1 0
* .•• * *

•

a •

• 0

v •

0 • •

• • 0

• 0

0

•

0

c•- 0 0 •, • 0 0 1
•

4 
III

I 0 0 e a

• •

0

• g

1
a. * * 20* * * SMO *

k
2 

k
r

k
1

with

g. = e
k

1 
, 2. = e

kl+k2'J
1  

J2

§•

• • • ,

Jr
= e

k

= 0 for j E 

+...+kr

k21

k
r

= e ,

In particular in the case that K is the nice selection of example

5.18 we see that with respect to the basis el, ... e
n 

defined by 5.24

the matrices F and G take the form (cf. 5.18, the inverse of T(E) is of

the same form as T(E)),



(5.27)

VU

a
l

1
a
2

o
a
3

a4

o 0 0 '
a5. a6. a

l

o o
a
8

4 13\

a
9

0

0

0

b
l

0

0

0

b
2

0

0

0

b

1

0

0

b
4

0

1

0

b

0

0

1

b
6

0

0

0

b
l

0

0

0

b
8

0

0

0

b
9

0

cl

0

c2

0

c3

0

c4

0

c5

0

c6

0

c7

1

c8

0

c9

li d2 d3 d4 d5 d6 d
7

d
8

d
$

70 0 0 0

1 0 * 0 *

0 0 0 0 0

0 0 0 0 0

0 1 * * *

0 0 0 0 0

0 0 0 1

\° 0 0 0 1
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This does not yet define a canonical form on W. True, for every
K

E E W there exists an S E GLnOR) such that (F,G)" takes the form

(5.27). But for two pairs (F,G) (TM, both of the form (5.27),

there may very well exists an S I
n 

such that (F,G) = (-17,a).
In fact, it is now not difficUlt to check that if S is an n x n

matrix of the form

(///

1 0

0 1

0 0

0 0,

S = 0 0

0 0

CI 

0

CI91 0

0

s
13 s14

s
13 

s140

0

0 0

1 o 0 0

0 1 0 0

o o 1 o

o o . o I

0 0

0 0

0 0

0 0

0

0

0

5
73 

5*  
74 

0 0

0 s
73 

s74 0

1 0

0 1

0

S93 s
94 

5
94 

0 5
97 

0
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-
then SG = G and SFS

1 
is of the same general form as F, if F and G

are of the form (5.27). Choosing so, 514, s73, s74, s91, 593, 594,

s
95 

and 59 7 
judiciously we see that for every E = (F,G,HI E WK

there exists a S E GL
n
OR) such that SFS

-1 
and SG take the forms

(5.28)

where

-1
SFS =

T(E)

SG =

(o 1 0 0 0 o 0 o\

o 0

o 0

0 0

b1 . b

o 1 o o
o o 1 0
0 o 0 1

b3 . b4 . b5 . b

0 o

0 o

0 o

b7 . b

o

0

0

b

0 0

c c
1

0 0 0 0

c
3 c 0 0

0 1

cc
7 8

0

c
9 .

di 0 d3 0 0 0 d7 0 d9/

/ 

0 

c13 

0

1 0 0 c15
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 c
23 c24 c25

0 0 0 0 0

\0 0 0 1 c45
0 0 0 0 1

0 c
13
c23

0 1

0 0

c1.5\

C24 
c25

0 0

c
0 0 0 1

45/

The general pattern should be clear: the off-diagonal blocks have zero's

in the last row iff there are more columns than rows, in fact in that case

the last row ends with (number of columns) - (number of rows) zero's; the

structure of the diagonal blocks is clear.
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Now suppose that (F',G',H') and (F",G",H") are two systems such

that (F',GT) = (F",G") for some S and such that (F',G') and (F",G")

are both of the forms (5.28). One checks easily that then necessarily

S = I
n
. We have shown

5.29. Proposition. Let K be the nice selection of example 5.18. Then for

every E = (F,G,H) E 14K there is precisely one S E GLnOR1 such that

SFS and SG have the forms (5.28).

This means in particular. (in viewof the results of section 4 above)

that if E E WK n Lc°'cr 
OR), then the numbers ai, a4, a7, a

9'n,m,p

bl, b9, cl, c4, c7, c9, di, d3, d7, d9 can be calculated

from f(E) (or A
' 

A21). Of course these results hold quite
o -

generally for all nice selections K. We note that in general WK is not

an open subspace of L
cr
 OR). In fact W /GL OR) is a linear subspace
n,111,13 K n

of U
k 
/GL 

n' 
IR\ =e1141113 = V

K. 
In case K is the nice selection of example

5.18 the codimension of WK/GLnOR) i
n U

K 
OR) is 12. (This number cann

immediately be read off from K: g3 linear dependent on gl, g2 causes

9 - 2 = 7 linear restrictions; F. linearly dependent on gi, g2,

gg, Fil, Fli, 94 causes 9 - 7 = 2 extra linear restrictions; F
2
g
1

linearly dependent on gl, F
1
a , Fcauses 9
d d2. 

= 2 more

linear restrictions; and finally F
2 
g4 dependent on g

1
, g5,

F 2, 4 F
e 

el F
2
g
2 
causes 9 - 8 1 more linear restriction; 7+2+2+1=12).

al 

*5.30. Using the results above, it is now easy to prove that the

Ki(F,G), KIng,G) are the only invariants of the feedback group

acting on L
cr
in,n

OR). Indeed, we have already shown that the

K.(F,G), i = 1, ..., m' are invariants.

Inversely, using first of all a transformation of type (5.12)

we can see to it that (F,GT) has k1 
> k

2 
>...> k and then
-- —

Ki(F,G) = k1, ..., Km, (F,G) = k,, k. = 0 for i > m'. Then, using
m

transformations of type (5.10) and (5.12), we can change

(F,GT) into a pair (F',G 1) with F' and G' of the type (5.25), (5.26).

A final transformation of type (5.11) then changes F' into a matrix

of type (5.25) with all stars equal to zero. The final pair (F",G")

thus obtained depends only on the numbers Kl(F,G), ...,K

q.e.d.
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5.31. Feedback breaks all symmetry. We are now in a position to prove

the result mentioned in 1.6 that feedback splits the degenerate external

description of systems. We shall certainly have proved this if we have

proved.

5.32. Theorem. Let E E Lm",n,py..
)• 

Then E is completely determined by

the input-output maps f(E(L)). for small L. More precisely let

E = (F,G,H) and Ai(L) = H(F+GL)iG for i = 0,1, 2n-1. Then the entries

of A(L) are differentiable functions of Land F, G and H can be

calculated from A
b
, ..., 

A2n-1 
and the numbers

A. (L)

9 iDk
jk IL=o

0p • • • n- $ j = 1, .0.$ m$

Proof. Let K K(s). Recall that K can be calculated from A
o
,

= n.

..., A
2n-I

(because E is co and cr). Now assume that K is the nice selection of

example 5.18. (This is sufficiently general, I hope, to make it clear

that the theorem holds in general). Let E' = (F',G',H') be the block

companion canonical form of (F,G,H) (E' is obtained as follows:

first calculate any realization E" = (F",G",H") of A
o' °"' 

A
2n-1'

by means of the algorithm of 4.25 above and then put E" in block

companion canonical form as in 5.21 above).

Then

e.g.

for a certain S E
n
OR), and it remains to calculate S. With this aim

in mind we examine E(L) = (F+GL,G,H) and its block companion canonical

form. Consider

-1
E(L) = (S

-1
FS+S

-1
GLS, 

-1
G,HS)

= (Ft+WLS,G',H')

Now assume that L is of the form



(5.33)

• 0

21 
32
29

0 • 0

0 • • 0

0 0

Then if F' is of the form (5.28) we see that if S = (s..)

F' + G'LS

ro1
a1 a2

o
a3

0 0 0 0 0 '0 \
a

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

b
.

b'
2

b'
3

b'
4

b'
5

bl
6

b' b b'
9

0 0 0 0 0 0 0 1 0

cccc0
2 3 4

Occ9

d
1

0 d
3

0 4 d7 0 d
9,
/

with b! = bi(L) = b. + E k,.s..,
1 1 j=1 Lj ji

9. Thus the block

- S-1
companion canonical from of E(L) is always E(L) if L is of the form

(5.33). Note that the number of the row which has nonzero entries is

determined by K(E); it is the smallest i for which ki is maximal;

note also that if j is such that k- is maximal then the j-th vector

of G' is always the (k3+. 
• 
.+k.)-th standard basis vector (cf.just below

j
5.19).

So to find S we proceed as follows. Calculate the block companion

canonical forms of E(t) from Ao(L), A2n_1(L). for small L. (This

can be done because for small enough L, E(L) is still co). This gives

us in particular the functions Then

39

b (L)
s.. - ,A 
J1 dk 

2j IL=O
This determines S and gives us E as E = (E') . q.e.d.
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6. DESCRIPTION OF Lc°' crORVGLnOR). INVARIANTS.m,n,p

6.1. Local structure of 
Lcocr OR). Let a c: I(n,m) be a nice selection.m,n,p

We recall that U
a 
= {(F,C,H) E Lm,npOR)I det R(F,G)a 0} , that

Va = {(F,G,H) E L m,n,p OR)I R(F,C)a I
n
} and that U

a
/CL

n
OR) = Va =-- 

lemn+np
, cf.section 3.

For each x E]R
nm+np 

let (Fa(x),Ga(x),Ha(x)) E Va be the unique
system corresponding to x according to the isomorphism of 3.7 above.

6.2. The quotient manifold 
Mcr 
M,n,p

OR) = L
:,n,p

OR)/GL
n
OR). Now that we

know what U /GL OR) looks like it is not difficult to describea ncr
L
m,n,p

011)/CL
n
OR). (Recall that the union of the Ua for a nice covers

mmn+npL
rcri,n,p

OR)). We only need to figure out how the V =a should be

glued together. This is not particularly difficult because if

(F,G,H)S = (F',G1,H') for some S and (F,C,H) E Ua then

S = R(F',W)aR(F,G);1. It follows that the quotient space
cr crM
m,n,p

OR) = L
m,np

OR)/GL
n
OR) can be constructed as follows.

mn+npFor each nice selection a let Va =IR and for each second

nice selection 13. let

We define

by the formula

(6.3) (t.af3(x) =

x E a det R(Fa ,Ga(x)) 01

R(Fa(x),Ga(x)) R(Fa(x),Ga(X)1 = R y

Let Mrcn,n,pOR) be the topological space obtained by glueing together the

Vet by means of the isomorphisms

Then M
m,
cr 
n,p

Yno
'
t Lcr

m,n,p
ORVGL

n
OR). If we denote also with V

a 
the"

isomorphic image of V in mcr 0R) 
then the quotient mapa m,n,p



cr cr
Tr: L010_ M(ER) can be described as follows. For each

m,n,p 
m
,n,p 

E = (F,G,H) E Lcr (ER), choose a nice selection a such that E
min'P cr

Then Tr(E) =xEV c: Mm,n,pR) wherexis such that
CL

E = (F (x),G (x),H (x)) with S = R(F,G) .a a a

6.4. Theorem. 
Mcr 

(ER) is a differentiable manifold andm
,n,p 

: Lcr (ER) M
cr

(ER) is a principal GL (ER) fibre bundle
m,n,p m,n,p n

For a proof, cf. [5].

6.5. The quotient manifold M 
J 

Lco,cr 
(IR) /GL

n
aR). Letm

,n,p 
co,crav 

m,n,p 
mco,cr im)

=
m,n,p
cr
M (ER). It can be described as follows. For each nice selection
m,n,p

a let -1-ic° = {x E T/ l(F (x),G (x),H (x)) is completely observable},a a a a a
- -co -

and for each nice selection P. letVco =V V. Thenoti3 a ots 
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E U .a

cn:
,cr

m,n,p
(.)) Then lirn,pOR) is an open submanifold of

(1)0t(q) = -10)t and Mc° 
N ,cr AD is

m,n,e")
by glueing together the Vc° by means of the isomorphismsa

the differentiable manifold obtained

7,co 7,coTot(3. vet, V.

6.6. mco,cr
p
(ER)

m,n,p 
as a submanifold 0fIR2n1P. Let (F,G,H) E Lc°'cr

n,m,p

We associate to (F,G,H)

(A
''"' A2n1 

) EiR
2nmp

o -

to sequence of 2n p

where A. = HFiG, i = 0, ..., 2n-1.

m matrices

The results

of section 4 above (realization theory) prove that this map is injective

and prove that its image consists of those elements (Ao2n-1 
) EIR2nmp

,cr rm.
such that rank alt = rank W0i) = n. We thus obtain Mc° u.,) as an

n-1 m,n,p -

(nonsingular algebraic) smooth submanifold of 111
2nmp

6.7. Invariants. By definition a smooth invariant for GLn(ER) acting

on 
Lm,n,p

(ER) is a smooth function f: U-÷51, defined on an open dense

subset Uc
:

Lm
,n,p

(ER) such that f(E) = f(ES) for all E E U and

S E GL(ER) such that ES E U.

co cr
Now L ' (ER) is open and dense in Lm,n,pR

). It now
m,n,p

from 6.6 that every invariant can be written as a smooth

the entries of the invariant matrix valued functions Ab,

on L
m,n,pOR).

follows

function of

A"" 2n-1
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7. ON THE (NON) EXISTENCE OF CANONICAL FORMS.

7.1. Canonical forms.

Let L' be a GL OR)-invariant subspace of L
m,n,p

OR1. A canonical

form for CL OR)acting on L' is a mapping c: L' L' such that the.

following three properties hold

(7.2) c(ES) = c(E) for all E E L', S E GLnOR)

(7.3) for all E E L' there is an S E GL
n
MI such that c(E) = Es

(7.4) c(E) = c(E') .*3S E GLnOR) such that E' = ES

(Note that (7.4) is implied by (7.3)1.

Thus a canonical form selects precisely one element out of each

orbit of GL
n
OR) acting on M. We speak of a continuous canonical form

if c is continuous.

Of course, there exist canonical forms on, say 
Lco,cr OR1, e.g.

cr 
im,n,p

co,cr AD\ ,
the following one, C. 

L L co 
lm
,n,p

OR) which is defined as
K m,n,p v"1

D, ,
follows: let E 

En,pcr 
Ay..) calculate K(E) and let C (E) be the block

companion canonical form of E as described in section 5.21 above.

This canonical form is not continuous, however (,though still

quite useful, as we saw in 'section 5.31). As we argued in 1.15 above,

for some purposes it would be desirable to have a continuous canonical

form (cf also[2]). In this connection let us also remark that the Jordan

canonical form for square matrices under similarity transformations

i(M+ )-- SMS
1 
) s also not continuous, and this causes a number of unpleasant

numerical difficulties, cf. [16].

*7.5. Continuous canonical forms and sections. Let L' be a GL
n
OR)-invariant

cr
subspace of 

Lcr 
m,n,p

OR). Let M' = Tr(L') c:Mm,n,pOR1 be the image of L'

under the projection Tr (cf. 6.2 above). Now let c: L' -* LI be a continuous

canonical form on L'. Then c(E ) = c(E) for all E E LI so that c factorizes

through M' to define a continuous map s: M' L' such that c = s o ff.

Because of (7.3) we haveTroc=ffso thatTF=TrosoTi. Becauseff is

surjective it follows that Tr 0 S = id, so that s is a continuous section

of the (principal GLnOR)) fibre bundle Tr: L' M'. Inversely let s: M'

be a continuous section of Then s o L' L' is a continuous canonical

form on L'.
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(Non)existence of g_lobal canonical forms. In this section we

shall prove theorem 1.17 which says that there exists a continuous

crco .
canonical form on all of L' ) if and only if m = 1 or p = 1.m,n,pY"

First suppose that m = 1. Then there is only one nice selection

in I(n,m), viz. ((0,1), (1,1), We have already seen

that there exists a continuous canonical form c : U -*TT for all
a cx. cx

nice selections a. (cf. 3.10). This proves the theorem for m = 1.

The case p = 1 is treated similarly (cf. 3.11). It remains to prove

c°'
cr \ if m > 2

that there is no continuous canonical form on Lm,n,p YL"

and p > 2. To do this we construct two families of linear dynamical

systems as follows for all a ER, b ER (We assume n > 2, if n = 1

the examples must be modified somewhat).

G
1
(a) =

0

•

2 1
•

•

2 1

G (b) =

where B is some (constant) (n-2) x

inIR

F1
(a)

y
1 
(a) 1

y2
(a) 1

to

2

•

• • •

•
s 0

• 4 

0 
n/

2 ▪ 2\

• • •

H1 (a
)= 0 0

••

b

1

0 ••• 0

0 •-• 0

2 1

-2) matrix with coefficients

1 • • •

• • •

0

where C is some (constant) real (p-2) x (n-2) matrix. Here the

continuous functions
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y1(a),y2(a),x1(b),x2(b) are e.g. y1(a) = a for lal < 1,

y
1 
(a) = a for lal > 1, y2

(a) = exp(-a2), x
1 
(b) = _1 for ibl <

x1 (b)= b-2 for Ibl > 1, x2(b) = b-1exp(-b
9

--) for b 0, 1c2(0) = 0.

The precise form of these functions is not important. What is important

is that they are continuous, that x1 (b)= b-1y1(b-1), x2(b) = b-1y2(b-1)

for all b 0 and that y2(a) 0 for all a and x
1 
(b) 0 for all b..

For all b 0 let T(b) be the matrix

0\

0 1 •
(7.7) T(b) = •

* 0

0 0 1/

Let E(a) = (F
1 
(a), G

1 
(a), H

1 
(a)), E

2
(b) = (F2(b), G2(b), H2(b)). Then

one easily checks that

(7.8) \ 
E
2

(b)TMab = 1 
1-1°.) 

Note also that E 
1 
(a), E

2 
(b) En,pOR) for all a,b ER; in fact. 

(7.9) E
1 
(a) E a = ((0,2), (1,2), ..., 0-1,2)1 for all a ERa'

(7.10) E
2
(b) E U

13' 
= ((0,1), ...,(1-4,1)) for all b ER

which proves the complete reachability. The complete observability is

seen similarly.

,
no"
„.\.Now suppose that c is a continuous canonical form on Lc°

cr
itumi.n,p'c

Let c(E
1
(a)) = (T

I
(a)
'1

(a),TI
1
(a)), c(E

2
(b)) = (T (b),-6

2 
(b),H (b)).2 2gtzt)Let S(a) be such that c(E

1 
(a)) = E

1
(a) and let -§"(b) be such that

c(
2
(b)) = E

2
(b)

9(b)

It follows from (7.9) and (7.10) that

(7.11)

S (a) = R(Pi (a) (a)) R(Fi (a) 

-1-§(b) = R(172(b),-52(b)) R(1; (1)_ G 
(b)_)f3.
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Consequently S(a) and E(b) are (unique and are) continuous

functions of a and b.

Now take a = b = 1. Then ab = 1 and T(b) = In so that (cf(7.7),

(7.8) and (7.11)) S(1) = g(1). It follows from this and the continuity

of S(a) and g(b) that we must have

(7.12) sign(det S(a)) = sign(det "§(b)) for all a,b EiR

Now takea = b =-1. Then ab = 1 and we have, using (7.8),

S(-1)T(-1) T(-1)
)

.§(-1)
E
2 
(-1 ) = c(E2(-1))

= c(E1( -1))

It follows that S(-1) = g(-1)T(-1), and hence by (7.7), that

d t(S(-1)) = - det(g(-1))

which contradicts (7.12). This proves that there does not exists a

A-.
continuous canonical form on 

Lco,cr if n1 2 2 and p 2: 2.m
,n,p

k at) 

*7.13. Acknowledgement and remarks. By choosing the matrices B and C

in G1(a),G2(b),H1(a),H2(b) judiciously we can also ensure that

rank(Gi(a) = m = rank G2(b) if m < n and rank H1 (a)= p = rank H2(b)

if p < n.

As we have seen in 7.5 above there exists a continuous canonical

o,cr
form on Lc OR) if and only if the principal GLn

OR) fibre bundle
m,n,p

7 : LCO,cr A,N mco,cr OR) admits a section. This, in turn is the
m,n,p 

case if and only if this bundle is trivial. The example on which the

proof in 7.6 above is based precisely the same example we 
used in
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[5] to prove the fibre bundle 7 is in fact nontrivial if p > 2 and
m > 2, and from this point of view the example appears somewhat less
"ad hoc" than in the present setting. The idea of using the example
to prove nonexistence as done above is due to R.E. Kalman.

8. ON THE GEOMETRY OF M(at) HOLES AND

(PARTIAL) COMPACTIFICATIONS.

As we have seen in the introduction (cf. 1.19) the differentiable
, AD.manifold 
cr

y ax) is full of holes, a situation which is undesirablen,p 
in certain situations. In this section we prove theorems 1.23 and 1.24
but, for the sake of simplicity only in the case m = 1 or p = I.

8.1. An addendum to realization theory. Let T(s) = d(s)-1b( ) be a
rational function, with degree d(s) = n > degree b(s). Then we know
by 4.27 that there is a one input one output system E with transfer
function T

E
(s). We claim that we can see to it that dim(E) < n.

Indeed if

T
E
(s) = a

o
s + a s

-2 
+ a

2
s
-3 

+ • • •

then, if d(s) = sn - dn-1s
n-1 

- . . - d
1
s - d

o' 
we have

a. = d a. + d a. + + a.o 1 1 1+1 n- i+n-1

for all i > O. It follows that if 04= (a
' 
a a

2". 
.), theno 

rank cjt
r
(91)- = rank XII71(4) for all r > n-1. But n-1 

(c4)is an n

matrix and hence rank
r
M 44) < n for all s, which by section 4 means--

that  there is a realization of ot (or T(s)) of dimension < n.

It follows that a cr and co system E of dimension n has a
transfer function T

E
(s) = d(s) b(s) with degree (d(s)) = n and no

common factors in d(s) and b(s), and inversely if T(s) = d(s) 'b(s),
degree b(s) < n = degree (d(0)2and b(s) and d(s) have no common
factors then all n-dimensional realizations of T(s) are co and cr.

Indeed if d(s) and b(s) have a common factor, then
T
E
(s) = e(s)

-1
b'(s) with degree (d'(s)) < n-1 and it follows as above

that rankgf (4) < n-1 so that E is not cr and co. Inversely if E is notr --
cr and co there is a E' of dimension < n-1 which also realizeso4 so that

-T(s) = Tv(s) = h'(sl-F'51 '=det(sI-F') B(s) = d l(s) B(s) with
degree(e(s)) < n-1.

•
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*8.2. There is a more input, more output version of 8.1. But it is

not perhaps the most obvious possibility. E.g. the lowest dimensional

- 1 2
realization of s

1 
has dimension 2. The right generalization

is: Let T(s) = D(s)- N(s), where D(s) and N(s) are as in the theorem

mentioned in section 5.9. Then there is a co and cr realization of

T(s) of dimension degree (det(D(s)).

8.3. Theorem. Let D • a + ▪ an-1 
d  

ai 
EIR
 be a

o +
dnI t

differential operator of order < n-1. Then there exists a family of
r

systems (E 
z 
)
z 
c:Lco c 

OR) such that the f(E
z
) converge to D in the

1,n,1
sense of definition 1.21.

To prove this theorem we need to do some exercises concerning

differentiation, determinants and partial integration. They are

(8.4) Let k E a, k > -1 and let Bn,k be the n x n matrix with

(i,j)-th entry equal to the binomial coefficient i+k+1
Then det(Bn,k) = 1.

(8.5) Let u(I)(t) = 
diu(t)

(8.6

dt
i

. Then f z
n
e
-z(t-T)

n-1

T)dT =

= z
n-1

u(t).+ + (-1)n-I (n- )(t) + 0(z-1)

where 0 is the Landau symbol.

Let (1)(T) = t-Tru(T), (1)(i)(T) - di4T). Then .1)(i)(t) = 0
drri

i-m+l)u
(1-m)

(0 if i > m.

for i < m and

(i) (t) = (-1)mici— . • • •

And finally, combining (8.5) and (8.6),

t
(8.7) f e-z(t-T) n 

n i+1
z
n-i i-1

-T Mu(T)dT = (-0111m! E
o 

m
i=m+1

4. 0(z
-1
)

8.8. Proof of theorem 8.3. We consider the following family of n

dimensional systems (with one output and one input),



F
z

7.".Z 0 0

0. "'''z 

4 •

•
• •

•

•
••

0• •

•
0

_:1
h

where the x x, m < n, are same still to be determined realm
numbers. One calculates

sF
z

Hence

22
s z

•

0

. . .

(t-T)jiz
g = x.z(i!)-1

(t-T)e
-z(t-T)h

z
e

z .
1=1

and, using (8.7

(t-T)F
zgzu(T)dT =

m 
 

m+i
f he . -1

E
i=1 1 j=i+1

u(t) + 0(z

m-1
= E

k=o

Now, by (8.4) we know that detain
+I-2,-1

choose x1, . x
m 

in such a way that• .,

48

7 .. m+i-k-1)u(m-k-1)
+ 0

i=1 1

)±,k)

t-T)F
u(m-1he z

g
z
u(T)dT = am

0

where ar_i. is any pregiven real numbe rA71

It follows that lirn f(Ez) = am-1 
dt

m71
z400 

= 1, so that we can

OA- 0_
-1

-1

•
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Let Ez
(i) = (F

z
(i), g

z
(i),h

z
(i)), i = 0, ..., n-1 be systems constructed

as above with limiting input/output operator equal to

di
a. . Now consider the n

2
-dimensional systems Ez 

defined by
1 
dt
1

F(0) 0

0
•

• •

•
•

• • •

• 0

gz(0)

•

gz(n -1

Aft

= (hz(0), hz(n-1))

Then clearly lim f(E) = D. Let T
(i)(s) be the transfer function

z-4.00
of E

z
(i). Then for certain polynomials B(i)(s) we have

(8.9)
-

T(i)(s) = dz(s)
1 
B
(i)
z 

(s), d (s) independent of i 

4••

The transfer function of Ez 
is clearly equal to

(8.10)
n-1 n-1

Tz(s) = E Tz (s) = dz(s) Bz(s), Bz(s) = E Bz (s)

i=o i=o

By 8.1 it follows from (8.10) that Tz
(s) can also be realized by an

n-dimensional system, E'
z
. Then also lim f(E') = D. Finally we canz.+00 z

change E tz slightly to Ez for all z to find a family 
(Ez)zc:Lnicri (RI

such that lim f(E ) = D. This proves the theorem.

z400 z

8.11. Corollary.Let E' be a system of dimension i and let D be a

differential operator of order n - i - 1 (where order(0)=-1). Then

there exists a family (E ) c:Lc°'
cr OR) such that lim f(Ez1 = D + f(E').z z 1,n,1 z-÷00

Proof. Let V; = (1"; ';,c be a family in Ll,n_i0OR) such that

lim f(E") = D. Let E' = (F',g',10). Let Ez 
be the n-dimensional system

z-±00 z

defined by the triple of matrices

F" 0

F
z 
=

0 F'

h
z 
= (h",10)

Then lim f(E) = D + f('). Now perturb Ez 
slightly for each z to Ez'

Z400



50

to find a completely reachable and completely observable family

(E )
z 

such that lim f(E) = D + f(E').
z-÷00 z

8.12. Theorem. Let (E ) 
z c:L1n,1 

OR) be a family of systems which
z , 

converges in input-output behaviour in the sense of definition 1.21.

Then there exist a system E T and a differential operator D such that

dim(') + ord(D) < n-1 and lim f(s) = f(E') + D
Z400

Proof. Consider the relation•

y(t) = f E u(t)

for smooth input functions u(t). Let a(s) and 9z(s) be the Laplace

transforms of u(t) and yz(t). Then we have

9z(s) = Tz(s)a(s)

where T (s) is the transferfunction of E . Because the f(Ez) converge

as z co (in the sense of definition 1.21), and because the Laplace

transform is continuous, it follows that there is a rational function

T(s) = d(s)
-1

b(s) with degree d(s) n, degree b(s) < n-1 such that

lim T(s) = T(s)
z-*03

pointwise in s for all but finitely many s. Write

n-i- b'(s)
T(s) = + e s + + e

n-i- s 
4- 
77)

-

with degree (1 1(s) =i, degree(b T(s)) < i. Let E' be a system of

dimension < i with transfer function equal to d'(s)
-1

b t(s) and let

D be the differential operator e
o 
+ e ---+ + 

e1 dt n-i_

The Laplace transform of the relation

y(t) = f(E')u(t) + Du(t)

for smooth input functions,u(t), is

._i -1

dtn-i-l•
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9(s) = T(s)a(

Because the Laplace transform is injective (on smooth functions) it

follows that

lim f(E ) = f(E t) + D
z-÷00

*8.13. Remarks on compactification, desingularization, symmetry

breaking, etc.

The more input, more output versions of theorems 8.3 and 8.12

are also true. To prove them it is more convenient to use another

technique which is based on a continuity property of the inverse

Laplace transform for certain sequences of functions. (The inverse

Laplace transform is certainly not continuous in general; also

it is perfectly possible to have a sequence of systems Ez such that

their transfer functions T
z
(s) converge for z co , but such that

the f(E
z
) do not converge, e.g. Tz

(s) = z(z-s) 
1
).

Let E be a co and cr system of dimension n with one input and

one output. Let T(s)

T(s) -
b
n-1 1

s
n- 

+...+bs+b
o b(s)

n n-1 d(s)
s+d

n-1
s +...+d s+d

1 o

be the transfer function of E. Assign to T(s) the point

(13
on- 

:d
o 1

:1) EIPINRI
n-

real projective space of dimension 2n. This defines an embedding

c,cr
of M

1
o

OR) into 
12n OR). The image is obviously dense so thatiP2110R)

is a smooth compactification of
1,n,0"1

Let id- 
n 1

OR) be the subspace ofF2
n
OR) consisting of those

2n
points 
(Ko1 

:y :y1 
) E 1P OR) for which at least one

n- o n

Y1, i = 0, n is different from zero. For these points
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x +x s+...+x s
n-1

o 1 n-1

y0+y
1
5+...+y

n
s
n

has meaning and this rational function is then the transfer function

of a generalized linear dynamical system:

(8.14)
= Fx + Cu

y = Hx + Du

2nwhere D is a differential operator. (The points inr OR) ',N
1,n,1

corresponds to "systems" which tend to give infinite outputs for

finite inputs; they are interpretable,however, in terms of

correspondences y(t)÷ u(t)).

Further let 
M1,n,l' 

consist of those (x 
:...:xn-1 

:y )
o n

for which if yi = 0 for i > r then also x. = 0, i r. For these
1-1

points the D in (8.14) is zero and these points thus yield

transfer functions of systems of dimension < n. (But many points
•••••••

in Mi have the same transfer functions). Assigning to a point

in 
Ml,n,1 the first 2n + 1 coefficients of

x
o
+x

1s+...+x1 
s
n-

n- - - -- a
o
s

1 
+ a s

2 
+ a

2
s
3 
+

yo+y15+...+yn
s
n

we find the following situation

co cr
M ' M
1,n,1 1,n,1

It
2n+1 
= 

2n+1

Herelli is an embedding and its image is the subspace of all sequences

Of= (a 
o 
,...,a

2n 
) such that ranklt

n-1
(4) = rank Wn64) = n. The image

of is the space of all sequences 44 such that rank:g. (A) = rank (p4) = i
-for some i < n. This is a singular submanif old of 

2n+Y 
 and W. is a

resolution of singularities.

The points of (M) correspond to transfer functions1,n,1 1,n,1

7: 7
of lower dimensional co and cr systems. If a sequence x E 

n14'1
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converges to such a point, the internal symmetry group CL OR)of xz

suddenly contracts to some GL OR) c:GL OR) with in < n.
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