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ANALYTICAL UTILITY FUNCTIONS UNDERLYING FRACTIONAL EXPENDITURE
ALLOCATION MODELS

by

W.H. SOMERMEYER and J. VAN DAAL

ABSTRACT

This paper shows conditions and procedures for defiving
direct utility functions (D.U.F.) from indirect utility functions
(I.U.F.) - provided that the latter can be written explicitly.
For the fractional expenditure allocation model (F.E.A.M.) the
I.U.F. appears to become a fairly simple integral.

Derivation of D.U.F. from the I.U.F., however, appears to
impose rather severe restrictions on parameters of the F.E.A.M.,
if not the number of commodities distinguished.

For the "power" version of the‘F.E.A.M., this implies
either constrainﬁs on the number and different values of the
"power" parameters or the requirement that one of them become 1;
mutatis mutandis, the same applies to the generalized version of
that model, viz. cross-bred with the linear expenditure'system.

In other cases approximate but still acceptable analytical
D.U.F. might be derived provided that this would require but

minor adjustments in one or more parameter estimates.
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1. Preliminaries

1.1. On the utility of direct analytical utility functions

The main purpose of this paper is to present analytical
utility functions underlying a particular kind of "proper"
consumer demand functions. In this context, "proper" means:
demand functions (to be) derived from maximizing utility (in
terms of quantities consumed per period) subject to a budget
constraint. In any case, this implies additivity of the demand
equations - identically summing up to total consumption -,
hence incorporatihg all prices and total consumption (or "income"),
and such that zero-homogeneity of those functions in these
arguments is ensured. Indeed, some of the popular demand functions,
such as the Klein-Rubin-Samuelson-Stone Linear Expenditure
System (L.E.S.), the Intriligator-Gamaletsos Generalized Linear
Expenditure System (G.L.E.S.) or the Quadratic Utility (Q.U.)
set of demand equations, have been, or can be derived in that

way.

Some authors - covertly if not openly - apparently consider

the explicit knowledge of direct (analytical) utility functions

underlying demand models as one of their attractive properties,
making them superior to others (cf. Gamaletsos 1973).

Complementarily, inability to produce analytical, direct utility

functions as the foundation of demand functions looks like a
lingering stigma on the presumably illegitimate birth of the
latter. In particular, this applies to an important class of
demand functions competing with those formerly mentioned for
empirical application, viz. the Fractional Expenditure Allocation
Model (F.E.A.M.) (cf., inter alia, Somermeyer a.o.
(1956)); a sub-class of these models has also become known as
the Indirect Addilog Expenditure System (I.A.E.S.) (cf. Hout-
hakker (1960)). ‘

Conversely, the latter type of model exemplifies the
severity of the restrictions which the requirement of the

existence of analytical expressions for direct utility functions

appears to impose on the admitted class of demand functions

resulting from the formers' conditional maximization.




Still, concern about the form of the direct utility
functions is not without its justifications. In particular,
one should ensure that the marginal utilities remain positive,

at least within the relevant sub-space of the quantity vectors,

i.e. corresponding to optimum allocation of consumption. A
paper by Van Driel (1974) shows that this may require "breaks"
in the utility function, at least for the F.E.A.M.

1.2. Purpose of the present paper

The main - and ultimate - purpose of the present paper is
to show that and how direct utility functions (D.U.F.) of the
fractional expenditure allocation model (F.E.A.M.) can be
derived and expressed analytically - provided that a number of
conditions are satisfied. These requirements appear to be
severely restrictive. Still, their scope is wider than has been
indicated in a previous paper by Somermeyer (1973), as will be
outlined in section 1.3 and elaborated upon in section 4.3.
Meanwhile, for a few particular specifications of the F.E.A.M.
van Driel (1974) already presented analytical D.U.F.

1.3. Line of reasoning

As well-known, indirect ufility functions (I.U.F.) can be
specified (analytically) more easily and under less restrictive
requirements than direct utility functions; Gorman (1961) even
states that for the former possibility it is necessary and
sufficient that the integrability conditions be satisfied.

For this reason, it seems appropriate to choose I.U.F. as
a starting point for the derivation of D.U.F. In particular,
this applies to a particular ("power") specification of the
E.A.M., for which the relativity simple corresponding I.U.F.
gave Houthakker (1960) cause to label this model - originally
proposed by Leser (1941) - as the indirect addi-log expenditure
system (I.A.E.S.).




Since the I.U.F., like demand, is zero~homogeneous in
prices and income, hence .reads in terms of price-income ratios,
these functions can serve as stepping stones on the way to
deriving the D.U.F., provided that the "inverse" of the allo-
cation problem, viz. expressing those ratios in terms of
quantities consuméd, can be solved. For the F.E.A.M., this can
be done ptovided that particular conditions are imposed on
parameters of the model.

Consequently, section 2 presents the F.E.A.M., first in a
general form (section 2.1), and next by a number of parti-
cular, operationally useful, specifications (section 2.2).
Section 3 deals with the I.U.F. In section 3.1 the reader is
reminded of some prime properties of the I.U.F., required for
deriving a lemma on I.U.F. relating to the general F.E.A.M.
(in section 3.2), with applications to specific F.E.A.M. (in
section 3.3).

Section 4.1 outlines the derivation of D.U.F. from I.U.F. in

general, with reference to linear and hyperbolic specification

of the F.E.A.M. basic functions in section 4.2, and ditto for
pertinent power specifications in section 4.3. For the latter
two (special) cases are distinguished, viz.:

a) where the "powers" in the basic functions assume values that
relate to each other in a limited number of simple propor-
tions, and

b) where one (and only one) of these powers assumes the value
of 1.

These cases are dealt with in (sub-)sections 4.3.1 and 4.3.2,

respectively.

'Finally, in section 5, suggestions are made for deriving

approximate but still acceptable analytical D.U.F., provided

that the distribution of "power" parameters is appropriate for

this purpose.




2. Fractional expenditure allocation model

2.1. General form

The allocation model for consumer expenditures may be

expressed in a general manner by:

CFk(pk,C)
K
p, I F_(p,,C)
k h=1 h'Fh

(2.1.1) q = for k=1, ..., K,

with: )

dp quantities consumed of commodities k,

Py = their corresponding prices,

while: 7

C represents the total amount spent on consumption - by an
individual, within a specific period, and '

Fk denote functions of Py and C.

Evidently, (2.1.1) satisfies the additivity condition:

K .

(2.1.2) C = Elpqu.

k

In order to ensure the logical requirement:

(3.1.3) 9 > 0 for all positive vectors (p1 e pK,C) and for
all k,

: 1
(2.1.4) F, (p,,C) > 0

should hold good, with the equality sign applying to at most
K - 1 items k.

In order that the allocation of C according to (2.1.1)
is optimal in the sense that this system of demand equations

results from maximizing a utility function:

Or, equivalently, of course Fk(pk,C) < 0 Vk under the same
conditions.




(2.1.5) u = u(ql, ceoy qK)

subject to the budget constraint (2.1.2),
functions Fk should satisfy:

(2.1.6) Fy (p,C) = £ (x,),

with r, = pk/C (cf. Somermeyer a.o. (1962), (1972)).
Substitution of (2.1.6) into (2.1.1) yields:

£, ()

(2.1.7) qp =

r

Xk fh(r

)
h=1 h

Of course, the fk should be specified in such a manner
that also the second-order conditions for a constrained utility

maximum are complied with.

2.2. Specific forms

Inter alia, the following specifications of fk meet the
requirements stated in section 2.1:

(2.2.1) fk(r > 0): linear

) = apg * by Ty (@b 2

- -1 . X
(2.2.2) fk(rk) aj * b2krk (a2k’b2k > 0): hyperbolic

a
= k .
(2.2.3) fk(rk) Cr Ty (ck >0, o £ 1) : power

(2.2.4) fk(rk) = dk exp(Bkrk) (dk > 0, x < 0): exponential

Also "mixed" specifications are feasible; examples are:

(2.2.5) fk(rk) + b rp t byyr 0):

4 -1
= ay KTk T PoxTx - (BgrbipPoyx 2

(04
_ k < 0);2
fk (r = ekrk exp ( Bkrk) (ek Z 0 4 k f_ 1 ’ k f_ O) ’

2 The latter form has been used, inter alia, by Athanasopoulos
(1962). -




the inequality-parts of the > signs stated above should hold
good for at least one of the items k3.'Because of the zero-
homogeneity of the qy in terms of the fk,fh—functions, the
coefficients in their specifications above are determinate
but for an arbitrary multiplicative factor.

Properties and the ensueing advantages and disavantages
of adopting these alternative forms are dealt with by
Somermeyer (1973). The properties of the E.A.M. with the
"power" specification (2.2.3) are more elaborately discussed
and illustrated by Somermeyer and Langhout (1972).

3. Indirect utility functions (I.U.F.)

Definition and properties
Indirect utility functions are defined by:

u* = u*(pl, ceey pK,C).

"Conceptually, they may be derived from the D.U.F. by
substitution ofvthe general demand functions:

(3.1.2) qk = qk(pl, ‘..v’ pKIC)

into (2.1.5).

Since demand functions (3.1.2) are homogeneous of degree
zero in their arguments - as exemplified by (2.1.7) -, I.U.F.
(3.1,1) may also be written as:

(3.1.3) u* = u*(rl, ooy rK).

These functions imply:

- - du* du*
= apk/ =C (cf. Roy (1943)).

For a more precise specification of the conditions imposed on the
parameters, see Van Driel (1974, section 4.7). That one and
only one of the O is allowed to equal 1 exactly, derlves from

the fact that the semi-negative-definite Slutsky matrix corre-
sponding to the "power" specification (2.2.3) has rank K-1, i.e.
~one less than its number of rows or columns. Section 4.3.2 makes
use of this property. ‘




3.2. I.U.F. corresponding to the general F.E.A.M.

The latter property comes in handy for deriving indirect
Utility functions corresponding to the expenditure allocation
functions (2.1.7).

First, we reduce the partial derivatives of u* with
respect to the Py and C separately to derivatives with respect

to their ratios Ty only:

qu* -

(3.2.1)
8pk

qu* _
(3.2.2) 5 =

In order that the last member of (3.2.1) equals ~dy times

the last member of (3.2.2) - as required by (2.2.4):

ou* _ -1
(3.2.3) I T \)rh

£ (r,) < 0,
h h

with v a negative but otherwise arbitrary factor, should hold
good for all h.
Hence:

au* -1
* = ou- | = .
(3.2.4) u Zl J dr -[r] f](r]) drl,

h=1J 9T h h=1

4.
with v equated to -1 provided that the integral exists.

This means that analytical expressions for the indirect
utility functions can be obtained if the fh are specified in
such a manner that the indefinite integral in the last member

of (3.2.4) can be written explicitly.

This may be done without any loss of generality, since the
demand functions resulting from maximizing utility subject to
a budget constraint are invariant against monotonically
increasing transformation of the (direct or indirect) utility
function. For the same reason, the integrals in (3.2.4) need
not - and should not - be definite.




3.3. I.U.F. corresponding to some specific F.E.A.M. modeils

Application of (3.2.4) to specifications (2.2.1) thrgugh
(2.2.3) yields:

K .
(3.3.1) u* = - E (_a,lklnrk + bikrk)

k=1 = :
corresponding to linear functions (2.2.1);
K

(3.3.2) u¥* = - ¥ (a
k=1

- b

r-i)
2kk 7

2%k 10T

corresponding to hyperbolic functions (2.2.2); and

, K ?1 %k ' >
* = - - + 1nr, .
(3.3.3) u Zick{ak Ty (1 Ga ,o) 1 ry 6& ,o}'

1 for ak =0

= 0 for o ¥ 0,
"and the indeterminateness of a—l(l—é ) for a,= 0 to be
k ak,o k
raised according to the value(s) of Oy v (k' # k),

corresponding to power functions (2.2.3).

For the exponential fk-specification (2.2.4), however, the
integration implied by (2.3.4) cannot, in general, be carried
out analytically.

Cf. also Houthakker (1960), who does not consider, however,
the possibility o = 0 for one or more k.




4. Direct utility functions

4,1. Uniqueness of the derivation of the D.U.F. from the I.U.F.

In principle, the I.U.F. (2.3.4) can serve as stepping
stones for the derivation of the direct utility functions if
the Ty |
(2.1.7), and substituted into (3.2.4), or any of the subsequent

can be expressed in terms of the qQy s i.e. "solved" from

more specific expressions. Actually, however, such a procedure
will succeed, i.e. yield analytical D.U.F. if and only if
particular conditions are satisfied.

A general condition is the existence of a one-to-one
relationship between the g's and the r's, i.e. such that one and
only one relevant (to wit: positive) r—veétor corresponds to
any given positive g-vector, like one and only one positive
g-vector corresponds to any positive r-vector according to
(2.1.7). Uniqueness of the relevant solution of the r-vector

in terms of the q; --- 9 is ensured if the functions:

-1

(4.1.1) gk(rk) = Iy fk(rk)

are all monotonic and all in the same direction, i.e. that the
g, are either all monotonically increasing or all monotonically
decreasing, for all k.

Indeed all four specifications (2.2.1) through (2.2.4),
subject to the restrictions imposed on their parameteréb imply
the like-directed monotonicity of the functions (4.1.1) for

. u ]
r. > 0; hence, at least in those cases, the one-to-one-ness of

k
the relationships between the r-vector and the g-vector is

ensured.




4.2. Linear and hyperbolic specifications of fk

First, (2.1.7) is specified further by means of (2.2.1),
yielding:

+ b

1kt

1k k

(4.2.1) 9 =

Ty (@gp+bypTy)

h=1

This system may be rewritten as:

K
(4.2.2) q @ b
h=1

1nThTk T (8% ~bqy )Ty = a5, Vk,

K
with a, = I a

4
17 ,2,7h

i.e. a set of K equations quadratic in r r

1 *°° Ty
In general, an analytical solution yielding the single

set of positive values ry --- Ip is feasible only if K does

not exceed 2, i.e. equals 2. Thus, one of the two r's, say

r,, can be expressed in terms of the other (r2) by solving

one of the two quadratic equations; then, substitution of this

intermediate result into the other equation yields a fourth-

degree polynomial in r,. One and only one of its roots will be

relevant (real and positive). Evidently, the fact that polyno-

mial equations have explicit solutions up to and including but

not exceeding the fourth degree requires the restriction of K

to 2 (cf. Birkhoff and Mac Lane (1953)). Analogous considerations

and conclusions apply to the hyperbolic specification (2.2.2).




4.3. "Power" specification of fk

Second, we may try to derive the direct utility function

underlying:

-1
r

k7k

(4.3.1) q = , with oy <1, VK and o, = 1 for at most one k.

- Op k
C, .Y

hi h™h

Assuming that the ak(ah) are all rational numbers, (4.3.1)
may be rewritten as a system of polynomial equations for
Tyr eeer Tyy expressed in terms of the qk(k =1, ..., K). In
general, these polynomials are of a high degree, obviating the
attainment of analytical D.U.F. Still, under special conditions,

to be dealt with below, the latter may be derived.

4.3.1. Particular proportions.between the "powers"

In this case, we assume O < 1 for all k. Taking some item

k, say 1, as the "base" commodity, we derive from (4.3.1):

o, -1 g, /c o,-1
(4.3.1.1) r R S vk.
k ql/cl 1

Next, substitution of (4.3.1.1) into (3.3.3) yields:

K Ol.k
(4.3.1.2) u* —kE (ck/ak)rk
=1 o
k
—1

K
= - (c /a ) (———
k_

k/ck

q,/¢; :

Thus, u* is expressed in ratios of all Iy to q,. and
only. Hence, the last member of (4.3.1.2)

a single Tyr viz. r

1’
represents "almost" a D.U.F., i.e. but for the ry- Hence, in

order to convert (4.3.1.2) into a complete, "pure" D.U.F., i.e.




in terms of Iy vk, rl.has to be expressed in these quantities
alone. In principle, this may be done through substitution of
(4.3.1.1) into (4.3.1) for k = 1, resulting in:
o ,
El ak(a1 1)

OLk—l

or, more simply:

K a4/ Ok~

(4.3.1.3) q, I c, (=)
1=y kK ay/c

An analytical solution of (4.3.1.3) is possible if and
only if this equation can be written in the form of a polyno-

mial of at most the fourth degree (cf. Birkhoff and Mac Lane
(1953)).

This requires that the values of Op ~ in relation to the
value of o, < 1 - are restricted by:

(4.3.1.4) ak =1 -'(l—al)/i,

where i may be any of the integers 1, 2, 3 or 4, but is not
allowed to assume any other value. '
Thus, (4.3.1.3) may be rewritten as:

%k

4 Q. /e Ky
(4.3.1.5) g T {Z____c (———) }r = Cy
Vicilketiy ¥ /e 1 1

with ke€{i} denoting an element of the integer set {i} to which
(4.3.1.4) applies.

For one or more feasible values of i, {i} may be empty,
meaning that it would not encompass a single k. In particular,
the degree of the polynomial might be reduced to a cubic or
even a quadratic one if {i} were empty for i = 4, and for i = 3
and 4, respectively, i.e. if the ratios (1—al)/(l—ak) were confined
to (at most) 1 : 2 : 3, and 1 : 2, respectively.




(4.3.1.6b) q2 -

By way'of example, the following table shows a triplet of

such mutually compatible values of oy and o ¢

(k € {i}; i =1, 2, 3, 4)

Of course, this table allows for simple interpolation and

extrapolation. Anyhow, it shows for various (negative) values of

(= min ak)’to what extent the range of corresponding values of
-k

%

Oor Qg and 04 widens and shifts downwards according as al becomes

less. It should be noted that because of op <1, the powers are ever-
positive and finite. Before reverting to this phenomenon in
section 5, we first present a simple example.

‘ Take, for instance, K = 2, a; = -1 and a, = 0; then

(4.3.1) implies:
c.ro2
' 171
(4.3.1.6a) q; = -

and

c.rot
272
=1
e ry; T+ o




For ryrT, > 0, these equations imply:

(4.3.1.7a) r, 2{V/1 + 4c2/(c1q1) - l}cl/c2

and

(4.3.1.7b) r, %Lclql{l - VY1 + 402/(c1q1)} + 2c2]/(c2q2),
obviously satisfying the budget constraint r,9; + r,d, = 1.

Substitution of (4.3.1.6) into (3.3.3) yields:

(4.3.1.8) u = =N + /Félql + 4c c

29

lq1 + 4c 1€

292

2c2 /Qc
- czln T

291

- a fairly complicated expression, compared to the simplicity
of the resulting demand equations (3.2.2). For further examples,
see Van Driel (1974), who also proves the positiveness of the

marginal utilities for analytical D.U.F., such as (4.3.1.8), in
general.

4.3.2. One of the Oy equaling one

Equations (4.3.1) imply:

OLk—l K OLh
(4.3.2.1) Ty = (qk/ck) hZ Chth vk.
Assume that for a single k, say k = 1, the corresponding
O equals 1:

(4.3.2.2) ai =1,




By virtue of (4.3.2.1) and (4.3.2.2):

Ox

ak-l\. oLk--]' - 0tk_l
S | Tk G/ S\
(4.3.2.3) rk = —'&Tl /C \
\p 2 917¢1)
l ’

K o

L ¢c.r
-1 h™h

(4.3.2.4) c,r; = (cl/ql) h

h

Substitution of (4.3.2.3) and (4.3.2.4) into (4.3.1.2)
yields: '

-1

a
k
qk/ Cc N

(4.3.2.5) u* = —(c,/q.) - £ ¢ {(1-a,) /o, }
1721 k=2 k k k (él7c%)

u,

"i.e. the indirect utility function re-converted to the direct
utility function. The marginal utilifies corresponding to
(4.3.2.5), evaluated at the consumer optima, appear to be

positive for all k.

4.3.3. Possible extensions

Mutatis mutandis, the preceding reasoning may analogously
be administered to possible extensions of the F.E.A.M. in its
"power" version. In particular, this applies to the following

"cross-breeding" between (G.)L.E.S. and F.E.A.M., viz.:

o

o) (p,/2) *

. (2/p),
K U k™

'idck.(pk;/Z)

(4.3.3.1) q = yk‘+

k




K
klilYklpkll

Y (> O)vdenoting consumption of k minimally required,

and Z representing "super-numerary income",
respectively (cf. Van Daal and Somermeyer (1977)).

The I.U.F} corresponding to (4.3.3.1) is completely“
analogous to (3.3.3) or (4.3.1.2), with the r ) redefined
as pk/Z; cf. eq. (2.1.7) in Van Daal and Somermeyer (1977).
The reason, of course, is the resemblance of (4.3.3.1) to
the F.E.A.M. and the linearity of the relationships between
the "new" variables =Yy and Z on the one hand, and the
original variables qy s C (and the pk.) on the other hand.
Also the subsequent considerations and conditions presented
in sections 4.3.1 and 4.3.2 remain the same, provided’that

the q, are replaced by "surplus" consumption Yy

5. Approximations

Section 4 showed that the restrictions to be imposed on
the power parameters of the "power" version of the F.E.A.M., in
order to "merit" an analytical D.U.F., are rather severe. Still,
these sets of demand functions might more generally he considered
as associated with "approximate" analytical D.U.F. - provided
that the Oy could reasonably be arranged into not more than 4

classes according to value, while each class could satisfactorily

be represented by a kind of modal or mean value, as exemplified
in the table in section 4.3.1. '

Alternatively, if one of the 0, were very close to 1, the
utility function (4.3.2.5) might well be an acceptable approxi-

mative D.U.F. for the set of demand functions in question.




Indeed, both contingencies appear to have an empirical

basis (cf. e.g. Somermeyer a.o. (1961)): values of Oy

close to (if not exceeding) 1 have been found, as well as

minimum values of uk not less than around -2.5.

Consequently, the restrictions on parameter values for
drawing analytical D.U.F. may be less severe in practice than
they appear to be in pure theory.
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