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ANALYTICAL UTILITY FUNCTIONS UNDERLYING FRACTIONAL EXPENDITURE

ALLOCATION MODELS

by

W.H. SOMERMEYER and J. VAN DAAL

ABSTRACT

This paper •shows conditions and procedures for deriving

direct utility functions (D.U.F.) from indirect utility functions

(I.U.F.) - provided that the latter can be written explicitly.

For the fractional expenditure allocation model (F.E.A.M.) the

I.U.F. appears to become a fairly simple integral.

Derivation of D.U.F. from the I.U.F., however, appears to

impose rather severe restrictions on parameters of the F.E.A.M.,

if not the number of commodities distinguished.

For the "power" version of the F.E.A.M., this implies

either constraints on the number and different values of the

"power" parameters or the requirement that one of them become 1;

mutatis mutandis the same applies to the generalized version of

that model, viz. cross-bred with the linear expenditure system.

In other cases approximate but still acceptable analytical

D.U.F. might be derived provided that this would require but

minor adjustments in one or more parameter estimates.
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1. Preliminaries

1.1. On the utility of direct analytical utility functions

The main purpose of this paper is to present analytical

utility functions underlying a particular kind of "proper"

consumer demand functions. In this context, "proper" means:

demand functions (to be) derived from maximizing utility (in

terms of quantities consumed per period) subject to a budget

constraint. In any case, this implies additivity of the demand

equations - identically summing up to total consumption -,

hence incorporating all prices and total consumption (or "income"),

and such that zero-homogeneity of those functions in these

arguments is ensured. Indeed, some of the popular demand functions,

such as the Klein-Rubin-Samuelson-Stone Linear Expenditure

System (L.E.S.), the Intriligator-Gamaletsos Generalized Linear

Expenditure System (G.L.E.S.) or the Quadratic Utility (Q.U.)

set of demand equations, have been, or can be derived in that

way.

Some authors - covertly if not openly apparently consider

the explicit knowledge of direct (analytical) utility functions

underlying demand models as one of their attractive properties,

making them superior to others (cf. Gamaletsos 1973).

Complementarily, inability to produce analytical, direct utility

functions as the foundation of demand functions looks like a

lingering stigma on the presumably illegitimate birth of the

latter. In particular, this applies to an important class of

demand functions competing with those formerly mentioned for

empirical application, viz. the Fractional Expenditure Allocation

Model (F.E.A.M.) (cf., inter alia, Somermeyer a.o.

(1956)); a sub-class of these models has also become known as

the Indirect Addi.log Expenditure System (I.A.E.S.)(cf. Hout-

hakker (1960)).

Conversely, the latter type of model exemplifies the

severity of the restrictions which the requirement of the

existence of analytical expressions for direct utility functions

appears to impose on the admitted class of demand functions

resulting from the formers' conditionarmaximization.



Still, concern about the form of the direct utility

functions is not without its justifications. In particular,

one should ensure that the marginal utilities remain positive,
at least within •the relevant sub-space of the quantity vectors,

i.e. corresponding to optimum allocation of consumption. A

paper by Van Driel -(1974) shows that this may require "breaks"

in the utility function at least for the F.E.A.M.

1.2. Purpose of the present paper 

The main - and ultimate - purpose of the present paper is

to show that and how direct utility functions (D.U.F.) of the

fractional expenditure allocation model (F.E.A.M.) can be

derived and expressed analytically - provided that a number of

conditions are satisfied. These requirements appear to be

severely restrictive. Still, their scope is wider than has been

indicated in a previous paper by Somermeyer (1973), as will be

outlined in section 1.3 and elaborated upon in section 4.3.

Meanwhile, for a few particular specifications of the F.E.A.M.

van Driel (1974) already presented analytical D.U.F.

1.3. Line of reasoning 

As well-known, indirect utility functions (I.U.F.) can be

specified (analytically) more easily and under less restrictive

requirements than direct utility functions; Gorman (1961) even

states that for the former possibility it is necessary and

sufficient that the integrability conditions be satisfied.

For this reason, it seems appropriate to choose I.U.F. as

a starting point for the derivation of D.U.F. In particular,

this applies to a particular ("power") specification of the

E.A.M., for which the relativity simple corresponding I.U.F.

gave Houthakker (1960) cause to label this model - originally

proposed by Leser (1941) - as the indirect addi-log expenditure

system (I.A.E.S.).



Since the demand, is zero-homogeneous in

prices and income, hence-reads in terms of price-income ratios,

these functions can serve as stepping stones on the way to

deriving the D.U.F., provided that the "inverse" of the allo-

cation problem, viz expressing those ratios in terms of

quantities consumed, can be solved. For the F.E.A.M., this can

be done provided that particular conditions are imposed on

parameters of the model.

Consequently, section 2 presents the F.E.A.M., first in 
a

general form (section 2.1), and next by a number of parti-

cular, operationally useful, specifications (section 2.2).

Section 3 deals with the I.U.F. In section 3.1 the reader is

reminded of some prime properties of the I.U.F., required for

deriving a lemma on I.U.F. relating to the general F.E.A.M.

(in section 3.2), with applications to specific F.E.A.M. (in

section 3.3).

Section 4.1 outlines the derivation of D.U.F. from I.U.F. i
n

general, with reference to linear and hyperbolic specific
ation

of the F.E.A.M. basic functions in section 4.2 and ditto for

pertinent power specifications in section 4.3. For the la
tter

two (special) cases are distinguished, viz.:

a) where the "powers" in the basic functions assume values th
at

relate to each other in a limited number of simple propor-

tions, and

b) where one (and only one) of these powers assumes the v
alue

of 1.

These cases are dealt with in (sub-)sections 4.3.1 and 4.
3.2,

respectively.

Finally, in section 5, suggestions are made for deriv
ing

approximate but still acceptable analytical D.U.F., 
provided

that the distribution of "power" parameters is appropriat
e for

this purpose.



2. Fractional expenditure allocation model

2.1. General form

The allocation model for consumer expenditures may •be

expressed in a general manner by:

(2.1.1) qk

with:

CFk(Pk'C)

•E F (p ,C)
h=1 h h

for k = 1, K,

q = quantities consumed of commodities k,

pk = their corresponding prices,

while:

C represents the total amount spent on consumption - by an

individual, within a specific period, and

Fk denote functions of pk and C.

Evidently, (2.1.1) satisfies the additivity condition:

(2.1.2 E p
k=1

In order to ensure the logical requirement:

(3.1.3 qk > 0 for all positive vectors (p1 ,C) and for

all k,

(2.1.4) Fk(pk

should hold good, with the equality sign applying to at most

K - 1 items k.

In order that the allocation of C according to (2.1.1)

is optimal in the sense that this system of demand equations

results from maximizing a utility function:

1
Or, equivalently, of course F (p ,C) < 0 Vk under the same

conditions.
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(2.1.7) qk

(2.1.5) u =

subject to the budget constraint (2.1.2),

functions Fk 
should satisfy:

(2.1.6) Fk(p =

with rk 
= p

k
/C (cf. Somermeyer a.o. (1962), (1972)).

Substitution of (2.1.6) into (2.1.1) yields:

f
k
(r
k
)

k 
E f

h
h=1

Of course, the f
k 

should be specified in such a manner

that also the second-order conditions for a constrained utility

maximum are complied with.

2.2. Specific forms

Inter alia, the following specifications of fk meet the

requirements stated in section 2.1:

(2.2.1) fk(rk

(2.2.2) k

= alk krk (alk' 
b
1 

> 0): linear
—

-1
=.a

2 
b 
k
r
k 

(a
2k'

b
2

ak
(2.2.3) f (r ) = ck 

r
k 

(ck 
> 0,

> 0): hyperbolic

: power

(2.2.4) f = dk exp( krk) (dk > 0, k < 0): exponential

Also "mixed" specifications are feasible; examples are:

(2.2.5)

(2.2.6) fk = e r

-1
+b r +b

lk k 2k
r 
k ' 2k

exp (f3 r ) (e > 0, k 1, "< 0);
2

2
The latter form has been used, inter alia, by Athanasopou

los

(1962).
A
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the inequality parts of the > signs stated above should hold

good for at least one of the items k3. Because of the zero-

homogeneity of the qk in terms of the fk,fh-functions, the

coefficients in their specifications above are determinate

but for an arbitrary multiplicative factor.

Properties and the ensueing advantages and disavantages

of adoptirig these alternative forms are dealt with by

Somermeyer (1973). The properties of the E.A.M. with the

"power" specification (2.2.3) are more elaborately discussed

and illustrated by Somermeyer and Langhout (1972).

3. Indirect utility functions (I.U.F.)

3.1. Definition and properties

Indirect utility functions are defined by:

(3.1.1) u* = u*(pi, • • • I Pvc)-

Conceptually, they may be derived from the D.U.F. by

substitution of the general demand functions:

(3.1.2) qk = qk pi,

into ( 2 . 1 . 5 ) .

•

Since demand functions (3.1.2) are homogeneous of degree

zero in their arguments - as exemplified by (2.1.7) -, I.U.F.

(3.1.1) may also be written as:

(3.1.3) u* = u*(r , • • • •

These functions imply:

(3.1.4) qk =

3

Bu* u*
f. Roy (1943)).

For a more precise specification of the conditions imposed on the

parameters, see Van Driel (1974, section 4.7). That one and

only one of the ak is allowed to equal 1 exactly, derives from

the fact that the semi-negative-definite Slutsky matrix corre-

sponding to the "power" specification (2.2.3) has rank K-1, i.e.

one less than its number of rows or columns. Section 4.3.2 makes

use of this property.



3.2. I.U.F. corresponding to the general F.E.A.M.

The latter property comes in handy for deriving indirect

Utility functions corresponding to the expenditure allocation

functions (2.1.7).

First, we reduce the partial derivatives of u* with

respect to the pk and C separately to derivatives with respect

to their ratios r
k 
only:

(3.2.1) au* _ Du*
Bp
k

Dr

Dr
k 
• Dp

k 
=

-1 Du*
ar , and

(3.2.2) 211! ac au* 1.11 = E =
h=1 

Dr
h DC

Du*
E r

h=1 
h Dr

h

In order that the last member of (3.2.1) equals -q1, times

the last member of (3.2.2) - as required by (2.2.4):

Du*
(3.2.3) =vr fh(rh) < 0,

with v a negative but otherwise arbitrary factor, should hold

good for all h.

Hence:

Du*
- E 

-(3.2.4) u a drh = r
1
f (r ) -dr

h=1 urh h=1 
hhh h

,

with v equated to -1 provided that the integral exists.

This means that analytical expressions for the indirect

utility functions can be obtained if the fh are specified in

such a manner that the indefinite integral in the last member

of (3.2.4) can be written explicitly.

4
This may be done without any loss of generality, since the
demand functions resulting from maximizing utility subject to
a budget constraint are invariant against monotonically
increasing transformation of the (direct or indirect) utility
function. For the same reason, the integrals in (3.2.4) need
not - and should not - be definite.

7
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3.3. I.U.F. corresponding to some specific F.E.A.M. models

Application of (3.2.4) to specifications (2.2.1) thrbugh

(2.2.3) yields:

(3.3.1) u* = E (a 1 r
k=1

r
k
)

corresponding to linear functions (2.2.1);

(3.3.2) u* = E (a2.
k=1

- b r
k k '

corresponding to hyperbolic functions 2.2.2); and

-1 ak
(3.3.3) u* = E c {a r (1 - ) + lnr

kkk a
k'
o k.

k=1 

with 6 = 1 fora
a ,o

= 0 for ak * 0,

• 
-1

and the indeterminateness of c
k 
(1-6

a o
) for a

k
= 0 to be

k'
raised according to the value(s) of ak, (k' k),

corresponding to power functions (2.2.3).

For the exponential fk-specification (2.2.4), however, the

integration implied by (2.3.4) cannot, in general, be carried

out analytically.

5
Cf. also Houthakker (1960), who does not consider, however,
the possibility ak = 0 for one or more k.



4. Direct utility functions

4.1. Uniqueness of the derivation of the D.U.F. from the I.U.F.

In principle, the I.U.F. (2.3.4) can serve as stepping

stones for the derivation of the direct utility functions if

the rk can be expressed in terms of the qk, i.e. "solved" from

(2.1.7), and substituted into (3.2.4), or any of the subsequent

more specific expressions. Actually, however, such a procedure

will succeed, i.e. yield analytical D.U.F. if and only if

particular conditions are satisfied.

A general condition is the existence of a one-to-one

relationship between the q's and the r's, i.e. such that one and

only one relevant (-to wit: positive) r-vector corresponds to

any given positive q-vector, like one and only one positive

q-vector corresponds to any positive r-vector according to

(2.1.7). Uniqueness of the relevant solution of the r-vector

in terms of the ch qK is ensured if the functions:

(4.1.1
gk(r ) = r-lf

(r

are all monotonic and all in the same direction, i.e. that the

g
k 

are either all monotonically increasing or all monotonically

decreasing, for all k.

Indeed all four specifications (2.2.1) through (2.2.4),

subject to the restrictions imposed on their parameters, imply

the like-directed monotonicity of the functions (4.1.1) for

r
k 

> 0; hence, at least in those cases, the one-to-one-ness

the relationships between the r-vector and the q-vector is

ensured.
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(4.2.1) qk =  

r E (a h+b hrh)
h=I

4.2. Linear and hyperbolic specifications of fk

First, (2.1.7) is specified further by means of (2.2.1),

yielding:

a
lk 

+ b
lk
r
k

for k = 1, .

This system may be rewritten as:

(4.2.2) qk E b r r + (aq
k
-b)r

k 
= a

lk 
Vk,

h=1

with a = E a ,
h=1 ih

i.e. a set of K equations quadratic in ri • r
k
.

In general, an analytical solution yielding the single

set of positive values r1 . r
K 
is feasible only if K does

not exceed 2, i.e. equals 2. Thus, one of the two r's, say

can be expressed in terms of the other (r2) by solving

one of the two quadratic equations; then, substitution of this

intermediate result into the other equation yields a fourth-

degree polynomial in r2. One and only one of its roots will be

relevant (real and positive). Evidently, the fact that polyno-

mial equations have explicit solutions up to and including but

not exceeding the fourth degree requires the restriction of K

to 2 (cf. Birkhoff and Mac Lane (1953)). Analogous considerations

and conclusions apply to the hyperbolic specification (2.2.2).
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4.3. "Power" specification of fk

Second, we may try to derive the direct utility function

underlying:

(4.3.1

a -1
ckrk

qk = K a
E c r

h h
h=1

with ak < 1, VK and a = 1 for at most one k.

Assuming that the ak
(a

h
) are all rational numbers, (4.3.1)

may be rewritten as a system of polynomial equations for

rl, rK, expressed in terms of the qk(k = 1, ..., K). In

general, these polynomials are of a high degree, obviating the

attainment of analytical D.U.F. Still, under special conditions,

to be dealt with below, the latter may be derived.

4.3.1. Particular proportions between the "powers"

In this case, we assume ak < 1 for all k. Taking some item

say 1, as the "base" commodity, we derive from (4.3.1):

ak- clkick 
a1-1

(4.3.1.1) rk • 
1 

Vk.
ql/c1 

Next, substitution of 4.3.1.1 into (3.3.3) yields:

a
k

(4.3.1.2) u* = E (ck/a )rk
k=1

k 
a
k 
(a

1 
-1)

ak
-1 a

k
-1

)(
clkick 

E (c
k=1 

k 
chic].

•

Thus, u. is expressed in ratios of all qk to q1, and

a single rk, viz. rl, only. Hence, the last member of (4.3.1.2)

represents "almost" a D.U.F., i.e. but for the rl. Hence, in

order to convert (4.3.1.2) into a complete, "pure" D.U.F., i.e.
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in terms of qk Vk, r1 has to be expressed in these quantities

alone. In principle, this may be done through substitution of

(4.3.1.1) into (4.3.1) for k = 1, resulting in:
a
k ak(ai l)

a -1
k)

c
k=1 cll./ 1

or, more simply:

a
k
-1 a1 1

= c.r1
 

r 
1

ak a1-1
a -1

K qk/ck 
. r

k a
k
-1

ca(4.3.1.3) l E c ( 
k=1 chic]. 

1 
= c

1

An analytical solution of (4.3.1.3) is possible if and

only if this equation can be written in the form of a polyno-

mial of at most the fourth degree (cf. Birkhoff and Mac Lane

(1953)).

This requires that the values of a - in relation to the

value of 
1 

< 1 - are restricted by:

(4.3.1.4) 

where i may be any of the integers 1, 2, 3 or 4, but is not

allowed to assume any other value.

Thus, (4.3.1.3) may be rewritten as:

a
k

4
clkick -(4.3.1.5) q Eck( { 
q /ci=1 kE{i} q1 1c1 1 = C

1

with kE{i} denoting an element of the integer set {1} to which

(4.3.1.4) applies.

For one or more feasible values of i, al may be empty,

meaning that it would not encompass a single k. In particular,

the degree of the polynomial might be reduced to a cubic or

even a quadratic one if al were empty for i = 4, and for i = 3

and 4, respectively, i.e. if the ratios (1-al)/(1-ak) were confined

to (at most) 1 : 2 . 3, and 1 : 2, respectively.
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By way of example, the following table shows a triplet of

such mutually compatible values of al and ak:

4)

-1

a1

-2 -3

a
k

4

3

2

1

Of course, this table allows for simple interpolation and

extrapolation. Anyhow, it shows for various (negative) values of

a
1 
(= min a ) to what extent the range of corresponding values of

a2' 
a3' 

and a4 
widens and shifts downwards according as a1 

becomes

less. It should be noted that because of ak
< 1, the •powers are ever-

positive and finite. Before reverting to this phenomenon in

section 5, we first present a simple example.

Take, for instance, K = 2, al = -1 and a2 = 0; then

(4.3.1) implies:

(4.3.1.6a) q

and

(4.3.1.6b) q

-2
l• rl
-1

✓ + c
1 1 2

-1
2• r2

lrl
-1 

+ 
c2
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For r
1

(4.3.1.7a)

and

(4.3.1.7b)

, these equations imply:

= 2u1 4c2/(c )

= - + 4c2/(c1ci1)} + 2 1/(c2q2),

obviously satisfying the budget constraint r1 q1  r q =
2 2

Substitution of (4.3.1.6) into (3.3.3) yields:

(4.3.1.8) u = c q + 
2 

c
1
c
2
q
1

+ c 
ql 

- Ac1q
1 
)2 + c c

2
q
1

2c
2
q
2

- a fairly complicated expression, compared to the simplicity

of the resulting demand equations (3.2.2). For further examples,

see Van Driel (1974), who also proves the positiveness of the

marginal utilities for analytical D.U.F., such as (4.3.1.8), in

general.

4.3.2. One of the a
k 
equaling one

Equations (4.3.1) imply:

ak -1
(4.3.2.1) rk

K a

= (qk/ck) Echrh
h=1 

Vk.

Assume that for a single k, say k = 1, the corresponding

equals 1:

(4.3.2.2)
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By virtue o (4.3.2.1) and (4.3.2.2):

ak
(4.3.2.3) rk

and
• •

- (4.3.2.4) c r =

a a
k
-

ak-1\ ak a-1 
k1

(q/c\

a1 -1
)\71/c1)

1

a

1) - 
E c

h
r
h
h

h=1

for k =

for k = 1.

• • • I

• Substitution of 4.3.2.3) and (4.3.2.4) into 4.3.1.2)

yields:

(4.3.2.5) u* =

= u,

a -1
k

k=2
E c

kl(1-a )/ak k 1/c1

cikick)

i.e. the indirect utility function re-converted to the direct

utility function. The marginal utilities corresponding to

(4.3.2.5), evaluated at the consumer optima, appear to be

positive for all k.

4.3.3. Possible extensions

Mutatis mutandis, the preceding reasoning may analogously

be administered to possible extensions of the F.E.A.M. in its

"power" version. In particular, this applies to the following

"cross-breeding" between (G.)L.E.S. and F.E.A.M., viz.:

(4.3.3.1

a
c
k 
(p

k 
/Z) k

a
k'

Eck,(1) ,/Z)
k'=1

. (Z/Pk).
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• •

withZ=C- Ey
1= k"

(> 0) denoting consumption of k minimally required,
••••••••

and Z representing "super-numerary income

respectively (cf. Van Daal and Somermeyer (1977)).

The I.U.F. corresponding to (4.3.3.1) is completely

analogous to (3.3.3) or (4.3.1.2), with the rk ) redefined

as pk/Z; cf. eq. (2.1.7) in Van Daal and Somermeyer (1977).

The reason, of course, is the resemblance of (4.3.3.1) to

the F.E.A.M. and the linearity of the relationships between

the "new" variables qk-yk and Z on the one hand, and the

original variables qk, C (and the pk,) on the other hand.

Also the subsequent considerations and conditions presented

in sections 4.3.1 and 4.3.2 remain the same, provided that

the qk are replaced by "surplus" consumption qk-yk.

5. Approximations

Section 4 showed that the restrictions to be imposed on

the power parameters of the "power" version of the F.E.A.M., in

order to "merit" an analytical D.U.F., are rather severe. Still,

these sets of demand functions might more generally he considered

as associated with "approximate" analytical D.U.F. - provided

that the a could reasonably be arranged into not more than 4

classes according to value, while each class could satisfactorily

be represented by a kind of modal or mean value, as exemplified

in the table in section 4.3.1.

Alternatively, if one of the ak were very close to 1, the

utility function (4.3.2.5) might well be an acceptable approxi-

mative D.U.F. for the set of demand functions in question.
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Indeed, both contingencies appear to have an empirtcal

basis (cf. e.g. Somermeyer a.o. (1961)): values of ak

close to (if not exceeding) 1 have been found, as well as

minimum values of a not less than around -2.5.

Consequently, the restrictions on parameter values for

drawing analytical D.U.F. may be less severe in practice than

they appear to be in pure theory.
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