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ASPECTS OF ELLIPTIC CURVES

AN INTRODUCTION

by

R.J. Stroeker

^

PREFACE

This exposition is meant to give a bird's eye view on

the theory of elliptic curves at an elementary level. So as

to introduce the various aspects of the theory within a frame-

work both brief and simple, we have avoided wantonly the

technical language of schemes and the like. Also, in order to

keep a close eye on the number of pages, we could not be too

ambitious. Thus important topics like complex multiplication

and the Calais action on the points of finite order one will

look for in vain, while we only briefly touched on the

connection with modular functions.

December 1977
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To make this treatise at least to some extent self

contained, the first section covers the relevant notions of

algebraic geometry which are needed in the sequel. In section 2

plane cubic curves are discussed and the next section gives

the connection with elliptic functions. Not until section 4

a general definition of elliptic curves is given. The last

section is mainly devoted to the Mordell-Weil group (e.g.

Mazur's recent result on the torsion group of an elliptic

curve over 31) and some outstanding conjectures, like those of

Birch and Swinner'ton-Dyer and of Weil.

Textbooks which are especially useful in connection with

the more fundamental concepts are: Fulton [17], Lang [21],

Mumford [30], Robert [421 and Shafarevich [49].

Finally the author wishes to express his sincere gratitude

to F. Oort for his advise and valuable suggestions. It goes

without saying that the author remains solely responsible for

the remaining errors and misconceptions.
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1. PLANE ALGEBRAIC CURVES. BASIC CONCEPTS.

Throughout this section k will be an arbitrary field

with algebraic closure K = k.

A plane affine algebraic curve C is the set of all zero's,

contained in the affine planeA
2 
' 

of a polynomial fEk ,y 9
K 

irreducible in K[x,y]. Thus

C = { (x,y) /4 I f(x,y) = 01.

The affine plane/A
2 

may be embedded in the projective plane

2
W
K 

by means of the identification (x,y) =' (x:y:1). We define a

rk,

plane projective algebraic curve C as the set of all zero's

of a homogeneous polunomial fek[x,y,z] , irreducible in

KEx,y,z] :

2
C = {(x:y:z) e WK I f(x,y,z) = 01.

In this first section, we shall generally consider affine

curves only. All concepts being discussed here for affine curves

may be extended in a more or less natural way to projective

curves. Since we can not give more than the bare minimum of

information, necessary to understand at least the principles

of algebraic geometry, in connection with the (arithmetical)

theory of elliptic curves, we feel justified to do so. A text-

book which contains all we need here (and far more) is

Shafarevich's book [0].

The degree of the polynomial f is called the degree of C.

Algebraic curves, as defined above, are also called absolutely
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irreducible.

Let C be an algebraic curve, given by the equation f = 0,

f 6 kb,(,)]. The ideal (f) in k[x,3;,], generated by f, is a prime

ideal. hence

k EC] k[x,y]
f)

is an integral domain. Let k(C) be the quotient field of k[C3.

This field is called the function field of C and its elements

are the rational functions defined on C. Clearly, the field

k(C). has transcendence degree 1 over k.

An important notion in the theory of algebraic curves is

that of birationaVtransformations. Such a transformation is

device which puts the points on a curve C in one-to-one

correspondence with the points on another curve C', which is

possibly of d simpler form (e.g. its degree may be lower).

To be more precise, let C and C' be two algebraic curves given

by the equations f = 0 and f' = 0 respectively. A rational

transformation p: C C' is a mapping, defined in all but a

finite number of points on•C, which is given by a pair O p 4)2

of rational functions defined on C. A rational transformation

pi C -0- C' is called birationat if it has a rational inverse.

In that case C and C' are birationally equivalent.

The function fields k(C) and k(C') of two birationally

equivalent curves are isomorphic. For, if the birational

transformation p: C' is given by cp ,(1)2 k(C), then the

homomorphism T: k[X t 9Y k(C), defined by T(x') = 4), and

1.(30) = (1) 2 , has kernel Ker(t-) = (f), where f is the defining

polynomial of C'. Hence we have an injective homomorphism
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E ',30]
(f)

k(C),

which can be extended to an injective homomorphism

k(C 1) k(C).

Similarly, there is an injective homomorphism

• k(C) 

which is inverse to the former. Conversely, if k(C) k(C'),

then C and C' are birationally equivalent (over k). So we may

alternatively define: the curves C and C' are birationally

equivalent iff k(C) = k(C')

As an example, consider the curves

C : x
3 3

Y = 0 and C' : Y
2 
=

defined over k =IR. The transformation given by

X = /6.2.22
1-y ' 1-y

2

shows that C and C' are birationally equivalent over R.

For an algebraic curve C, we define the local ring O'( C)

a point P E C as follows:

(c) := —
G 
E k(c) I F,G e k[c], G(P) 01.

The defing rational functions 0 1 ,02 e k(C) of a rational

transformation p: C 4 C' belong to e(C) for every P C at

which p is defined. The unique maximal idealI(C) of lep(C)

contains information on the multiplicity of the point P as a

zero of the defing polynomial of C. To see this, we first

explain what is meant by simple point and singular point.



Let P be a point on a curve C, given by the polynomial f k ,y]
of degree n. Every line through P intersects C in exactly n points

counting multiplicities. If such a line L intersects C in P

r (> 1) times, i.e. (f=0,L=0) has an r-fold root in P, we call

r the intersection multiplicity of L at P, notation:

r = i(C L,P). Then P is a point on C with multiplicity r, iff

min i(C L,P) = r. If r = 1, then P is a simple point (or non-
L3P
singular point) and if r > 1, then P is called a singular

point of C. It follows that C has a unique tangent at P iff

P is simple. If P = (p ,p ), then the tangent at P is

121) 
(x"..1) 1 ) + 01) 

("P 2) = 

0.
a pkax/ P

af af
By definition, at a singular point, 77 and 77 must vanish

simultaneously. A curve C with no singular points is called

non-singular. Note that the rational transformation p: C fp2

is defined in each non-singular point of C.We say that p is

regular in such a point. A birational transformation which is

biregular everywhere (this is the case when both curves con-

cerned are non-singular) is a birational isomorphism.

Now let P be a non-singular point on C with coordinates

in k. Then the maximal ideal (C) of the local ring at P is

principal ideal. The converse is also true. A generator for

Up(C) is called a local (or uniformizing) parameter at P;

(C) = (T) with local parameter T at P. Clearly, if P is

simple and 0 i (1)E ep(C), then there is a unique m65E, m > 0

and a unit u 10"(C) such that (I) = UTM. More over, this integer

m does not depend on the choice of T. This means, since P is

rational over k, that for each (I) e (C) and for each 9, E. IN,
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there exist unique elements a0,a 1 ,...,a2...1 of k such that

+ a T)6 In(C).• •- (a + a
1 T 

+
Z-1

This gives rise to an embedding of qi,(c) in the ring of

formal power series kE[T]]. hence every rational function 9

aefined on G anti regular at the simple point Pe C (i.e.

e ep(C)), can be uniquely expressed as a formal power series

in the local parameter T at P.

Another essential concept in the theory of algebraic

curves is that of divisor. Let P be a simple point with

coordinates in k, PC C. For any (pe k(C), we define the integer

oru (9) as follows: if ct) = 0, then ord p(4)) = 00. If 0 0 4)6

then ord (4)) iin, where in is defined by (1) = uT
m 
. Finally, f

0 i 9E. k(C) then = -4) 1 /4J2
 
with 

4)1'IP2 
e 6 (C) anti ord 00 =

P P

orap Op i) - ordp(ip2). Then ord
P 

becomes a valuation on the field

k(C), i.e.

ordP(qt. 1 +(I)2)
min(ord1)(4 1),ord p(q 2)) and

ord(1 2 
i(1) ) = ora (

1
9 ) + ord

P
(4)

2
).

P P 

Clearly, ord p(k(C)-{0}) =r43. If orup() = in > 0, then (I) has a

zero of order m at P and if ord (9) = -m < 0, then 4) has a pole

of order m at P.

Assume that G is non-singular, so that all points on C are

simple points (defineu over K). We also assume that C is a

projective curve. A divisor D on C is defined to be a formal

finite sum
<03

n (P)
PEG

where n
P
E 'E. The set of divisors on C can be made into an
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abelian group with respect to the following addition: if

D = E n1 (P) ana D' = E q(P), then D D' := E (np+n)(P).

We write D > 0 if n > 0 for all P 6 C in the divisor== P —

D = E np(P), if.n > 0 for at least one P, then we write D > 0.
P

If D = E (P), the finite sum E n is called the degree of D,
P P

notation: deg(D).

A special class of divisors is that of the principal

divisors:

= I orci (4)) (P) , 0 €, K(C)
PEC

These principal divisors form a subgroup P(C) of the group of

all divisors Div(C) on C. In fact P(C) is already a subgroup

of the group Div0(C) of all divisors of degree zero. Indeed,

it follows from Bezout's theorem ([49], p.199), that deg() =

= I ord.( = (number of zero's) (number of poles)

The factor group

CZ(C) :=
Div(C)

P(C)

= C.

is called the group of divisor classes. Two divisors D
1 
and D

2

are equivalent, in notation D
1 

J
2' 

iff D
1 
- D = () for

some q)e. KM. Because of the fact that deg() = 0, all divisors

in the same divisor class have the same degree. This is the

degree of the divisor class.

Let D be a divisor on C. Consider the set of all 1) e K(C)

that make D effective, that is to say: (4)) + D > 0. Thus we

define

L(D) := iq 1:.(G) I (4)) + U > 0}.

We also include tne zero element of K(C) in L(D). Then it is

easy to see that L(D) is a vectorspace over K. More over, if



Z(D) := dimKL(D), then Z(D) = 0 if deg(D) < 0 and 2,(D) <

< deg(D) +1 if deg(D) > U. Consequently, L(D) is finite

dimensional. An important property of L(D) is, that equivalent

divisors determine the same vectorspace, up to isomorphism.

A divisor D = E n (P) is defined over k if it is invariant
PEG

under the action of the Galois group Gal(/k). By this we mean

that for all PEG and a 6 Gal(
K
/ ) we have n

aP 
= np. When this

is so, the space LCD) has a basis consisting of functions of

k(C) (cf. [7], p. 210).

Beside the principal divisors, another type of divisor

plays an important role, namely the divisors of (linear)

differential forms on C. An algebraic definition of these

differential forms may be given as follows: consider the set

V of all mappings d: K(C) K(C), with the following properties:

d(a) = 0 for all a e K,

(ii) d((i) ) = d(4)) + dW for all (f),IP K(C) and

(iii) d(.11)) = (y) + 1Pd(4)) for all 4),11) 6 K(C).

The functions d are called derivations. The set V can be made

into a vectorspace (of dimension 1 over K(C)) in the natural

way. From (i) and (iii) it follows easily that a derivation is

linear over K. Let St(C) := V be the dual space of Vc (over K(C))

i.e. the 1-dimensional vectorspace over K(C) of linear maps

w: V, K(C). This vectorspace Q(G) is the space of differential

forms of K(C). Now every (pc K(C) defines a differential form

d d(4)). Let T be a local parameter at a point P of C.

Considering the differential form w = cOder (4) i 0 ), we define
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ord (w) ord
P
(0. Note that this definition does not depend

on the choice of T. Then

w) := I ord (w)(P)
PEC

is an element of Div(C). From the definition it follows easily

that (4w) = (w) for all cp K(C).

Since Q(C) is a one-dimensional vector space over K(C), we see

that the divisors of all the forms we i/(C) are equivalent to

each other. Thus, they form a single divisor class, the

canonical class, denoted by K.

A differential form w e c((;) with no poles, i.e. (4) > 0,

is called a aifferential form of the first kind. The space of

all such forms, we denote it by S2[C], is a vector space over K.

It's dimension is the genus g of the curve C:

g(C) =dim
K
S/EC].

Both the genus and the degree of the canonical class are

birational invariants of the curve C. In fact we have

deg(Kc = 2g

This is a consequence of a very deep result, namely the Riemann-

Roch theorem (cf. [8] chapter II). It asserts (for algebraic

curves) that

Q(D) - Z(Kc-D = deg(D) g + 1,

for any divisor D of C. Indeed, set D = (w) in the above formula,

then deg(w) = - 9(0) + g - 1 = 2 - 2 since Z(w) and
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2. PLANE CUBIC CURVES.

In this section we assume that k is a field of characteristic

0 2 or 3, with algebraic closure K = k.

A plane algebraic absolutely irreducible projective cubic

curve C over k is given by an equation

F(X,Y,Z) = 0

where F k[X,Y,4 is homogeneous, absolutely irreducible and

of degree 3. Such a curve can have at most one singular point,

because a line intersects C in exactly three points (counting

multiplicities). A simple point PE C is called a flex (point

of inflection) if its tangent at P intersects C exactly three

times in P. The flexes and the singular point (if in existence)

lie on the curve with equation

H(X,Y,Z), = 0,

where H is the hessian of F, given by

32F(X 1 ,X2,X3)

(
H(X1 

,X
2' 

X
3 
) = det

ax.ax1 j
•

The Hessian H is of degree 3 and consequently H intersects C

in precisely 9 points (counting multiplicities). If each of

those points has intersection multiplicity one, then C has

nine different flexes. This is exactly the case when C is non-

singular.

The following two theorems give a standard form for a plane

cubic curve (in characteristic 0 2 or 3).
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THEOREM 1. Let C be an absolutely irreducible non-singular

cubic curve definea over k. More over, let P be a flex on

C with coordinates in k. Then C is birationally isomorphic

over k to a curve given by an equation (in Weierstrass

normal form)

Y
2
Z = X

3 
+ AXZ

2 
+ BZ

3

with A,B e k and 4A + 27B
2 
#0. The flex P then corresponds

with the point (0:1:0) on the line Z = 0.

The proof exhibites suitable coordinate transformations

(transform P to the point (0:1:0) and then make Z = 0 tangent

at this point, and so on) so as to obtain a birational trans-

formation defined over k. The fact that C is non-singular can

be seen from 4A
3 
+ 27B

2 
0 O.

For singular cubic curves we have

TAEOREM 2. If C is an absolutely irreducible singular cubic curve

defined over k with a flex defined over k, then C is

birationally equivalent to a curve, given by an equation

Y
2
Z = X

2
(X - AZ),

with A C k. On this curve (0:1:0) is the flex and 0:0:1)

the singular point.

We distinguish two cases:

1) A = 0. Then Y
2 
Z = X

3
, or in affine coordinates y2 . There

ER

is a "double tangent" at the singular

point (0,0) - in fact, every line x = a

is a tangent at (0,0) and y = 0 is the

tangent cone. The singular point is called

a cusp. Let Cns denote the set of non-
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singular points on the curve C. It is easy to see that the map

1
c -+A

K
=K , (x,y) 14- x/y and flex 0, is a bijection. All

ns

finite points on C may be given by the parametrization

(x,y) = (t2,t3).

2) A 0. The equation becomes y
2 
= x

2
( + A) in affine coordinates.

There are two "distinct tangents" at the

singular point (0,0): they form the

tangent cone. The singular point is called

a node. Choose a e K such that a2 = A.

The map C
ns 

/A
1 
- {0} = K

x 
, given by

y-ax
y+ax

bijection. The finite points (x,y) (0,0) on C are given by the

parametrization

(x,y) and flex 14- 1, is again a

(x,y).= (t
2
-A,t(t

2 
-A)).

This shows that in both cases C is a rational curve i.e. C may

be parametrized by rational functions or, equivalently,

k(C) = k(t) is a pure transcendental extension of k. We shall

now show that a plane absolutely irreducible non-singular cubic

curve C is not rational. That is to say that the curve C is not

1
birationally isomorphic (over K) to WK.

r
First we observe that RLWK_I = 0, since a differential of

1
the first kind on IP

K 
can only be zero. It then follows that the

genus of 11),/, equals zero.

Now if C is a plane absolutely irreducible non-singular

cubic, then C may be given by the affine equation

y
2 
=x 

3 
+ ax + b.

2
Consider the differential form w = For any point PE C, P641.K
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•

with yp 0 0, we see that x is allocal parameter at P and ord (w)

= 0. If yp = 0, then y is a local parameter at P and again

ord (w) = 0. Let P coC C be the point at infinity. Then z is a

local parameter at P and

-2 -3
x = uz , y = VZ 9

where u and v are units in the local ring of P . This shows thatco

ord, (w) = ord (dx) - ord (y) = ord (x) - 1 - ord (y) = 0
0.CO CO CO

and thus (w) = 0. Now every differential form in R[C] can be

written as

hence (I) = f(x) +

with cl) K[C] .

y, where f,g 6 K[x]. Then

0 < ord 01)) < min(ord (f(x)),ord (g(x)y)).p p
co 00

If g 0 0, then it follows that ord < -3 a contradiction.

Hence g = 0 and 4) = f(x). More over, if f is not a constant (00),

then ord (4)) > 0 again gives a contradiction. We deduce that

e K. But then dimO[C] = 1 and this means that the genus of

C equals 1. Since the genus is birationally invariant, it

1
follows that C IP K . We also observe that the canonical class

K is zero and this verifies

particular case. We have shown

deg(K) = g(C) - 1 in this

THEOREM 3. A plane absolutely irreducible non-singular curve C

has genus 1. This means in particular that C can not be

parametrized by rational functions.

e return for a moment to singular plane cubics. As was

shown, the non-singular points on a singular cubic are in one-
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to-one correspondence with the elements of the additive

1 +
algebraic group £4 = K or of tne multiplicative algebraic

fk, x
group Ali( - {0} = K . This hints at the existence of a group-

structure on the set of non-singular points of a plane singular

cubic curve. We shall see that such an algebraic group structure

also exists on plane non-singular cubics.

Let C be a plane absolutely irreducible non-singular cubic

curve. Then C may be given by an affine equation

Y
2 
= x

3 
+ ax + b with a,13 K

and the flex, which we shall denote by 0, lies on the line at

infinity z = 0.

For any two points P and Q on C, let R be the third inter-

section point of C and the line through P and Q (this line is

the tangent to C at P if P = Q). The line through R and 0

S=)+Q
intersects C at a third point S. We

define P + Q := S,

the sum of the points P and Q (not to

be confused with the sum of the divisors

Clearly, P + Q= P

and P + 0 = P. For any PE C, the line joining P and 0

intersects C also in the inverse of P, -P (this is, because 0

is a flex). Observe, that in case one takes a point 0' on C

which is not a flex as the neutral element, the inverse of P

can be constructed by joining the third intersection of the

tangent to C at 0' with P. So far, this shows that the choice

of neutral element is immaterial. Explicit addition formulae

may easily be given. For instance, if P = (x,y), then -P = (x,- y)
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in case 0 is the neutral element: (x,y) + (x,-y) = 0.

We are left to show that point adaition, as defined above,

is associative. To prove this, we proceed as follows. For any

line L, we define the divisor

(L) = E n (P)
P '

PeC

where n
P 

0 if P t C and n is the intersection multiplicity

of L at P in case PEG. Then aeg(L) = 3 for any line L.

Consequently, the divisors of any two lines L I and L
2 

are

equivalent, (L I) ix, (L
2
). Now take three points P,(4 and R on C.

Let L 1 be the line through P and Q and L2 the line through 0

and P + Q. Then L I intersects L2 in S say, and SEC. Thus

1
) = (P) + (Q) + (S) and (L2) = (S) + (0) +

Since (L I) (L) we deduce

(i) (P) + (Q) qi (0) (P+0.

(P

Similarly, let L3 be the line through P + Q and R and let

L4 join (P+0 + R and 0. Suppose that L intersects L4 in T€ C.

Then

(L
3
) = (P+Q) + + (T) and (L4) = (T) + + ((P+Q)+R).

This gives as before

(ii) (P+Q) + (R) ) + ((P+Q)+R).

Combining (i) and (ii), we see that

(P) + (Q) (R) 2(0) + ((P+Q)+R).

In an analogous fashion, we construct a point P + (Q+R) C

such that

(p) + (R) 2(0) + (P+(Q+R)) •
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Consequently,

((P+Q)+R) p.f.(Q+R)).

Now suppose that (I)+Q) + R P + (Q+R). Then there is a

function (pE K(C), such that

((P-F.(1)+R) - (P+(Q+11)) =

1
Considering (I) as a function 4): C 

K, 
it follows from the fact

that ci) has precisely one pole and one zero, that K(C)

This means that cp is a biregular birational isomorphism. hence

q, 1 
iC = WK. This s contradictory, as we have seen before. Thus

(P+0 + k = (Q4-R).

o show that the group law on C is algebraic, we have to

prove that the mappings

f: C C , f(P) = -P and

g: CxC C g(P,Q) = P

are regular. This follows easily from the explicit formulae

one can obtain in the coordinates of P and Q, working with the

equation
2 3

+ ax + b. Note that the group law on the set

of non-singular points of a singular cubic is also given by

lines.

We indicate the group on C by COO. If the curve C and the

flex 0 (or another neutral element) are defined over k, then the

points on the (non-singular) curve C with coordinates in k

form a subgroup C(k) of C(10. This follows simply from the

observation that a line joining two points defined over k,

intersects C in a third point with coordinates in k (note that
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b k) . This group C(k) is called the group of k-rational

points on C. In case k is an algebraic number field, the group

C(k) is finitely generated. This theorem, known as the Mordell-

Weil theorem, will be discussed in a later section.

A more precise statement on the algebraic group of points

on a non-singular cubic, is given in the following

THEOREM 4. Let C .De a plane absolutely irreducible non-singular

cubic curve with a point 1)0 e C. Let Div°(C) be the group of

divisors of aegree zero on c and, let P(c) be the subgroup of

principal aivisors, then

C(K) Div°(C)=

where the isomorphism is given by P Classy with (P) - (F0) e

Glass . In particular, the group law on C is independent

(up to translation) of the choice of the point Po.

We shall prove the following theorem, which is contained

in theorem 4.

THEOREM 5. Let C and C' be two plane absolutely irreducible

non-singular cubics and suppose 0 and 0 are the zero elements

of the groups COO and COO respectively. Then every

K-birational isomorphism p: G Cwhich sends 0 to 0' is a

group isomorphism: C(K) f--1; C'00.

Proof. For any two points 1),(1 6 C, we have

(P-0) (Q-0) (0)+0-0).

Since C and C' are absolutely irreducible, we know that p is

biregular. It then follows from K(C') K(C), that
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(P(P)-0') + (P(Q)-0') 11 (P(P+Q)-0'),

because of p(0) = 0'. This gives p(P+Q) = p(P) p(Q) as

required.

Note that, if 0 and have coordinates in k and C, C'

and p are defined over k, then also C(k) 11. C l(k).

A natural question is: what does such an isomorphism

look like in terms of the coordinates? The answer is given in

the following theorem.

ThEOREM 6. We consider two plane absolutely irreducible non-

singular cubic curves C and G' , given by the equations

v2Z = x3 - AXZ2 BZ
3 

2 Y
I2

Z = x'3 A'X'Z'2 - B'Z'3

respectively, with A,B,A 1 ,B I 6 k. Suppose 0 = 0' = (0:1:0)

gives the zero elements of C(K) and C' (K). Then every birational

isomorphism p: C C' , defined over k with p(0) = 0' is of

the form

X' = c
2
X

3
Y'= c Y

Z' =

A I = c
4
A , = c

6
B and c 6 k*.

Proof. We give only a sketch. Put T = S
X

I. Then= — and IP

T is a local parameter at 0 (we consider T,(1) and

of k(C)). It is easy to see that

ord
0 
(4) = -2 ana ord0 

(4)) = -3.

11) as elements

From the theorem of Riemann-Roch it follows that

2,(20):= dimkL(20) = 2 and 1(30) = 3.

Then clearly, {1,4)} is a basis of L(20) and 11,(P,10 is a basis

of L(30).
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Similarly, if yt,
X °

= •••••••••

Z °

Yt
and tpt = -T then {1 ''V

basis basis of L 1(20°) and {1,4)° ,4) °) is a basis of L °(30°).

is a

The birational isomorphism p induces an isomorphism k(C 1) 4- k(C).

rx,
Consequently, L(20) = L'(20°) and L(30) = L °(30'). Identifying

k(C) and k(C'), it is clear that

e L(20) implies that (f)' = acp + b with a,b e k and

(Pt L(30) implies that = rcp + si + t with r,s,t 6 k.

To arrive at the required result is now just a matter of

arithmetic.

Note that if A and At are the discriminants of the equations

for C and Gt respectively, then A ° = c
12 
A. Since A = 16(4A

3 
-27B

2 
) 0,

3 3 3
the expression A /A makes sense and A ° /A = A /A. For any

plane absolutely irreducible non-singular cubic curve C, we

define the modular invariant as the expression

j(C) = (403 %3/A ,

if C is birationally isomorphic to the curve C ° with equation

2 32 3
Z =A - AXZ - BZ

in normal form with discriminant A. The constant appearing in

the definition of j(C) is a traditional one. It follows from

the above that two birationally isomorphic non-singular cubic

curves have the same modular invariant. Also, if k is algebraically

closed and j(C) = j(C), then there exists a k-isomorphism

between C and C °.

THEOREM 7. For each je K there is an absolutely irreducible

non-singular cubic curve C , defined over k(j) such that j(C) =
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. 2
Proof. If j = 0, such a curve is Y Z = X

3 
- Z . If j = 123,

3
then Y

2
Z = X - XZ

2 
satisfies the requirement and if j 0 or

12
3 

then Y Z = X3 - AXZ2 - BZ3, with A = 4i,j(j-123) and

1 . 3 2
= jw(3-12 ) is a curve with modular invariant j.

3. ELLIPTIC FUNCTIONS.

Throughout this section we shall work in C, the field of

complex numbers.

A lattice in the complex plane C is a free subgroup of

rank 2 over Z, which generates C considered as a vectorspace

over R. Thus a lattice L in C is a subgroup of the form

L = ?Zw 1E4)
1 2

for two complex numbers w 1 
and w

2' 
such that C = Rw I 

Es Ew •
2'

clearly this is so iff w2 # 0 and w 1 /w2 R. It is customary

to select a basis {w i, a)} for L for which Im(w 1 /w2) > 0 i.e.

lies in the upper half plane H := fx+iy 1 y > 01.

An elliptic function f (with respect to the lattice L, we

denote f also by fL) is a meromorphic function on C, which is

L-periodic. Thus

f(z+w) = f(z) for all z E C and

Consequently, an L-elliptic function may be viewed as a function

defined on the factor group 
c
L. 

Since f is L-periodic, the

values it takes are already determined on the set of points

= a + 
tw1 2, 

0 < ,t2SY 

for any a E C. Let Pot be the fundamental paralleLlogram

:= {z 6 C z=a+t
1
w

1 
+t

2
w 
' 

0 <
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Ct+W
1

a-1-w
1
+w

2
By a proper identification of the

points of aP
a' 

the boundary of Pa

C 
it is easy to see that /

L 
is

(topologically) homeomorphic, as a

real manifold, to a torus, i.e. to S
1
xS

1
. Hence /

L 
is a compact

group. This shows that a non-constant L-elliptic function

(viewed as a meromorphic function on /
L
) must have a pole,

because of Liouville's theorem.

For any L-elliptic function f 0, we can use the Laurent

expansion of f at a point a E T, to define the integer ord
a

the order of f at a. Thus, if orda(f) = -n neIN then f has

a pole of order n at a and if orda(f) = n IN, then f has a

zero of order n at a. Since f is L-periodic, we have

ord
a+w

(f) = ord (f) for any w E L.
, a

hence, in writing ord
a
(f), we may consider a as an element of /

The formal sum

div(f) = E orda(f)(a),

the divisor of f at a e /
L' 

has only finitely many non-zero

coefficients, because the zero's and poles of f are isolated.

They form a subgroup, the group of principal divisors

of the additive group of all divisors Div( /
L
). This group

is, as before, defined as the group of all finite

formal sums
<00

E (a) n E
a

with respect to the usual addition.

Before going into the question of the existence o

L-elliptic functions, we state the following theorem (a proof
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of which may be found in [21]).

TaEOREM b. Let f be a non-constant L-elliptic :unction. Then

(1) f is not entire

(2) E Res(f) = 0

(3) E orda(f) = 0

( 1 )(4) E oraa(f)a =0 (addition in

Now (1) and (2) show that an elliptic function must

have at least two poles (counting multiplicities). The fact

that an elliptic function f has as many zero's as poles (this

is the contents of (3)), implies that f takes all complex

values the same number of times. Indeed, for any a e C, f and

f - a have the same poles, and consequently also the same

zero S.

The existence of L-elliptic functions may be proved by

exhibiting the Weierstrass ti-function:

-2
+ E ((z-w)

cosi,
wyk0

The •series entering in the above formula is absolutely convergent

for all z L and converges uniformly on compact sets C c: C

with ce)L = 0. hence 1?1, is meromorphic with a double pole (i.e.

of order two) at each lattice point and with no other poles.

So has only one double pole on the torus /L. 
It is not

01,

difficult to show that pL is an even elliptic function. The

derivative E, can be computed by termwise differentiation, and

thus we obtain

= -2 z-w)
-3

wEL
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This function is an odd elliptic function with one pole of

order three at 0 E.

by considering the Laurent expansion o 1;31, and IT!, at the

origin, it is a straightforward exercise to show that

3
= 4K(z) g2K(z)

identically in z, where g

= 140
wEL
wi0

= g2(L) := 60 E w
-4 

and g
wEL
w00

= g3

3 2
We claim that g2 -• 27g3 i 0. To prove this, we consider the

zero's of Via(z). Since t)14 has a treble pole (at 0), this

function must also have three zero's, counting multiplicities.

On the torus 
c
/ there are exactly four points a, such that

2a = 0 (i.e. 2a E 0 mod L in C). They are represented by

I w
2 2 

w 
1 , 2W22 2 3

where w
3 
:= w2 in the fundamental parallellogram

1

Since is an odd function, we find that

LI t-

"Wi) = -K(14).) for i 2

:=

hence w 1, w 2 and iw, are precisely the three (simple) zero's

og' pL. Now put e. := g) ( w
i
) for i = 1,2,3. Comparing zero's

and poles, we see that

pi 2(z)= 4( 14(z)-e 1)( 14(z)-e2)( ( )-e3
)

identically in z. because b 
L 

takes on the value e. exactly
u 1

twice, we have e
1 
. i e. for i i j. Then the discriminant A of

3

the polynomial 4x
3 
- g2x - g3 does not vanish, i.e.

-4 3
(e.-e.) = 2 kg2

3

2
27g3).
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Clearly, the set of all L-elliptic functions forms a

field whose constant field is C. It turns out that this field

is generated by h.. ana

THEOREM 9. The field of L-elliptic functions is generated by

and K. In particular, the field of even 14-elliptic

functions is the field c(pd. The functions

the functional equation

4t)
3
(z
L ) - g2PL(z)

3 2
More over g2 - 27,3 O.

and sat is fy

We now turn our attention to the relation between elliptic

functions and non-singular cubic curves defined over C (elliptic

curves!)

Let C be the irreducible cubic curve given by the equation

Y
2 

= 4X
3 
- g

2 
XZ

2 
- g3Z

3
.

- 

3 2
This curve is non-singular iff g2 - 27g3 O. If so, the map

p: C C CIP
2 

given byc

(z
3
pL(z),z

3
t3L(z),z

3
)p: z

factorizes through / • : consider the diagram

e c c:11)
c

,f1

e /L

2

where z z (mod L). Then i3 is the map given by i'37r =.p.

It is not difficult to see that 6 is a bijection: is onto

since p is onto and is injective because p,„ is an even

function and N, is an odd one. As we know, the points on the
1,

torus /
L 
form a group with respect to ordinary addition and
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the points on the curve C form a group C(T) with respect

to point addition. The bijection r) is a group isomorphism:

To prove this, we observe that the addition on C is given

by: three points have sum zero whenever they are collinear.

Suppose IS(z 1) = P 1 € C and 6(z2) = P
2
ec. Thus we have to show

that f3(z 1+z2) = P
1 
+ P

2
. Suppose

1 
(x ,y

1
)

-
and P 2
 

(x,,y2).

If x 1 x2, then y, = -y l and
L

2 
Also 

= t)L(z2)
P

1 
+ P = O. 31,(z i)

and hence z
1 
+ z

2 
E 0 (mod L). This

shows that p(0) = O. Assume x 1 
0 x

2
.

Then tlij(z i) pL(
2 
). This means that

we can find a,b I such that L(z1) = tiL

tf)1,( 2) +

= ax + 1).

1 b and 8,
L
(z )

b, or geometrically, P and P2 lie on the line

The function f(z) lyz) - b is

L-elliptic with a pole of order 3 at O. _Thus f must have three

zero two of which are known to be z
1 
and z

2. 
Let z

3 
be the

third zero of f. Then, since E orda
(f)a = 0, we deduce that

z i + z2 + z3 E 0 (MOd L). The points P l, P2 and P3 = (z3)r3 

are collinear. Because P, = ( 3,y3) implies -P3 = (x3,-y3),

we find that f5(z
1 
+z

2 
) = ri(-z

3 
= -P

3 
= P

1 
P2.

We have proved

THEOREM 10. For any lattice L of C, le
t 

C
L 

be the non-singular

cubic curve given by the functional equation of PL(z)* 
Then

2 3
the map P: Q C C: Pc p(z) = (z

3p (z),z z),z
3
) induces

a group isomorphism between and C (C).
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All we have done so far depends on the lattice L. A

natural question may be asked: what relation should exist

between two lattices L 1 
and L2 (or two toruses L 

and /.
1

to be bira“onally isomorphic?

First we observe that for any lattices L and M the toruses

/
L

and /
M 
are topologically the same. This is also true for

the groups on 
C
/
L 

and 
C
/ with respect to ordinary complex

addition. So we need extra structure. Consider the torus C/
L

as a Riemann-surface (i.e. a hausdorff space with an analytic

structure). Note that the isomorphism given in theorem 10 is an

analytic isomorphism. Now let L and M be two lattices and let

/L /
M 

be an analytic isomorphism such that q)(0

Consider the commutative diagram:

erP

Then for any z 6. a; ana wE L, we must have ;(z+w) $(z) E M.

More over (T(z+w) (z) is independent of z. Consequently,

V(z+w) = r(z) and this shows that rp" is an entire L-elliptic

function. Thus $(z) = az + f3. Clearly = 0, since (1)(0) = 0

and a O. This means that aL = M (we call such lattices

homothetic). The converse is also true i.e. homothetic lattices

induce an analytic isomorphism between their toruses.

Obviously, homothety is an equivalence relation. Let us

denote iWIL
h 
M. Thus L M iff there is an a EC such that

aL = M. Now for each lattice L there is at least one T E Ii

z e. 0; I I m ( z) > 0 } such that L qih L := Z e Zr. For instance,
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is a basis for L with Im(w 1 /w2) >

Then L M iff LT qo M •

T

0, put

Suppose LT = aL , with a i 0. Then there are integers

a,a l ,b,b',c,c',d and d' such that

at - at b
-
T= b

a=cT+d a =C 1 T t d'

ati-o
CT+d

and 
- 

or
1

and

(a b)
The matrices S =

c d
and S'

c't l +d' •
It)

must be inverse to

one another. Since their entries are integral, it follows

that detS = ±1. More over Im(t) > 0 and Im(+') > 0 and thus

detS = +1. Conversely, if there is an S G SL2CE) :=

(a

then L
h

bd)
and

,d E, ad - be = 1} such that =
1

as is easy to see. Since the matrices

Ca
-b)

have the same effect, we consider them

equal. The resulting group we denote by r := SL2(Z)/{±1}. This

group is called the modular group and an element of r is a

modular transformation. Two elements T,T I E H are called

congruent modulo r if they can be transformed into each other

by means of a modular transformation. It can be seen that the

set of congruence classes 
H
/ is in one-to-one correspondence

with the fundamental domain (cf. [4 ch. VII);

:= iteH:Itl>1,-kRe(t)<IlliftEH:1 1,-111e(t)<01.

All this leads to
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THEOREM 11. There is a one-to-one correspondence between the

•
elements of 

h
/ and the isomorphism classes of plane non-

singular cubic curves defined over C.

It remains to show that every plane non-singular cubic

curve is isomorphic to such a curve given by the torus /L

for a lattice Lc C.

Let L be a lattice and C the cubic curve with equation

Y2Z 
2 3

gg XZ g3 Z34X
3

2

-6
with g2 = F

2 
(L) = 60 1 w-4 and g, = g3(L) = 140 1 w

' i
weL weL

w00 wA0

If we put T = W /w 1 2' 
then clearly g2(L) = and

-
g
3
(L) = w

2
6 

(L ). This shows that the modular invariant
g3 ' T

j(C) = 1728g32(L)/(g?2(L) - 27g(L)) = 1728g32(LT)/(g32(LT)-27g23'(LT))

=: J(t) is a function of T. This function is a modular function,

it is invariant under the modular group.

It can be shown that J gives a bijection between the

fundamental domain D and C (cf.[22], ch. I).

Thus, if C is a plane non-singular cubic curve with

modular invariant j(C), then a te.D may be found such that

j(C) = J(t). In turn this gives a lattice L and a cubic curve

= 
C
/
L 
. Since C and C have the same modular invariant, they

are birationally isomorphic.

To conclude this section, we like to comment briefly on

the concept of genus of a cubic curve. Consider the Weierstrass

C
function 0 as a function on /

L. 
Then ,60, 

I, 
•

uL ' 
, 

f(t = 
S2 

is an
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analytic map onto the extended complex plane C (by S
2 

we mean

the Riemann sphere). Now i01, takes on all complex values

exactly twice, with the exception of e e
2' 

e
3 

and 00 in

Thus we have a double sheeted covering with four ramification

points e e
2' 

e
3 

and 00. On the curve C(C) (1 /
L 

this mapping

coincides with

1 
CC(t)

2 
= S ,y) x , 0 = (0:1:0).

We can visualize the Riemann surface /
L 

as the surface

constructed by sticking together (in the proper way) two

Riemann spheres, each with two slits from e 1 
to e

2 
and from

e
3 

to 00. This gives us a torus, or equivalently, a Riemann

sphere with one handle. The topological genus of a Riemann

surface homeomorphic to a Riemann sphere with g handles is

precisely this number g. 'o we see that the algebraic genus

and the topological genus coincide (this is also true for

g # 1;cf.[30], p. 132). Also, by the Zeuthen-Hurwitz formula

we have (the map given above has degree 2):

2g(C) - 2 = 2(2g(1P ic)-2) 2-1)(ramification points) =

4 + 4 = G.

4. ELLIPTIC CURVES.

We shall give (finally) a general definition of what is

known as an elliptic curve. Again, we fix a field k with an

algebraic closure K = k.

An algebraic curve is defined as was done in the first

section for a plane algebraic curve as the set of zero's,
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contained in the projective space WK (2. > 2), of a polynomial

with coefficients ink. All concepts, discussed

in section 1 apply in this case. For instance, the genus of

an algebraic curve G is essentially the transcendence degree

of its function field K(G) over K.

DEFIiiITION. An elliptic curve E is an absolutely irreducible

non-singular algebraic curve of genus 7, furnished with a

point P. The curve E is defined over k, in notation Elk, if the

point p has coordinates in k(and if the defing equation has

coefficients in k, which was already assumed).

An elliptic curve Elk is birationally isomorphic (over k)

to a plane cubic curve, given by an equation (in generalized

Weierstrass normal form):

CIO y
2 
+ a

1 
xy + a

3
y = x

3 
+ a2x

2 
+ a4x + a6 (a. k) ,

where x and y are coordinates in the affine plane. The point

2
P (see definition) is transformed into the flex 0 = (0: 1 :0) E /1)K'

the neutral element for the group law on the curve. The extra

terms in the equation are due to the fact that nothing was

assumed on char(k). If char(k) i 2, then an equation for Elk

may be given in the form (*) with a l = a3 = 0, and in case

char(k) 0 2 or 3, one may also assume that a2 = 0 (see theorem 1).

Given an equation (*) for Llk, we define (cf. [1 lj and [

Appendix 1):
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2
b
2 
= a

2 
+ 4a

21 
c
4 

= b
2 
- 24b

4

b4 
= 

1
a
3 
+ 2a

4 
c
6 

= -b
3 
+ 36b

2
b
4 
- 216b

62
2

b6 
= a3 

+• 4a5

2
= a

1 
a
6 
- a la3a4 + 4a2

a + 
a2 

a
2 
-b a  3

A = -b
2
b
8 

8b
3 
- 2b+bbb

6 
(the discriminant)

2  4

j = c3/4 / A

The connection with y
2 
= 4x

3 
- g2x

char(k) 2 or 3, is given by

C4 = 12g2 , c6 = 216g3 , A

It is easy to check that

(the modular invariant)

g3 (see section 3) in

3
g2

2

2 2 3
4b
8 
= b b - b

4 
and c

3 
- c

6 
= 2

6 
3 A.

4

A differential of the first kind on (*7) is

dx

= 1728J.

2y+a l x+a3 •

Two elliptic curves Elk and E'lk with weierstrass models

y
2 
+ a i xy ... and y'

2
 + alx'y' ... are birationally isomorphic

iff there are r s,t,u ek with u # 0, such that

3 ,
x = u

2
x + r and y=uy +usx + t.

In particular, we see that under such a transformation

, 6 , 12 .
uc

4 
=c u c

6 
= c u A • = A j' = j w= uw..

Also E(k) = E t(k) implies that j = j' and conversely if j =

then E(K) E'(K).

For all these facts we refer to section 2.
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As an example, consider the "generic" curve Elk(j

given by the Weierstrass equation

2 3  36 
y + xy = x j-1728 x

1
j -1728

9

j # 0 or 1728.

.2
The discriminant A = 3 /(j-1728)

3 
and j is the modular

invariant (this explains the term "generic").See also theorem 7.

A further example is furnished by the curve Elk given by

3 3 3 . 0.
x

1 
+ x

2 
- x

3

If char(k) 0 2 or 3, then the birational transformation

x = 3x3/(x 1+x2)

maps the equation into

2
y

(cf. section 1).

3

2 =
2

A = -3
9 

and j = 0.

Amongst all the Weierstrass equations an elliptic curve

may possess, it is sometimes possible to select one with

certain "minimality" condition. For instance, for the curve

El (take k = 11) given in the last example, the equation
2

y = x
3 
- 7 is minimal in the sense that any other equation

•for EII of weierstrass type has discriminant A' = -u'239 with

u e 7, u 0.

The precise definition runs as follows. A Weierstrass

equation M for Elk is called minimal with respect to a discrete

valuation v f k. iff v(a) > 0 for all i and v(A) is minimal,

subject to that condition.
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Let R
v 

be the valuation ring of v in k. It can be shown

that there is always a minimal equation for Elk with respect

to v. More over, such a minimal equation is unique up to a

transformation of the form x = u
2
x + r, y = u

3
y i + su

2
x i +

with r,s,t eRv 
and u invertible in R. Further the differential

w associated with a minimal Weierstrass equation is unique.

If a. ER and v(A) < 12, then the equation (*) is apparently
v

minimal. On the other hand, if the modular invariant j of a

minimal equation belongs to Rv, then v(A) < 12 + 12v(2) + 6v(3)

provided that char(k) 0 2 or 3. An algorithm for reducing to

minimal form is given by Tate in [56].

Let k be an algebraic number field with class number 1

(or, equivalently, the ring of integers Ok is a principal

ideal domain). Then any elliptic curve Elk has a Weierstrass

equation which is simultaneously minimal for all discrete

valuations v of k (cf.[511). Such an equation is called a

global minimal Weierstrass equation for Elk. It follows, that

global minimal Weierstrass equation has coefficients in 0
k

and that the discriminant of such an equation is unique as

an (integral) ideal of k.

•Let f(x,y) = y
2 
+ a

1
xy + = 0 be a minimal equation

for the curve Elk with respect to a valuation V. Let R be

the valuation ring with prime ideal P
v 

and residue class field

R
k
v 
= v/ R f = 0 modulo P

P
v

* 

one obtains an equation f = 0 for a plane cubic curve Elk.

Clearly, the curve Elkv is 
uniquely determined up to a trans-

formation of type x = 
u2

x' + r y = u
3
yt + su

2 
xt + t with
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r,s,t,u G. kv and u O. If Eikv has no singular points, then

Elk
v 

is elliptic and = o is an equation for . In that

case A 0 0 or, equivalently v(A) = O. We say that
 Elk has

good (or stable or non-degenerate) reduction at v. In t
hat

case j C.Rv and (.1 is the modular invariant of Elkv
. If A =

i.e. v(d) > 0, then Elkv 
is a rational curve and Elk has

bad (or degenerate) reduction at v. In particular,
 if v(A) > 0

and v(c4) = 0, then ( Ikv has a node and we say that Elk has

multiplicative (or semistable) reduction at v. Now j L'I-Rv •

If the singular point is defined over kv 
(for instance, if

k
v 

is perfect), then isis a multiplicative algebraic

group (here E is the non-singular part of E). If rj:Ikv has a
ns

cusp, which occurs only if v(A) > 0 and v(c4
) > 0, then Elk

is said to have additive (or unstable) reduction at v. In

rx,
that case we have that Ens(k"v) is an additive algebra

ic group

(see also section 2).

If we define

E0(k) {P L"'(k)1 11) n5(kv)}

and if we denote by p the reduction map p: E(k) E(k
v
), then

we have

THEOREM 12. The set E0(k) is a sub-group of finite index in E(k)

and PIE0(k) is a homomorphism of groups.

That E0(k) is a sub-group of E(k) and that plE0 
(k) (the

restriction of p to E0(k)) is a homomorphism follows from the

fact that reduction carries lines into lines (by which 
the group

law is given). The finiteness of the index depends on 
the

minimality of the equation .f = O. It is a consequen
ce of Tate's

minimality algorithm (cf. [56]). More information on t
he index
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may be found i 5].

If we assume that k is an algebraic number field, then

it is easy to see that an elliptic curve Elk must have good

reduction at all but a finite number of places. For, consider

a Weierstrass equation for Elk with coefficients in the ring

of integers Ok. Then the ideal, generated by the discriminant

A of the equation can be written as a finite product of prime

ideals of 0k' 
because of the unique factorization of ideals

in 0k 
Hence v(d) = 0 for almost all discrete valuations v

.

of k..

It is natural to ask whether, given an algebraic number

field k, there are any curves Elk with good reduction at all

places of k. In particular, if k has class number 1, the

question becomes: are there any Weierstrass equations (117) with

ai G. 0k 
and with unit discriminant? Tate has shown that this

is not the case if k = k •

ThEOREM 13. An elliptic curve EIQ has bad reduction at v for

at least one place v of p.

Proof. Assuming the statement to be false, there must be a

curve Elk having a global minimal model (*) with coefficients

in and unit discriminant. In particular

3
c
4 
- c

2 
= 2

6
3
3
A = 

±26 
3
3 
.

6

Knowing that the diophantine equation x
3 2

ae7Z 7-4 0,

has at most a finite number of solutions (x,y)6V2 (this was

first shown by A. Thue in [57]), we find that (c4,c6) = 
(±12,0)

is the only possibility (see also [ld]). Then b2 
E 0(mod 2)
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and this implies that a l E 0 (mod 2). Hence b2 E 0 (mod 4) and

E 0 (mod 2). We arrive at a contradiction, because it would
4

2
follow that c4 = b - 24b4 E 0 (mod 16). For different proofs

see [33] and [51].

In [51] this result is generalized to elliptic curves

defined over imaginary quadratic number fields having a global

minimal model. That there are nevertheless curves defined over

certain imaginary quadratic number fields having good reduction

everywhere, was shown by Tate (cf. [54] and [51]): he proves

that the .generic curve (see page 32), defined over )(.j), where

j is given by j2 - 1728j ± n
12 

= 0 for a rational integer n

prime to 6, has good reduction everywhere.

Another example of a curve with good reduction everywhere,

is the curve given by the equation

2 2 6
y x = x

3 2
- 2cx cx A =

defined over R(17), where e = 8 3/7 is a fundamental unit

of M[0].

An important result, due to Shafarevich is given in the

following theorem.

THEOREM 14. Let k be an algebraic number field and n a finite

set of places of k. Then there is only a finite number of

elliptic curves Elk (up - to isomorphism) with good reduction

everywhere outside n.

In the proof of this theorem (cf. [41]) use is made of

famous theorem of C.L. Siegel to the effect that on any
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affine equation for an elliptic curve Elk there are only

finitely many points with coordinates in 0k* 
The method of

proof is ineffective. however, not so long ago, A. Baker [

has given an explicit upperbound for max(1142(13711), where (x,y)

is a solution with coordinates in 0k 
of the diophantine

equation

2
= P(x) with P Ok [x] , deg(P) > 3 and P has three

simple zero's. This shows that for a given set 11 , all curves

Elk with good reduction outside n may be, at least in principle,

effectively found.

F.B. Coghlan ([10]) has determined global minimal equations

for all curves Elp with good reduction outside the set {2,3}

and in [51] this was carried out for all curves EIP(i) and

Elkiri) with good reduction outside {2}.

Let k be a field with discrete valuation v and let Elk

be an elliptic curve. The exponent of the conductor of E at

is a certain integer fv > 0, which is a finer measure of the

reduction of E at v then "degenerate" versus "non-degenerate".

The integer fv equals zero for good reduction at v, one for

multiplicative reduction and 2+6 for additive reduction,

where 6 > 0 is a certain "measure of wild ramification" (cf.

[343 and [45]). It was shown by Tate that 6 = 0 in case

char(k) 0 2 or 3. Tate also devised an algorithm for finding

the exponent fv in general (cf. [56]). In it he analyses the

reduction of the minimal model for E in the sense of Neron ([31]

Ngron's minimal model is in general not a plane cubic. If .n is

the total number of irreducible components, not counting



38

multiplicities, of Ngron's reduction of L over K, then

f
v 
= v(A) + 1 n 9

as was shown by Ogg (cf. [34]). Here A is the discriminant

of a minimal (Weierstrass) equation for E with respect to v.

If k is an algebraic number field and Elk has a global

minimal WeierstraSs equation over k with discriminant A, then

is the conauctor of Elk; the product runs over all prime

ideal divisors to of A.

To conclude this section, we mention the concept of

potentiaLly good reduction. The curve Elk has potentially

good reduction at the discrete valuation v of k if there

exists a finite extension k' of k and a prolongation v' of

v to k' such that Elk' has good reduction at v'. It was shown

by M. Deuring [14], that Elk has potentially good reduction

at v iff the modular invariant j belongs to the valuation ring

R (i.e. v(j) > 0). See also [45

We finally mention the good reduction "criterion of Ogg-

ron-Shafarevich" see [45] and [55], a discussion of which

goes beyond the scope of this exposition.

5. THE GROUP E(k). SOME CONJECTURES.

In this final section we shall briefly comment on some

outstanding problems in the theory of elliptic curves.

About 55 years ago, L.J. Mordell proved the following

theorem (cf. [27]).
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flihORLM L. If E 7.-3 an elliptic curve definea over 111, taen

tne group L(k) is finitely generated.

tot long after Mordell obtained his result, A. Weil

generalized it to elliptic curves defined over algebraic

number fields (In fact his generalization reached further:

he proved a similar result for abelian varieties defined •over

number fields - elliptic curves are abelian varieties of

uimens ion I). Since then, the theorem in its more general

form has become known as the Mordell-Weil theorem. Also,

A. iron and S. Lang extended the theorem for abelian varieties

over function fields of one variable with finite constant

field ( f. [19]). Proofs of the Mordell-Weil theorem can be

found in Cassels' survey article [7] and Morden t book [28]

If we denote the torsion subgroup of E() by E(Z)
tors

(i.e. the subgroup of points of finite order), then theorem 15

says that there is a non-negative integer r such that

E(1) = E00 x ,
tors

The integer r is called the rank of El.

Let us first investigate the group of points of finite

oruer. To that end we introduce, the concept of isogeny. Let

k be an algebraic number field with algebraic closure K, and

let h lk ana 211 be two elliptic curves. Consider a rational

map X : E 
2 

defined (everywhere) over k. More over,
'

suppose that X is surjective and that x(0, = 0 . Then X

induces a homomorphism

n n
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of the group of divisor classes of degree zero on (k) into

the corresponuing group on E2 
(k), taking principal divisors

into principal divisors. The kernel of A is finite and the

ciegree of A is the number of points in Ker(A) counting their

multiplicities. (In fact the degree of A is the degree of the

corresponding function field extension k(L 1)/k(E2)). Such

rational map is called an isogeny.

An isogeny A: L L, induces a dual isogeny :
4

with the property that X.X L2 L2 and E i
1 1

multiplication by m = ueg(x) = degM on L
2' 

E respectively
I

(cf. [7], i.216 and [21], ca. II) In particular, multiplication

by in e W on the curve E (i. . the map m(id) ) is an isogeny of

2
degree m .

T11E:OREM 16. Let Ek lie an elliptic curve. the positive

integer in is prime 7;0 tnc characteristic of k, then the group

(K) of elements of order dividing in is isomorphic to

TY• = p for a prime p = char(k) then E K

is a cyclic group of orc,,er m or of order 1, depending on the

vaLue of t;le so-called hasse invariant.

(The hasse invariant equals I and L is said to be ordinary i

the first case; L is supersinguiar if the Hasse invariant equals

zero anu then E = U. See

If k is of characteristic zero and K = , then the

statement of the theorem follows immediately from E(C) = /
L'

because the kernel of the mapping E(C) E(C), t mt equals

1 L
(1) = m

.r,L
/ =1 x /

•
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Next, let k be a fielu of characteristic p > 0 with

q.= p
a elements. The elements of k are characterized in K by

the equation a = a. Hence if the curve Elk is given by

2, , the map (x l,...,xi) (xq99 x(I) induces1  it

a rational map 7rElk : E E' the Fro
benius endomorphism relative

to k (An endomorphism is an isogeny or the zero map), wbose

fixed point set is precisely the set E(k) of k-rational points

on E. Now Ir is a purely inseparable isogeny of degree q, i.e.

the points of the kernel occur with multiplicity one. E. Artin

conjectured and H. Hasse proved (cf. [14])

THEOREM 17. If k is a finite field with q = paelements„ then

the order of the group E(k) of an elliptic curve Elk is

a with lal < 2q 2.LE(k)1= 1 4.

An immediate consequence of this theorem is that two

isogenous curves defined over a finite field k have the same

number of k-rational points.

We return to the case k = 111. But first, we mention an

important result due to Lutz (cf. [23]). Let El IQ be an elliptic

curve •and let p be a prime number. If p denotes the p-adic

completion of p, then

THEOREM 18. For any prime p, the group E( ) contains only

finitely many points of finite order. More over, the subgroup

of points of finite order is effectively computable.

So, if E(P) tors 
is the group of points of finite order on

the theorem shows that E(P)tors 
is finite and computable.
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Indeed, E(10c: Ead for any fixed prime number p. One may

derive from Lutz's result the explicit

THEOREM 19. If P = (p 1 ,p 2) is a point of finite order defined

over 11 on the curve given by

then P 1 ,13

2
Y '

3 
+ Ax + B

and either p

with t , B 'ZZ

or p
2 
divides 4A

3
27B

2
.

Information on La) 
tors 

for an elliptic curve EliQ can

be obtained by considering the curves one gets by means of

reduction modulo p for various primes p. For example, if EIP

is given by a Weierstrass equation with integer coefficients,

we select a prime p for which Elp has good reduction at p.

The reduction map sends EMtors 
into (1E/ ). This mapping

PZ

is injective if p is odd and the kernel is of order 1 or 2

if p = 2 (see theorem 16).

Recently, B. Mazur has settled the problem of the

structure of E(k)tors 
He proved (cf. [26])

THEOREM 20. Let be an elliptic curve. Then the torsion

subgroup

groups:

E(P)tors is
isomorphic to one of the following 75

rAZ
naz form < 10 or m = 12 ; /

71 
 x /2nz for n 4.

More over all of these 15 groups do indeed occur.

In his proof he uses techniques attributed to Demjanenko

[12], [13] and Kubert [18] of associating to a point of

E(I)tors on any elliptic curve E1.1Q (under certain conditions)

1 -rational points of some specific algebraic curves clp,
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so-called modular curves. Besides [26] mentioned above, an

excellent account of the problem is given by Ogg in [36] and

[38], where the connection between the curve E 11Q together

with a point P of order m and the modular curve X 1
(m) is

given. In connection with theorem 20 we also refer to [4]

In this context, we have the

CONJECTURE 1. if k is an algebraic number field, the order

of h(k)tors is 
bounded by a positive integer B(k) depending

only on k (if E ranges through all curves Elk).

See Cassels [71, Manin [24], Demjanenko [13]. For no

0 IQ the conjecture is proved, one does not even know what

a reasonable value for the bound B(k) should be.

For many curves E1/Q the rank r has been computed. See

for instance the account in Zimmer [62], section 11. In all

these cases r is quite small. There is however no definite

reason why this should always be the case. Neron has shown

in [32] that there must be curves E131 with r > 11. Very

interesting numerical investigations have been carried out b

Birch and Swinnerton-Dyer (cf. [5]). They were led by their

results to state several conjectures, some of which relate

the rank r of LIZ to the behaviour of the so-called L-function

of EllQ, near the point s = 1. To be more precise, let y
2 
+ a i xy +

be a global minimal Weierstrass equation for EI with

fk, 1
discriminant A. For any prime p, the reduced curve E

P
1V p is

defined over the finite field F of p elements. Denote by N

the number of points on E rational over IF . Then N is one



44

•

more (because of the point 0 at infinity) than the number of

distinct solutions of the congruence y
2 
+ a xy • • • E 0 (mod p).

_
If a and a are the characteristic roots of the Frobenius

P P .... i
endomorphism of IF , then a a = p and thus la 1 P •

P P pp

More over (see also theorem 17)

IMMO

1 +p -a - a

All this is only true in case L is elliptic, i.e. pl'A or

equivalently, Eil4 has good reduction at p. The local L-function

for E is then defined as

s) =
((I_a „.„-s)(1 _ 17E p-s )-1

•

On the other hand, if Elt has bad reduction at p, thus pit, ,

then E IF has a singular point which is necessarily defined
P P

over IF. If this singular point is a cusp, then N

If it is a node, we distinguish the two cases

= I p

(i) the tangent directions at the singular point are defined

over W , and

(ii)the tangent directions are not defined over V and hence

conjugate over IF.
P

In case (i) we have N = p and N = 2 + p in the second case (ii).
P P

If we set t := 1 + p - N, then the local L-function for
P P

Elil at the bad prime p is defined to be

_t pp )
_ 1
.

The global L-function for Elp is now defined by

14(s) = n (s) ,
P P



45

where the product runs over all primes p. This product

certainly converges for Re(s) T. In fact it is a Dirichlet

series Ecn
n-s with c . I + p - N at the prime p.

P P

For every prime p not dividing A (a good prime), we have

IN )-I
Lit, (1) =
E P
P

This suggests that, in order to obtain information on the

behaviour of L (s) near s = I, one should look at

IN I
n .

Now IN - p 2pi and II (1 + —) rt, clogx (x co) for a

certain constant c. This, together with their numerical results,

led Birch and Swinnerton-Dyer to the following

CONJECTURE 2. If r ia .the rank of the curve EIL then there

are constants c l and c2 (depending on E), such that

c < (logx) II < c
21 —

p<x P

for all sufficiently large x. More over the L-function LE(s)

has a zero of order r at s = I.

On examining the values of , Birch and Swinnerton-

p<x P

Dyer were able to predict and verify the value of r for quite

a number of curves.

Let N be the conductor of EI i.e. N = n p P (see section 4).

P1 6,
We define the function

Z
E

I S:= N2-(2n y'Sr L (s).
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CONJECTURE 3. The function Zr(s) can be analytically continued

to tie entire s-plane as a holomorphic function. Further more

it satisfies.. the functional equation

z (s)

for one or the other sign.

This conjecture is known to be true for some special

cases, such as curves with complex multiplication (cf. [15]).

For general information on curves with complex multiplication,

one should consult [43].

In connection with this last conjecture, we would like

to mention another remarkable conjecture, due to A. Weil

(cf. [60]). Since the setting in which this conjecture plays

an important role is quite involved, we shall merely give a

superficial outline. A full account may be found in [53].

CONJECTURE 4. All elliptic curves E1Z of conductor N are

parametrizea by modular functions for the congruence subgroup

r

as

the modular group r.

This needs clarification. First of all, is defined

r0(1,1) := {

If ii =I zEt

b)
Er I E 0 mod N) }.

kc d

Im(z) > 0 }, the upper half plane, let Yo(N)

denote the quotient of H and r(N). See also section 3. Now

let X
0 
(N) be the compactification of Y0 

(N) by adjoining the

cusps (for an explanation of this and other facts concerning

modular functions, see [37], [22] and [35]). Then X0 
(N)



47

becomes a compact Riemann surface and thus may be viewed as

an algebraic curve aefined over 1 (by means of an embedding

in projective space). In fact, X0(N) is even a curve defined

over 34• Now conjecture 4 says that for any curve E of

conductor N, there is a rational map

: X0 (N)

aefined over I. This gives the parametrization of E111

mentioned in the conjecture, because (1) is given in terms of

a special modular function (which corresponds to LE
(s)) for

the congruence subgroup ro(N). Consecuently, the number of

these particular modular functions should be equal to the

number of isogeny classes of elliptic curves E134 of conductor

N. Note that the conductor is invariant under isogeny.

As an example, consider the first non trivial case N = 11.

In 58] it is shown that the only curves E Z of conductor 11

are (up to isomorphism):

2 3
(i) y _ y = x -x

2 
- 10x - 20

2 3
x
2

y - y .=x

(iii) 
y2 

y = x
3
 - x

2 
- 7820x - 263580 (See also [59] )

Observe that for any given N it is possible, in principle,

to construct all curves ElIQ of conductor N. See theorem 14.

Now the curves. (ii) and (iii) are isogenous over to (i) and

up to isomorphism there are no others isogenous to (i). More

over equation (i) is a Weierstrass equation for the modular

curve X0(11). This shows the truth of the conjecture in case

= 11.

Conjecture 4 has been checked for many values of N, and

all the information thus obtained points to the truth of it.

See for instance [46]
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