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ASPECTS OF ELLIPTIC CURVES

AN INTRODUCTION

by

R.J. Stroeker

PREFACLE

This exposition is meant to give a bird's eye view on
the theory of elliptic curves at an elementary level., So as

to introduce the various aspects of the theory within a frame-

work both brief and simple, we have avoided wantonly the

technical language of schemes and the like. Also, in order to
keep a close eye on the number of pages, we could not be too

ambitious. Thus important topics like complex multiplication

and the Galois action on the points of finite order one will

look for in vain, winile we only briefly touched on the

connection with modular functions.

December 1977




To make this treatise at least to some extent self

contained, the first section covers the relevant notions of

dlgebraic geometry which are needed in the sequel, In section 2

plane cubic curves are discussed and the next section gives
the connection with elliptic functions. Not until section 4
a general definition of elliptic curves is given. The last
section is mainly devoted to the Mordell-Weil group (e.g.
Mazur's recent result on the torsion group of an elliptic
curve over J)) and some outstanding conjectures, like those of
Birch and Swinnerton-Dyer and of Weil.

Textbooks which are especially useful in connection with
the more fundamental concepts are: Fulton'[l7], Lang [21],
Mumford [30], Robert [42] and Shafarevich [49].

Finally the author wishes to express his sincere gratitude
to F. Oort for his advise and valuable suggestions. It goes
without saying that the author remains solely responsible for

the remaining errors and misconceptions.
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1. PLANE ALGEBRAIC CURVES. BASIC CONCEPTS.

Throughout this section k will be an arbitrary field
with algebraic closure K = k. |

A plane affine algebratic curve C is the set of all zero's,
contained in the affine plane.&é , of a polynomial fe.k[x,y],

irreducible in K[x,y]. Thus
. 2
C =.{(X,y) e /AK l f(X,y) = O}o

The affine plane Aé may be embedded in the projective plane

Wz by means of the identification (x,y) = (x:y:l). We define a
K y
n

plane projective algebraic curve C as the set of all zero's
v

of a homogeneous polunomial fels[x,y,z], irreducible in

K[x,y,2] :
N n
¢ = {(x:y:2) € Wﬁ | £(x,y,z) = 0}.

In this first section, we shall generally consider affine
‘curves only. ALl concepts being discussed here for affine curves

may be extended in a more or less natural way to projective

curves. Since we can not give more than the bare minimum of

information, necessary to uﬁderstand at least the principles
of algebraic geometry, in connection with the (arithmeticai)
theory of elliptic curves, we feel justified to do so. A text-
book which contains all we need here (and far more) is
Shafarevica's bo.ok [49].

The degree of the polynomial f is called the degree of C.

Algebraic curves, as defined above, are also called absolutely




trreducible.
Let C be an algebraic curve, given by the equation f = 0,
fe k[x,y]. The ideal (f) in k[x,y], generated by f, is a prime

ideal. Hence

‘k[C_'l := k["’Y]/(

£)

is an integral domain. Let k(C) be the quotient field of k[C].
This field is called the jfunction field of C and its elements
are tne rational functions dejined on C. Clearly, the field
k(C) has transcendence degree | over k.

An important notion in the theory of algebraic curves is
that of birational transjormations. Such a transformation is
a device which puts the points on a curve C in one-to-one
correspondence with the‘points on another curve C', which is
possibly of a simpler form (e.g. its degree may be lower).

To be more precise, let C and C' be two algebraic curves given
by the equations f = 0 and f' = 0 respectively. A rational
trans formation p: C + C' is a mapping, defined in all but a
finite number of points on C, which is given by a pair ¢,, ¢,
of rational functions defined on C. A rational transformation
p: C + C' is called birational if it has a rational inverse.
In that case C and C' are birationally equivalent.

The function fields k(C) and k(C') of two birationally
equivalent curves are isomorpnic. For, if the birational
transformation p: C » C' is given by ¢1,¢2 € k(C), then the
homomorphism T3 k[x',y'] + k(C), defined by t(x') = 9, and
t(y') = 9o > nas kernel Ker(t) = (f), where f is the defining

polynomial of C'. Hence we have an injective homomorphism




k[c'] = k[x"y']/(f) > k(C),

which can be extended to an injective homomorphism

k(c') =+ k(C).
Similarly, there is an injective homomorphism

k(C) > k(C'),
which is inverse to the former. Conversely, if k(C) ¥ k(Cc"),
then C‘and C' are birationally equivalent (over k). So we may
alternatively define: the curves C and C; are birationally
equivalent iff k(C) = k(C').

As an examﬁle, consider the curves

C : x™ + y3 - 1 = 0 and C' : Y2 = X3 -2

defined over k = [R. The transformation given by
| = /60.—1-11
. l_y
shows that C and C' are birationally equivalent over R.

For an algebraic curve C, we define the Zocal ring 0@(0)

of a point P € C as follows:
o, (C) = { % € k(c) | F,6 € k[c], c(p) # O}.

The defing rational functions ¢l,¢2 € k(C) of a rational
transformation p: C » C' belong to 6}(0) for every P € C at
which p 1is defined. The unique maximal ideal'"%(C) of G}(C)
contafns information on the multiplicity of the point P as a
zero of the defing polynomial of C. To see this, we first

explain what is meant by simple point and singular point.




Let P be a point on a curve C, given by the polynomial fe.k[x,y]

of degree n. Every line through P intersects C in exactly n poinfs,
counting multiplicities. If such a line L intersects C in P

r (> 1) times, i.e. (£=0,L=0) has an r-fold root in P, we call

r the intersection multiplicity of L at P, notation:

r = i(C L,P). Then P is a poinf on C with multipliecity r, iff

min i(C L,P) = r. If r = 1, then P is a simple point (or non-
zzigular point) and if r > 1, then P is called a singular

point of C. It follows that C has a unique tangent at P iff

P is simple., If P = (pl’pZ)’ then the tangent at P is

? of
(fgé)P(x-p]) + (W)P(y-pz) = 0.

By definition, at a singular point, %é and %5 must vanish
simultaneously. A curve C with no singular points is called
nén-singular. Note that the rational transformation p: C = Wé
is defined in each non-singular point of C.We say that p is
régular in such a point. A birational transformation which is
biregular everywhere (this is the case when both curves con-
cerned are non-singular) is a bDirational isomorpiism.
Now let P be a non-singular point on C with coordinates

in k. Then the maximal ideal’ﬂ%(c) of the local ring at P 1is

a principal ideal. The converse is also true. A generator fér
‘7%(C) is called a local (or uniformizing) parameter at P;
%%(C) = (1) with local parameter 1 at P, Clearly, if P is
simple and 0 # ¢ € O’P(C), then there is a unique meZ, m > C
and a unit u € O}(C) such that ¢ = ut™, More over, this integer

m does not depend on the choice of T. This means, since P is

rational over k, that for each ¢ € O%(C) and for each 2 € N,




there exist unique elements Agsd s eeesdg of k such that

+7heml©).

o - (a0 taT ...+ o2

-1
This gives rise to an embedding of Q}(C) in the ring of
formal power series k[[r]]. iience every rational function ¢
defined on C and regular at the simple point Pe C (i.e.

9 € G%(C)), can be uniquely expressed as a formal power series

in the local parameter 1 at P.

Another essential concept in the theory of algebraic
curves is that of divisor. Let P be a simple point with
coordinates in k, P € C. For any ¢ € k(C), we define the integer
oraP(¢) as follows: if ¢ = G, then ordP(¢) = o, If 0 # ¢€ 6%(0),
then ordp(¢) = m, where m is defined by ¢ = ur ™. Finally, if
0 # 9€ k(C) tnen ¢ = wllwz with wl,wz € O}(C) ana ordP(¢) =
orup(wl) - ordP(wz). Then ordP becomes a valuation on the field

k(C), i.e.
ordP(¢l+¢2) > mln(ordp(¢]),oraP(¢2)) and
orap(¢,49,) = ord (¢ ) + ord,(¢,).
Clearly, ordP(k(C)-{O}) =%. 1f ordP(¢) =mn > 0, then ¢ has a
zero of order m at P and if ordP(¢) = -m < 0, then ¢ has a pole
of order m at P.

Assume that C is non-singular, so that all points on C are
simple points (definec over K). We also assume that C is a
projective curve. A divisor D on C is defined to be a formal
finite sum

PecC

where n, € Z. The set of divisors on C can be made into an




abelian group with respect to the following addition: if

N = amd 1! = ' N '
D b nP(P) and D P nP(P), then D + D' := ¢ (nP+nP)(P).

We write D > 0 if n, > O for all P € C in the divisor

P

D=3 nP(P); if n, > 6 for at least one P, then we write D > C.

If p = % nP(P), tne finite sum I n, is called the degree of D,

P
notation: deg(D).

A special class of divisors is that of the principal
divisors:

(4) = I ord,(9)(P) , 0 # ¢ € K(C).
PeC

These principal divisors form a subgroup P(C) of the group of
all divisors Div(C) on C. -In fact P(C) is already a subgroup
of the group pDiv®(C) of all divisors of degree zero. Indeed,
it follows from B&zout's theorem ([49], p.199), that deg(¢) =
= I ordP(¢) = (number of zero's) - (number of poles) = C.

The factor group

Div(C)/

ce(C) := P(C)

is called the group of divisor classes. Two divisors D, and D,
are equivalent, in notation v, ~ b,, iff D, - D, = (¢) for

some ¢ € K(C). Because of the fact that deg(¢) = 0, all divisors
in the same divisor class have the same degree. This 1is the
degree of the divisor class.

Let D be a divisor on C. Consider the set of all ¢ € K(C)
that make D effective, that is to say: (¢) + D > 0. Thus we
define

L(D) := {9 e k(C) | (o) + b > 0},

We also include tne zero element of K(C) inm L(D). Then it is

easy to see that L(D) is a vectorspace over K. More over, if




L(D) := dimKL(D), then 2(D) = 0 if deg(D) < O and 2(D) <

< deg(D) +1 if deg(D) 2 U. Consequently, L(D) is finite
dimensional. An important property of L(D) is, that equivalent
diyisors determine the same vectorspace, up to isomorphism.

A divisor D = I n,(P) is defined over k if it is invariant
PeC

under the action of tine Galois group Gal( /k)' By this we mean

that for all PeC and o € Gal(h/k) we nave n = n When this

op P’
is so, the space L(D) has a basis consisting of functions of
k(C) (cf. [7}, p. 210).

Beside the principal divisors, another type of divisor
plays an important role, namely the divisors of (linear)
differential forms on C. An algebraic definition of these

differential forms may be given as follows: consider the set

Ve of all mappings d: K(C) » K(C), with the following properties:

(1) d(a) = G for all a € K,

(ii) d(¢ + ¥) = d(¢) + d(¥) for all ¢,v € K(C) and

(iii) d(¢+¥) = ¢d(¥) + ¥u(¢) for all ¢,y € K(C).
The functions d are called derivattons. The set V., can be made
into a vectorspace (of dimension 1 over K(C)) in the natural
way. From (i) and (iii) it follows easily that a derivation is

x
linear over K. Let §(C) := V. be the dual space of V., (over K(C))

c c

i.e. the l-dimensional vectorspace over K(C) of linear maps
w: Vo * K(C). This vectorspace Q(C) is the space of d<fferential
Fforms of K(C). Wow every ¢ € K(C) defines a differential form

d¢: d » d(¢). Let T be a local parameter at a point P of C.

Considering the differential form w = ¢dt (¢ # 0 ), we define




ordP(w) 1= ordp(¢). Note that this definition does not depend

on the choice of 1. Then

(w) : z ordp(w)(P)
PeC

is an element of Div(C). From the definition it follows easily
that (pw) = (¢) + (w) for all ¢ € K(C).
Since 2(C) is a one-dimensional vector space over K(C), we see
that the divisors of all the forms we Q(C) are equivalent to
each other. Thus, they form a single divisor class, the
canonical class, denoted by'KC.

A differeﬁtial form we€ Q(C) with no poles, i.e. (w) 2 0,
is called a differential form of the first kind. The space of
all such forms, we denote it by Q[C], is a vector space over K.

It's dimension is the genus g of the curve C:
g = g(C) = dimea[c].

Botih the genus and the degree of the canonical class are

birational invariants of the curve C. In fact we have

. = %e o 9
deg(kc) 2g 2.

This is a consequence of a very deep result, namely the Riemann-
Roch theorem (cf. [8], chapter II). It asserts (for algebraic
curves) that

(D) - R(KC-D) = deg(D) - g + 1,

for any divisor D of C. Indeed, set D = (w) in the above formula,
then deg(w) = 2(w) - 2(C) + g - 1 = 2g = 2 since 2(w) = g and

2(0) =1,




2. PLANE CUBIC CURVES.

In this section we assume that k is a field of characteristic
# 2 or 3, with algebraic closure K = k,
A plane algebraic absolutely irreducible projective cubic

curve C over k is given by an equation
F(X,Y,2) = 0,

where F € k[X,Y,Z] is»homogeneous, absolutely irreducible and
of degree 3, Such a curve can have at most one singular point,
because a line intersects C in exactly three points (counting
multiplicities)f A simple point P€ C is called a flex (point
of injlection) if its tangent at P intersects C exactly three
times in P. The flexes and the singular point (if in existence)

lie on the curve with equation
H(X,Y,Z) = G,

where H is the ilessian of F, given by

2 v v
) F(XI,AZ,X3)

H(X|,X,,X5) = det

BXiBXj
The Hessian H is of degree 3 and consequently H intersects C
in precisely 9 points (counting multiplicities). If each of
those points has intersection multiplicity one, then C has
nine different flexes. This is exactly the case when C is non-
singular,

The following two theorems give a standard form for a plane

cubic curve (in characteristic # 2 or 3).




(=3

THEOREM 1. Let C be an absolutely <irreducible non-singular
cubic curve defined over k. lMore over, let P béAa flex on
C with qoordinates in k. Then ¢ is birationally <somorphtic
over k to a curve given by an equation (in Weierstrass

normal form)
YZZ = X3 + AXZ2 + BZ3
with A,B € k and 4A3 + 27B2 #0. The flex P then corresponds'

witi the point (0:1:0) on the line 2 = 0.

The proof‘exhibites suitable coordinate transformations

(transform P to the point (0:1:0) and then make Z = 0 tangent
‘at this point, and so on) so as to obtain a birational trans-
formation defined over k. The fact that C is non-singular can

be seen from 4A3 + 27B2 # 0,

For singular cubic curves we have

THEOREM 2. If C <s an absolutely <irreducible singular cubic curve
defined over k witih a flex defined over k, then C s
birationally equivalent to a curve, given by an equation

v2z = x%(x - AZ),
witih A € k. On tnis curﬁe (0:1:0) <Zs the Fflex and (0:0:1)

the singular point.

We distinguish two cases:

"~

' . . . 2 3
1) A = 0., Then YZZ XJ, or in affine coordinates y = x . There

y is a "double tangent" at the singular
4

point (0,0) - in fact, every line x = ay

is a tangent at (0,0) and y = 0 is the

tangent cone. The singular point is called

a cusp. Let Cns denote the set of non-




singular points on the curve C. It is easy to see that the map
Cos *-Aé Tkt y (x,&) » x/y and flex » 0, is a bijection. All
finite points on C may be given by the parametrization
(x,y) = (tz,ts).
2) A # 0. The equation becomes y2 = xz(x + A) in affine coordinates.

y There are two "distinct tangents" at the
4
singular point (0,0): they form the

tangent cone. The singular point is called

a node. Choose o € K such that az = A.

The map C__ + Aé - {0} = Kx, given by

R
y=ax

yiox and flex » 1, is again a

(x,y) »
bijection. The finite points (x,y) # (0,0) on C are given by the

parametrization.

(x,y) = (£2-a,t(c?-a)).

This shows that in both cases C is a rational curve i.e. C may
be parametrized by rational functions or, equivalently,

k{(C) z k(t) is a pure transcendental extension of k. We shall
now show that a plane absolutely irreducible non-singular cubic
curve C is not rational. That is to say that the curve C is not
birationally isomorphic (over K) to W;.

First we observe that Q[W;] = 0, since a differential of
the first kind on Wé can only be zero. It then follows that the
genus of W; equals zero,

Now if C is a plane absolutely irreducible non-singular
cubic, then C may be given by the affine equation

y2 = x3 + ax + b.

. . . . 2
Consider the differential form w = %dx. For any point P€ C, Pe;&K




" with Yp # 0, we see tnat x is allocal parameter at P and ordP(w) =
= 0, If Yp = 0, then y is a local parameter at P and again
ord,(w) = 0. Let P_€ C be the point at infinity. Then z is a
local parameter at P_ and
(o)
-2 -3

X = uz , y=vz ",

where u and v are units in the local ring of P _. This shows that

ordpm(w) = ordpm(dx) - ord, (y) = orde(x) -1 - orde(y) = 0

©©

and thus (w) = 0, Now every differential form in Q[C] can be

written as

dw with ¢ € K[C].
Hence ¢ = f(x) + g(x)y, where f,g € K[x]. Then

0 < orde(¢) < min(orde(f(x)),ordpw(g(x)y)).

If g # 0, then it follows that ordP (¢) < -3, a contradiction.

©

Hence g = 0 and ¢ = f£(x). More over, if f is not a constant (#0),

then ord, (¢) > 0 again gives a contradiction. We deduce that
‘ P

¢ € K. But then dimKQ[C] = 1 and this means that the genus of
C equals 1. Since the genus is birationally invariant, it
follows that C # Eé . We also observe that the canonical class
KC is zero and this verifies deg(KC) = g(C) = 1 in this

particular case. We have shown

THEOREM 3. A plane absolutely irreducible non-singular curve C
has genus 1. This means in particular that C can not be

parametrized by rational functions.

We return for a moment to singular plane cubics. As was

- shown, the non-singular points on a singular cubic are in one-




to-one correspondence with the elements of the additive
algebraic group Aé ¥ k¥ or of tne multiplicative algebraic
group A; - {0} = K™, This hints at the existence of a group-
structure on the set of non-singular points of a plane singular
cubic curve. We shall see that such an algebraic‘group structure
also exists on plane non-singular cubics.

Let C be a plane absolutely irreducible non-singular cubic
curve, Then C may be given by an affine equation

y2 = x3 + ax + b with a,beK

and the flex, which we shall denote by 0, lies on the line at
infinity z = 0.

For any two points P and Q on C, let R be the third inter-
section point of C and the line through P and Q (this line is

the tangent to C at P if P = Q). The line through R and 0

;:;+Q intersects C at a third point S. We
define P +Q := S,

9 the sum of the points P and Q (not to

be confused with the sum of the divisors

%~ (P) + (Q)). Clearly, P + @ = Q + P

and P + 0 = P, For any P€C, the line joining P and Y
intersects C aléo in the inverse of P, -P (this is, becauée o
is a flex). Observe, that in case one takes a point 0' om C
which is not a flex as the neutral element, the inverse of P
can be constructed by joining the third intersection of the
tangent to C at 0' with P. So far, this shows that the choice
of neutral element is immaterial. Explicit addition formulae

may easily be given. For instance, if P = (x,y), then -P = (X,-y)




in case 0 is the neutral element: (x,y) + (x,-y) = 0.
We are left to show that point addition, as defined above,
is associative. To prove this, we proceed as follows. For any

line L, we define the divisor

(L) = I n,(p),
PeC

where n, = 0O if P & C and n, is the intersection multiplicity
of L at P in case‘PéiC. Then aeg(L) = 3 for any line L.
Consequently, the divisors of any two lines Ll and L2 are
equivalent, (Ll) v (LZ). Now take three points P,Q and R on C.
2 the line through 0
and P + Q. Then L intersects L, in S say, and SeC. Thus

Let L1 be the line through P and § and L

(L)) = (B) + (Q) + (S) and (L,) = (8) + (0) + (P+Q).
Since (Ll) N (LZ) we deduce
(i) (P) + (Q) ~ (0) + (P+Q).

Similarly, let L3 be the line through P + Q and R and let

L4 join (P+Q) + R and 0. Suppose that L3 intersects L4 in TeC.

Then
(L3) = (P+Q) + (R) + (T) and (L,) = (T) + (0) + ((P+Q)+R).

This gives as before
(ii) (P+Q) + (R) ~ (0) + ((P+Q)+R).
Combining (i) and (ii), we see that

(P) + (Q) + (R) ™~ 2(0) + ((P+Q)+R).

In an analogous fashion, we construct a point P + (Q+R)E€C

such that

(B) + (Q) + (R) ~ 2(0) + (P+(Q+R)).




Consequently,
((P+Q)+R) ~ (P+(Q+R)).

Now suppose that (P+Q) + R # P + (Q+R). Then there is a

function ¢ € K(C), such that

((P+Q)+R) = (P+(Q*R)) = (¢).

Considering ¢ as a function ¢: C - Wé, it follows from the fact

that ¢ has precisely one pole and one zero, that K(C) 2 K(4).

This means that ¢ is a biregular birational isomorphism. Hence

v Coe . :
C = WK. This is contradictory, as we have seen before. Thus

(P+Q) + R = P + (Q+R).

To show that the group law on C is algebraic, we have to

prove that the mappings

C , £(P) = -P and

g: CxC » C , g(P,Q) =P + Q

are regular., This follows easily from the explicit formulae
one can obtain in the coordinates of P and Q, working with the
equation y2 = x3,+ ax + b, Note that the group law on the set
of non-singular points of a singular cubic is also given by
lines.

We indicate the group on C by C(K). If the curve C and the
flex 0 (or another neutral element) are defined over k, then the
points on the (non-singular) curve C with coordinates in k
form a subgroup C(k) of C(K). This follows simply from the

observation that a line joining two points defined over k,

intersects C in a third point with coordinates in k (note that




a,bek). This group C(k) is called tihe group of k-rational
points on C, In case k is an algebraic number field, the group
C(k) is finitely generated. Thnis theorem, known as the Mordell-

Weil theorem, will be discussed in a later section.

A more precise statement on the algebraic group of points

on a non-singular cubic, is given in the following

THEOREM 4. Let C be a plane absolutely irreducible non-singular
e .« . - . 0, - = ~

cuvie curve with a point P, € C. Let Div (C) Dbe the group of

divisors of degree zero on ¢ and let P(C) be tne subgroup of

prineipal divisors, then

.. 0,
C (K) v Div (c)/

P(C) °

P
Class, . In particular, the group law on C Zs independent

where the isomorphism is given by P » Class_ with (P) - (PO) €

(up to translation) of the choice of the point Pge

We shall prove the following theorem, which is contained

in theorem 4.

THEOREM 5. Let C and C' be two plane absolutely irreducible
non-singular cubics and suppose 0 and Q' are the zero elements
of the groups C(K) and C'(K) respectively. Then every
K-birational isomorphism p: C Y crwhich sends 0 2o 0' Zs a

. C "
group tsomorpatsm: C(K) > C'(K).

Proof. For any two points P,Q € C, we have
(P=0) + (Q=0) ~ ((P+Q)-0).
Since C and C' are absolutely irreducible, we know that p is

biregular. It then follows from K(C'") 3 K(C), that




(0 (B)=0") + (p(Q-0") ~ (p(P+Q)-0"),

because of p(0) = 0'., This gives p(P+Q) = p(P) + o (Q)
required.
Note that, if 0 and 0' have coordinates in k and

and p are defined over k, then also C(k) 2 C'(k).

A natural question is: what does such an isomorphism
look like in terms of the coordinates? The answer is given in

the following theorem.

THEOREM 6. ke consider two plane absolutely irreducible non-
singular cubie curves C and C' , given by the equations

2 3 Z 2 3 3

Y92 = X~ - AXZ® - B , Y'%2 = X! 12

A'X'Z - B'2!

respectively, with A,B,A',B' € k. Suppose 0 = 0' = (0:1:0)

gives the zero elements of C(K) and C'(K). Then every birational
L. v g e s ., .

isomorphism p: C *> C' , defined over k with p(0) = 0' Zs of

the form

. { Y
Proof. We give only a sketch. Put T = % ,y ¢ = % and ¢y = = Then

T is a local parameter at 0 (we consider 1,6 and ¥y as elements

of k(C)). It is easy to see that

-

ord2(¢) = -2 and ordo(w) = -3,

From the theorem of Riemann—-Roch it follows that

2(20) = dim L(20) = 2 and £(30) = 3.

Then clearly, {1,¢} is a basis of L(20) and {1,¢,¥} is a basis

of L(30).




' (! A .
Similarly, if t' = = — and y' = =~ then {1,¢9'} is a

! Z

basis of L'(20') and {1,¢',¥"'} is a basis of L'(30").
The birational isomorphism p induces an isomorphism k(C') 3 k(C).
Consequently, L(Zg) = L'(20') and L(30) = L'(30'). Identifying
k(C) and k(C'), it is clear that

$' € L(20) implies that ¢' = a¢ + b with a,b € k and

¢' € L(30) implies that y' r¢ + sy + t with r,s,t € k.,
To arrive at the required result is now just a matter of

arithmetic.

Note that if A and A' are the discriminants of the equations
for C and C' respectively, then A' = cle. Since A = 16(4A3-27B2)
the expression AJ/A makes sense and A'3/A' = A3/A. For any

plane absolutely irreducible non-singular cubic curve C, we

define the modular invariant as the expression

5(C) = (48)3a3/a

if C is birationally isomorphic to the curve C' with equation

Yzz = X3 --AX22 - BZ3

in normal form with discriminant A. The constant appearing in

the definition of j(C) is a trﬁditional one, It follows from

the above that two birationally isomorphic non-singular cubic

curves have the same modular invariant. Also, if k is algebraically
closed and j(C) = j(C'), then there exists a k-isomorphism

between C and C'.

TUEOREM 7. For each je€ K , there is an absolutely irreductble

non-singular cubic curve C , defined over k(j) such that j(C) = j.




Proof. 1f j = 0, such a curve is YZZ = X3 - 23. If j = 123,

then YZZ = X3 - XZZ satisfies the requirement and if j # 0 or

123 then ¥%z = x° - axz? - 827, with A = 25(j-12°) and

B = %5(5—123)2 is a curve with modular invariant j.

3. ELLIPTIC FUNCTIONS.

Throughout this section we shall work in €, the field of
complex numbers.

A lattice in the complex plane € is a free subgroup of
rank 2 over Z, which generates ¢ considered as a vectorspace

over R. Thus a lattice L in € is a subgroup of the form

L = %ml ® %wz

for two complex numbers Wy and Wy such that € = le ® sz;
clearly this is so iff w5 # 0 and wl/w2 ¢ R, It is customary
to select a basis {wl, NQ} for L for which Im(w]/mz) > 0 i.e.
w,/w, lies in the upper half plane H := {x+iy | y > 0}.

An elliptie function £ (with respect to the lattice Lj we
denote f also by fL) is a meromorphic function on €, which is
L-periodic. Thus

f(z+w) = £(z) for all z € ¢ and wel.
Consequently, an L-elliptic function may be viewed as a function

defined on the factor group C/ Since f is L-periodic, the

L‘

values it takes are already determined on the set of points
z = a + tuw, + tw, , 0 < tst, < 1

for any « €€, Let P be the Ffundamental parallellogram

P, o= {ze€C | z = a + tw, + Ehw

I Qo 0 2 £ ,t, < 1}.




By a proper identification of the

points of aPa’ the boundary of P
C

it is easy to see that /L is

(topologically) homeomorphic, as a

real manifold, to a torus, i.e. to Slxsl. Hence C/L is a compact

group. This shows that a non-constant L-elliptic function

. . . C
(viewed as a meromorphic function on /L) must have a pole,

because 6f Liouville's theorem.

For any L-elliptic function f # 0, we can use the Laurent
expansion of f at a point a € €, to define the integer orda(f),
the order of f at a. Thus, if orda(f) -n , nelN then f has
a pole of order n at a and if orda(f) n € IN, then f has a

zero of order n at a. Since f is L-periodic, we have
orda+w(f) = or@a(f) for any wel.

hence, in writing orda(f), we may consider a as an element of
The formal sum
div(f) = & orda(f)(a),

the divisor of f at a € m/L, has only finitely many non-zero

coefficients, because the zero's and poles of f are isolated.
They form a subgroup, the group of principal divisors P(m/L),
of the additive group of all divisors Div(m/L). This group
Div(c/L) is, as before, defined as the group of all finite

formal sums
<

z na(a) , naé I,

with respect to the usual addition.
Before going into the question of the existence of

L-elliptic functions, we state the following theorem (a proof




of which may be found in [21]).

TUEOREM &. Let £ be a non-constant L-elliptic [function. Then
F is not entire
z Resa(f) 0
orda(f) 0

)

ora_(f)a = (addition in ©/

L

Now (1) and (2) show that an elliptic function must
have at least two poles (counting multiplicities). The fac;
that an elliptic function f has as many zero's as poles (this
is the contents of (3)), implies that f takes all complex
values the same number of times., Indeed, for any a € €, f and
f - a have the same poles, and consequently also the same
zero's.

The existence of L-elliptic functions may be proved by

exhibiting the Weierstrass &-function:

?L(z) i = 2-2 + I ((z-w)—z - w_z)

wel
w#0

The series entering in the above formula is absolutely convergent
for all z ¢ L and converges uniformly on compact sets C c C
with CNL = ¢. Hence ?L is meromorphic with a double pole (i.e.

of order two) at each lattice point and with no other poles.

A

So ?L has only one double pole on the torus q'/ It is not

L.
difficult to show that ?L is an even elliptic function. The

derivative ?i can be computed by termwise differentiation, and

thus we obtain

Pr(z) = -2 1 (z-u)7>,

weL




This function is an odd elliptic function with one pole of
order three at 0O € /L'

_ . P

By considering the Laurent expansion of ?L and ?L at the

origin, it is a straightforward exercise to show that

?ﬁz(z) = 4?3(2) - 8oL (2) - gy

identically in z, where g, = gZ(L) i= 60 Z w-4 and £q = g3(L) 1=
weL
= 140 £ ”° ‘ w#0

wWeEL
w#0

We claim that gg --27g§ # 0. To prove this, we consider the
zero's of ?i(z). Since ?i has a treble pole (at 0), this
function must also have three zero's, counting multiplicities.
On the torus ¢/L there are exactly four points a, such that
= 0 (i.e. 2a = 0 mod L in ¢)., They are represented by
O,%wl,éwz,%wB
where Wqg T oW, ¥ wz.in thé fundamental parallellogram PO.

Since ?L is an odd function, we find that

?L(zwi) = -&i(%mi) for i 1,2,3.

. ng and §w3 are precisely the three (simple) zero's

tience jw
] s . = 1 ° - 2l 3 ]
of &L' Now put e; = ?L(gwi) for i = 1,2,3. Comparing ?ero s

and poles, we see that

2
! = - - -
P17 = 4(p (2)-e ) (P (2)-e)) (P (2)-e )
identically in z. Because &L takes on the value e; exactly

twice, we have e, # e for i # j. Then the discriminant A of

the polynomial 4x3 - 89X T 8y does not vanish, i.e.

2 _ =4 3 2
048 = Tl (ejme? = 27"y - 2783).

.. 2
1<)




Clearly, the set of all L-elliptic functions forms a
fieid, whose constant field is €. It turms out that this field

is generated by &L ana ?i.

THEOREM 9. The field of L-elliptic junctions is generated by

P, and P|. In particular, tne field of even L-elliptic

e, ‘ons 1 he 1 ] ; . : 7 (ot o f

functions is the field C(?L)‘ The functions %L and ?L satisfy
the functional equation

&iZ(Z) = 4?%(2) - gz?L(z) - Bg-

More over gg - 27g§ # 0,

We now turn our attention to the relation between elliptic
functions and non-singular cubic curves defined over € (elliptic
curves!).

Let C be the irreducible cubic curve given by the equation

S e 3
YTZ = 4X gsz gSZ .

This curve is non-singular iff gg - 27g§ # 0. If so, the map

p: € > C C Eé , given by

pi oz o (2P (2),2°p](2),2°)

. . C . . .
factorizes through /L : consider the diagram

o 2
¢ — C C‘Em

A

H\N xxxa
1)

/L
where m: z & z (mod L). Then § is the map given by pm = p.
It is not difficult to see that p is a bijection: § is onto
since p is onto and § is injective because PL is an even
function and &i is an odd one. As we know, the points on the

C . . .
torus /. form a group with respect to ordinary addition and

L




fhe points on the curve C form a group C(€) with respect

to point addition. The bijection § is a group isomorphism!
To prove this, we observe that the addition on C is given
by: three points have sum zero whenever they are collinear.

Suppose 3(21) = Plé C and 6(22) = P2€.C. Thus we have to show

that P, + P,. Suppose

P, = (xl,yl)‘and P

If 1= Xy

P1 + P2 = 0. Also ?L(zl) = ?L(ZZ)

2

then y, = -y, and

and hence z, + 2z 0 (mod L). This

1 2 =

shows that §(0) = 0. Assume X, # X,

Then ?L(zl) # pL(zz). This means that
1 I ' = ' =
we can find a,b€&C such that kL(zl) a&L(zl) + b and &L(zz)

N a&L(zz) + b, or geometrically, P, and P, lie on the line

1 2

y = ax + b. The function £(z) := %i(z) - a?L(z) - b 1is
L-elliptic with a pole of order 3 at O, Thus f must have three
zero's, two of which are known to be z, and z,. Let z4 be the
third‘zero of £f. Then, since L orda(f)a = 0, we deduce that

2z, vz, * z4 £ 0 (mod L). The points Pl’ P2 and P3 6(23)

are collinear. Because P3‘= (x3,y3) implies --P3 = (x3,—y3),

we find that 5(zl+22) = 5('23)

We have proved

THEOREM 10. For any lattice L of C, let ¢, be the non-singular

cubie curve given 0y the functional equation of (z). Then
g Y J q J L

the nmap p: ¢ * C C.Pé , p(z) = (23§L(z),z3?i(z),z3) induces

. . S ¢ .
a group isomorphism between [  and CL(E).

L




All we have done so far depends on the lattice L. A
natural question may be asked: what relation should exist

between two lattices L1 and L2 (or two toruses ®/L
1

to be birationally isomorphic?
First we observe that for any lattices L and M the toruses

are topologically the same. This is also true for

the groups on m/L and ¢ \ with respect to ordinary complex
N

¢
[y and Ty

Cye s . . (¥
addition. So we need extra structure, Consider the torus /

L

as a Riemann-surface (i.e. a Hausdorff space with an analytic
structure). MNote that the isomorphism given in theorem 10 is an
analytic isomorphism. Now let L and M be two lattices and let

o: t,

M be an analytic isomorphism such that ¢$(0) = O.

L

Consider the commutative diagram:

Then for any z€ ¢ anc w €L, we must have §(z+w) - $(z) € M.
More over $(z+w) - $(z) is independent of z. Consequently,
§'(z+w) = $'(z) and this shows that §' is an entire L-elliptic
functibn. Thus §(z) = az + p. Clearly b = 0, since ¢(0) = 0
and &« # G. This means that aL = M (we call such lattices
homothetié). The cqnverse.is also true i.e. homothetic lattices
induce an analytic isomorphism between their toruses.
Obviously, homothety is an equivalence relation. Let us

by

~ ) , . . . *
denote 1tYL Nh M. Thus L Wh M iff tnere is an a €C such that

oL = M. Now for each lattice L there is at least one TEUH =

={ zet I In(z) > 0 } such that L mh,LT += Z ® Zt. For instance,




if {wl,wz} is a basis for L with Im(m]/mz) > 0, put T = w]/wz.

Then L ~, M iff LT ~

h MT'.

h

Suppose LT =.aLT, with o # 0, Then there are integers
a,a',b,b',c,c',d and d' such that

at’ at + b a't! + b!

cT + d c't' + 4d°

at+b _a't'+b’
————— (]
ct+d c't'+d"
b'
The matrices § ) must be inverse to

ar
one another, Since their entries are integral, it follows
that detS = *1, More over Im(t) > 0 and Im(f') > O and thus
detS = +1. Conversely, if there is an S € SLZ(E) i=

b

)l a,b,c,d€Z, ad - bc = 1} such that (

LT, , as 1s easy to see. Since the matrices

-a =-b
) and ( ) have the same effect, we consider them
-c  =d :

d
equal, The resulting group we denote by I := SLZGZ)/{il}. This
group is called the modular group and an element of T is a
modular transformation. Two elements tT,t'€ H are called
congruent modulo roif they can be transformed into each other
by means of a modular transformation. It can be seen that the

H ..
set of congruence classes '/, is in one-to-one correspondence

r

with the fundamental domain (cf. [47], ch, VII):
D := {reH:|t|>1,-}sRe(t)<}}U {teH:|t|=1,-3sRe(1)<0}.

All this leads to




THEOREM 11. There is a one-to-one correspondence between the
~ H 1 2 K T, 0 o)
elements of /r and the isomorphism classes of plane non-

singular cubic curves defined over C.

It remains to show that every planme non-singular cubic

.. . . (%
curve is isomorphic to such a curve given by the torus /L

for a lattice Lc C.
Let L be a lattice and C the cubic curve with equation

w3 2 53
’-4A - gsz g3é

with 8y = gz(L) = 60 I w-4 and £5 = = 140 I w_6.

weL w€e€L
w#0 w#C

(LT) and

If we put 1 = ml/m then clearly gz(L) = mzagz

2’

g3(L) = w;6g3(LT). This shows that the modular invariant

i0) = 1728820/ (230 - 2782()) = 172883 (L )/ (ay (L) -2783 (L)) =

is a function of t. This function is a modular function;
it is invariant under the modular group.
It can be shown that J gives a bijection between the
fundamental domain D and ¢ (cf.[22], ch. I).
Thus, if C is a plane non-singular cubic curve with
modular invariant j(C), then a 1€ D may be found such that
jc)y = J(1). Iﬁ turn this gives a lattice L_ and a cubic curve

C

CT = /L . Since C and C. have the same modular invariant, they

T
are birationally isomorphic.

To conclude this section, we like to comment briefly on
the concept of genus of a cubic curve. Consider the Weierstrass

. ) N 2 .
function ?L as a function on Q/L. Then ?L: C/L - € = S~ 1is an




n
analytic map onto the extended complex plane € (by S2 we mean
the Riemann sphere). How ?LAtakes on all complex wvalues
. . . . 2
exactly twice, with the exception of e1s €5, €4 and ® in S .

Thus we have a double sheeted covering with four ramification

points e» €5, €5 and »., On the curve C(€) ¥ ¢/ this mapping

L

coincides with

c(e) -~ Pé = S2 (x,y) » x , 0P = = (C:1:0).

We can visualize the Riemann surface m/L as the surface
constructed by sticking together (in the proper way) two
Riemann spheres, each witﬁ two slits from e, to e, and from
ey to =, This gives us a torus, or equivalently, a Riemann
sphere with one handle. The topological genus of a Riemann
surface homeombrphic to a Riemann sphere with g handles is.
precisely this number g. So we see that the algebraic genus
and the topological genus coincide (this is also true for

g # l;cf.[JO], p. 132). Also, by the Zeuthen-Hurwitz formula

we have (the map given above nas degree 2):

2g(C) - 2 2(2;;(:?&)-2) + (2-1) (K ramification points)

-4 + 4 = 0.

4, ELLIPTIC CURVES.

We shall give (finally) a general definition of what is
known as an elliptic curve. Again, we fix a field k with an
algebraic closure K = k .

An algebraic curve is defined (as was done in the first

section for a plane algebraic curve) as the set of zero's,




. . . 2 .
contained in the projective space WK (2 2 2), of a polynomial

f(xl,...,xl) with coefficients in k. All concepts, discussed
in section 1 apply in this case. For instance, the genus of
an algebraic curve C is essentially the transcendence degree

of its function field K(C) over K.

DEFINITION. An elliptic curve L is an absolutely irreducible
non-singular algebrate curve of genus 1, furnished with a

point P. The curve i is defined over k, in notation E|k, ©f the
point P has coordinates in k(and if the defing equation has

coefficients in k, which was already assumed).

An elliptic curve E|k is birationally isomorphic (over k)
to a plane cubic curve, given by an equation (in generalized

Weterstrass normal form):
(¥ 2+axy+ay= 2 (a.€ k)
y 1 3 6 i i

where X and y are coordinates in the affine plane. The point

P (see definitfon) is transformed into the flex 0 = (O:l:O)elPé,
the neutral element for the group law on the curve. The extra
terms in the equation are due to the fact that nothing was
assumed on char(k). If char(k) # 2, then an equation for E|k
may be given in the form (¥) with a, = a, = 0, and in case

1

char(k) # 2 or 3, one may also assume that a, = 0 (see theorem 1).

Given an equation (¥) for E|k, we define (cf.[ll]and [21],

Appendix 1):




2
b2 - 214b4

-b,, + 36b2b - 2160

3
2 4 6

2
+ 432?6 + 033 ~ a

2
4
27b2 + 9b2b4b6 (the discriminant)
R (the modular invariant)

. .. 2 3 . .
The connection with = 4x 8,X =~ 83 (see section 3) in

char(k) # 2 or 3, is given by

' 3 2.
c, =,12g2 » Cg = 216g3 , A = 8y ~ 27g3 , j = 1728J.

It is easy to check that

~

Z and cz - S = 2633A.

A differential of the first kind on (%) 1is

ax
2y+alx+a3

w:

Two elliptic curves E|k and E'|k with weierstrass models

y ot axy ... and y'2 + a'x‘y' co

1

iff there are r,s,ty,ué€k with u # 0, such that

are birationally isomorphic

X = ux'+r i y = u3y' + uzsx' + t.

In particular, we see that under such a transformation

Also E(k) = E'(k) implies that j = j' and conversely if j = j'
then E(K) = E'(K).

For all these facts we refer to section




As an example, consider the "generic" curve E|k(j),

given by the Weierstrass equation

2+ =x3—.—-—§.§.—-—- -.-——l.—-—.—.
y xy 3-1728 7-1728

j # 0 or 1728,

The discriminant A = j2/(j~1728)3 and j is the modular
invariant (this explains the term "generic'").See also theorem 7.

A further example is furnished by the curve E|k given by

3
X7 + X

1 0.

2

If char(k) # 2 or 3, then the biratiomal transformation

X = 3x3/(xl+x2) , 2y = 9(x1-x2)/(xl+gz) + 1

maps the equation into

(cf. section 1).

Amongst all the Weierstrass equations an elliptic curve
may possess, it is sometimes possible to select one with a
certain "minimality" condition. For instance, for the curve
E|% (take k = R) given in the last example, the equation

2 3 . . . .
y -y =% - 7 is minimal in the sense that any other equation

‘for EIQ of weierstrass type has discriminant A' = ~u1239 withv
u€eZ, u# C.

The precise definition runs as follows. A Weierstrass
equation (¥) for E|k is called minimal with respect to a discrete

valuation v of k 1iff V(ai) > C for all i and v(4) is minimail,

subject to that condition.




Let Rv be the valuation ring of v in k. It can be shown
that there is always a minimal equation for Elk with respect

to v. More over, such a minimal equation is unique up to a

\J 1)

.y _ .3 2_,
s ¥ uy + sux + ¢t

' . 2
transformation of the form x = u X

with r,s,t éRV and u invertible in R, . Further the differential
w associated with a minimal Weierstrass equation is unique.

1f aie'Rv and v(A) < 12, then the equation (3¢) is apparently
minimal, On the other hand, if the modular invariant j of a
minimal equation belongs to Rv’ then v(A) < 12 + 12v(2) + 6v(3)
provided that char(k) # 2 or 3. An algorithm for reducing to
minimal form is given by Tate in [56].

Let k be an algebraic number field with class number
(or, équivalently, the ring of integers 0, is a principal
ideal domain). Then any elliptic curve E|k has a Weierstrass
equation whicn is simultaneously minimal for all discrete
valuations v of k (cf.[Sl]L Such an equation is called a
global minimal Weierstrass equation for E|k. It follows, that
a global minimal Weierstrass equation has coefficients in Ok
and that the discriminant of such an equation is unique as

an (integral) ideal of k.

2 . .
Let f(x,y) =y + a|xy + ... 0 be a minimal equation
for the curve Elk with respect to a valuation v. Let R, be
the valuation ring with prime ideal Pv and residue class field

R . . .
ko= v/P . Reducing the coefficients a, of f = 0 modulo P_,
v

3 . '\l 3 !\l
one obtains an equation £ = 0 for a plane cubic curve Elkv.

"‘ . 3 5§ . v
Ciearly, the curve Elkv is uniquely determined up to a trans-

"

. 2 3 2 .
formation of type x = u'x' + r , y = u'y' + su'x' + t with




r,s,tﬂxekv and u # 0, If %lkv has no singular points, then
%Skv is elliptic and ¥ = 0 is an equation for %Ikv. In that
case X # 0 or, equivalently v(A) = 0. We say that Elk has
good (or stabZe or non-degenerate) reduction at v. In that
case j &R, and } is the modular invariant of %Ikv. If £ = 0
i.e. v(A) > 0, then %Ikv is a rational curve and E|k has
bad (or degenerate) reduction at v. In particular, if v(a) > ©
and v(cA) = 0, then %]kv has a node and we say that E|k has
multiplicative (or semistable) reduction at v. Now 3 ¢RV’
1f the singular point is defined over kv (for instance, if
k, is perfect), then %ns(iv) is a multiplicative algebraic
group (here %ns is the non-singular part of %). If %lkv has a
cusp, which occurs only if v(A) > 0 and v(ca) > 0, then Elk
is said to have additive (or unstable) reduction at v. In
that case we have that Ens(ﬁv) is an additive algebraic group
(see also section 2).

If we define

Eg(k) := {(PeE()| Bel (k))

and if we denote by p the reduction map p: E(k) - %(kv), then

we have

THEOREM 12, The set Eo(k) is a sub-group of fintte index in E(k)

and plEO(k) 18 a homomorphism of groups.

That Ej (k) is a sub-group of £E(k) and that pIEO(k) (the
restriction of p to Eo(k)) is a homomorphism follows from the
fact that reduction carries lines into lines (by which the group
law is given). The finiteness of the index depends on the
minimality of the equation £ = 0. It is a consequence of Tate's

minimality algorithm (cf. [56]). More information on the index




may be found in [55].

If we assume that k is an algebraic number field, then
it is easy to see that an elliptic curve E|k must have good
reduction at all but a finite number of places. For, consider
a Weierstrass equation for E|k with coefficients in the ring
of integers Ok' Then the ideal, generated by the discriminant
A of the equation can be written as a finite product of prime
ideals of Oy, because of the unique factorization of ideals
in Op. Hence v(A) = O for almost all discrete valuatipns v
of k.-

It is natural to ask whether, given an algebraic number
field k, there are any curves E‘k with good reduction at all
places of k. In particular, if k has class number 1, the
question becomes: are there any Weierstrass equations (30 with

aie 0k and with unit discriminant? Tate has shown that this

is not the case if k = §.

THEOREM 13, An elliptic curve E|R has bad reduction at v for

at least one place v of Q).

Proof. Assuming the statement to be false, there must be a

curve ElQ having a gloBal minimal model (3¢) with coefficients

in%Z and unit discriminant. In particular

ci — = +2033

Knowing that the diophantine equation x3 - y2 = a, aeZ a7 0,

.. . ‘ 2 .
has at most a finite number of solutions (x,y)€eZ"~ (this was

first shown by A. Thue in [57]), we find that (04,c6) = (£12,0)

is the only possibility (see also [10]). Then b, = 0(mod 2)




and this implies that a, = 0 (mod 2). Hence b2 = 0 (mod 4) and

b4 = 0 (mod 2). We arrive at a contradiction, because it would
follow that c, = bé - 24b, = 0 (mod 16). For different proofs

see [33] and [51];

In [51] this result is generalized to elliptic curves
defined over‘imaginary quadratic number fields having a global
minimal model., That there are nevertheless curves defined over
certain imaginary quadratic number fields having good reduction
evefywhere, was shown by Tate (cf. [54] and [51]): he ﬁroves
that the,genéric curve (see page 32), defined over Q(j), where

12 . .
n = 0 for a rational integer n

i is given by 2 - 1728j %
prime to 6, has good reduction everywhere.
Another example of a curve with good reduction everywhere,

is the curve given by the equation

y2 + Xy = x3 - 2ex2 + ezx
defined over }(Y7), where ¢ = 8 + 3Y7 is a fundamental unit

of 23[/7] .

An important result, due to Shafarevich is given in the

foliowing theorem.

THEOREM 14. Let k be an algebraic number field and T a finite
set of places of k. Then there is only a finite number of
elliptic curves E|k (up to isomorphism) with good reduction

everywhere outside I.

In the proof of this theorem (cf. [41]) use is made of

a famous theorem of C.L. Siegel to the effect that on any




affine equation for an elliptic curve E|k there are only
finitely many points with coordinates in 0, - The method of
proof is ineffective. However, not so long ago, A. Baker [2]
has given an explicit upperbound for max([x|,[y]), where (x,y)
is a solution with coordinates in 0y of the diophantine
equation

y2 = P(x) with P€>Ok[x] , deg(P) > 3 and P has three

simple zero's. This shows that for a given set I , all curves

Elk with good reduction outside I may be, at least in principle,
effectively foﬁnd.

F.B. Coghlan ([10]) has determined global minimal equations
for all curves EIQ with good reduction outside the set {2,3}

and in [51] this was carried out for all curves E]Q(i) and

EIQV—Z) with good reduction outside {21}.

Let k be a field with discrete valuation v and let L|k
be an elliptic curve. The exponent of the conductor of E at Vv
is a certain integer fv > 0, which is a finer measure of the
reduction of E at v then "degenerate" versus '"non-degenerate".
The integer fv equals zero for good reduction at v, one for
multiplicative reduction and 2+8 for additive reduction,
where 6§ > 0 is a certain "measure of wild ramification" (cf.
[34] and [45]); It was shown by Tate that 6 = 0 in case
char(k) # 2 or 3. Tate also devised an algorithm for finding
the exponent fv in general (cf. [56]). In it he analy;es the
reduction of the minimal model for E in the sense of Néron ([31]).
Néron's minimal model is in general not a plane cubic. If n is

the total number of irreducible components, not counting




multiplicities, of Néron's reduction of E over K, then
fv = v(A) + 1 = n ,

as was shown by Ogg (cf. [34]). Here A is the discriminant
of a minimal (Weierstrass) equation for E with respect to v,

If k is an algebraic number field and E|k has a global

minimal Weierstrass equation over k with discriminant A, then

f
- P
la €

is the conuuctor of le; the product runs over all prime

o
N

ideal daivisors ? of A.

To conclude this section, we mention the concept of
potentially goou reduction. The curve £|k has potentially
good reduction at the discrete valuation v of k if there
exists a finite extension k' of k and a prolongation w' of
v to k' such that E|k' has good reduction at v'. It was shown
by M. Deuring [14], that Elk has potentially good reduction
at v iff the modular invariant j belongs to the valuation ring
R (i.e. v(j) 2 0). See also [45].

V.

We finally mention the good reduction "criterion of Opgo-
y & &8

Néron-Shafarevich", see [45] and [55], a discussion of which

goes beyond the scope of this exposition.

5., THE GROUP E(k). SOME CONJECTURES.

In this final section we shall briefly comment on some
outstanding problems in the theory of elliptic curves.
About 55 years ago, L.J. Mordell proved the following

theorem (cf. [27]).




THEORLM 15. If E 28 an elliptic curve defineu over ¥, tnen

tie group L(N) is [initely generated.

Wot long after }ordell obtained his result, A. Weil
generalized it to elliptic curves defined over algebraic
number fields (In fact his generalization reached further:
he proved a similar result for abelian varieties defined over
number fields.— elliptic curves are abelian varieties of
dimension 1). Since then, the theorem in its more general
form has become known as the Mordell-ieil theorem. Also,
A. Léron and S. Lang extended the theorem for abelian varieties
over function fields of one variable with finite constant
field (cf. [19]). Proofs of the Mordell-Weil theorem can be
£ounq in Cassels' survey article [7] and Mordell's book [28].
If we denote the torsion subgroup of E(Q) by E(D)tors
(i.e. the subgroup of points of finite order), then theorem 15

says that there is a non-negative integer r such that

E(R) = (D) x z¥

tors

The integer r is called the rank of E|N.
Let us first investigate the group of points of finite
order, To tnat end we introauce the concept of Zsogeny. Let

k be an algebraic number field with algebraic closure K, and

let Ly k andg E2 k De two elliptic curves. Consider a rational

map A El + L,, defined (everywhere) over k. More over,

“~

suppose that ) is surjective and that A(gl) =0 Then A

—-2°

induces a homomorphism

z nP(P) > I nP(A(P))




of the group of divisor classes of degrge zero on El(k) into
the correspondihg group on Ez(k), taking principal divisors
into principai divisors. The kernel of A is-finite and the
degree of )\ is the number of points in'Ker(A) counting fﬁeir
multiplicitiesf (In fact the degree of X is the degree ofvthe
corresponding function field extension k(El)/k(Ez)). Such a

rational map 1s called an Zsogeny.

An isogeny A: Ly - L, induces a dual <sogeny X :
& .

and fex : L

with the property that A+X : L, = L, i

2 Z
99 E] respectiﬁely

(ct. [7], p.210 and [21], cn. II). In particular, nultiplication

multiplication by m = deg()) = deg(%) on L

by m € IN on the curve E (i.e. the map m(id)E)'is an isogeny of

2
degree m .

TLEOREM 16, Let Elk o aﬁ eliiptic curve. I the positive

{nteger = ts prime Lo tne characterisiic of k, then the group

Ln(R) of elements of order dividing m is isomorphic to

Z 7o - e a DA ~ a3 7 o
/mz v A5 E =R for a prime p = char(k) , then E_(K)

is a eyeclic group of order m or of order 1, depending on the

xz/
value o] thae so-called uasse invariant.

(The hasse invariant equals 1 and L is said to be ordinary in
the first case; E is supersingular if the Hasse invariant equals

P . > 4 = H J 55
zero and tlien Lm(h) U. See [JJ]).

If k is of characteristic zero and K = €, then the
statement of the theorem follows immediately from E(C)

because the kernel of tne mapping E(C) » E(C), t = mt

Ly

. . _ - . Z
E (o) = w/, / /

X .
% nZ




Next, let k be a fielu of characteristic p > 0 with
q.= pa elements., The elements of k are characterized in K by
the equation 2% = o. Hence if the curve E|k is givenrby
f(xl,...,xl) ? 0, the map (xl,...,xg) - (x?,...,xg) induces

a rational map "Elk : E > E, the Frobenius endomorphism relative

to k (An endomorphism is an isogeny or the zero map), whose

fixed point set is precisely the set E(k) of k-rational points

on E. Now WEIk is a purely inseparable isogeny of degree q, i.e.
the points of the kernel occur with multiplicity one. E. Artin

conjectured and H., Hasse proved (cf. [14])

THEOREM 17. If k s a finite jfield with q = plelements, then
the order of the group E(k) of an elliptic curve E|k is

1
|[E(k)|=1 + q - a with |a| < 2q°%.

An immediate consequence of this theorem is that two
isogenous curves defined over a finite field k have the same

number of k-rational points.

We return to the case k = Q). But first, we mention an
important result due to Lutz (cf. [23]). Let Eln be an elliptic
curve and let p be a prime number. If Qp denotes the p-adic

completion of J), then

THEOREM 18. For any prime p, the group E(mp) contains only
finitely many points of finite order. More over, the subgroup

of points of finite order is effectively computable.

So, if E(R) .o is the group of points of finite order on

E|D, the theorem shows that E(R) is finite and computable.

tors




Indeed, E(R) < E(Qp) for any fixed prime number p. One may

derive from Lutz's result the explicit

THEOREM 19. If P = (p,,pP,) 18 a point of finite order defined
over Y on the curve given by

y2'= x> + Ax + with A,Be Z,

then P »Po€Z .and etther p, = 0 or pg divides 4A3 + 2732.

Information on E(R) for an elliptic curve E[m can

tors
be obtained by considering the curves one gets by means of

reduction modulo p for various primes p. For example, if E|Q
is given by a Weierstrass equation with integer coefficients,
we select a prime p for which E|Q has good reduction at p.

The reduction map sends E(R) into %éz/pz). This mapping

tors
is injective if p is odd and the kernel is of order I or 2
if p = 2 (see theorem 16).

Recently, B. Mazur has settled the problem of the

He proved (cf. [26])

structure of E(Q)

tors "’

THEOREM 20, Let Elm ve an ellipiic curve. Then the torsion

subgroup E(R) (,rq 18 isomorphic to one of the following 15

groups:

Z/ for m 2 10 or m = 12 ; oy for n < 4.

niZ 2nZ

More over, all of these 15 groups do indeed occur.

In his proof he uses techniques attributed to Demjanenko
[12], [13] and Kubert [18] of associating to a point of

on any elliptic curve E|R} (under certain conditions)

E(R)

tors

I-rational points of some specific algebraic curves c|m,




so-called modular curves. Besides [26] mentioned above, an
excellent account of the problem is given by Ogg in [36] and-
[38], where the connection between the curve E|D together
with a point P-of order m and the modular curve X‘(m)'is

given. In connection with theorem 20 we also refer to [4].

In this context, we have the

CONJECTURE 1. If k is an algebraic number field, the order .

of E(k)

tors is bounded by a positive integer B(k) depending

only on k (Zf E ranges through all curves E|lk).

See Cassels [7], Manin [24], Demjanenko [13]. For mo
k # I the conjecture is proved; one does not even know what

a reasonable value for the bound B(k) should be.

For many curves EIQ the rank r has been computed. See
for instance the account in Zimmer [62], section 11, In all
these cases r is quite small, There is however no definite:

reason why this should always be the case. Néron -has shown

in [32] that there must be curves Elm with r > 11, Very

interesting numerical investigations have been carried out by

Birch and Swinnerton-Dyer (cf. [5]). They were led by their
results to state several conjéctures, some of which relate

the rank r of'EIQ to the behaviour of the so-called L-function

of E|m near the point s = 1, To be more precise, let y2 +axy + ..
be a global minimal Weierstrass equation for E|RQ with

discriminant A;‘For any prime p, the reduced curve E IEP is

defined over the finite field Ep of p elements. Denote by KN

. v . .
the number of points on Ep,vratlonal_over Ep. Then Np is one




more (because of the point 0 at infinity) than the number of
distinct solutions of the congruence y2 +axy + ... = 0 (mod p).

1f “p and Ep are the characteristic roots of the Frobenius

domorphism of % F then a o = and thus |a = .
endomorp pl p °? p’p P | pl P

More over (see also theorem 17)

N = ] + - o - E‘ °
p P p p

All this is only true in case %p is elliptic, i.e. pfAa , or
equivalently, E|Q has good reduction at p. The local L-function

for E|Q is then defined as

Ly (s) = (<l—a p °)(1- 3 p's))".
ﬁp P P

On the other haﬁd; if EID has bad reduction at p, thus plA ,

then EPIFP has a singular point which is necessarily defined

over Fp. If this singular point is a cusp, then Np =1+ p.

If it is a node, we distinguish the two cases

(i) the tangent directions at the singuiar point are defined
over Ep; and

(ii)the tangent directions are no; defined over Ep and hence
conjugate dve; Wp.

In case (i) we have Np = p and Np = 2 + p in the second case (ii).

If we set tp t= 1 + p - Np, then the local L-function for

E|Y) at the bad prime p is defined to be

Ly (s) = (l-tpp's)".

P

The global L-jfunction for E|) is now defined by

= N
LE(S) Il LE (s) ,
P P




where the product runs over all primes p. This product
certainly converges for Re(s) > %. In fact it is a Dirichlet
series Ecnn‘s'with cp =1 + p - Np at the prime p.

For every prime p not dividing A (a good prime), we have
N \-1
P %
This suggests that, in order to obtain information on the
behaviour of LE(S) near s = 1, one should look at
N
I .
P %

Now |N_ - pl < zpi and T (1 + l) v clogx (x + «) for a

certain constant c. This, together with their numerical results,

led Birch and Swinnerton-Dyer to the following

CONJECTURE 2. If r is -the rank of the curve E|W, then there
are constants c, and c, (depending on E), such that
I
¢, £ (logx) mn (=2 < ¢
pIx
for all sufficiently large x. More over the L—junction’LE(s)

has a zero of order r at s = 1,

- N .
On examining the values of I (—3), Birch and Swinnerton-
pEX

Dyer were able to predict and verify the value of r for quite

a number of curves.
f
Let N be the conductor of E|% i.e. N T p P (see section 4).

pla
We define the function

e ais -s
ZE(s).—_N (27m) F(s)LE(s).




CONJECTURE 3. The junction ZE(S) can be analytically continued
to tie entire s-plane as a iolomorphic Function. Further more
it saitsfies tne functional equation

. = +2 .(2-

z,(s) 12, (2-s)

for one or-the other sign.

This conjecture is known to be true for some special
cases, such as curves with complex multiplication (cf. [15]).
For general information on curves with complex multiplication,

one should consult [43].

In connection with this last conjecture, we would like
to mention another remarkable conjecture, due to A. Weil
(c£. [60]). Since the setting in wnich this conjecture plays
an important role is quite involved, we shall merely give a

superficial outline. A full account may be found in [53].

CONJECTURE 4. ALl elliptic curves E|} of conductor W are

parametrized by modular functions jor the congruence subgroup

ro(¥) of the modular group T.

This needs clarification. First of all, PO(N) is defined

' a b
rO(N):= { ( €T | c = 0 (mod N) 1}.
c d '

If i = { ze¢€ | Im(z) > 0 }, the upper half plane, let YO(N)
denote the Quotient of H and FU(N). See also section 3. Now
let XO(N) bé_thé compactification of YO(N) by adjoining the
cusps (for an explanation of this and other facts concerning

modular functions, see [37], [22] and [35]). Then XO(N)




becomes a compact Riemann surface and thus may be viewed as
an algebraic curve defined over ¢ (by means of an embedding
in projective sbace). In fact, XO(N) is even a cﬁrve defined
over ¥. kow conjecture 4 says that for any curve Elm 6f
conductor N, there is a rational map
l‘¢ : XO(N).+ E

defined over Y. This gives tae paraﬁetrization of EIQ
mentioned in the(conjecture, because ¢ is given in terms of
a special modular function (which corresponds to LE(s)) for
the congruence Subgroﬁp FO(N). Consecuently, the numbef of
these particular modular functions should be equal to‘thé
number of iségeny classes of elliptic curves E|}) of conductor
K. ﬁote tgat'tﬁevconductor is invariant under isogeny.

As én eXaﬁﬁle, consider the first non trivial case N = 11,

In [58] it is shown that the only curves E|R of conductor I1

are (up to isomorphism):

(i) y°

i) yi -y

(iii) y2 -y = - 7820x - 263580 (See also [59])
Observe‘that for any given i it is possible, in principle,

to construct'gil‘curves E|} of conductor K. See theorem 14.

Now thne curves'(ii) and (iii) are isogenous over Q to_(i) and

up to isomorphisﬁ there are no others isogenous to (i);vMore

over equation (i) is a Weierstrass equation for the modular

curve XO(II). This shows the truth of the conjecture in case

N =11,

Conjecture 4 has been checked for many values of N, and

all the information thus obtained points to the truth of it.

See for’instancé [48].
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