
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


ECONOMETRIC INSTITUTE

BRANCHING FROM THE LARGEST UPPER BOUND:

FOLKLORE AND FACTS

B.L. FOX, J.K. LENSTRA, A.H.G. RINNOOY KAN

and L.E. SCHRAGE

CIANNINI FCLIN
AGRICULTUF?A

sY

REPORT 7722/0

N Or
ONOMICS

ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738, ROTTERDAM, THE NETHERLANDS



Dit rapport werd reeds eerder uitgegeven bij het Mathematisch Centrum te Amsterdam.



BRANCHING FROM THE LARGEST UPPER BOUND: FOLKLORE AND. FACTS

B.L. FOX

Universite de Montreal, Canada

J . K. LENSTRA

Mathematisch Centrum, Amsterdam, The Netherlands

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam, The Netherlands

L.E. SCHRAGE

University of Chicago, U.S.A.

ABSTRACT

Branch-and-bound algorithms are widely used to solve combinatorial maximiza-

tion problems. At each step of such an algorithm a search strategy selects

an active subset of feasible solutions for examination. In this paper we

discuss the formal properties and the practical value of search strategies

based on branching from the largest upper bound (BLUB strategies). We inves-

tigate conditions under which BLUB strategies are optimal in the sense that

they minimize the number of subsets generated. Counterexamples show that the

conditions given in the literature are not strong enough and a correct opti-

mality condition is formulated. Finally, we argue that the practical objec-

tions raised against BLUB strategies are not necessarily convincing.

•



1. INTRODUCTION

Let us consider branch-and-bound algorithms as applied to maximization prob-

lems. One of the components of such an algorithm is a search strategy that

at each step selects an active subset of feasible solutions for examination.

The search strategies based on branching from the largest upper bound (BLUB

strategies) are often credited with certain optimality properties. For

instance, Lawler and Wood [7,p.712] comment on BLUB strategies:

Suppose that for any given problem the set of new bounding problems is

uniquely determined. Then this policy has the advantage that the total

amount of computation is minimized, in the sense that any branching

operation performed under this policy must also be performed under any

other policy.

Garfinkel and Nemhauser [5,p.149] give the following exercise:

Assume that all aspects of a branch and bound algorithm have been

determined, except for the branching rule. One is interested in devising

a branching rule that minimizes the number of vertices considered. If

the original problem is to find all optimal solutions to

max z(x), x E S

show that the appropriate rule is "branch to a vertex having the largest

upper bound."

In Section 2, counterexamples show that neither of these characterizations

is completely accurate and a correct optimality condition is formulated. In

Section 3, we consider the practical value of BLUB strategies and argue

against some traditional criticisms.

2. FORMAL PROPERTIES OF BLUB STRATEGIES

The essential components of a branch-and-bound algorithm for maximization

of a real objective function z are the following.



2

- A branching rule 13 ("separation rule" in [53) associates a family 13(S)

of subsets to a subset S of feasible solutions such that Us,c(s) S' =

S; the subsets S' are the children of the parent subset S.

- A lower bounding rule LB provides a lower bound LB(S) on the value of

each solution in a subset S generated by 13.

- A global lower bound LB
* 

on the value of the optimal solution is

provided by the largest LB(S) found so far.

- Computation of LB(S) is assumed to include feasibility test (if

any) and may lead to improvement of LB*

- An upper bounding rule UB provides an upper bound UB(S) on the value

of each solution in S.

- If S is a singleton {x}, then LB(S) = UB(S) = z(x).

Elimination of S occurs if UB(S) LB*.

- A search strategy a ("branching rule" in [5]) selects a currently

active subset for examination, where:

- active subsets are generated subsets which have neither been elim-

inated nor led to branching;

- examination of S is understood to imply determination of 13(5) and

computation of LB(S') and UB(S') for all 5' E 13(5).

The set of all feasible solutions is assumed finite. Two common types of

search strategies are jumptrack strategies, whereby any active subset can be

selected, and backtrack strategies, which, after examination of S' E 13(S),
examine all children S" E 13(S') before returning to the other members of

gS). A jumptrack strategy is called a BLUB strategy if it prescribes the
examination of an active subset with largest upper bound; a strategy is

optimal if it minimizes the number of subsets generated to find an optimal
solution (including verification of its optimality).

An actual branch-and-bound computation can be conveniently represented

by means of a search tree. Initially, the tree consists of a single node
corresponding to the set of all feasible solutions. The generation of a

subset is represented by the creation of a node corresponding to S and an

edge between this node and its parent. Each node may have two labels, corres-

ponding respectively to the values of the lower bound and the upper bound.

In this section we will investigate the optimality of BLUB strategies.
In the first place, the presence of ties among upper bounds can lead to



--- Figure 1 Search tree for the example.

situations in which some BLUB strategies are non-optimal, as demonstrated by

the following eaxmple.

Example. Consider the search tree given in Figure 1. The nodes correspond to

subsets denoted by capitals and are labelled only by the values of their

upper bounds. Let us assume that the unique optimal solution with value 2 is

contained in G and is found during computation of LB(G). Consider the fol-

lowing search strategies:

examines A,B,C in that order and generates B,C,D,E,F,G;a
1

0
2 

examines A,B,D,C in that order and generates B,C,D,E,H,I,F,G;

03 examines A,C,B in that order and generates B,C,F,G,D,E.

Obviously, al is an optimal BLUB strategy, 02 is a non-optimal BLUB strategy,

and 0
3 

is an optimal non-BLUB strategy. 0

In the second place, there are situations in which all BLUB strategies may be

non-optimal. At each stage of the tree search, let the complete history refer

to, roughly speaking, all information obtained so far and the direct history

to the information obtained along the path from the initial node to the node

under examination. Up to now, we have tacitly assumed that branching and

bounding rules only depend on the direct history. Let us quote two instances

of actual branch-and-bound algorithms for which this assumption is false.

Geoffrion's mixed integer programming algorithm [6] (see also [5,

Section 4.7]) computes strong upper, bounds via the appropriate linear

programming relaxations at, say, every sixteenth node; at all other

nodes only a:derived surrogate constraint is used. In this case, UB

depends on the complete history.



4

The MPSX/MIP algorithm [2;8] allows the use of a variation of "pseudo-

costs". For example, the attractiveness of branching on a certain vari-

able may be measured by the average reduction in upper bound over all

previous nodes in .which branching on that variable took place. Thus, (3

is allowed to depend on the complete history.

It is easily checked that dependence of 13, LB or UB on the complete history

may destroy optimality with respect to all BLUB strategies.

Example (continued). Suppose that at the third node generated a weak upper

bound is computed instead of a strong one. Suppose further that the weak and

strong bounds are the same except at node D, where the weak bound is 3 and

the strong bound is 2, as above. The unique BLUB strategy is the non-optimal

strategy a2 and the unique optimal strategy is the non-BLUB strategy a3. LI

Similar examples involving and LB are easily constructed. In the latter

case, a non-optimal BLUB strategy can exist only if ties occur among upper

bounds.

When is branching from the largest upper bound optimal? Consider the

following conditions:

(1) no ties occur among upper bounds;

(2) LB and UB do not depend on a.

Condition (2) implies that any search strategy generates a subtree of a

fixed, doubly-labelled, complete enumeration tree. It also implies that (3,

LB and UB depend only on the direct history, since there exists a search

strategy that first generates the path from the initial node to the node

under examination.

If (1) and (2) hold, then all BLUB strategies are optimal. If (1) is

violated but (2) holds, then we have that:

- at least one BLUB strategy is optimal;

- if a BLUB strategy generates n nodes, e of which have upper bounds

equal to the optimal solution value and d of which are children of

such nodes but have smaller upper bounds, then any search strategy has

to generate at least n-(d+e-1) nodes, examining at least n-(e-1) of

them.

The latter observation implies that, under condition (2), any BLUB strategy



is not far from optimal, unless there are many tied bounds. The proofs of

the above results are simple and can be left to the reader. It is possible

to strengthen the bound on BLUB performance by assuming more information

about the unexamined portion of the search tree.

Condition (2) may seem overly restrictive. It does hold, however, for

most specialized branch-and-bound algorithms. In [3], it holds automatically

and there is no advantage in weakening it. In any case, (2) appears to be

an essential hypothesis for any statement about the theoretical merits of

BLUB strategies.

3. PRACTICAL VALUE OF BLUB STRATEGIES

If condition (2) holds, the above propositions suggest the use of BLUB

strategies. Even if (2) does not hold, BLUB may be a good heuristic. The

case for BLUB seems especially strong if we terminate when the difference

between the current largest upper bound and LB* is less than a given

tolerance. Yet no commercial code that we know of uses BLUB even periodi-

cally. It is true that MPSX/MIP [8,p.111] and FMPS E9,pp.8-181 have a BLUB

option, but their authors recommend against using it.

Traditional objections raised against BLUB strategies are that they

require:

(A) excessive time to find an active node with largest upper bound;

(B) excessive bookkeeping;

(C) excessive storage.

Objection (A) seems hardly serious. By the use of existing list processing

algorithms, the family of currently active nodes can be kept ordered accord-

ing to nonincreasing upper bounds, and deletion Sand insertion of nodes can

be accomplished in time proportional to the logarithm of the family size

[4;1].

In contrast to backtrack strategies, jumptrack strategies such as BLUB

cannot be implemented in a straightforward recursive manner. This makes BLUB

strategies relatively complex to program and adds to the bookkeeping over-

head. We would grant that on small-scale or one-shot applications BLUB does

not appear worthwhile for this reason. Let us assume then that we are con-

templating the design of a large-scale production code.



6

Probably, the most involved bookkeeping arises when it would be very

inefficient to compute bounds from scratchat each node. For example, suppose

that bounds are computed via linear programming. For each generated node, we

either store the corresponding basis inverse directly or provide sufficient

information so that it can be easily reconstructed. Inverses for adjacent

nodes generally differ only little, so that relatively few (strategically

placed) inverses need to be stored explicitly.

In such situations, objection. (B) may be valid. Still, it would require

actual computational experiments to investigate if the trade-off between

tree size and bookkeeping overhead works out to the disadvantage of BLUB

strategies.

Similar remarks apply to objection (C). In general, jumptracking will

require more storage than backtracking. This is a disadvantage only if both:

(a) a backtrack strategy permits everything to be done in core;

(b) accessing secondary storage takes a considerable amount of time (i.e.,

buffering with negligible swap times is not feasible), or secondary

storage space cannot effectively be regarded as infinite.

With respect to some large-scale applications, (a) does not hold and it seems

that (b) has not been seriously investigated. Buffering may be facilitated

and secondary storage requirements reduced if in a hybrid fashion we alter-

nate between jumptracking and backtracking.

To summarize: we do not find the objections raised against BLUB strate-

gies and their hybrid variants necessarily convincing and we believe that

they merit serious empirical investigation.

ACKNOWLEDGEMENTS

We are grateful to E.L. Lawler for pointing out a deficiency in our original

treatment of the lower bound and to one of the referees for some construc-

tive comments.



7

REFERENCES

1. A.V..AHO, J.E. HOPCROFT, J.D. ULLMAN (1974) The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, Mass.

2. M. BgNICHOU, J.M. GAUTHIER, P. GIRODET, G. HENTGES, G. RIBIERE, O.

VINCENT (1971) Experiments in mixed-integer linear programming. Math.
Programming 1,76-94.

3. E.V. DENARDO, B.L. FOX (1977) Shortest route methods: 2. group knap-

sacks, expanded networks and branch-and-bound. To appear in Operations

Res.

4. B.L. FOX (1970) Accelerating list processing in discrete programming.

J. Assoc. Comput. Mach. 17,383-384.

5. R.S. GARFINKEL, G.L. NEMHAUSER (1972) Integer Programming. Wiley, New

York.

6. A.M. GEOFFRION (1969) An improved implicit enumeration approach for

integer programming. Operations Res. 17,437-454.

7. E.L. LAWLER, D.E. WOOD (1966) Branch-and-bound methods: a survey.

Operations Res. 14,699-719.

8. (1971) MPSX/MIP program description. International Business Machines

Corporation.

9. (1975) Sperry Univac 1100 series functional mathematical programming

system (FMPS) programmer reference. Sperry Rand Corporation.



REPORTS 1977

7700 List of Reprints, nos. 179-194; List of Reports, 1976.

7701/M "Triangular - Square - Pentagonal Numbers", by R.J. Stroeker.

7702/ES "The Exact MSE-Efficiency of the General Ridge Estimator

relative to OLS", by R. Teekens and P.M.C. de Boer.

7703/ES "A Note on the Estimation of the Parameters of a Multiplicative

Allocation Model", by R. Teekens and R. Jansen.

7704/ES "On the Notion of Probability: A Survey", by E. de Leede and

J. Koerts.

7705/ES "A Mathematical Theory of Store Operation", by B. Nooteboom.

7706/ES "An Analysis of Efficiency in Retailing, by B. Nooteboom.

7707/S "A Note on Theil's Device for choosing a Blus Base",

by C. Dubbelman

7708/E "A General Market Model of Labour Income Distribution: An Outline",

by W.H. Somermeyer.

7709/E "Further Results on Efficient Estimation of Income Distribution

Parameters", by T. Kloek and H.K. van Dijk.

7710 "List of Reprints, nos. 195-199; Abstracts of Reports First Half 1977".

7711/M "Degenerating Families of Linear Dynamical Systems I", by M. Hazewinkel.

7712/M "Twisted Lubin-Tate Formel Group Laws, Ramified Witt Vectors and

(Ramified) Artin-Hasse Exponential Mappings", by M. Hazewinkel.

7713/EM "An Efficient Way in Programming 'Eaves' Fixed Point Algorithm" by

R. Jansen and A.S. Louter.

7714/E "An Alternative Derivation and a r;eneralization of Nataf's Theorem",

by W.H. Somermeyer and J. van Daal.

7715/M "Application of Non-Linear Programming to Plane Geometry", by R. Stroeker.

7716/S "Stochastic Compactness of Sample Extremes" by L. de Haan and G. Ridder.

7717/ES "Cross-Section Studies of Efficiency in Retailing, Part I: Individual

Grocers and Butchers", by B. Nooteboom.

7718/0 "On Redundancy in Systems of Linear Inequalities", by J. Telgen.

7719/0 "On R.W. Llewellyn's Rules to Identify Redundant Constraints; A Detailed

Critique and Some Generalizations", by J. Telgen.

7720/0 "Redundant and Non-Binding Constraints in Linear Programming Problems",

by J. Telgen.

7721/MO "The Complexity of the Network Design Problem", by D.S. Johnson, J.K. Lenstra

and A.H.G. Rinnooy Kan.

7722/0 "Branching from the Largest Upper Bound: Folklore and Facts", by B.L. Fox,

J.K. Lenstra, A.H.G. Rinnooy Rand and L.E. Schrage.






