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REDUNDANT AND NON-BINDING CONSTRAINTS

IN LINEAR PROGRAMMING PROBLEMS

by

Jan Telgen

ABSTRACT

General mathematical programming problems may contain redundant and non-

binding constraints. These are constraints, which can be removed from the problem

without altering the feasible region or the optimal solution respectivily. Here

we consider some more theoretical definitions and give reasons for selecting a

special one. The emphasis is put on linear programming, but most of the material

can be applied to any mathematical programming problem with linear constraints.

To identify redundant constraints several methods have been proposed. We give

a survey and show that all these methods are variants of a general method (Telgen

(1977a)).

No method is known to identify non-binding constraints directly; therefore we

give some indirect ways to identify non-binding constraints. Finally, some remarks

are made concerning the importance of the methods to identify redundant and non-

binding constraints in practical linear programming problems, both from a managerial

and from a computational point of view.
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1. Definitions

We consider the general linear
o) 

programming problem

max z = c x

s.t.

where c and x are n-vectors, b is an m-vector and A is an (m>n) matrix,

0 is the n dimensional zero vector.

Alternatively we may write (1.2) -

(1.4)

A
where A =

[...
-I I

We define:

.3) as

d =[ • • • 1
-- 0

(1.6) = {xErR < 1-5}

The removal of the k-th constraint from the problem is denoted by a subscript k,

which can be attached to A, A or S, i.e.

(1.7)

is equivalent to

(1.8)

and

(1.9)

E a..x. < b
j=1

AkE 12k

S
k 
= {x I -A-itz- -55-k}

i = 1, ..., m i k

Note that in (1.8) k may range from 1 to m, while in (1.9) k may range from

1 to mi-n, so non-negativity constraints are included as well in (1.9).

In the following figures some examples are given of redundant and non-

binding constraints.

0 The restriction to linear programming problems is made only for simplicity

of explanation. In fact, any mathematical programming problem with linear

constraints may be considered. Then in the explanation that follows we have

to replace the vector c by the gradient of the objective function (assuming

the objective function is sufficiently differentiable).
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figure 1

figure 3

3

objective
function

Otit)

044f.)

figure 2

In these figures constraints indicated with (*) are redundant and constraints

indicated with (**) are non-binding. Note that in the figures with redundant

constraints no objective function is specified, while the objective function

plays an important role for non-binding constraints.

Formal definitions for redundant constraints as they appeared in

literature are listed below:

Boot [1964]: The k-th constraint from Tx < E is trivial if and only if

E a .x. < b Vx E S
k

j=1 k

Thompson, Tonze and Zionts [1966]: The k-th constraint from Ax < b is

redundant if and only if

(1.11) S = S
k 

(k <m)

A similar definition is used by Eckhardt [1970].

Gal [1975a]: The k-th constraint from Tx < 17) is strongl) redundant if and

only if

(1.12) Z a .x. < b
j= kjj k VxES

1
The omission of the word "strong" in another paper Gal [1975b]) is an error.



These definitions are not equivalent.

First, in the definition of Thompson, Tonge and Zionts [1966] the possi-

bility for non-negativity constraints to be redundant (or m+1 < k < m+n)

is excluded.

Second, if a constraint, that is otherwise not redundant, is stated twice,

it should be redundant once. This is not the case in the definition of Gal

[1975a].

Third, redundancy is a relative concept; a constraint can only be redundant

with respect to a given system of constraints. Although Boot [1962] mentions

this fact in a verbal definition, it is not sufficiently imposed in the

mathematical definitions above.

Fourth, reconsidering the case in which an otherwise not redundant constraint

is stated twice, both constraints are considered to be redundant by the

definitions of Boot [1964] and Thompson, Tonge and Zionts [1966]. This can

be prevented by a definition that is only applicable to systems in which

no constraints are denoted as redundant yet.

In view of these considerations we prefer another definition, which can

be used directly in a computational scheme.

Define

(1.13)_
uk E a .x.

j=1 kJ
k < m+n

Then redundant constraints can be defined in the following way, which was

suggested in a modified form .1.1 Gal [1975a]:

Deinition: "The k-th constraint from Ax < S is redundant with respect to

2)
the system Ax <b if no other constraints have been denoted as

redundant and if

min uk I E Sk} > 0

For computational purposes we distinguish between strict redundant constraints,

for which q > 0 and weak redundant constraints, for which k 
= 0.

Constraints that are not redundant are called active.

2
If more than one constraint is to be identified as being redundant, this
can simply be achieved by removing the previous one from the system and
again applying the definition to the new system.



Until now we did not pay any attention to the objective function of

.the linear programming problem. In fact it should be stressed, that the ob-

jective function does not appear in any definition of redundant constraints

i.e. constraints are redundant independent of the objective function

specified.

There is another kind of constraints that can be omitted from the linear

programming problem without altering the optimal solution for some objective

function. These constraints are called non-binding constraints. Definitions

for non-binding constraints that appear in literature are as follows:

Thompson, Tonge and Zionts [1966]: "An active constraint that is satisfied

as an equality at some optimum solution is a binding constraint. All

other constraints are non-binding constraints."

Zimmerman and Gal [1975]: "A non-binding
3) 

constraint is an active constraint,

that is not satisfied as an equality in some optimum solution".

There are two points that may be noted in these definitions; in the first place,

they are in conflict about the question, whether or not redundant constraints

are a subset of non-binding constraints (Thompson, Tonge and Zionts: yes,

but Zimmerman and Gal: no). We prefer to follow Zimmerman and Gal, because

the distinction between constraints that can be omitted from any problem,

and constraints that can be omitted from some problems, is a useful

one.

In the second place, in both definitions constraints that are satisfied as an

equality at some optimal solution cannot be non-binding. This may cause some

problems; consider the following figures:

OM.

objective
function

f.igure figure 5

ca)

Constraint (i) is non-binding, but constraint (ii) is not non-binding

according to both definitions. Still, constraint (ii) is not redundant
,

3 
Zimmerman and Gal use the word relative redundant, which may be confus

ing

because these constraints are not redundant.
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but may be omitted from the problem without changing the optimal solu
tion.

. Because this is an unsatisfactory situation, we look for another def
inition,

which iscloser to the concept of possible removal of non-binding constra
ints

and contains elements like:

(1.15) max{c xT 1 E S} = max lc
T
x x E S

k
l = 2

if the k-th constraint is non-binding.

But this yields other difficulties as illustrated in the following figures:

(6)

figure 6

A

objective
function

figure 7

Constraint (i) satisfies condition (1.15), but it should not be non-binding. •

Constraint (ii) is (weak) redundant, and if it is removed, constraint (i)

is no longer non-binding. From this it follows that (weak) redundant con-

straints should be removed before non-binding constraints can be defined.

In figure 7 all points that satisfy constraint (***) as an equality

'lave the sane objective function value; the programming problem has multiple

solutions. According to (1.15) both constraint (*) and constraint (**) are non-

binding, but we would rather not consider these constraints as non-binding.

Therefore we state the extra condition for non-bindingness:

(i.16) c x = rX

XESI:=

c
T
x =

E Ski

Finally, just was was the case with redundant constraints, constraints

can only be non-binding with respect to a specified set of constraints and

objective functions. Consider the following 3-dimensional example.



objective
function

figure 8

Any of the constraints corresponding to these hyperplanes, all passing

through the point T, may be omitted without changing the optimal solution,

but all of them may not be omitted at the same time.

This leads to the following definition of non-binding constraints:

Definition: "The k-th constraint in the system Ax <b is a non-binding

constraint if it is an active constraint for which

max {c
T
x xE Sl = max fc

T
x I E

x E S x E Skl

while no weak redundant constraints are specified in Tx <b and no other

constraints have yet been denoted as non-binding.
4)

=

x c
T
x = 2 = x c

T
x =

- --

In conclusion, we have four types of constraints:

(a) strict redundant constraints;

(b) weak redundant constraints;

(c) non-binding constraints;

(d) binding constraints.

We refer to (a) + (b) as redundant constraints and to (c) + (d) as active

constraints. Further, note that (c) and (d) are not complementary.

2. Dual equivalent concepts

Thompson, Tonge and Zionts 1966] introduced the expression "extraneous

variables":

extraneous variables are variables that are non-positive in every

optimal solution.

Since we assumed that all variables are sign restricted (nonnegative), we

might as well define extraneous variables to be zero in every optimal

solution. As a direct result from complementary slackness extraneous

variables and non-binding constraints are dual equivalents
5) assuming a

non-degenerate optimal solution.

If Liore than one constraint is to be identified as non-binding, this can

simply be done by removing the previousone from the system and applying

the definition again to the new system.

5 By a dual equivalent of concept A, we mean a concept that is equivalent
to A in the dual of the problemfor which A is defined.



Luenberger [1973] defines two other sets of variables:

-• A variable is said to be a "null variable" if it has zero value

in every solution of the system (1.2) - (1.3).

- A variable in the system (1.21 - (1.3) is 
11nonextremal" if its

nonnegativity constraint is redundant in the system (1.2) - (1.3).

Now it is easy to see that redundant constraints and null variables are

dual equivalents.

These results can be shown in the following figure.

assuming
non-dege-
racy

constraint dual variable slack variable

r binding
t non binding

redundant

extraneous

null

extraneous

nonextremal

$,o an adequate definition of these concepts leads to the development of

formal relationships, Therefore in all following sections we can refer to

redundant and non-binding constraints only. In that one should keep in mind,

that all results apply equally well to their dual equivalents.

3. Identification of redundant constraints

The identification of redundant constraints in systems of linear inequalities

is handled from a theoretical point of view in Telgen [1977a]. In the same

paper a general method is developed to identify both strict and weak re-

dundant constraints. This method is in fact mainly a direct application of

the definition given in section 1, i.e., for all k < m+n we determine

(3.1) ti
k 
= min{u I 

—
xES

k
}

Here we will show that all methods, that have been proposed in literature

can be seen as variants of this general method.

We distinguish between three kinds of methods:

(a) direct methods: for a fixed constraint k it is determined, whether it

is redundant or not;

(b) indirect methods: in certain situations redundant constraints may be

recognized directly. Indirect methods consist of scanning a feasible

solution for these situations. In this way redundant constraints may

be identified by chance.

(c) heuristic methods: if certain conditions hold constraints may be iden-

tified as being redundant. However, not all conditions are easy to check

and therefore the results should be validated afterwards.
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A number of direct methods may be derived from the turn-over lemma, that follows

directly from the definition of redundant constraints.

Turn-over lemma: "The k-th constraint from Ax <b is redundant if and only

if the system

( 3 2 )

( 3 . 3 )

ros.
k
x 

<— —k

a .x. > b
j

j=1 
k

is infeasible".

Proof: (.44 If the k-th constraint is redundant, then according to the

definition of redundancy

minfx E Sk I uk} > 0

Therefore -A- x < U
— —k k

=0 I ak .x. <b
j=1 J J k

and thus (3.2)

(1T) If 
(3.2) -

- (3.3) is infeasible.

(3.3) is infeasible, there is no x E 
S
k 
that satisfies

I akj 
.x. > b since Sk 0.
j

j=1
Therefore u

k 
> 0 V x E Sk—

and the k-th constraint must be redundant.

q.e.d.

In determining the feasibility of th
e system (3.2) - (3.3) one usually

solves the linear programming problem

( 3 .

( 3 . 5 ) s.t.

min g = bk - ak;xj
j=1

A x <
k---k

As soon as g < 0 the solution proced
ure is stopped because a feasible

solution is found. Note that the problem
 (3.)) - (3.5) is exactly the sa

me

as the problem (3.1) solved by the general 
method.

Boot [1962] proposed to determine the fea
sibility of (3.2) - (3.3) by

replacing (3.3)by
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(3.6) E a .x. = b +

j=1 
kjj k

substitute this equality for some x in all remaining inequalities 
and try

to solve the resulting system of linear inequalities.

Thompson, Tonge and Zionts [1966] try to improve the computational 
per-

formance of this method by considering constraint (3.6) as an 
inequality

with a slack variable -E. Then this slack variable is always kept in 
the

basis with the same value. By this the computations for the elimination

and substitution of a variable are unnecessary and fewer changes in the

original problem (3.2)_ - (3.6) are caused.

But as well as in Boot's original scheme, for every constraint that is t
o

be tested for being redundant, the feasibility of a system of linear con-

straints has to be tested. In practice this means that a linear program-

ming problem has to be solved for every constraint that is to be checked

for being redundant.

It should be noted that (3.2) - (3.3) and (3.2) - (3.6) are not equiv
alent.

If (3.2) - (3-6) is feasible, then (3.2) - (3.3) will also be feasible and

the k-th constraint is not redundant. However, the k-th constraint will be

redundant if (3.2) - (3.3)_ is infeasible and that may be concluded only if

(3.2) - (3.6) is infeasible for all E > 0.
6)

Following an idea of Lisy [1971], Gal 1975a] presents a method to i
dentify

strict redundant constraints and some weak redundant constraints. Since this

method closely resembles the general method, we refer to Telgen [1977a].

Eckhardt [1971] shows that for all redundant constraints k, there is some

index s k, some p > 0 and a basic feasible solution to (1.1) - (1.3) such that

in the corresponding basic system:

(3.7) J
1

a.<p a
kj sj

k >p
b
s

V j = 1, . . n

The choice of a particular e> 0, which will in general be rather small
may also cause numerical difficulties.
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The conditions (3.7) merely describe the situation in which it
 is possible,. to

perform one iteration and thereby obtaining another basic fe
asible solution

in which the slack variable of the k-th constraint is basic
, say in row t and

all coefficients in this row t are nonpositive; then uk will 
be at its minimal

value and (3.1) is solved. Therefore Eckhardt's method may also be
 seen as a

variant of the general method.

Indirect methods to identify redundant constraints have been proposed

frequently in literature.

One of the earliest proposals is due to Llewellyn [1964]; some

rules are given to identify constraints that are redundant by one other

constraint and all non-negativity constraints. Since his rules are not

as general as claimed and some more conditions should be imposed, we refer

to Telgen [1977b] for a detailed treatment.

Thompson, Tonge and Zionts [1966] and Zionts [1965] introduce the concept

of a definitional constraint. The k-th constraint and the p-th variable

are called definitional if they can be written as

(3.8) +
k

j=1 jOID -j

where a tilde indicates that this is with respect to some basis and where

both

. >O V. and O.
k0 —

The nonnegativity of the variable x follows from the nonnegativity

constraints on the other variables and the constraint (3.8). Therefore

the definitional variable x is a free variable. If x is the slack variable

of the k-th constraint this means that the ‘k-th constraint itself is re-

dundant.

Now it is easy to see that x can be brought into the basis (if it is not

already in)_ without changing the pigns of akj and bk. Then constraint 
(3.8)

can be interpreted as the objective row for (3.1), indicating that an

optimal solution has been obtained with value bk.

Thompson, Tonge and Zionts [1966] give a number of situations, where (3.8)

is not directly satisfied, but may be obtained in one iteration. Naturally,

from these situations the same conclusions may be drawn without actually

performing the iteration.
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Moreover, Thompson, Tonge and Zionts [1966] describe a Monte Carlo t
echnique

in which one tries to construct situations as described above by a 
random

generator.

Finally, Thompson, Tonge and Zionts [1966] note that in the case a 
constraint

may be written as

(3.9) I .x. = 0
j=1 kJ 0

where all a
kj 

are of the same sign 
7), then all x4 corresponding to non

zero a
kj 

will be zero in any feasible solution.
8)''

Tisher [1968] gives an extensive list of very simple methods to identify

redundant constraints. Among these are methods that check whether constraints

are redundant given a number of upper and lower bounds, by simply re-

placing the variables in the constraints by their bounds. However,

this is a merely a simple way to solve (3.1), if only bounds are taken

into consideration.

Heuristic methods to identify redundant constraints may also be used on

non-binding constraints. Therefore they will be considered in more detail

in the next section.

4. Identification of non-binding constraints 

There are no direct or indirect methods available to identify non-binding

constraints. Therefore one has to resort to heuristic methods or to tech-

niques that identify non-binding constraints as being redundant in a

closely related system.

Heuristic methods are applications of rules, that are valid only if

certain conditions are fulfilled. Because a priori checking of these

conditions is not done, either because it is impossible or too laborious,

the conditions should be checked and the rules validated a posteriori.

Dantzig [1955] proposes to use all kinds of experience lintuition, ideas

and information, to predict which constraints will not be binding in the

optimal solution. Then the slack variables of these constraints can be

put in the basis and marked as being no candidate for leaving the basis.

These slack variables or rather these constraints are placed behind some

7 Non-negativity as required by Thompson, Tonge and Zionts is not necessary.

It is assumed that all x. corresponding to non-zero akj are non-negative.
8



13

curtain, where they do not affect the solution procedure. Of course the

same thing can be done in the dual formulation, where some variables may

be placed behind the curtain, from where they are not allowed to enter

the basis.9)

Apart from the fact that this technique may be profitable for the computing

speed and the storage needed (everything behind the curtains does not

have to be stored in the fast memory), it may be used to obtain a good

starting solution (crashing) and in selecting a pivot. It should be noted

that more curtains can be used together, separating variables with different

probabilities to enter the basis. This may depend on the a priori infor-

mation available, but also on the solution path being followed.

A solution path is called convex if any two-dimensional projection of the

path, orthogonal to any hyperplane corresponding to a constraint is convex.

Thompson, Tonge and Zionts [1966] proved, that if the solution path is

convex and a variable enters, leaves and reenters the basis in a series

of iterations, the variable will be basic in the optimal solution. If a

variable leaves, enters and again leaves the basis, then it will be on

zero value in the optimal solution. However, because there is no known

simple way to ensure a convex solution path, these results can be used

in a heuristic way only.

Another way to identify (some) non-binding constraints is to construct a

system of linear constraints that is closely related to the original one

and has the same optimal solution.

In this sense it seems useful to introduce during the solution of a linear

0
progrmming problem for a number of feasible solutions x the constraint

.T TO
cx>cx

By introducing this constraint one hopes to convert some originall
y

non-binding constraints ("atthe lower boundary of the feasible region")

to redundant constraints. These redundant constraints may be identified

by the techniques mentioned in the preceding section. After this identi-

fication constraint (4.1)_ can be removed again since it is certainly

non-binding.

In general however one cannot say, that constraints"at the lower boundary

of the feasible region", are non-binding as Scolnik [1973] implicitly

For a detailed treatment of these techniques we refer to Orchard-Hays

[1968].



assumes. Probably this is due partly to the fact that a constraintllat the

lower boundary of the feasible region" can be recognized rather simply.

If the objective function is to be maximized and the constraints are in

"<" form, then a constraint that is at the lower boundary of the feasible

region forms a non-acute corner with the objective function, so this

corner has a negative cosine:

E a .c.
j=1 k° 

n 2 n

( E a,.)( E c)

j=1 j=1

but this implies that E a •c should be negative and this is easily
. j

checked. However a cougerexample may easily be formulated.

Consider the problem:

I 

max x
2

s.t. -x
1 
- x

2 
.i 2

x
1 
+ 3x

2 
.... 4

x
1' 

x
2 
2... 0

The first constraint is at the lower boundary of the feasible region

(according to (4.2)) but it still is binding. This means that this rule

may only be used in a heuristic way.

By considering both the dual and the primal problem, one can sometimes

remove some columns from the problem, by which some non-binding constraints

become redundant.

If, in the dual problem, a constraint is identified as being redundant,

this constraint may be removed from the dual problem and the corresponding

variable from the primal problem. This can cause some non-binding constraints

to became redundant.

Consider the problem:

(4.4)_

max x
l

s.t. x
1 
+x
 

2

x
1 
+ 2x

2 —
< 3

x x2 —> 0

it is easily seen that the second constraint is non-binding but not re-

dundant. In the dual problem:



V4.5)
s.t.

min 2y1 + 3y2

Y1 Y2 > 1
yi + 2y2 > 0

Y1' Y2 a

it is trivial that the second constraint is redundant.

Removing the second variable from the primal problem, yields:

(4.6)

max x
l

s.t. x1 <2

x
1 —
< 3

X1 > 0
1 —

15

and now the second constraint is redundant. So by successively identifying

redundant constraints in the primal and the dual problem and by removing

•them, some non-binding constraints may also be identified.

Finally, by using the Tucker formulation of the linear programming problem:

(4.7) A> c

2E > 0

b < c
T

all non-binding constraints will be converted into redundant constraints,

so they may be identified in this way.

5. Practical implications

From a computational point of view it is sufficient to specify only

the binding constraints in linear programming problems. The reasons for

specifying redundant constraints (the same applies partly to non-binding

constraints), may be divided into two categories. First there are some

managerial reasons among which we mention:

(a) insufficient knowledge of the described system, which causes not

all relations and interactions tD be taken into consideration. This may

be caused by a superficial treatment of the problem, but also by

some problem characteristics itself: the problem may be too big or

too intricate to recognize redundant constraints.
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(b) implicit preferencefor more constraints above the possibility of
 an

optimal solution, that does not meet all practical demands. This means

that one rather specifies another constraint, even if it may be re-

dundant, than being confronted afterwards with the possibility of

having overlooked a constraint. The importance of this reason is

growing, because a lot of models are being developed that should be

• applicable a number of times and in which constraints are specified

because they might become important in the future, but are not

restrictive now.

There are also some mathematical' reasons, for redundant constraints to be

specified. We mention the cutting planes in integer programming and the

addition of an extra constraint to identify non-binding constraints as

described in section 4. Another example is the complete set of constraints

for the transportation problem, from which one constraint may be considered

to be redundant.

One will be inclined to think that extra constraints give extra information

about the problem to be solved. This is not true for redundant constraints.

Redundant constraints do not give any new information in that they do not

exclude any possibilities (solutions), that would be admitted without these

constraints.

However, redundant constraints may sometimes express the information, that .

is included in other constraints too, in a way, that may be easier from

the point of view of getting some insight into the problem. Consider for

example the problem

(5.1)_ xl + x2 <

1 xi > 0

For• this problem the constraint

(5.2)

is redundant, but explicitely specifying (5.2) may give a bound for x2

that may be rather difficult to compute from (5.11.

On the other hand the specification of redundant and non-binding constraints

causes a number of problems:

(a) they use some space in the memory, that may be used better; it may

even be so critical that one has to resort to other solution procedures

e.g, decomposition.



(b) they increase the number of computations per iteration: it is no
t true that

redundant constraints only cause an extra logical in the basis, but h
ave

no further influence.

(c) they cause an increase in the number of basic solutions, which m
ay lead

to a larger number of iterations, especially in phase I.

(d) they may cause degeneration to occur, which may even lead to cy
cling.

(e) Thompson, Tonge and Zionts (1966) report that the phenomenon of
 near-cycling

(the objective function value is improved very little during a large
 number

of iterations) is observed less frequently if redundant constraints are

removed.

dependent or nearly dependent constraints may cause some numerical 
troubles,

which will be prevented if redundant constraints are removed, since 
(nearly)

dependent constraints are often redundant.

(f)

Apart from these computational disadvantages, we observe that redundan
t and

non-binding constraints enlarge the problem, because of which it ma
y become

rather complicated. This is also caused by the sheer fact that these 
constraints,

by being specified, make the impression of being binding constraint
s.

The number of redundant constraints varies with the problem that is

being considered. There is no such thing as a fixed percentage of the nu
mber

of constraints that is redundant.

In literature there are some references to a certain portion of the

constraints that is redundant: Zionts (1965) reports of problems with 35 to

50 % redundant and non-binding constraints; Thompson, Tonge and Zionts (1966)

give some examples with 30 to 75 % reduction if both in the primal and in the

dual problem redundant and non-binding constraints are removed; Tis
cher (1968)

reports of reductions up to 80 %. All of these figures are conservative s
ince

the methods used by the reporters do not identify all redundant co
nstraints.

However, not in all practical linear programming problems the reduc-

tions will be that dramatic, but the fact that reductions are almost alwa
ys

possible, is agreed upon by most practitioners (see e.g. Zionts (1965
)).

6. Concluding remarks.

In literature there are not many references to practical tests on
 methods

to identify redundant and non-binding constraints. We can only 
mention the

reports of Zionts (1965), Thompson, Tonge and Zionts (1966) and 
Tischer (1968).
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On the whole the reported results of the simplex method 
together with the

indirect methods are better than the simplex method alone if t
he number of

iterations is considered, but equally good if total comput
er time is

considered.

The reported results for the heuristic methods are rather 
favorable,

but depend very much on the problem under consideration.

From the preceding section we may conclude that in general it will

be better to remove redundant (and non-binding) constraints from
 linear

programming problems. However the effort spent in identifying them 
should not

be larger than the savings achieved by deleting them.

Since this last topic is not considered to a far extent in existing

literature we plan to explore it in some subsequent papers. This further

research should concentrate on two points

(a) experiments with methods to identify redundant and non-binding constrai
nts

on practical problems.

(b) adapting the.methods that have been proposed, to the linear programming

codes that are used nowadays. Since these are based on the revised simplex

method, in which the coefficients a.. are not updated at every iteration,ij

while the methods to identify redundant constraints use the updated

values a.
j, 

this may be a major task.
i 

In view of the last point and the results reported it is expected, that methods

to identify redundant constraints may be of help in the pre-solution stage,

where the problem is formulated. This expectation is supported by the fact

that in present linear programming codes like MPSX 370 and APEX III, the

routines for these methods,
lo) 

called REDUCE, are applied to the problem prior

to the solution.

10
Only rather simple cases, like the ones described by Tischer (1968) are co

vered

by these routines. A description of the methods used in these routines can be

found in Brearly, Mitra and Williams (1975).
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