
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


7-7

ECONOMETRIC INSTITUTE

IC/ N OF
CZ

JJL
`0C ;) 1978

APPLICATION OF NON-LINEAR PROGRAMMING

TO PLANE GEOMETRY

R.J. STROEKER

e, 01-1PA A A

REPORT 7715/M

FRAsmus UNIVERSITY ROTTERDAM, P.O. BOX 1738, ROTTERDAM, THE NETHERLANDS



APPLICATION OF NON-LINEAR PROGRAMMING TO PLANE GEOMETRY
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ABSTRACT

In this paper proofs are given of two inequalities,

involving elements of a triangle. The methods employed

are non-geometric by nature and find their origin in the

Kuhn-Tucker theory of non-linear programming.
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1. INTRODUCTION

The purpose of tills paper is to show how one may obtain

geometric inequalities by means of purely non-geometric

methods. An advantage of this approach is that those inequali-

ties may be viewed in a somewhat wider setting than that given

by mere plane geometry. Although we intend to prove only two

inequalities, we strongly feel that others may be found in a

similar fashion. The method to be used is taken from the field

of non-linear programming, to be more specific, we shall

employ an auopted version of the Kuhn-Tucker theorem.

To illustrate our point, we have selected the following

inequalities:

,
ab + bc + ca < k

1
(a+b+c)

2

with k
1 
= -2-5 + 2)'2

and

(1.2) (aa-ba)
2 
+ by-c)2 + (ca-ay)

2 
< k

2
(a+b+c)

2

In (

with k
2 
= Tr

z
2

.1) tne quantities a,b and c stand for the sides of

an obtuse triangle and in (1.2) a,b and c are the sides and a,
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a and y are the corresponding angles (measured in radials) of

an arbitrary triangle.

The first inequality is proved in [3] by means of an

entirely geometric argument. Note that (1.1) with constant

k 1
1
— holds for any non-equilateral triangle. However in that
3

case the inequality becomes rather trivial (cf.[2], 1.1. p.11).

The second inequality has more stature. A proof may be

found in [5]. This proof uses both geometric and non-geometric

methods. See also [2], 3.5. p.38.

2. THE KUHN - TUCKER THEOREM

Let f,g 1,...,gm be real-valued functions defined on a

subset X ()fat". Optimization problems, which can be put into

the form

1 

(2.1) Maximize f(x), subject to
g(x) > 0 for i

g1(x) = 0 for i

= 1 e e • 2M 1

x E X
= m 1 +1 .,

are the subject matter of what is known as programming ; linear.

programming when the functions f,g 1 ,...,gm are all linear

functions and non-Linear programming otherwise.

We define the set C as follows:

(2.2) C = {x XI gi(x) > - 0 for i=1,...,m/ .0N gi(x) = 0 .for

and we shall always assume that this so-called constraint set

is non-empty.

If C is compact (i.e. closed and bounded) and f continuous,

the existence of a solution to problem (2.1) is garanteed by the

following well-known theorem:
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ThEOREM A (Weierstrass).

Let C be a compact subset of litn and suppose that the

function fflitn ER is continuous. Then the restriction of f

to C attains a (global) maximum and a (global) minimum.

Often the constraint set is unbounded. In that case it

is not always easy, if at all possible, to prove the existence

of a solution to (2.1). The only existence theorems known for

such a situation relate to concave (or convex) programming and

quadratic programming.

We suppose for the moment that a solution does exist. In

order to find the maximal value of f attained on C, the

following theorem could be of some use, although in practice

it is not often applied in a constructive way.

THEOREM B (Kuhn - Tucker).

Let f,g 1 ,...,gm be real-valued totally differentiable

functions defined on a non-empty open subset X of an. Further, let C

be defined as in (2.2). For every xeC, we define E(x) to be

the set of all indices j E. {1 ,m, } for which gj(x) = O.

More over, let f attain a local maximum on c in the point R.

Assume that at Least one of the following regularity conditions

is satisfied:

RI. All constraint functions gi are Linear

R2. The set of gradient vectors {Vgi(X) ie. E(it) V ie im i+1,

is Linear independent. 

.001

Then the following conditions (first order conditions or Kuhn-

Tucker conditions) are fulfilled:
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(2.3)

A

There exist real numbers A X such that
I in

VfM EA. g.(2) = 0
i=1 "

0, i
11

0 and X. > 0' 
i

gi(R) = 0, i = m +I m

REMARKS.

5z
The notation Vf(i) stands for "the gradient of f in 

11

i.e. Vf(R):= (af/ax i,...,af/axn)x.5..c .

Proofs of theorem B can be found in various places e.g.

DI, p.121.

There exist a wide variety of regularity conditions (cf.

[4], chapter I, section D). We have chosen Rl. and R2. merely,

because they prove sufficient for the applications selected.

On reversing the relevant inequality signs and replacing

the phrase "local maximum" by "local minimum" in theorem B, we

obtain an analoguous theorem for the problem:

i(2.1)' Minimize f(x), subject to
gi(x) 0 for

g1(x) = 0 for

3. APPLICATIONS TO PLANE GEOMETRY

In this section we shall give proofs of the inequalities

mentioned in the introduction.

LEMMA I.

The problem

subject to

max f(x) = x I
x
2 
+ + x

3x2x3

1
0, x

2 
> 0,
—

2 2 2
x> x2 

+ x3I

x 4. x
2 

4. x
3 
= 1

1

>0

4

xe X
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has a solution. This maximum is attained in one point only,

5
namely = (-1+w/2,1-1/2,1-i/2) and f(2) = - + 2/2.

Proof.

Clearly f is a continuous function on IR and the constraint

set C is compact. This shows the existence of a solution M,

attained in a point R = (xx2'
x
3
) say. Since €,C,. it is

clear that x 1 
i 0. More over, if x2 = x3 = 0, then M = O.

however, f is not identically zero on C. So x2 
and x

3 
cannot

vanish simultaneously. Now suppose that x2
x
3 
= 0. Because of

symmetry, we may assume that x2 = 0 and # O. Then M =
3

in view of the relation x 1 
+ x

3 
= 1. On the other hand,

f(5t,4t,3t) = 47t
2 

and (5t,4t,3t) C iff t = 1/12. But

f(5/12,4/12,3/ 1 2) > I. Consequently, x
2
x
3 
0 0.It is now easy

to check that condition R2. of theorem B is satisfied in X.

hence, real numbers A 2,X3,p,v exist such that (see (2.3)):

x
2 
+ x

3 
+ X + 2px

1 
+v =

x 1 + x3 
+ A2 

- 2px2 + v = 0

x 1 + x2 + A3 - 2px3 + v = 0

1
0, x > 0, 3 > 0

2 x=-- X1
2x2X3x3= 0

2 2 2 2 2
x l > x

2 
+ x3 p(xl - x

2 
- = 0

1 
+ x

2 
+ x

3 
= 1 v(x, + x

2 
+ x

3 
- 1)

X > 0
' 

X
2 
>0 X

3 
> 0 p> O.1 ' 

Since x
1
x
2
x
3 
0 0, it follows that X

1 
= X

2 
= X

3 
= O.

From the first three equations we obtain by addition

0 = 2(x 1+x2+x3) + X 
1 
+ X

2 + A3

= 2 + 2p(x 1-x2-x3) + 3v.

+ 2p(x 1-x2-x3)

If p = 0, then v = - 2/3 and thus 1 - x l = 1 -

+ 3

= 2/3.



2 2 2
hence x

1 = 
x
2 

= x = 
3 

1/3, but this contradicts x 
1 

x
2 
+ X

3
.

2 2
Thus p > 0 and consequently x

2 
= x

2 
+ x

3
. From

1

v + 1 = x
1 
(1-2p) = x

2
(1+2p) = x

3
(I+2p)

2 2
it follows that x2 = x3 and hence x i = 2x2 which gives x l = x2/2.

Then x 1 
+ x

2 
+ x

3 
= 1 shows that x = -1 + /2 and x

2 
= x

3 
=

1
3

= 1 - 142. We also find p = — - /2 and v = 5 - 4/2.2

From this lemma, the following theorem can be easily

deduced.

THEOREM 1.

Let ab and c be the sides of an obtuse triangle. Then in-

equality (1.1) holds and the constant k 1 is best possible.

Proof.

a 
Put x -   and x

3 
-• The quantities1 a+b+c '2 a+b+c a+b+c

x
1' x2' 

x
3 

satisfy

2 2 2
x

1 
> 0, x2 > 0, x3 > 0, x l + x

2 
+ x

3 
= 1 and x

1 
> x

2 
+ x

3

if we assume, without loss of generality, that a = max(a,b,c).

Lemma 1 shows that equality can only be reached in a right

isosceles triangle with b = c = ia/2. That k
1 
is best possible

also follows from the observation that for each sufficiently

small positive number 6 , the triangle with sides a = -1 /2 + 6,

b = c = 1 - 1/2 - 1(5 is obtuse.

Inequality (1.2) is somewhat harder. to prove. We need the

following lemma.
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LEMMA 2. The problem

max f(x;y) = 
(x1Y2-x2Y1)

2
(x

2
y
3
-x

3
y
2
)
2

3y 1-x y3)
2

subject to X
1 
+ X

2 
+ X

3 
= 1

X
1 
+ 0

x
3 

> 0

x
3

0

0

0

0

is solvable. The maximum M = i is attained at R= (1,1,0;1,0,0)

and at no other point of C.

Proof.

The function f is continuous on IR
6 

and the constraint

set C is compact. Let f attain its maximum M on C in the point

R = (x 1 ,x2,x3;y 1 ,y2,y3). Since all constraint functions are

linear, the regularity condition R1. of theorem B is fulfilled.

hence, there exist real numbers ao, a 13 a a A 011, 
a
2' 

a
3' l' 2' 3'

such that (see (2.3) of theorem B):

a f _ +a + X = 0
ax

1 
1 1

af 
-a +a + A = 0

ax
2 

1 2

af
- a

2 
+ a

3 
+ X =

ax
3

1- x
1 
+ 1 > 0 , a0 

(-x
1
+I) .

---- 

x - x
2 

> 0 a 1(x 1-x2) =1  —

_ x3 > 0 a
2
(x

2
-x
3) =—

0 a
3
x
3 
=

X
1 
+ X

2 
+ X

3 
=

0, a
1 

> 0, a,
— 0, =--

af

a YI
af _
a Y2
af
ay3

1.1 = 0

+ fi
2 
+ = 0

1

132 + f3.3 
+ p = 0

Y l y2 ==> 0 its 1(Y1-Y2) =

Y2 - Y3 132(Y2-Y3) =

y3 > 0

y l

a
3
y
3 =

Y2 4. Y3 = /

o.
- ' 

a3 o
2 

0



First of all we note that f(i,1,0;1,0,0) = 1. Hence

M = max f > I.

Since 3y3 < y l + y2 y3 = 1 and 0 < x
2 

< x
1 

I, we have--=  =
af 2 2 1

2 - a3 - ay3 
2y3(x 1+x2) - 2x3(x 1 y 1 +x2y2)

More over, as a function of y l, y2, y3 alone, the function f

is homogeneous of degree 2. Hence, by Euler's theorem

af2f = 
Y1aY1

af af
Y a 3ay2 y2 Y

Combining these two results, we obtain

2f + a2 - fd.3 <

11 •

Now, if a3 = 0 then a2 > 0 implies that f < --. This means that
— 6

we may assume that 3 > 0. But then y3 = 0.

As a function of x x
2' 

x
3 
alone, the function f is also

homogeneous of degree 2. hence, as before,

af
Further, -571

af
ax

since

= 111' "c2a-a.7f(2 343-% 17— A
lax

1

af . a - a
2 
- 2A = - a + 4f and also

ax2 0 2

4- f
ax
2 
• 2x

1
(y

1
-y 

)2 
- 257 1(x 1-x2)(y 1-y

2
) 1,
=

y3 = 0. Thus

- a2 
+ 4f < 1.

Suppose now that a2 = 0. Because we are only interested

in values of f J.
4 it follows from the above that

< 4f = 2x 1(y 1-y2)

and this means that

2
1 —x2)(5,1 —y2) -1-

2
= 

and 2y, 1-x2)(y, = 0.
1 (Y1-572) 

This is only possible when x = x2 = and y, = 1, y2 = 0.

Consequently, x3 = 0.



After some calculation we find that 0 <— a a
l 
=.... 0 --

(a2 = 0), a3 = 1(1-a0), = 0, a
2 
= I and fi

3 
-32.. Hence theI

first order conditions are satisfied in the point (i,i 3 O;1,0,0).

We continue by assuming that R 0 (1,1,00,0,0). Then

afclearly a
2 

> 0 and x
2 
= x

3
. Now 2f + ia - a 1 =

0 1 ax
1

= 2y2(x072-x2Y 1) = 2x
1Y2(Y2-Y1) 2Y1Y2( - 2) Y1Y2

because y, + y2 = 1 (recall that y3 = 0). Hence,

2f - a <1 == 4 10

1in view of a
0 

> 0. From a, = 0, it follows that f I T). Hence—

suppose that a
1 

> 0. Then x
1 
= x

2
. Also x

2 
= x3 and thus

1
x 1 = x2 = x3 = -5. We have

af af 2 , -_ 24f - = e.  + _........, =
2 ay, ay2 —9-(Y1+372)  -§..

If 0 = 0, then f = 1/18. And if f32 > 0, then y2 =

and thus af 4
1 = 

1. This implies that 2f
= =

ay, 
-9-, since

(y 372) • But then f
2
-

ThisThis proves the lemma.

4 •

y3 =0

=0

THEOREM 2.

Let a, b,c be the sides and a, f3,y the corresponding

angles of a triangle. Then inequality (1.2) holds. More over,

the constant k2 is best possible.

Proof.

a>

x
1

a 
Put x 1 - a+b+c X2 a+b+c x

3 
- a+b+cand assume that

b> a. Further, put Y 1 = —n an Y2 = d y3 . Then

x2 ▪ x3 = Y1 Y2 Y3 = 1. Since b c > a, we have also

x2 + x
3 

> x
1
. This shows that x <

1 I. In view ofalblc, we

have a > > y and consequently x
1 1 

x2 1. x3 > 0 and 0.Y1 Y2 Y- 3 >



- 0 -

That k
2 

is best possible may be seen as follows (in fact

the proof of lemma 2 already gives evidence to that effect):
2

a 6+6
2

0 6
Let 6 > O. Put 57 1 = = 1 

Y
- = ••• 10 Y3 '2 W W W

sin(6+6
2 

sin6 ) sin62 
cand x = a -•1 26 2 = - 

x 
26 ' 3 

=  26

Now let 6 tend to zero.

4. POSTSCRIPT

The most difficult part of the foregoing method in order

to obtain geometric inequalities, lies in the choice of the

constraint set. The relations between the elements of a triangle

are often given in terms of circle functions. These functions,

when appearing in the constraint functions, greatly complicate

the determination of points satisfying the first order conditions.
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