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APPLICATION OF WON-LINEAR PROGRAMMING TO PLANE GEOMETRY

R.J. Stroeker

ABSTRACT

In this paper proofs are given of two inequalities,

involving elements of a triangle. The methods employed
are non-geometric by nature and find their origin in the

Kuhn-Tucker theory of non-linear programming.
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1. INTRODUCTION

The purpose of this paper is to show how one may obtain
geometric inequalities by means of purely non-geometric
methods. An advantage of this approach is that those inequali-
ties may be viewed in a somewhat wider set;ing than that given
by mere plane geometry. Although we intend to prove'only two
inequalities, we strongly feel that others may be found in a
similar fashion. Tﬁe method to be used is taken from the field
of non-linear programming, to be more specific, we shall
employ an adopted version of the Kuhn-Tucker theorem.

To illustrate our point, we have selected the following

inequalities:

(1.1) ab + bc + ca < kl(a+b+c)2

__5
with k, = 5+ 2V2

and

(1.2) (aB-ba)2 + (bY-CB)2 + (ca-aY)2 < kz(a+b+<:)2

vith k, = 1n?

In (1.1) the quantities a,b and ¢ stand for the sides of

an obtuse triangle and in (1.2) a,b and ¢ are the sides and o,




B and vy are the corresponding angles (measured in radials) of
an arbitrary triangle.

The first inequality is proved in [3] by means of an

entirely geometric argument. Note that (1.1) with constant
1, . . . .
k1 =3 holds for any non-equilateral triangle. However 1in that

case the inequality becomes rather trivial (cf.[Z], 1.1, poll).,
The

second inequality has more stature., A proof may be
found in

[5]. This proof uses both geometric and non-geometric
methods.

See also [2], 3.5. p.38.

2. THE KUHdN -

TUCKER THEOREM
Let

f,gl,...,gm be real-valued functions defined on a
subset X

of R". Optimization problems, which can be put into
the form

gi(x) > 0 for i l,...,m1
(2.1) Maximize f(x), subject to

xe X
gi(x) = 0 for 1 ml+l,...,m
are the subject matter of what is known as programming

; linear -
programming when the functions £,8)5000,8, are all linear

functions and non-linear programming otherwise.

We define the set C as follows:

(2.2) C = {XEXIgi(x) 20 for i=l,...,m; A g;(x)

and we shall always assume that this so-called constraint set
is non-empty.

If C is compact (i.e.

closed and bounded) and £ continuous,

the existence of a solution to problem (2.1) is garanteed by the
following well-known theorem:




THEOREM A (Weierstrass).
Let C be a compact subset of R® and suppose that the
function £:R™ > R is continuous. Then the restriction of £

to C attains a (global) maximum and a (global) minimum.

Often the constraint set is unbounded. In that case it
is not always easy, if at all possible, to prove the existence
of a solution to (2.1). The only existence theorems known for
such a situation relate to concave (or convex) programming and
quadratic programming.

We suppose for the moment that a solution does exist. In
order to find the maximal value of f attained on C, the
following theorem could be of some use, although in practice

it is not often applied in a constructive way.

THEOREM B (Kuhn - Tucker).

Let £,8,500428y be real-valued totally differentiable
Ffunctions defined on a non-empty open subset X of R®. Further, let
be defined as in (2.2). For every xe C, we define E(x) to be
the set of all indices je€ {l,...,m} for which gj(x) = 0.

More over, let f attain a local maximum on C in the point R%.
Assume that at least one of the following regularity conditions
18 satisfied:

R1. All constraint functions g; are linear

R2, The set of gradient vectors {Vgi(i)lie.E(i)\/ iE.{ml+1,--~.m}}

18 linear independent.

Then the following conditions (first order conditions or Kuhn-

Tucker conditions) are fulfilled:




~ ~

There exist real numbers xl,...,xm such that

Ai gi(x) = 0

L gi(ﬁ)

REMARKS.,

The notation V(%) stands for "the gradient of f in X"
i.e. VE(R):= (af/axl,...,af/axn)x=i . |

Proofs of theorem B can be found in various places e.g.
[1], p.121.

There exist a wide variety of regularity conditions (cf.
[4], chapter 1, section D). We have chosen R1. and R2. merely,
because they prove sufficient for the applications selected.

On reversing the relevant inequality signs and replacing
the phrase "local maximum" by "local minimum" in theorem B, we

obtain an analoguous theorem for the problem:

gi(x) 2 0 for i=l,...,m,

(2.1)'" Minimize £f(x), subject to {

gi(x) 0 for‘i=ml+l,...,m

3., APPLICATIONS TO PLANE GEOMETRY
In this section we shall give proofs of the inequalities

mentioned in the introduction.

LEMMA 1.
The problem

subject to




nas a solution. This mawimum is attained in one point only,

namely X = (=1+Y2,1=4V2,1-4Y2) and £(R) = - % + 2/2.

Proof.

Clearly f is a continuous functionm on R3 and the constraint
set C is compact. This shows the existence of a solution M,
attained in a point X = (XI’XZ’X3) say. Since RE€C, it 1is
clear that X, # 0. More over, if X, = X3 =0, then M = 0,
However, f is not identically zero on C., So X, and x, cannot
vanish simultaneously. Now suppose that XoXq = 0. Because of

symmetry, we may assume that X, 0 and Xq # 0. Then M = x,x

1%3 £ 4

in view of the relation X, * %y = 1. On the othef hand,
£(5t,4t,3t) = 47t% and (5t,4t,3t)€C iff t = 1/12. But
£(5/12,4/12,3/12) > }. Consequently, X)X # 0.1t is now easy
to check that condition R2. of theorem B is satisfiedAin R.

lLence, real numbers Apshoshgsu,v exist such that (see (2.3)):

+ 2uxl + v
- Zuxz + v

- Zux3 + v

Since X X Xy # 0, it follows that Al = AZ =

From the first three equations we obtain by addition

0 = 2(x1+x2+x3) + Al + kz + x3 + Zu(xl-xz-xB) + 3y =

2 + Zu(xl—xz-XB) + 3v.

If w = 0, then v = = 2/3 and thus 1 - x, = 1 - x

1 2




2

Hence x, = X, = X = 1/3, but this contradicts X

1
2 2 2
Thus u > 0 and consequently X = X, + Xg. From
v + | = x](l—Zu) = X2(1+2u) = x3(l+2u)

it follows that Xy T Xg and hence x? = 2x§ which gives x

Then X, + X, + Xy = 1 shows that X, = -1 + /2 and X, = x

=1 - }/2. We also find p = % - V2 and v = 5 - 4/2,

1

3

[

From this lemma, the following theorem can be easily

deduced.,

THEQREM I,
Let a,b and c be the sides of an obtuse triangle. Then in-

equality (1.1) holds and the constant k, is best possible.

1

Proof.

a C

' ' b s
Put x, = ——m— |, X, = ——— and X3 = —5p7e ¢ The quantities

1 a+b+c 2 a+b+c a+b+c

X X, satisfy

1 *20 *3
_ 2 2 2
e o, X, > 0, Xy > 0, X+ X, + x5 = 1 and X] > X, + X3

if we assume, without loss of generality, that a = max(a,b,c).

X

Lemma | shows that equality can only be reached in a right

isosceles triangle with b = ¢ = }av2, That k, is best possible

1
also follows from the observation that for each sufficiently

small positive number § , the triangle with sides a = -1 + /2 + §,
b=c=1-14/2 - }6 is obtuse.

Inequality (1.2) is somewhat harder. to prove. We need the

following lemma.




LEMMA 2. The proolem

2
max f(x;y) = (xlyz-xzyl)

subject to

18 solvable., The maximum M = } 1s aqttained at

and at no other point of C.

Proof.

. . . 6 .
The function f is continuous on [IR° and the constraint

set C is compact. Let f attain its maximum M on C in the point

~

X = (xl,xz,x3;y1,y2,y3). Since all constraint functions are
linear, the regularity condition Rl., of theorem B is fulfilled.
lience, there exist real numbers Ggs @5 gy O, 81, 62, 83, A LU

such that (see (2.3) of theorem B):

%)
Hh
1
R
o

|q> wlcu o:l
o M X

Q




First of all we note that £(}4,4,0;1,0,0) = !. Hence

*+yy=1and 0<x,<x; ¢ i, we have

2 2
= 2y3(xp+xy) = 2xa(x y +x,y,) < %'

More over, as a function of Yis Yo Y3 alone, the function f
is homogeneous of degree 2. Hence, by Euler's theorem

Af ,  Bf of

2f = Y13y, T Y2ay, T Yaey,

Combining these two results, we obtain

1

Now, if By = 0 then B, 2 0 implies that f < %. This means
we may assume that 83 > 0. But then ¥y = 0.

As a function of Xps X,5 Xg alone, the function f is also
homogeneous of degree 2, Hencé, as before,

of

x13§l *

_ df 9f  _ _
2f = ox, T 3, T T M ? LTX

X X
2 3 3

d

Further, ‘ a, + 4f and also

2

2
x, Tyt - 2y (mxp) (yymyp) £ 0

! 2

since vy = 0. Thus

< 1.

Suppose now that a, = 0. Because we are only interested

in values of f > 1, it follows from the above that
4 = 2% (y.=y.)2 = 2y (x.-x.)(y.-y.) < 1
= 1V91792 Yy TR 7Y S
and this means that

2
2xl(yl-y2) = 1 and 2y1(x]‘x2)(y1‘yz) = 0.

This is only possible when x| = x, = } and y; =1, vy, = 0.

Consequently, Xy = 0.




After some calculation we find that 0 < ay < 1, y = £(1+a0),

(a2 = G), ay = %(l-ao), B, = 0, B, = 1 and By =

a
3
2

. Hence the
first order conditions are satisfied in the point (},%,0;1,0,0).

We continue by assuming that & # (},4,0;1,0,0). Then

| = - - 3f
clearly a, > 0 and x, = X5. Now 2f + iao a, 7%,

2y (xyyp7%p¥y) = 2xy3p(ypmy )+ 29y (xmxy) vy, 2 4,
because y, + y, = | (recall that y3 = 0). Hence,

2f - @, 2 i

in view of ay 2 O. From a, = 0, it follows that f < %. Hence

Also x, = x, and thus

suppose that a 0. Then x, = Xy 2

1 3

3f  _ 2 2
T ey, 5(y,*yy) = 3.

If B, = 0, then £ = 1/18, And if B, > 0, then y, = y; =0

and thus vy < l. This implies that 2f = 2§ = %, since Bl =0
1
= 2 1
(v, # y,). But then f = 3 < i.

This proves the lemma. []

THEOREM 2.
Let a, b,c be the sides and a, B,y the corresponding
angles of a triangle. Then inequality (1.2) holds. More over,

tne constant k, ©s best possible.

Proof.

a

5 eme— = _ c
Put X a+b+c °? xz p 2+b+c and assume that

b > ¢. Further, put Y, = » Yy % and vy = . Then

* X3 Yy *yy +tyg=1.Since b + ¢ > a, we have also

> x,. This shows that X, < 1. In view of a > b > c, we

have a > B > y and consequently X, 2 and Y,




That k., 1is best possible may be seen as follows (in fact

2
the proof of lemma 2 already gives evidence to that effect):

2
S I L =8 .38 =YX .5
Let 6 > 0, Put Yy - 1 y - = s Y3 = -

sin(6+62) i - sin&z;.

and X, = a= a5, X, , : c —55 -

L]

Now let 8 tend to zero.

4, POSTSCRIPT

The most difficult part of the foregoing method in order
to obtain geometric inequalities,ylies in the choice of the
constraint set. The relations between the elements of a triangle
are often given in terms of circle functions. These functions,
when appearing in the constraint functions, greatly complicate

the determination of points satisfying the first order conditions.
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