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AN EFFICIENT WAY OF PROGRAMING EAVES' FIXED POINT

ALGORITHM

by R. Jansen and A.S. Louter

1. ABSTRACT.

The recently developed fixed point algorithms have provided

the possibility of applying advanced numerical computation procedures

in a broad field of economics. In particular, the pioneer work of Scarf [4,5],

has shown its importance in the computation of economic equilibria.

Moreover, Eaves [3] has succeeded in constructing an algorithm based

more or less on the same principles as used by Scarf but providing

in general a more efficient way in computing fixed points. Therefore

his algorithm may be preferred especially in its application to

rather extensive problems.

This paper deals with the formulation of Eaves' method such that

with a minimum of storage and computation time his algorithm may be

prepared for the computer. The algorithm as described i [3] can

substantially be improved by

reformulating the replacement step and by the application of an

efficient inverse routine developed by Bartels [1] on the pivot step.

A very concise introduction to fixed point algorithms is given

in section 2, where the basic thoughts behind this methods

are pictured, omitting for the sake of legibility the mathematical

justifications. For those who are interested in the latter aspect

we refer to the original publications.

In section 3 Eaves' method is considered with an explanation of

the replacement step in section 3.1 and its reformulation in section 3.2.

Sections 3.3 and 3.4 are dealing with the pivot step and the labeling

respectively, while in section 4 a complete FORTRAN computer nrncyra.m
of the algorithm is given.

Aug. 1977
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2. INTRODUCTION TO FIXED POINT ALGORITHMS.

Since the algorithms of Scarf and Eaves are developed to

approximate fixed points we first summarize two important fixed point

theorems,which are often used to prove the existence of a general

equilibrium solution in economic models.

Th.1 Brouwer: If S is a non-empty-compact, convex subset of]Rn and

if f is a continuous function from S to S, then f has a

fixed point, i.e. there is a x* E S such that

f(x*) = x*. (fig. 1A).

Th.2 Kakutani If S is a non-empty-compact, convex subset of]Rn and if

(1) is an upper semicontinuous correspondence from S to S

such that for all x E S the set (I)(x) is convex (non-empty),

then (1) has a fixed point, i.e. there is a x* E S such that

x* E (fig. 1B).

f(19 )

ti"

fig. 1A fig. 1B

The algotihms of Scarf and Eaves are both dealing with unit simplices;

defined as the collection of vectors x = fxl'"" 
x 1 with x. > 0 for all i,and

E x. = fig. C)
i=1 1



10.0

fig. 1C

3

On the simplex we define a collection of points, which play

an important rale in the search procedure in finding an approximate

fixed point.

Def.1 Regular-grid. A regular grid defined on the simplex S is the
1,

collection of points x in S of the form x = - km1 , 
m
2  

,m) with m.
N n

non-negative integers summing to N. (fig.2a; n = 3, N = 10)

1.0.0
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If we connect these points as in fig.2bthe simplex S is divided

by this triangulation in regular subsimplices, which are conformable

to the definition of primitive sets introduced by Scarf each including

n-vectors of the regular grid. His idea in finding the fixed

point is a walk through the simplex, starting in a vertex of the

simplex passing from one primitive set to an other as illustrated

in fig. 2.

The algorithm of Scarf is completely described by the following

procedures.



a. a replacement step on primitive sets

b. a proper labeling of the vectors in each primitive set

ad a. The replacement step describes how to find a new primitive set

if we eliminate one vector from the original primitive set. In case

of a regular grid this procedure turns out to be very simple.

Def.2 Replacement step. If we put the vertices of the primitive set

in a matrix and order them in a lexicographicaIly increasing 
1)

way and

suppose that the j-th column is eliminated, the new vector to be

introduced must be calculated as follows.

n 2 1
x'1
 
=x +x -x

1 Jx =x +x j+-1

,n
X =X +.X - x ;

j = 2,

=n

Ex. 1 If we consider the following primitive set

10

3 3 4

5 6 5

2 1 1

we may form a new

primitive set by replacing the second vector; yielding

3 4 4

1 5 4 5 or by replacing the last vector:

JO
2 2 1

3 3 2 2 3 3

5 6 6 or rearranged 6 5 6

JO
2 1 2] 2 1

11 The vector a =(a ,a ,...,a ) is lexicographically larger than
u

b = (b1,b2,...,b3 i the first nonzero element in the sequence
n

a
1 
- b

l' 
a
2 
- b

2' a
n 
- b

n 
is positive.



ad b. A label of a primitive set vector is a characteristic of each

vector in the primitive set, which makes it possible to select

the vector to be eliminated, and assures the algorithm to

converge to the neighbourhood of a fixed point.

We will elucidate this matter by means of an example of labeling

described by Scarf:

Labeling: Suppose that we have a regular grid on our simplex with a

certain grid-size. We associate a label with each vector x in the grid

by the following rule:

Compute f(x) - x =

1
f 2
•

x
2

; if f. ) is the

first non-negative element of f(x) - x, x is given the label j.

This labeling is chosen such that the fixed point is reached as soon as

a primitive set is "completely labeled", which means that the vectors

in that primitive set have all different labels.

Ex.2. We shall try to find the fixed point in the following simple

problem

11
=

x
21

/ x
1
1

2
; x. >0, i = ; Ex. =

i 1

We define a regular grid on our simplex with a grid-size of ten, and

start the algorithm with a primitive set consisting of a vertex of

the simplex and a point in the grid, which is nearest to this vertex.

So the initial primitive set is

101
1 

193. The labels of the vectors (1) and (11)10
1 0

are computed by the described procedure yielding for both vectors

the label 2.

In the initial position of the algorithm the first vector in the

primitive set to the replaced is the side vector. So by applying the

replacement step we find the next primitive set.

8 9

2 1
. Since the new vector() 8 has also label 2 we replace the

2/

second vector, yielding:

[6 7

4 3 
and finally

5 4

5 6

7

2
. The subsequent steps are:

. The labeling



is now complete and the fixed point will be in the neighbourhood

of this primitive set, which is correct since x1 
= 5 = x

2 
is the

fixed point. Scarf pointed out that it would be more efficient in

general to associate vector labels with the primitive set vectors '-nstead

of integer labels. In a crucial theorem he stated that the fixed point is

approximated with a primitive set of which the corresponding

11associated label vectors form a feasible basis for a system of linear

equalities Ay = b, with A the matrix of associated (label) vectors and

b some non-negative vector. For the associated vectors he chose

f(x ) - x
i 

2 with x
i 

the i-the primitive set vector, not on

the boundary of the simplex, and 1 = (1,1,...,1)' and b is

defined to be 1.

For the primitive set vectors representing points on the

boundary of the simplex unit vectors are associated by the

following rule: Each primitive set vector with the first zero element

on the i-th place will be associated with the i-th unit vector.

The procedure to be followed in finding the fixed point can be

described as follows.

The aim of the algorithm is to find a primitive set of which the

corresponding label vectors form a feasible basis for the equations

Ay = 1. In order to reach this correspondence we start the algorithm

with a feasible basis for Ay = 1 formed by n - 1 label vectors

corresponding with n - 1 vectors in the initial primitive set and

one additional label vector generally not corresponding with the

remaining primitive set vector. During the algorithm we follow a path

through the simplex running from one primitive set to another such

that the associated matrices (consisting throughout of n - 1

corresponding label vectors and one additional vector) form a feasible

basis for Ay = 1. As soon as we have found a primitive set completely

corresponding with the associated feasible basis the algorithm is

terminated, since then the fixed point is reached.

1) The columns j1, jn of the matrix A form a feasible basis if the

equations Ay = b have a unique, non-negative solution with 37. = 0

unless j = j1, j
n.
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In order to elucidate the procedure with vector labels we follow

the algorithm in a number of subsequent steps. The initial primitive

set is formed near a vertex of the simplex (say near the vertex

, 1
0

and consists of n - 1 side vectors and one vector interior to the

simplex (in this case the vector in the grid with the largest first

coordinate). In the 3-dimensional case with a grid-size of 10 we have:

.‘

8 9 9

1 0 1

1 1 0
-

The initial associated matrix is formed completely by unit vectors,

since this matrix forms a feasible basis for Ay = 1. In doing so

the associated matrix corresponds with the primitive set except for

the vector interior to the simplex. (see the labeling rule for side

vectors)1,

The initial position of the algorithm may then be described as follows:

• x
n

Primitive set consisting of vectors x3, x
2
,

Associated matrix consisting of n unit vectors a1, • • • , 
an

•
In the primitive set x3 is the interior vector and x

2
, • x

n 
th
e 
n - 1

side vectors. The associated label vectors of the primitive set vectors

are recognized by the same indices in this notation.

Tn order to reach_ complete correspondence between the primitive set

and the associated matrix we introduce the label vector of x3 in the

associated matrix by eliminating one of the unit vectors in this matrix

such that the new associated matrix again form a feasible basis for

Ay = 1. This operation is carried out by means of a pivot step

(familiar to the pivot step known from linear programming, discussed

in detail in section 3.3).

If the vector to be eliminated turns out to be the first unit vector

the algorithm in terminated, since correspondence is reached. If

another vector is eliminated (say the i-th one) we are in the next

stage:

Primitive set

Associated matrix

2
x , x , • • • x

a
j
, a

2
aai -1, ai+1



We now replace the i-th primitive set vector by applying the

replacement step from def. 2. In doing so another vector is introduced

and if this is not a first side vector (= a vector with zero first

coordinate) we insert its corresponding label vector in the feasible

basis by means of a pivot step, and so on.

The algorithm of Scarf and Eaves are both based on the discribed

procedure. Scarf, however, deals with a specific grid size and tries

to reach the fixed point by starting in general near a vertex of the

simplex. Since the accuracy of the approximation of the fixed

point depends on the chosen grid-size this algorithm should be

combined with same numerical optimization method in order to refine

the last primitive set at the required accuracy-level. Moreover

the number of iterations (replacement and pivot steps) might be

substantial since the starting point may lie relatively far beyond

the definite fixed point.

Eaves, therefore developed an algorithm using more or less

the same procedures but without the disadvantages just described,

at the price that his method is much more complicated than

Scarf's method.



3. EAVES' METHOD.

The principle of Eaves' algorithm is based on a subsequent

extension of the grid size during the algorithm.

The crucial idea behind this method is that knowing the final

primitive set with respect to a certain grid size it would cost

less effort in finding another primitive set, which is the best

approximation of the fixed point in a grid size finer than the

preceeding one. Therefore the original simplex is multiplied by

2k, k= 0,1,2, obtaining an infinite sequence of n-simplices Sk.

In fig. 3 this is illustrated in case n = 3.

o.s.c

fig.

1) An n-simplex is defined to be any simplex having n-vertices.
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On each simplex a regular grid is defined in the usual way.

In S
k 

the grid consists of all vectors, that can be written as

(mi,...,mn) with , m
n 
non negative integers summing to 2k.

In doing so a triangulation of each n-simplex S
k 
in subsimplices

is obtained as shown in fig. 4 for n = 3 and k = 2.

3.1.0 21.o

fig.

. .o o.;

The algorithm is aimed at findinga path through the positive orthant

of the n-dimensional space (denoted by D), running from

primitive sets in S
k 

to primitive sets in S
k+1 

for abritrary k.

We therefore have to extend the triangulation such that the spaces

between two adjacent simplices are partitioned too. This extension

is performed by dividing the space between Sk 
and S

1+1 
into

(n+1)-subsimplices with vertices corresponding., to the vertices

of the subsimplices (primitive sets) in Sk 
and

Eaves has defined such a triangulation on

D' = {x E D; x. < 2} in the following way:
—

If T is a (n+1)-subsimplex in D' consisting of n + 1 vertices

v
i
=); i = J,....n+lwhich are ordered in a lexicographically

n+1
decreasing way (v > v

2 
>...> v ) with v in S

o 
or S

1 
for all

and let v
i 
be generated according to the following scheme:

•



•

i+1
v =v = 1, .• • ,

10

with y, Yn some permutation on 1, n and q(i) the - h

column of the nxn-matrix;

-1 0 -

+1 -1 -

0 +1

—1
o sla   +1 -1

such that the generated v is non negative or zero

then the collection m of all such T in D' form a triangulation

of D' and each T is completely described by v
1 
and y and we may

,characterize T therefore by Tor1 
,y).

Furthermore we notice that any n-simplex a lin Sk MnY he cl,aracterized
by c(u ,(3), where a is . generated from u in S

k 
according to:

, i = 1, ..., n-1

with (3,,
' ftn-1 

same permutation on 1, ..., n-1 such that

the generated u is non negative or zero and p(j) the i-th column of the

n x (n-1)-matrix

•

-

The complete triangulation on D' is pictured in fig.5 for

the 3-dimensional case.
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It appears that in this example 7 possible T-simplices may be

distinguished, which are summarized below with their corresponding

y-vector

Ex. 3 2 1 1 1

0 1 0 0

0 .0 0

F, (1,20)

' 
T
2 
=

1 1 1 0

1 0 0 1
! T5 =T =

0 1 0 0

I = (2,3,1)

4

1 0 0

0 0 1 0
T
7 
=

1 0 0 1

= (3,1,2)

1 0 0 0

1 2 1 1

0 0 1 0

y = (1,2,3

0 0 0

0 1 0 0

1 1 2 1

= (1,2,3)

T3 =

T
6 
=

1 1 0 0

1 0 1 1

0 1 1 0

= (2„3

We are now prepared to extend the complete triangulation on D' to D.

Namely if Y is any n-simplex in Sk, k= 0,1,2, ... and T is any

(n+1)-simplex in M then all (n+1)-simplices in D are of the form

TJT),since.,- if we have-aa(u1 ,13) and a T(v1 ,y) we may find a

(n+1)-simplex TG(T) in D by:



(3.1 (Tl = (T
CI

n+1
T (v

n .
ii n+1= ( E u E u v, /

1=1 1 i=1

4 3 3

E .4 For example if a = 2 3 2 and T =

2 2 3

8 7 7 4

we obtain T T) = 4 5 4 2

4 4 5 2

3.1. Replacement step on D.

2 1 I 1

01 Q. a
0 010

.12

Eaves pointed out that a replacement step on the (n+1)-simplices

in D may be carried out by a replacement step in D', since there

exists a correspondence T0(T) between all T in D' and the

(n+1)-simplices in D.

Eaves describes this replacement step in the following way:

Suppose that we find ourselves in a certain stage of the algorithm

and that we are in the position to move from T (T) to T ,(T')
a a

and suppose that the vector T
i
) should be replaced.

We then firstly generate a vector v = (vi,...,vn) by means

of the replacement step stated in Def.2 oh T = {17
1 ,...,vn+1 

},

replacing v1.

There are four cases that night occur.

(1) v E D'

(2) Ev. > 2
1

(3) v. < 0, for some j = , n and
3

(4) v=
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We illustrate the possible occurrence of these four cases

in the following example:

Ex. 5.

a. Suppose that in T3 of Ex.3 v3 is replaced, we then obtain by

applying the replacement operation on -v3:

1
v = v

2 
+ v

4 
- v

3 
= 
) 
0 , which refer to case 11
0

b. if we replace v4 in T
1 
we obtain:

v = v3 + v
1 
- v

4 
= 2 which lead us to case 2)

c. if we replace v
3 
in T we are in case (3), since

v=

d. and if v
1 
in T

7 
is replaced v becomes the zero vector.

Since a(u
1
,) and T(v

1
 ,y) are known in any stage of the

algorithm and since u
1 

and v
1
,y define a and T completely, Eaves

described the procedure ?f the replacement step in the four cases in terms

of changes in 11 ang v ,y instead of considering thei complete a and T.
Case (1) E D'): (u ,) are unchanged and the new (v ,y) are

computed according to table 1.

Table 1

index of the
replaced vector

v becomes

,

y becomes

i =1 v
1 
+ q (yi 1 (Y2in' )

2 < i < n_ ._
1
v

.

(Y1,-,Yi,li-1,-,,Yn)

L..

i = n + 1 N) - (nqy) (1n,1 , • • • ,Yn-1)



Case 2)
n-1

> 2 : u
1 becomes Olu E 01+1- c1(.) where

i=1

n
0.. =1 . . 3

3=1

.(3 becomes 0 
,'

) -v
1 
becomes (

Yl 
y becomes (n,1,...,n -1).

,0,...,0 and

Case (3) < 0): First'we note that j is unique. The new 
u1

is computed according to table 2 where only Id is replaced. The new

(Ay) is computed according to table 3 (the (i,j) combinations

not listed can notoccur)

Table 2

index of
negative entry

,
1
u becomes becomes

1

j = I
< j <.n

' = n

u1
, 1
u

u
1

,

+ q(1)

-
n-

0
2'•

..,13
n-1 ,i31)-

,(3
_1
,...,f3I n-1 n-2

1

)
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Table 3

.

index of negative
entry j and index
of replaced vector

i

v becomes

.

y becomes

j = 1

i = 1

2 2 2 ri

where yk = n
,

1 < j < n

1 < i < n+1....... .......
1

V

,
,
, Y

4

i=n i
(

2< i < n '
— —

1
1
-

1
' 2' •

I
• • '

v
n- 
) Y1 _(1,+1,•••:.2"+101,Yi+i

,

-

+1,

Case (4) ( = 0 : There is a unique set nc: {1,...,n-1} such that

y = E q(i)) has integer components
i

The flow chart generates 11 and y; "=" means"becomes".

Observe that components of 1 ulare 0 or 1 modulo I.

Start: i 1,

n (1), Y = -1111 I Stop: ri,y

Is yi = 0

modulo 1?

A

=.

i+1

ti U {i}i Yi<= Yi + 1
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Let E = fl and let 11 = (ni,...01 land

E = (E1,...,c_k_1) inherit order from a =

After computing the new (v
1
,i) according to table 4, the new

(u1,) becomes (y,(71,)).

Table 4

v
1 

becomes y becomes

k= (2,0,...,0) (1,...

k> 0 (z ) where

=

else

1'
.,.,m

. 

=

) where

h =
h

k+h t

We will try to elucidate the various operations in the

replacement step by means of the following examples for the

3-dimensional space

Ex. 6

Suppose that in some stage of the algoritluna ,T and T( T) are:

2 1 1

0 1 0

o 0 1 0

= ,2,

-a
2 2 1 1

2 1 2 1

0 i 1 0



1-2 2 1

2 1 2

[0 1 1

= (2,

17

and suppose that we want to replace T
a

4 
1.

We firstly compute v:

3 1v =v+v- v = (2,0,11 which corresponds with case 2).

We follow the scheme valid for this case:

1
V

= 2--u 2u
1 
=

(
2

2 )0
; and 2,1);

; and y (3,1,2)

So the new a,T and T T) became:
a

a

ri
10

0 0

1 0

1

y-- = (3,1,2

T y (T)_
3 2 2

4 2 1

1 0 _1

We now want to replace T 
a
(IT
3
). Computing v yields:

v = (1,-1,1); corresponding with case (3); j = 2, i = 3

From table 2 it is seen that u
1 
remains unchanged while P.

becomes (1,2). Table 3 shows that vi and y do not change. So

the following situations hasbeen achieved.

2

2 3

0 0

01
ni

0 1



•

0 0 1
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Suppose T (v
1
) has to be replaced. In that case

a
v = (0,0,0); which lead us to case (4).

Following the flow chart we find:

i = 1, n= (1), y = (1,1,0); so yl = 0 modulo 1 which holds for

all 37 , j 11 = 2,3 and therefore = (1 ) and = (3,2): computing.1 

v and y according to table 4; we have

V

Finally 
u1

2

(1)0

2
o

and y = (1,2,3)

and 13= (1,2)

Summarizing the new situation becomes:
T (T)G

0 0 2 1 1 ii 2 1 1 1'

1 2 1 0 1 0 0 12 3 2 1

0 1 00 0 1 0

= (1,2) y (1,2,3)

The quite compact description of the replacement operation

might unjustly suggest that the derivation of a new subsimplex

cost extensively computational effort, since it seems to be
,

necessary to store u1, 0, N
) 

on y at each step of the algorithm

and moreover that in each step TG(T) should be computed, according

to its definition stated in eq. 3.1.

Since i is seen that a replacement step on T (T) influences only
a

one vector in T (T) one might wonder if it is not possible to

formulate the replacement step in such a way that the costly

operations on en T could be avoided. It is therefore that we have

searched for a reformulation of the replacement step in which tl'e

calculations are pictured more directly on the subsimplices

T0(T) we are interested in.



3.2. Reformulation of the replacement step.

19

The reformulated replacement step is pictured in the flow chart

in fig. 6.

The symbols used in this flow chart have the following meaning:

J1OUT = the index of the vector in Ta(T1 to be replaced.

JIN = the index of the vector to be introduced in T 1(TII
a

T
i

= the i-th vector of T (T)a
TIN = the vector to be introduced in Ta(T 1) after replacing

T
3:NWT

in T (T).
a

NRLH = the index of the last vector on the highest level.

The other symbols correspond with the notation used in the

previous text.

The equivalence of the reformulated replacement step with

the replacement step discussed in section 3.1 is proved in

Appendix A.

Prom the flow chart in fig.6 it may be noticed that with the knowledge

of y and the structure of TG(T) we are able to calculate the vector

to be introduced in Ta
,(T'), by applying a number of simple tests.

In order •to adapt y in each step of the algorithm we follow Eaves'

tables from section 3.1.

The cases 1,2,3 and 4 to which these tables correspond, are explicitely

given in the flow chart.

When case (4) appears we have to apply table 4 in which is shown

that in this case we must know u
1 
and Fortunately, however, this

problem can be solved immediately since the last n vectors of T0(T)

in this case are the vectors that form the G.

Summarizing we may conclude that since only storage and adaptation

is required with respect to y the reformulated replacement step

requires less information compared with the description of Eaves'

replacement step.

And from a computational point of view important progress has been

made by avoiding the extensive calculation of T ,(Ty) through eq. 3.1.a

3.3. Pivot step.

As already stated in section 2.the pivot step is used in case

of vector labeling and may provide a procedure to find the vector



1
JMOUT = 1 1

I JMOUT = n+1

=1
•1 =
  case(1)

=

JIN = n+

case (31
i=1, j=1

JIN=NRLH

case(4)

JIN=n+1

case(2)
JIN=1

case°
i = n
JIN=1

JMOUT n+
-1?  = T = 2xT 

Y 
?! 

JMOUT-1 JMOUT 1  YJMOUT

fig. 6

FLOW CHART OF THE

REPLACEMENT STEP

I
TIN =T

2 
+T

JIN
 - T

INSERT TIN IN T

, TIN is computed

according to table 4

case (3)
i=JMOUT,j=n

case (3)
i=JMOUT,j1,n

JIN=JMOUT

1 
TIN=T + 

Tn

INSERT TIN IN T

TIN = T + T
JMOUT-1 TOUT- T

INSERT TIN IN T

case(1)

i=JMOUT

JIN = JMOUT

TIN = T
JMOUT-1 

+ T
JMOUT+ 

T
MOUT

INSERT TIN IN T
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to be replaced in the primitive set. This procedure will be

elucidated by means of the following example.

Suppose we are in a certain stage of the algorithm with a

primitive set consisting of n + 1 vectors in which the j-th vector

is just introduced by means of a replacement step. So the

associated matrix A consists of vectors corresponding with the

primitive set vectors except for the j-th primitive set vector. (a

With the notation according to page 6, we have:

primitive set

associated matrix

n+1
x
n+i

• • • , a

The matrix A is such that it fulfils Ay = 1, with y strictly

positive.

Since the j-th primitive set vector is just introduced, the

associated vector (a*)13 will be introduced in the A-matrix such

that the new A-matrix (say A*) forms a feasible basis for A*p = t.

We are now at the problem to select the vector in A to be

eliminated. Therefore we write (anJ as a linear combination

of the original associated vectors; so we have:

•(3.3.1) a z
1 
+ a

2z
2 

a
k
zk ..* 

+ a
n+1

z 
n+1 = (a*)j

Moreover from Ay = 1, we may write:

(3.3.2 a
1
yi + 

n+1
a
2
y2 + + ayn.4.1 = 1

Reformulating 3.3.1 yields:

(3.3.3)
ZI

2
z
2

z
k 

z
k

• • •

a*)3

Zk

and substituting a in 3.3.2 yields

„ zl Yk 2 ,
(3.3.4) a y, - 

, 
+ a y2k

I Y1 zk

z y
2 k

Y2 zk

• • •

z
n+ n+1

-a   - a ;
zk

• • •

z
n+1

+ ay(1- • 
___
Y

n+1 
zkk)n+1 yn+1 

+(

).

• • •
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. .
which must be equivalent with Atp = 1 if a

k 
is the vector to be

eliminatedf'romAinfavourof(a)j.Sirmeallp.should be

strictly positive, the first thing to be noticed is:

(3.3.5)

(3.3.6)

and moreover:

(3.3.7)

-E> 0 . which implies
z
k

> 0 , since yk > 0

zi Ykx= y . -
1 y. z

k

or equivalent:

z. z
k

(3.3.8) - < -
Yi Yk

3.3.6 and 3.3.8 may be fulfilled by selecting k such that

z
k 
> 0 and

z
k = max
Yk m m

; m =.1, n+1

As a result of linear programming sucha k can in general always

be found. If it appeared not to be unique a criteria must be

formulated such that the pivot step is carried out consequently

during the algorithm.

Since there is no need in reordering the A-matrix after any

pivot step this may be accomplished easily by selecting the first k

zk
for which ---= max(-2).

Yk m Ym

It is noticed that in finding the pivot column we have to
j

invert A in order to compute y = A
71 

1 and z = A (a*1 .

Dohmen and Schoeber [2] suggested in their paper that by applying a

result of Bartels [1] a procedure may be carried out avoiding the



_
computation of the complete A

1
 at
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each pivot step.

Bartels pointed out that if A 1 is known and the k-th column

of A is replaced by (a*)k. (A*)-1 may be computed by Gauss-Jordan
_1

elimination as (A*) = DA withwith

(1.0 (k)
T

D = I - ) • in which
zk

In avoiding too large round-off errors_it

invert the associated matrix after a number of

3.4. Labeling.

is k-th unit vector.

is recommendable to

iterations completely.

In section 2 some examples of labeling were given for the Scarf method

and with respect to Eaves' method such a labeling can also be formulated.

What we need is a so-called proper labeling defined by Eaves as:

Def.3 A proper labeling of vectors in the original unit simplex

S must be such that:

a) the set of vertices of S is completely labeled' which means in

our context that if we are dealing with vector labels, the

associated vectors of the vertices of S form a feasible basis for

Ay = 1.

b) no facet of S contains a completely labeled set

c) if a sequence of complete sets tends to x E S, then x is a

fixed point of f.

In our computer program in section 4 we used the following

labels (= associated vectors), which in all problems we examined
1)

turned out to be sufficient:

ai = f(x3) - xj + if xj > 0

and if x
k+1 
j is the first non-zero element k+1 < n in xjafter the

first zero element in x3 then;

•

a
j
= the k-th unit vector or

ai = the n-th unit vector if xj appears to be still zero starting

from the first zero element in

This labeling has the advantage that we may start the algorithm

with I as associated matrix and that during the algorithm associated

1) A formal proof of the sufficiency of this labeling will not be
given here.
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vectors corresponding with side-vectors (slack vectorsi can be

introduced in the associated matrix avoiding the costly pivot

operation; which may be illustrated by the description of the

computer program in the next section.
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4. A FORTRAN COMPUTER PROGRAM FOR EAVES' METHOD

LIST OF THE MAIN CHARACTERS

PRIMITIVE SET

ITMAT (I,J)

NP 1

NP 2

JMOUT

ITM(I)

JIN

ITNUM(I)

ASSOCIATED

= Matrix T (T) in Eaves or T in flow chart of fig. 6

= Number of rows in ITMAT

= Number of columns in ITMAT

= Column index of the vector in ITMAT to be replaced

= The vector to be introduced in ITMAT after a replacement

step (= TIN in fig. 6)

= Column index of the vector ITM in ITMAT

= Vector of numbers joined to the primitive set vectors in

order to visualize the correspondence with the label

vectors in the associated matrix

MATRIX OF LABEL VECTORS

AINV(I,J)

AIN(I)

JAOUT

PHULP(I)

W(I)

QHULP

CRITER

IANUM(I)

IAACT(I)

= The inverse of the associated matrix of label vectors

= The label vector to be introduced in the associated matrix

after a replacement step

= The index of the pivot column in the associated matrix

= AINV.AIN

= Vector with unit elements (in Ay=1, see section 2)

= Element of AINV.W

= Small real number introduced to correct for round-off errors

= Vector of numbers joined to the label vectors in order to

visualize the correspondence with ITNUM(I)

= Vector of numbers joined to the unit vectors in the

associated matrix

OTHER IMPORTANT CHARACTERS

IGAM(I) = y according to Eaves and fig. 6

IBETA(I)

KSLEK

ITRE

INVE

KDIM

= p according to Eaves
= Order of IBETA

k standing for the k-th slack vector

= Number of iterations

= Number of inversions on the associated matrix

= Reserved storage capacity with respect to the number of

rows in ITMAT

The examples are carried out on a DEC-10 computer system.
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C*************************************************************

-c• MAIN PROGRAM. WHICH USES EAVES'. PROQEDURE FOR FINDINO
- C THE FIXED POINT bF F(X)

IN THE EXAMPLE. F(X) IS DEFINED :AS
J::(())= X(I-1.1) FOR I=1Y..YN-1
F(X(N)) = X(1)-

C*************************************************************

IMPLICIT REAL*8 (A -Hy0
DIMENSION AINV(40Y40)yAIN(40)yiANUM(40)YIAACT(40)
DIMENSION ITMAT(40y41)yITNUM(41)yITM(40)
DIMENSION IGAM(40)yIDETA(39)YPHULP(40)YW(40)
DATA RDIMyNPlYCRITERYW/40y20y1.D-7,40*I.D0/
CALL MINIT(ITMATYKDIMYNPlyNP2yITNUMYIGAMyAINVYIANUMy

IAACTyITREYINVEYJMO(JTyITMNU)
N =
MGR I D 2.* *17
N C.3R D
WRITE(3y5000)
WRITE(3Y5001) NP1
14RITE(3y5002)

350 MGRIT = 0
DO 400 I = lyNPI
MGRIT = MGRIT1-ITMAT(IY1)

400 CONTINUE
IF(MGRIT-NGRID) 600,450,600

450 DO 4'5 5 I NP
:CT M( ITNAT(IY )

455 CONTINUE
DMAX = DADS(HTM(1)-ITM(NP1))/DFLOAT(MGRIT))
DO 460 I = 2YNP1
FXX = DABS((iTM(I) -ITM(I -1))/DFLOAT(MGRIT))
IF(FXX.GT.DMAX) DMAX=FXX

460 CONTINUE
WRITE(3Y4004) MGRITYITREYINVEyDMAX
NGRID NOR I D 1:2
IF(MGRIT-MORID) 600y500Y500

500 WRITE(3,4001) (ITMAT(Jy1)y.i=lyNP1)
CALL EXIT

6 0 0 I R T R
CALL EAVES(ITMATyKDIMyNyNP1YNP2yITNUMyIGAMy

IDETAyJMOUTYITMyITMNU)
CALL LABELS(ITMyNPlYAINyNACT)
IF(NACT.NE.0) GOTO 800
CALL LABEL: ( ITM y NP1 PAIN)

800 CALL • PIVOT(AINVyKDIMyAINYWyPHULPYCRITERYNPlyNP2rIAACTyNACTy
$ INVEyIANUMyITNUMYJMOUTyITMNU)
GOTO 350

4001 FORMAT (///' FIRST COLUMN OF FINAL MATRIX "ITMAT'"/
$ (1H0y10I7))

4004 FORMAT (1H y17y9XyI8y12XYI8yD26.7)
5000 FORMAT (1H1YIEXAMPLE OF THE USE OF EAVES" 1 ROCEDURE 1/

• IHOy 1FUNCTION F(X(I)) = X(I+1) FOR I=Iy..,N-1//
$ 111 YIOXY'F(X(N)) = X(I)'/)

5001 FORMAT (1HOY'N ='YI3)
5002 FORMAT (//' GRIDSIZE/Y5XY'* OF ITERATIONS'

y5XY 1* OF INVERSIONS'y7XYIMAX(ABS(F(X)-X))1)
END
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SUBROUTINE . MINIT(ITMATyKDIMyNPlYNP2yITNUMYI(3AMY
$ AINVyIANUMyIAACTyITREyINVEyJMOUTyITMNU)
IMPLICIT REAL*8 .(A-Hy0-Z)
DIMENSION ITMAT(KDIMy1)5PITNUM(1)YIGAM(1)
DIMENSION .AINV(KDIMyl)yiANUM -(1)yIAACT(1)

.**************************** •

.* INITIALIZE ALL VARIABLES. *
****************************

NP2 = NP1+1
ITRE = -1
INVE = 0
DO 10 I = lyNP2
ITNUM(I) = I

10 CONTINUE
DO 20 J = ly1P1
IAACT(J) = J
IANUM(J) = J4-1
IGAM(J) = ,

20 CONTINUE
IANUM(NP1) = I
DO 40 I = lyNP1
DO 30 J = lyNP2
ITMAT(IyJ) = 0

30 CONTINUE
ITMAT(IyI) = 1

40 CONTINUE
JMO(JT = NP2
ITMNU = NP2
DO 50 I = lyNP1
DO 45 J = lyNP1
AINV(IyJ) = 0.D0

45 CONTINUE
AINV(IyI) = :1.

50 CONTINUE
RETURN
END
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SU:f.iROUTINF EAVES(ITMATyKDIMyNyNPlyNP20ITNUMvIGAMy

IBETAyJMOUTyITMyTTMNU)
DIMENSION. ITMAT(KDIMyl)
DIMENSION - • ITM(1)yITNUM(1)yIGAM(1)0IBETA(1)

-C ***********0************************-
* REPLACEMENT STEP IN PRIMITIVE SET *

*************************************

IF(JMOUT.NE.1) GOTO 400
IG = IGAM(1)
IF(I(3.NE.1) GOTO 200
DO 112 I = lyNP1

I1::(ITMAT(Iy1).NE.2*ITMAT(IyNP2)) GOTO 115

112 CONTINUE
GOTO 210

JMOUT=1
CASE(3)y

115 IDUM = 1
I = 1

120 II = I+IDUM
IGAM(I) = IGAM(II) —1
IF(fGAM(I).NE.N) GOTO 140
IDUM = 0
I = .1+1
IGAM(I) = NP1
JIN = I

.40 I = .1+1
IF(I.GT.NP1) GOTO 230
GOTO 120

200 IF(IG.EQ.NP1) GOTO 300

JMOUT=1
CASE(1)y I=1

210 DO 220 I = 2yNP1
= I(3AM(I)

220 CONTINUE
IGA1(NP1) = IG
JIN = NP2

230 DO 240 I = lyNP1
ITM(I) = ITMAT(Iy2)+ITMAT(IyJIN)—ITMAT(Iy1)

240 CONTINUE
GOTO 800
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M 0 Li 'r
c s ( 4 )

300 DO 320 J = I YN
DO 305 I = 1 Y NP 1

IF ( I TMAT ( I Y J 1 ) 4, GT * I TMAT ( I Y J+2 ) ) GOTO 310

305 CONT I NUE
310 IDETA ( J) =
320 CONT I NUE

DO 325 Y P 1

ITM( I ) = ITMAT(I 3, 2 )

325 CONT I NUE
KR = 0
D 0 3 5 0 I Y N

IF* :1: M (:1:) / 2 *2. E( • :1: ri ( I ) ) (30TO 33'5

I ( :1: :1: M ( :1: )
:ci1(If:I.) M ( + )

K 1.< j< 1
0 I 0 350

335 DC) 340 J Y N
F (i * F.: * i I-3E: T A ( ) (3 cyr o 345

340 CO N :1: N U E:
345 I B T A ( J ) —]:BETA (J)

350 CONT :1: N U
I 1-1 0
:1:1-11< K K
DO 370 I = 1 YN
IF ( I BETA ( I ) * GT * o) (30T 0 365

INK = I HK +1
I GAM ( I ) = I HK
GOTO 370

36'3 I H = I H+ I
I GAM ( I ) =

370 CONT I NUE
I GAM ( NP1 ) = NP I
DO 375 I = 1 Y NP 1
I TM ( I ) = I THAT ( I Y 2 ) I TM ( I ) / 2

:375 CONT INUE
J I N = NP2
GOTO 800
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400 IF(JM(::'UT.LT.NP2) GOTO 600
.IG = IGAM(NP1,)

GOTO 500

0 1..1 N 1::' 2
(::: A S F.: ) 1 : : N P

DO 430 I = 2yNP1
K =
IGAM(K+1) = IGAM(K)

430 CONTINUE
IGAM(1) = IG

440 JIN = I
DO 450 I = lyNP1
ITM(I) = ITMAT(Iy1)+ITMAT(IYJMOUT —1) —ITMAT(IYJMOUT)

450 CONTINUE
GOTO 850

JMOUT=NP2
CASE(2)

500 DO 510 I = 19NP1
IGAM(I)

510 CONTINUE
IGAM(1) = NP1
DO 520 I = :1. :1.
ITM(I) = ITMAT(Iy1)+ITMAT(IyNP1)

520 CONTINUE
JIN = I
GOTO 850

600 IF(IGAM(JMOUT —1).NE.IGAM(J1OU1) —I) GOTO 642
DO 620 I = lyNP1
IF(ITMAT(IyJMOUT).NE0"-"*ITMAT(IyNP2)) (ii) IC) 700

620 CONTINUE

1 < JMOUT < NP2
CASE(1)y I=JMOUT

642 :t: x: = IGAM(JMOUT —1)
IGAM(JMOUT —1) = IGAM(JMOUT)
IGAM(JM(JUT) = IDUM

660 DO 665 I = 15,NP1
ITM(I) = ITMAT(IyJMOUT-1)+ITMAT(IYJMOUT+1)—ITMAT(IyJMOUT)665 CONTINUE
JIN = JMOUT
GOTO 900
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,

-
-...

700 IFUGAM ( JMOUT ) . NE .NP1 ) GOTO 660 -..

C
C 1 '::: JMOUT •::: N I::̀  2
C. CASE (3) Y :I: :::: J M OUT

. C
DO .730 I = 1 y NP1
I(:AM ( I ) = IG6M ( I ) +1

730 CONTINUE
DO 7.40 I = 2 y JMOUT •

I< =. J.MOUT-I+1
IGAM ( K+1 ) = IGAM ( K )

740 CONTINUE
IGOM (:1. ) = 1
GOTO .. - .440

800 DO • 820 J = 2 y JIN
ITNUM(J71) = ITNUM(J)
DO 820.. 1 = 1 y NP1
IIMAT( :I: Y ,..) -- :I. ) :::: :I: IMAT(IY ,..1 )

820 CONTINUE
GOTO 900

850 DO 870- ' J = 2 Y JMOUT
JJ = JMOUT-J+1 -
ITNUM ( JJ+1 ) = ITNUM ( JJ )
DO • .870 ' I = 1 Y NP1
ITMAT ( IYJJ+1 ) = ITMAT ( I yJJ)

870 CONTINUE

!00 DO 910 I = 1 YNP:L
ITMAT(IyJIN) = ITM(I)

910 CONTINUE .
ITNUM(JIN) = ITMNU
RETURN .
EN x:'
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8UPROUTINE LABELS(ITMyNPivAIN9NACT)
IMPLICIT REAL*8 (A-HYO-Z)
DIMENSION . ITH(1)PAIN(1)

***********************************
* ASSOCIATE LABEL TO SLACK-VECTOR *-

C ***********************************

DO 10 I = IYNP1
II = I
IF(ITM(II).E0.0) (3OTO 15

10 CONTINUE
NA CT = 0
RETURN

15 DO 20 K = 11,NP1
IK =
IF(IK.GT.NP1) IK=IK-NP1
I1::(ITM(IK).GT.0) GOTO 25

20 CONTINUE
25 KSLEK

IF(KSLEK.E(:.0) KSLEK=NP1
DO 30 I = lYNP1
AIN(I) = 00D0

30 CONTINUE
AIN(KSLEK) = 1.1:10
NACT = KSLEK
RETURN
END

SUBROUTINE 'LAKLF(ITMyNPlyAIN)
IMPLIOT REAL*8 (A-Hp0"-Z.)
DIMENSION .ITM(1)YAIN(1)

.0 • **************************************

.0 . * ASSOCIATE LABEL TO INTERIOR VECTOR *
*****************0******************

• C
NGRID
DO 10 I
NGRID =•NGRID+ITM(I)

10. CONTINUE
GRID = NGRID -
DO 30 I = 29NP1. .
AIN(I.71) =

- 30 CONTINUE.
AIN(NP1)- =-(ITM(1)-ITk(NP1))./GRID1-1.bo
RETURN
END
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SUBROUTINE PIVOT(AINVyKDIMpAiNyWyPH(jLPYCRITERYNPIPNP2PIAACTINACTy
INVEyIANUM,ITNUMyJMOUT!ITMNU)

IMPLICIT RI AL*8 (A-HO-1)
DIMENSION AINV(KDIM.y.kDI1)OIN(1)yW1),PHULP(1)
DIMENSION IAACT(1),IANUM(1)yITNUM(1) .

C. **0**********
C • * PIVOT STEP *

I1:(NACT.EQ.0)- GPTO 215
DO 205 I= .1yNP1.
JAOUT = I
IF(IAACT(I).EQ.NACT) GOT0.35

205 CONTINUE
215 XMAX = 0.DO

DO 218 I = lyNPI
PHULNI)
DO 218 J = lyNP1 •
PHULP-(I) = PHULP(I)+AINV(IYJ)*AIN(J)

218 CONTINUE
DO 230 I =. 1yNPI.
IF(PHULP(I).LE+CRITER) GOTO 230
UHULP = -Oa() .
DO -222 J = lyNP1.
OHULP = OHULP+AINV(Iy.J)*W(J)

222 CONTINU -
IF(OHULPf(3T.+CRITER) GOTO 226
JAOUT = I
GOTO 232

226. QUOT = PHULP(I)/UHULP •
IF(QUOT.LE#XMAXY GOTO 230
XMAX = (MOT
JAOUT = I

230 CONTINUE
232 INVE = INVE+I -

C
BARTELS' PROCEDURE

DO 234 IC = lyNP1
CONS AINV(JAQUTYIC/PHULt.:.(JAOUT)
DO 2:53 JR = l'YNP1
AINV(JRYIC) = AINV(JRyIC)-.-PHULP(JR)*CONST

233 CONTINUE --
AINV(JAOUTyIC). = CONST

234 CONTINUE •

235 IAOUD = IANUM(JA(JUT)
IANUM(JAOUT) = ITMNU
IAACT(JAOUT) = NACT
DO 270 I = lyNP2
IF(ITNUM(I)+E(1.IAOUD) GOTO 300

270 CONTINUE
300 JMOUT = I

ITMNU = ITNUM(JMOUT)
RETURN
END



EXAMFiLE OF THE USE OF EAVES' PROCEDURE

„FUNCTION F(X(I)) = X(T+1) FOR i=ly..$,N-1•
F(X(N)) = .X .(1)

N

GRIDSIZE
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072

OF ITERATIONS
0
10
38
117

188
206
12".,4
242
260
278
")96
314
332
350
368
386
404

*

25i

OF INVERSIONS MAX(ABS(F(X)-X))
O 0.5000000D+00
O 0.5000000D+00
O 0.2500000E400
O 0.1250000E400
47 0.6250000D-01
65 0.3125000D-01
83 0.1562500D-01
101 0.78125001:1-02
119 0.3906250D-02
137 0.1953125D-02
155 0.9765625D-03
173 0.4882813D-03
191 0.2441406D-03
209 0.1220703D-03
227 0.6103516D-04
245 0.3051758D-04
263 0.1525879D-04

FIRST COLUMN OF FINAL MATRIX 'ITMAT'

13107 13108 13106 13108 13108 13106 13108 13106 13108 13107

END OF EXECUTION
1*.2PU TIME: 1.94 ELAPSED TIME: 12.78
EXIT
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EXAMPLE OF THE USE OF EAVES' PROCEDURE

FUNCTION NMI)) = X(I+1) FOR I=1,..yN-1

F(X(N)) = X(1)

N 20

GRID311E * OF ITERATIONS 0 OF INVERSIONS MAX(ABS(F(X)—X))

'') 0 0 0.5000000E1+00
4 20 0 0.5000000D+00
8 78 0 0,25000000+00

16 287 0 0.1250000D+00
32 846 0 0.6250000D-01

64 1558 423 0.3125000D-01

128 1620 485 0.1562500D-01

256 1682 547 0.7812500D-02

512 1744 609 0.39062500-02

1024 1806 671 0.19531251i-02
2048 1868 733 0.97656250-03

4096 1930 795 0.4882813D-03

8192 1992 857 0.2441406D-03
16384 2054 919 0.1220703D-03

32768 2116 981 0.6103516D-04
65536 2170 1043 0.3051758D-04
131072 2240 1105 0.1525879D-04

FIRST. COLUMN OF FINAL _WIRD( 'ITMAT'

-6553 6554 -.6554 6554 6m0..c0.655"... 6554 ,6554 6554. 4554. „.6554

6552 6554 6554- 6554 6554 6552. • - 6554. 6554 - 6554'. 6553

END OF EXIECUTION'
CPI.) TIME: 25.76 ELAPSED TIME:
EXIT

:51.16
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APPENDIX A PROOF OF THE EQUIVALENCE OF THE REFORMULATED

AND EAVES' ORIGINAL REPLACEMENT STEP

In our proofs of the equivalence we will follow the chart

flow of fig. 6.

n+1
1. JMOUT = 1, 

1 
= 1 and T = 2xT

1 n+1 . . 
114-1T = 2xT T (v ) = 2xT (v) and since T is a

a a a

linear transformation on 0-- having full rank we may conclude

that v
1 
= 2v

n+1

= 2(v
1 
+ E q(y.))
i=1

and therefore v
1 
=(

Computing v we find:

2
0

•

0

n+
v=v +v -v =

case (1), = I.

I

-1

= 2(v
1
+ )

0

1,

and v
n+1 0

• . Moreover v
2 
=

0

o

)t.
0

yielding

27

Case (1) shows that q( u1 ,13) does not change and so

1
T ,(v) =T(v) =T07

11+1
) +T( ) -T v) or in our notation:

a a a

TIN = T
n+1 

+ T
2 
-

Table 1 shows furthermore that the new T, denoted by T T is

built up in the following way:

n+
= {V ,V ,v} and so TIN must be introduced

in T on the 1)-th place. (JIN=n+1)

* All expressions with a prime will refer throughout this appendix

to situations after the replacement step has been carried out.



2. JMOUT = 1, yi = and T
1 

2 x T 
n+1

,2
n+1

2 x T implies v

0

element of v
1
, denoted by v

1 
must be and

1 2

From 1 we saw that v 
1 

v
n+1 0)

0

and since Y1 = 1,
the first

n+1
and so vi =0

2
Computing vl = v

n+1
i + v

1 
- v

1 
= -1 we arrive at case (3),

1

with i = 1 and j = 1.

Table 2 shows that in this case,

and using the changes in v
1 
and y
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= {u 
2
,...,u

n
,u
n

as stated in table 3, we find:

2 u v u
f 

E 
n-1
E i+1 

vL.1, since v 
1v = 0

i=1 i=1
n 2

= E u .y
i ' 

since y = 1 and so v
2 
= 0

1i=1

= T (v
2
)

+1 3
a

T ,(v
2'
) 

d
2 

1

f 
E u = E ul , since v

2 
= 0 and y' = 1211i= i=1

n 3
3= E u = T(-

3
), since v

1 = 
0.

i=1

This procedure may be continued untill T(v
k,
), yk = n.

Table 3 learns that:

n-1 
i+1 n kT ,(v

k' k' ) 
d
2
f 

E u .v = E u. vi+1 - u .v
n 
+

i=1 1=1

n 
+ u.(vkn-1) u

n 
(1+ ( 1) = Ta(v

k 
) + ci(fi )

It is immediate that this is the vector to be introduced in T,

since T,(V ) = T
U
(v
i) 

i = k+1, n+1, so ,ETN = k, and since y
k 
= n,

k = NRLH.
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It is straightforward to prove the calculation rule:

TIN = T
NRLH 

+ T
2

k i2 i 1
= T (v) + E E u.v. , and since y = 1 we may write:a

1 1
= T(v) + E u v. - u

1 
+ u

2 
- E u v. = T(v1) + q( 1)

• 1 a

k'
=

3. JMOUT = n
1, Y1 

=

1From vv
n+1 1 • and y = n it is seen that v

1 
and v

1 
cannot be zero.

1

Therefore v
1 
=

1

2
v =

1

0
•
•
•

and vn+1 (0•••0
n+1

Computing v = 
2 
+ v -v' = , we arrive at case (4).

0

4. JMOUT = Yi 1,n 1

2 n+ 1 1
Fromv=v+v -vor otherwi 

0
2 

se v it is seen that

2
case (1) only may appear if a. vi 0 and b. 0 < Ev. < 2.

ad.a. Since y 1 it follows that v
2 
= v

1 
0.

1 1
2 1

ad.b. Since y 4 n
' 

E v. = Ev.
1 
= 2, and so 0 < E v1..‹i 2.

1 r i 

The proof that TIN = T
n+1 

+ T
2 
- T

1
 and JIN = n + 1 is completely

analogue with I.



5. JMOUT = n + 1, yn = n

From yn = n it follows that E v? =

1

v = v
1 
+ v - v 

n+1 • = • + v
n 

we arrive at case ) since
0

0

• o if we compute

E vi = •
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We will prove now that the new vector to be introduced in T may be

computed as TIN = T
1 
+ T

n 
and that JIN = I.

The scheme of case (2) tells us that T
1

yi = (1,0,...,0,1). This may be rewritten as:

6. JMOUT = n+

n-1
+ E

i=1
n-1

= 2{u10. +
i=1 1+1

= u + u
n, 

since

+ E q0,)
i

• 1-1 ,2{E0.(ul-u ) +u
1
u}+Eq0i)

i=2 1
n-1
{ E u (0i-Oi+1) + une

n 
+ E c( i)

i=1

1= 2 E. u
i 
v. + E q(.)

1=1
a.v

n-1
2avi E q(yi), since y = n

i=1
n-1

= 2av + G q(yi)
i=1

+ T
n

= G(v +vri)

n 1

(
•Since yn n2 E v = 1. Computing v = + vn

0

Yn

cod

q.e.d.

is immediate

that 0 < E v. < 2 and v.
I 
> for all which correspond to

i 
1-- --

case (1), 1 = n+ 1

The proof that TIN = Tt-I- T
n 
- T

n+1 
and JIN = I is analogue

with I.



a.

MOUT 
T 
n+1=7. 

jM
OUT 1, n + 1, y

M 
y

OUT-1 'JMOUT 
- 1, T = 2 x

MOUT n
In 1 we already stated that T = 2 x T . implies

JMOUT 
= 2 x 

vn+1 JMOUTv and moreover that v can
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only have one

entry differing from zero equalling 2 and since MOUT 0 1

entry cannot be the first element of vjMUT

Suppose the k-th element of vjIMUT is 2. It is seen
MOUT-1 

= 1 and v
JM
-
0UT-1

k1
immediately that v

k 
and

v
JMOUT+1 MOUT+1

1 and v
k.i.1 

=1

Fro
m. 
v = v

JMOUT-1 
+ v

JMOUT+1 MOUT 
- v it follows then that

only vk_ i =

this

k+1 
= 1, while all other elements of v are zero.

So we are in case(1), i = MOUT.

The new vector TIN may be computed

+ T 
MOUT+1 MOUT

T and JIN = JMOUT, which is

according to 1.

8. JMOUT 1,n+1, 
TJMOUT 

2 x

-
as TIN = TOUT 

1

easily proved

YJMOUT-1 = YMOUT

Suppose 
'M
Y

OUT = 
k and 

yMOUT-1 
= k - I.

MOUT
Since v

k 
5-I 2 and Y 

k, ITIJ(MOUT
'MOUT = 

must

MOUT+1 MOUT-
and v

k 
= 0 and moreaver v

k

So vk = vk

yMOUT n.
Since y

'MOUT

JMOUT-1 JMOUT+1
+ v

k

1,n it is

1

equalling 1

, since Y
.JMOUT-1 = k

MOUT
- v

k 
= -1, corresponding to case(3).

noticed that v1

Therefore we are dealing with 1 < j <

1 < j < n, 1 < i < n+1 in table 3.

From table 2 it is seen that a is unchanged, except for

k k'
u , u = u

k-1 
+ u

k+1 
u
k. 

So in general this may affect

1;-(T) for all vi, having a non-zero element on the k-th place.

But from our previous discussion it appears that vjMUT can.

- 1 and v
n

n in table 2 and

only have a non-zero element on the k-th place, implying that in

T (T) only T
GiIMOUT'

) can change; so JIN = JMOUT.a 



b.
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We compute TIN according to:

TIN = T
JMOUT-1 

+ T
JMOUT+1 

T
JMOUT

defavSMOUT-1 JMOUT+1 JMOUT0...v 
G.v

a(
vJMOUT

-q(k-1)+ G(
vJMOUT

+q(k)) -
v

JMOUT
+ G(q(k)-q(k-1))

JMOUT 
u - 2u

k 
+ u

k+1•
= G.v • 

JMOUT

JMOUT lk , since 
.v.IJMOUT

G .v +u -u=av

To.,(v
MOUT

) = Tat(
vJMOUT'

), since T(
vl

,y)

does not change according to table 3.

n
YJNOUT 

=

In this case we are dealing with j = n in table 2 and j = n,

1 < i < n in table 3.

-
If we are able to prove that TIN = TI 

TJMOUT1 TJMOUT = Ta,(v)

then it is clear that T i(v1 ) is the new vector to be introduced,

fml ,JMOUTI
since consisting of vectors in the same level must

form a linear independent set. So in that case JIN = 1.

We will compute 1;.,(v
1'
) in the following way.

dff 0. ivl

Using the definition of vli in table 3, we may write:

1 1 1 2' 1
T )= .v =u -u + E u .v

1
. and from
1-

i=2

table 2, this may be reformulated in terms of the original

0-(u
1 
, 13) by:

=U gon-1
n-1 .

u 
1

+ E u .v
i=1

U u
n-1 n i 1 1

+ E u .v., since v
n 
must

i=1

be zero; an impact of the fact that Y = n and y
'JMOUT JMOUT-1 

= n-1.
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= - a.q(n-1) + Tl

T + a(v
MOUT MOUT

= -q(n-1)) -
1

JNOUT-i JMOUT
+T - T

9. JMOUT 1,n+1 
1JMOUT-1 :TMOUT -

1

q.e.d.

JMOUT-1 YJMOUT 
implies that if y

'JMOUT = k'

JMOUT MOUT+1 JMOUT-1
v
k 

= 1, vk = 0 and v
k 

= I and supposing further

that 
1JMOUT-1 =

k-1;we are in the following position

MOUT-1 MOUT
vt =1 vs?, = 0

MOUT-1 MOUT JMOUT+1
= 0vt+1 vt+i = Iv.z+i

JMOUT-1 MOUT JMOUT+
v
k 

.=I v
k 

=1 
v

=

=0

Computing v it follows then that vi > 0, for all i and

E v. < 2, corresponding to case (1), i = MOUT, which on its
1--

i

turn came up for the same implementations as in 7.
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