%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/




AN EFFICIENT WAY OF PROGRAMMING EAVES' FIXED POINT
ALGORITHM

by R. Jansen and A.S. Louter

1. ABSTRACT.

The recently developed fixed point algorithms have provided
the possibility of applying advanced numerical computation procedures
in a broad field of economics. In particular, the pioneer work of Scarf [4,5],
has shown its importance in the computation of economic equilibria.
Moreover, Eaves [3] has succeeded in constructing an algorithm based
more or less on the same principles as used by Scarf but providing
in general a more efficient way in computing fixed points. Therefore
his algorithm may be preferred especially in its application to
rather extensive problems.

This paper deals with the formulation of Eaves' method such that
with a minimum of storage and computation time his algorithm may be

prepared for the computer. The algorithm as described in [3] can
substantially be improved by N
reformulating the replacement step and by the application of an
efficient inverse routine developed by Bartels [1] on the pivot step.
A very concise introduction to fixed point algorithms is given
in section 2, where = the basic thoughts behind this methods
are pictured, omitting for the sake of legibility the mathematical
justifications. For those who are interested in the latter aspect
we refer to the original publications.
In sectibn 3 Eaves' method is considered with an explanation of

the replacement step in section 3.1 and its reformulation in section 3.2.

Sections 3.3 and 3.4 are dealing with the pivot step and the labeling

respectively, while in section 4 a complete FORTEAN computer program
of the algorithm is given.

Aug. 1977




CONTFNTE,
nare
ABRSTRACT
TNTRODUCTION TN FIXED POTNT ATGORTTHMS
RAVES' METFOD
3.1 Replacement step on D
3.7 Reformation of the replacerent sten
3.3 Pivot step
3.4 TLabeling
. A FORTAN COMPUTER PROGRAM FOR FAVES' KMETHOD
References

Appendix

2. INTRODUCTION TO FIXED POINT ALGORITHMS.

Since the algorithms of Scarf and Eaves are developed to
approximate fixed points we first summarize two important fixed point
theorems,which are often used to prove the existence of a general

equilibrium solution in economic models.

Th.1 Brouwer: If S is a non—-empty-compact, convex subset of R" and

if f is a continuous function from S to S, then f has a
fixed point, i.e. there is a x* € S such that
f(x*) = x*. (fig. 14).

Th.2 Kakutani If S is a non—empty-compact, convex subset of R" and if

¢ is an upper semicontinuous correspondence from S to S
such that for all x € S the set ¢(x) is convex (non—-empty),
then ¢ has a fixed point, i.e. there is a x* € S such that
x* € ¢(x*). (fig. 1B).

fig. 1A

The algotihms of Scarf and Eaves are both dealing with unit simplices;
defined as the collection of vectors x = {xl,...,xn} with x, > 0 for all i,and

n

T x., =1 (fig. 10).
.=] 1

1




fig. 1C

On the simplex we define a collection of points, which play
an important rdle in the search procedure in finding an approximate

fixed point.

Def.l Regular—grid. A regular grid defined on the simplex S is the

collection of points x in S of the form x = %(m],mz,...,mn) with m,

non-negative integers summing to N, (fig.2a; n = 3, N = 10)

fig. 2a fig. 2b

If we connect these points as in fig.Zbthe simplex S is divided
by this triangulation in regular subsimplices, which are conformable
to the definition of primitive sets introduced by Scarf each including

n-vectors of the regular grid. His idea in finding the fixed

point is a walk through the Simplex, starting in a vertex of the
simplex passing from one primitive set to an other as illustrated
in fig. 2.

The algorithm of Scarf is completely described by the following

procedures.




a. a replacement step on primitive sets

b. a proper labeling of the vectors in each primitive set

ad a. The replacement step describes how to find a new primitive set
if we eliminate one vector from the original primitive set. In case

of a regular grid this procedure turns out to be very simple.

Def.2 Replacement step. If we put the vertices of the primitive set

in a matrix and order them in a lexicographically increasing D way and

suppose that the j-th column is eliminated, the new vector to be

introduced must be calculated as follows.

']

Ex. 1 If we consider the following primitive set

1

S} 5 6 form a new
primitive set by replacing the second vector; yielding

or by replacing the last vector:

or rearranged

1) The vector a = (a3 %,...,a ) is lexicographically larger than
i

b = (b], g3 tees the first nonzero element in the sequence

a; - bi, a, - b2, cees @ " b is positive,




ad b. A label of a primitive set vector is a characteristic of each
vector in the primitive set, which makes it possible to select
the vector to be eliminated, and assures the algorithm to
converge to the neighbourhood of a fixed point.

We will elucidate this matter by means of an example of labeling

described by Scarf:

Labeling: Suppose that we have a regular grid on our simplex with a

certain grid-size. We associate a label with each vector x in the grid

by the following rule:

f](X)
£, (x)

Compute f(x) - x = . 2 if fj(x) —ij is the
£ &)
first non-negative element of f£(x) - x, x is given the label j.

This labeling is chosen such that the fixed point is reached as soon as
a primitive set is "completely labeled", which means that the vectors

in that primitive set have all different labels.

Ex.2. We shall try to find the fixed point in the following simple

problem

We define a regular grid on our simplex with a grid-size of ten, and
start the algorithm with a primitive set consisting of a vertex of
the simplex and a point in the grid, which is nearest to this vertex.

So the initial primitive set is

p |2 10 9 10
10 . The labels of the vectors (1) and ( 0

1 0
are computed by the described procedure, yielding for both vectors
the label 2.

In the initial position of the algorithm the first vector in the

primitive set to the replaced is the side vector. So by applying the

replacement step we find the next primitive set.
'8 9]
. Since_the new vector(g) has also label 2 we replace the
1
7 8]
second vector, yielding: 3 9l The subsequent steps are:

r -

5 6
and finally [5 4] . The labeling




is now complete and the fixed point will be in the neighbourhood

of this primitive set, which is correct since X, = 5= X, is the

fixed point. Scarf pointed out that it would be more efficient in

general to associate vector labels with the primitive set vectors ‘nstead
of integer labels. In a crucial theorem he stated that the fixed point is

approximated with a primitive set of which the corresponding

associated label vectors form a feasible basis Il'for.a svstem of linear

equalities Ay = b, with A the matrix of associated (label) vectors and
b some non—negatlve vector. For the associated vectors he chose
f(x ) - xl + 1, with xl the i-the primitive set vector, not on
the boundary of the simplex, and 1 = (1,1,...,1)' and b is
defined to be 1.

For the primitive set vectors representing points on the
boundary of the simplex unit vectors are associated by the
following rule: Each primitive set vector with the first zero element
on the i-th place will be associated with the i-th unit vector.
The procedure to be followed in finding the fixed point can be
described as follows.
The aim of the algorithm is to find a Primitive set of which the
corresponding label vectors form a feasible basis for the equations
Ay = 1. In order to reach this correspondence we start the algorithm
with a feasible basis for Ay = 1 formed by n - 1 label vectors
corresponding with n - 1 vectors’in the initial primitive set and
one additional label vector generally not corresponding with the
remaining primitive set vector. During the algorithm we follow a path
through the simplex running from one primitive set to another such
that the associated matrices (consisting throughout of n - 1
corresponding label vectors and one additional vector) form a feasible
basis for Ay = 1. As soon as we have found a primitive set completely
corresponding with the associated feasible basis the algorithm is

terminated, since then the fixed point is reached.

The columns j , ..., j_ of the matrix A form a feasible basis if the
equations Ay b have a unique, non-negative solution with vy, = 0

unless j = Jl, ceey jn' ¥




6a

In order to elucidate the procedure with vector labels we follow
the algorithm in a number of subsequent steps. The initial primitive
set is formed near a vertex of the simplex (say near the vertex

i

and consists of n — 1 side vectors and one vector interior to the

0

simplex (in this case the vector in the grid with the largest first

coordinate). In the 3-dimensional case with a grid-size of 10 we have:

The initial associated matrix is formed completely by unit vectors,
since this matrix forms a feasible basis for Ay = 1. In doing so
the associated matrix corresponds with the primitive set except for
the vector interior to the simplex. (see the labeling rule for side
vectors)..
The initial position of the algorithm may then be described as follows:
Primitive set consisting of vectors xj, xz, ce ey %"
Associated matrix consisting of n unit vectors a], e a"
In the primitive set xj is the interior vector and x2, ceny x" the n - 1
side vectors. The associated label vectors of the primitive set vectors

are recognized by the same indices in this notation.

In order to reach complete correspondence between the primitive set

and the associated matrix we introduce the label vector of xJ in the
associatéd matrix by eliminating one of the unit vectors in this matrix
such that the new associated matrix again form a feasible basis for

Ay = 1. This operation is carried out by means of a pivot step

(familiar to the pivot step known from linear programming, discussed

in detail in section 3.3).

If the vector to be eliminated turns out to be the first unit vector

the algorithm in terminated, since correspondence is reached. If

another vector is eliminated (say the i-th one) we are in the next

stage:

Primitive set

Associated matrix




We now replace the i-th primitive set vector by applying the
replacement step from def. 2. In doing so another vector is introduced
and if this is not a first side vector (= a vector with zero first

coordinate) we insert its corresponding label vector in the feasible

basis by means of a pivotéstep, and so on.

The algorithm of Scarf and Eaves are both based on the discribed
procedure. Scarf, however, deals with a specific grid size and tries
to reach the‘fixed point by starting in general near a vertex of the
simplex. Since the accuracy of the approximation of the fixed
point depends on the chosen grid-size this algorithm should be
combined with same numerical optimization method in order to refine
the last primitive set at the required accuracy-level. Moreover
the number of iterations (replacement and pivot steps) might be
substantial.since the starting point may lie relatively far beyond
the definite fixed point.

Eaves, therefore developed an algorithm using more or less
the same procedures but without the disadvantages just described,

at the price that his method is much more complicated than

Scarf's method.




3. EAVES' METHOD.

The principle of Eaves' algorithm is based on a subsequent

extension of the grid size during the algorithm.

The crucial idea behind this method is’that knowing the final
primitive set with respect to a certain grid size it would cost
less effort in finding another primitive set, which is the best
approximation of the fixed point in a grid size finer than the
preceeding one. Therefore the original simplex is multiplied by

ok D

s k= 0,1,2, ..., obtaining an infinite sequence of n—-simplices Kk

In fig. 3 this is illustrated in case n = 3.

o.0-8

fig. 3

1) An n-simplex is defined to be any simplex having n-vertices.




On each simplex a regular grid is defined in the usual way.
In Sk the grid consists of all vectors, that can be written as
(m],...,mn) with m,... », M mOD negative integers summing to 2k,
In doing so a triangulation of each n-simplex Sk in subsimplices

is obtained as shown in fig. 4 for n = 3 and k = 2,

) / /\j/\/ \\/\

1
3.1.0 2.2.¢ 1.3.0 gb.0

4.

fig. 4

The algorithm is aimed at finding a path through the positive orthant
of the n-dimensional space (denoted by D), running from

primitive sets in Sk to primitive sets in S for abritrary k.

k+1
We therefore have to extend the triangulation such that the spaces
between two adjacent simplices are partitioned too. This extension
is performed by dividing the space between Sk and Sk+l into
(n+1)-subsimplices with vertices corresponding., to the vertices

of the subsimplices (primitive sets) in Sk and Sk+1'

Eaves has defined such a triangulation on
D' {x €D; & X 5_2} in the following way:

If Tis a (n+1)-subsimplex in D' consisting of n + | vertices
v o= (vi,...,v;); i = 1,...n+1which are or@ered in a lexicographically
+ . . .
decreasing way (v1 > v2 >0 v ]) with v' in SO or S] for all i

and let v' be generated according to the following scheme:




. . '
vt . vho+ q(YB s i=1, ..., n

with Yys> +++> Y, some permutation on 1, ..., n and q(i) the j-th

column of the nxn-matrix;

such that the genkrated v is non negativé or zero

then the collection M of all such T in D' form a triangulation
of D' and each T is completely described by v1 and y and we may
characterize T therefore by T(v],Y).

Furthermore we notice that any n-simplex o in Sk mav he characterized

by CKu],B), where ¢ 1is . generated from u] in S, according to:

k

R p(B;) , i=1, ..., n-1

with B, ..., B same permutation on 1, ..., n-1 such that

n-1
the generated u is non negative or zero and p(j) the j-th column of the

n X (n-1)-matrix

The complete triangulation on D' is pictured in fig.5 for

the 3-dimensional case.




It appears that in this example 7 possible T-simplices may be

distinguished, which are summarized below with their corresponding

Y-vector

Ex. 3

' 1
1
v

We are now prepared to extend the complete triangulation on D' to D.

= (3’]:2)

Namely if 0 is any n-simplex in Sk’ k=20,1,2, ... and T is any
(n+1)-simplex in M then all (n+1)-simplices in D are of the form
TO(T)ﬁince.if we haveag(ﬁ],s) and a T(VJ,Y) we may find a

(n+1)-simplex TG(T) in D by:




(3.1) Ty(r) = (T ')y, ™)) A

S i n+l
(zZ UV, .., Zuy, )
i=1 i »

Ex.4 For example if o =

we obtain TO(T) =

3.1, Replacement step on D.

Eaves pointed out that a replacement step on the (n+l)-simplices

in D may be carried out by a replacement step in D', since there
exists a correspondence TB(T) between all T in D' and the
(n+1)-simplices in D.

Eaves describes this replacement step in the following way:

Suppose that we find ourselves in a certain stage of the algorithm

and that we are in the position to move from 3j(T) to 3},(T')

and suppose that the vector Qj(vl) should be replaced.

We .then firsfly generate a vector v = (v],...,vn) by means
n+]}

of the replacement step stated in Def.2 on T = {vl,...,v s

replacing vt.
There are four cases that mighﬁ occur.
(1) v €
S
(2) Zvi 2

(3) vj < 0, for some j =1, ..., n and

4y v=0




We illustrate the possible occurrence of these four cases

in the following example:

Ex.5.

a. Suppose that in Ty of Ex.3 Vs is replaced, we then obtain by

applying the replacement operation on vi:

] .
v ='v2 v, - vy = 8) , which refer to case (1)

if we replace v, in T, we obtain:

1

2
t } , which lead us to case (2)
1

if we replace Vq in T, we are in case (3), since

2

and if v, in T4 is replaced v becomes the zero vector.

Since O(ul,B) and T(vl,Y) are known in any stage of the
algorithm and since u’,B and v],Y define g and T completely, Eaves

described thé b ocedure ?f the replacement step in the four cases in terms
of changes in u ,B and v ,Y instead of considering the,complete 0 and T.
Case (1) (v € D"): (u ,B) are unchanged and the new (v ,Y) are

computed according to table 1.

Table 1

index of the

1
. - v becomes Y becomes
replaced vector

L= 1 v+ a(yq) (YgseeesYysYy)

n V] (Y]:-°°’YiaYi_]"'°9Yn)

VJ - Q(Yn) (Yn’Y]""’Yn—I)




n-1
Case (2) (Zv. > 2): u] becomes 0 u] + I 0.,.q9(B.) where
—_— 1 1 i=1 1+1 1

1, ey n

B becomes (B‘YJ""’BY i), v1 becomes (1,0,...,0,1) and
. : ‘n-=

Y becomes (n,1,...,n-1).
Case (3) (vj < 0): First we note that j is unique. The new (u].B)
is computed according to table 2 where only ul is replaced. The new

(VLY) is computed according to table 3 (the (i,j) combinations

not listed can not occur)

Table 2

index of ulbecome ‘B b e
negative entry S ecomes

i=1 '+ q(8) (B,enesB_ 2B))

1
LR | (ByoeesBoByyseesy )
J=n ’ u - q(gn_l)_ (Bn—l’B 3"-38[1_2)

1 <j<n u




Table 3

index of negative

entry j and index v becomes’ Y becomes
of replaced vector|:

2 2 2
(v2,v3,...,vn,0) (Yz-l,...,ykr]—l?n—l,Yk,

yk+l—1,...,yn—l)’

where Yk =n

Y

1 1

1 .
¢! 9V]—1 ’V23 e svn_]) ¢! ’Y] +1,.. -:Yi_2+1 9n9Yi+1 +1,

eeaYqy 1)

: There is a unique set n < {1,...,n-1} such that
y = %(}f— % q(i)) has integer components
in '
The flow chart generates n and y; "<" means "becomes".

Observe that components of } ulare 0 or } modulo 1.

Start: i « 1,

Stop: n,y

1
neod, y<«iu

Is

a

Is y; = 0

modulo 1? i« i+l
| # T

nenU{il; y; €y + 5, Vi € Y54




Let £ = {1,...,0-1} v n and let n = (n],...,nki,and

g = (51,..-,En_k_]) inherit order from B = (BJ""’Bn;J)'

After computing the new (v],y) according to tabhle 4, the new

(u],B) becomes (y,(n,&)).

Table 4

1
v~ becomes Y becomes

(2,0,...,0) (1,...,11)

(zo,...,zn) where (ml,...,mtrq,n) where

kth B,=&

We will try to elucidate the various operations in the
replacement step by means of the following examples for the

3-dimensional space
Ex.6

Suppose that in some stage of the algorithm o ,T and TO(T)are:




and suppose that we want to replace TO(VA).

We firstly compute v:

v = v+ v] - v4 = (2,0,1) which corresponds with case (2).

9
We follow the scheme valid for this case:

2
2) s and B = (2,1);
0

= 2 > u] ='2u] = (

1
= (0) s and v = (3,1,2)
1

new g,T and TO(T) became:

We now want to replace T(fVB)' Computing v yields:

v = (1,-1,1); corresponding with case (3); j =2, i =3

From table 2 it is seen that u] remains unchanged while B
becomes (1,2), Table 3 shows that'v] and Y do not change. So

the following situations has been achieved.
T TO(T)

2 1
3

0




Suppose TO(v]) has to be replaced. In that case

(0,0,0); which lead us to case (4).

Following the flow chart we find:

i=1,n=¢ , vyv=(,1,0); so y; = 0 modulo 1 which holds for
all yj; j=2,3 and thereforen=¢ and § = (1,2): computing

v’ and Y according to table 4; we have

2
L (0) |
vo= and vy = (1,2,3)

2
Finally u] =~(1] and B = (1,2)
0

Summarizing the new situation becomes:
o T
11|
0 0
1 0

y = (1,2,3)

The quite compact description of the replacement operation
might unjustly suggest that the derivation of a new subsimplex
cost extensively computational effort, since it seems to be
necessary to store ﬁ], B, v] on Y at each step of the algorithm
and moreover that in each step TO(T) should be computed, according
to itsdefinition stated in eq. 3.1.

Since it is seen that a replacement step on TG(T) influences only
one vector in TG(T) one might wonder if it is not possible to
formulate the replacement step in such a way that the costly
operations on ¢ en T could be avoided. It is therefore that we have
searched for a reformulation of the replacement step in which tte
calculations are pictured more directly on the subsimplices

TG(T) we are interested in.




3.2, Reformulation of the replacement step.

The reformulated replacement step is pictured in the flow chart
in fig. 6.

The symbols used in this flow chart have the following meaning:

the index of the vector in ?J(T) to be ;eplaced.
the index of the vector to be introduced in ?3'(T')
the i~-th vector of ?j(r)
the vector to be introduced in T_(t') after replacing
T 0 1_(7). °
NRLH the index of the last vector on the highest level,
The other symbols correspond with the notation used in the
previous text,
The equivalence of the reformulated replacement step with

the replacement step discussed in section 3.1 is proved in

Appendix A.

From the flow chart in fig.6 it may be noticed that with the knowledge

of y and the structure of TO(T) we are able to calculate the vector
to be introduced in TO,(T'), by applying a number of simple tests.
In order to adapt Y in each step of the algorithm we follow Eaves'
tables from section 3.1.

The cases 1,2,3 and 4 to which these tables correspond, are explicitely
given in the flow chart.

When case (4) appears we have to apply table 4 in which is shown
that in this case we must know ul and B. Fortunately, however, this
problem can be solved immediately since the last n vectors of TG(T)
in.this case are the vectors that form the o.

Summarizing we may conclude that since only storage and adaptation
is required with respect to Y the reformulated replacement step
requires less information compared with the description of Eaves'
replacement step.

And from a computational point of view important progress has been

made by avoiding the extensive calculation of TO,(T') through eq. 3.1.
3.3. Pivot step.

As already stated in section 2.the pivot step is used in case

of vector labeling and may provide a procedure to find the vector




case(1)

i=1 '
JIN = n+l] 5

TIN=T + T

JIN _ .1

T

case(3)

i=1, j=1 | INSERT TIN IN T

case(4) TIN is computed
JIN=n+l according to table 4

PR

k B - [case(2) i -
JMOUT = n+]AZ} = ? , JIN=1 TIN=T + T
"case(1) INSERT TIN IN T

JMOUT-1 _ TJMOUT

i=n I
JIN=1 TIN=T + T

INSERT TIN IN T

Y Mour-1 T YJMOUT—]? = n! 1=JMOUT, j=n

#

\\ .
} —Zase(B;M'_w_“
|

case(3) —
i=JMOUT, j#1,n TIN = poMOUT-1 _ ,JMOUT+1 _ ,.JMOUT

JIN=JMOUT INSERT TIN IN T

case(l)
1=JMOUT
JIN = JMOUT

fig. 6
FLOW CHART OF THE
REPLACEMENT STEP




to be replaced in the primitive set. This procedure will be
elucidated by means of the following example.

Suppose we are in a certain stage of the algorithm with a
primitive set consisting of n + 1 vectors in which the j-th vector
is just introduced by means of a replacement step. So the
associated matrix A consists of vectors corresponding with the
primitive set vectors except for the j-th primitive set vector. (al).
With the notation according to page 6, we have:

. e i n+1i
primitive set X ,xz, cesy X

. . I 2 +
assoclated matrix A 48 3 eeey al ]

The matrix A is such that it fulfils Ay = 1, with y strictly
positive.

Since the j—th primitive set vector is just introduced, the
associated vector (a*)j will be introduced in the A-matrix such
that the new A-matrix (say A*) forms a feasible basis for A*P = q.

We are now at the problem to select the vector in A to be
eliminated. Therefore we write (a*)j as a linear combination

of the original associated vectors; so we have:

1 2 k n+] _ ]
(3.3.1) ta z 0= (a%)

Moreover from Ay = 1, we may write:

n+1

1 2
(3.3.2) ay, +avy, e ta Yoy

Reformulating 3.3.1 yields:

+ (a*)?
2

(3.3.3) - = e

and substituting a in 3.3.2 yields

z y z
(3.3.4) a'y, (- 1. ;5) + azyz(l— 2,
Y1 k Y9
' +1
+ an yn+](1- .




which must be equivalent with A'p =1 if ak is the vector to be
eliminated from A in favour of (a )J, Since all P; should be
strictly positive, the first thing to be noticed is:

Tk

— > 0 . which implies
“k

(3.3.5) Py

(3.3.6) z, >0, since y, > 0
and moreover:
(3.3.7) p; = yi(]— -

or equivalent:

z.

(3.3.8) s i#k

i
Y

3.3.6 and 3.3.8 may be fulfilled by selecting k such that

z, >0 and

k

Zk z
— =max(-2) ;m=1, ..., ntl

k m m
As a result of linear programming sucha k can in general always
be found. If it appeared ndt to be unique a criteria must be
formulated such that the pivot step is carried out consequently
during the algorithm.
Since there is no need in reordering the A-matrix after any

pivot step this may be accomplished easily by selecting the first k

Z, z
for which — = max(—E).
k m “m

It is noticed that in finding the pivot column we have to
invert A in order to compute y = A_] 1t and z = A_J(a*)J.
Dohmen and  Schoeber [2] suggested in their paper that by applying a

result of Bartels [1] a procedure may be carried out avoiding the




computation of the complete A_] at each pivot step.

Bartels pointed out that if A_J is known and the k-th column
of A is replaced by (a*)k. (A*)_] may be computed by Gauss-Jordan
elimination as (A”‘)_1 = DA_] with

T
SO

3 in which e

(k)

D= 1- %—(z—e is k-th unit vector.

’ k
In avoiding too large round-off errors.it is recommendable to

invert the associated matrix after a number of iterations completely.
3.4, Labeling.

In section 2 some examples of labeling were given for the Scarf method

and with respect to Eaves' methdd such a labeling can also be formulated.

‘What we need is a so-called proper labeling defined by Eaves as:

Def.3 A proper labeling of vectors in the original unit simplex

'S must be such that:

a) the set of vertices of S is completely labeled' which means in
our context that if we are dealing with vector labels, the
associated vectors of the vertices of S form a feasible basis for
Ay = 1.

b) no facet of S contains a completely labeled set

c) if a sequence of complete sets tends to x € S, then x is a
fixed ;oint of £.

In our computer program in section 4 we used the following
labels (= associated vectors), which in all problems we examined

1)

turned out to be sufficient:
al = £(xd) - xJ + 1t if x3 >0

and if x

is the first non—-zero element k+l1 < n in xJafter the

J
k+1 v
first zero element in x° then;

ad the k-th unit vector or

al the n-th unit vector if xg appears to be still zero starting

from the first zero element in xJ.
This labeling has the advantage that we may start the algorithm

with I as associated matrix and that during the algorithm associated

1) A formal proof of the sufficiency of this labeling will not be
given here.




vectors corresponding with side-vectors (slack vectors) can be

introduced in the associated matrix avoiding the costly pivot

operation; which may be illustrated by the description of the

computer program in the next section.




4. A FORTRAN COMPUTER PROGRAM FOR EAVES' METHOD

LIST OF THE MAIN CHARACTERS

PRIMITIVE SET

ITMAT (I,J)
NP ‘1

NP 2

JMOUT
IT™(TI)

JIN
ITNUM(I)

Matrix TG(T) in Eaves or T in flow chart of fig. 6

Number of rows in ITMAT
Number of columns in ITMAT

Column index of the vector in ITMAT to be replaced

‘The vector to be introduced in ITMAT after a replacement

step (= TIN in fig. 6)

- Column index of the vector TTM in ITMAT

Vector of numbers joined to the primitive set vectors in
order to visualize the correspondence with the label

vectors in the associated matrix

ASSOCIATED MATRIX OF LABEL VECTORS

AINV(I,J)
AIN(T)

JAOUT
PHULP(I)
w(I)
QHULP
CRITER
TANUM(T)

TAACT(I)

The inverse of the associated matrix of label vectors

The label vector to be introduced in the associated matrix

~after a replacement step

= The index of the pivot column in the associated matrix

ATNV.AIN

Vector with unit elements (in Ay=1, see section 2)

Element of AINV.W

Small real number introduced to correct for round-off errors
Vector of numbers joined to the label vectors in order to
visualize the correspondence with ITNUM(I)

Vector of numbers joined to the unit vectors in the

associated matrix

OTHER IMPORTANT CHARACTERS

IGAM(T) =
IBETA(T)

N

KSLEK

ITRE

INVE

KDIM

Y according to Eaves and fig. 6

B according to Eaves

Order of IBETA

k standing for the k-th slack vector

Number of iterations

Number of inversions on the associated matrix

Reserved storage capacity with respect to the number of

rows in ITMAT

The examples are carried out on a DEC-10 computer system.




Ckokokolokoiokokesk K*Wﬂ%‘(?ﬁ*dﬂkﬁk*}!\*z} sk skt RoR Rk koK RO K ORSOR Sk K sk ok K oK K K ok ok ok Kok K
o
C MAIN FPROGRAM WHICH U ES EAVESS PROCEDURE FOR FINDING
G THE FIXED FOINT OF F{X)
(i
CIN THE EXAaMPLE FOX) I8 DEFINED AS!e :
C FOXCLY)Y = XCI4+1y  FOR  I=lysevi~1
o FOX(NY)Y = X(1)
"
L3 3ol e ootk slekolok sk ok koKl sk sk okt ok ORI ok siokololoslelok ok ok sOK s IOR SR SRR R kKoK Kok oKk
" .
IMPLICTIT REALXS (A-H:0-2)
DIMENSTON AINV(40:40) v AINCA0) » [ﬁNU’i(«QO) s TAACT (40)
DIMENSTON: ITMATCA0 41 s TTHUMOAL) s ITM (A0
DIMENSTON  I6GAMA0) v IBETA(I?) o FHULF (A0 s W40
DATA KDIMyNPLyCRITERsW/A405320 1. 0-7540%1L .00/ .
CAaLl, MINITCITMAT s KUOIMyNFLyNF2 TTHUMy IGAMy ATNV y TANUM»
b IAACTy TTRE » THVE » JMOUT » TTMNUD
N o= NFl-1
MOGRID = 2%%k17
NGRIDN = 2
TWRITE (3 E0002
WRITE(3»5001) N1
WRITE(3»S5002)
MOGRIT = O
0o 400 L o= 1Ml
MGRIT = MGRITHITMATC I 1)
CONTINUE
TFCMBRIT-NGRID) 60054505400
ng 455 1 = 1yNFI
ITMCLY = TTMAT(I#1)
CONTINUE
DMAX = NAR "( ( ITMCL) -TTM (NP L)Y Y Z70FLOAT(MGRITY)
0O 440 1 = 2eNF]
FXX = DARSCCITMC r)“'[TM(I LYY /TF L UM(HC:RH ))
ITFOFXXLGT OMAX)Y  DIMAX=F XX
CONTINUE
WRITEC(I»4004)  MORITy ITRE y INVE » DIMAX
NGRII = NGRIIK?
IF(MGRIT-MGRIDD 6005005500
WRITE(I»4001) © (ITMATC(Jy 1) v J=1 s NFL)
CAlL. EXIT -
ITRE = ITRE+1
CALL EAVESCITMATyKDIMyNsNFLsNF2y T TNUMy TGAM»
X IRETA JMOUT» ITMe TTMNUD
CAll, LABELSC(ITMs NFLyAINNACT)
IFINACT.NE.Q) - GOTO 800
Call LABELFCITHyNPLyAIN)D
800 Call. PIVOT(AINVsKDIMyAINs W FHULF y CRITER y NEL p NE2 ¢ {rmt TyNACTy
% INVE s TANUMy TTNUM» JMOUT » TTHMNUD
GOTO 350
4001 FORMAT (/777 F Ih.:)T COLUMN OF FINAL MATRIX *~ ITHMAT 77/
$ CLHO»1OI7))
4004 FORMAT (1H s I7y9%y 185 12X 180126 .7)
000G FORMAT CLHL» TEXAMPLE OF THE USE OF EAVES’’ FROCEDURE’/
B LHO» "FUNCTION  F(XCI)) = XCI4+1l) FOR  I=lseesN-1’/
0 AH y1OXy “FIX(NY)Y = XC1)Y7/)
SO0L FORMAT (LHOy ‘M =’s13)
H002 F l)l \ii'H A7 GRIDSTIZE »5Xy 74 OF ITERATIONS
k) T OF INVERSTONS « 7Xs “MAX (ARS (F (X)) =X)) 7))
l:"::ND




SUBROUTINE  MINITCITMAT s KDIMyNFL e NF2y TTNUM TGAM
h ANV TANUMy TOACT » TTRE » INVE v JMODUT » TTMNUD
IMFLICTIT REALXE (A-He0-Z2)

DIMENSTON  TTMATCRDIM 1 » TTNUMCL)Y » TGAMCL)
GIMENSTON  ATNVIRDIMy 1) s TAMUM LY » TAACT (L)

stk Rl ROR SOR oK koK Ok 3
¥ OINITIN.UIZE ALL VARIARLES %
ARk Ok ok oKk SOk sk oK RO Kkok kK

NFE = NP L4l

TTRE = -1

INVE = O

oo o100
TTNUMCT)
CONTINUE

ey 20 0 o=
IaalT b
TaNuUM{d?

TGamM

CONTIHNUE
TANUMONFLY = |
Do 40 1 = 1yNFl
noo30 0 0 = LynpP2
ITMAT Ly 0y = 0
CONTINUE
ITTMATCL» L) = 1
CONTINUE

SHOUT = NP2
TTHNU = NP2

00 50 1 = Lenp
00 45 0 = LeNFI
ANV ) = 0,00
CONTIHUE
ATNVCL T = 1,00
CONTIMNUE

RETURN

NI




SUBROUTINE  FAVES(ITMAT s KOIMeNeNFLyNF2y TTNUMy IGAM »
X TRETAy JMOUT» TTM» TTMNUD

DIMENSTON  ITHAT(KDIMy 1)

DIMENSTON  ITTMCLY s ITNUMCLY  TGAMOL) » IBETACL)

*$$%$******K******%%*****************
¥ REFLACEMENT STEF IN PRIMITIVE SET *
sk s ok o o st ok ok sk ok skl ok skl stk ok solok ok ok solosk sk EORHOK

TFCUMOUT NEL LY GOTO 400
TG = TGAMOL)
TFOTGLNE.LY  GOTO 200
nooLLe I o= LeMPL
GOTO 115
CORTINUE
GOTO 210

SHOU T,
CABE(EY y Tl d=l

Lo =

o= 1

TL o= T4+IDUNM .

TGAMCTY = TGAMCLIT)I-1
TFCIEAMCIY SNELNY  GOTO 140
ToUM = 0O

T o= L1
TGAMCTY = NFIL
JIN =

Iow= T4l

TFCLLBTNFLY  GOTD 230
GOTO 120 '
TFCIGLEQ.NFLY  GOTO 300

JHOUT =
CAGE (L) e L=l

0o 2200 I = 2yNPlL

TGAMOT-L ) = TGAMCD)

CONTINUE

TGAMONFLY = TG

JIW = NP2

0o 240 1 o= LyMNPL

ITHOD) = ITMATCT 2 HTTMAT (L JIN)-TTMAT (L2 1D
CONTINUE

GOTO 800




SO
DASE (4)

0o 320 0 o= LN

00 305 0 = LeNPL
TECTTMATC v 10 o BT ITHMATCL» J42))  GOTO
CONTINUE .

TRETACIY = T

CONTINUE

N 325 1 o= Ly NPL

TTHOLDY = TTMAT(Ly2)
CONTINUE

KE = O

00 350 L o= LeN
TECITMCLD) /2%, EQRL.ITMCD) ) GOTO 335
TTMCTY = ITMCIY+]

TTMCLHLY = TTMCI+L)~1

K = KK

GOTO S 350

0o 340 U = LN
TFCTLEQRVIBETAGIY)Y  GOTO 345
CONTIMUE

TRETACS) = ~IBRETACD
CONTINUE

IH = O

THK = KK

0o 370 I o= 1eN

TFLIRETACI) GTL0)  GOTD 385
THK = THEKHL

TEAMCTY = IHR

GOTO 370

TH = TH+1

TGAMOLY = IH

CONTINUE

THAMONFLY = NP

0o 375 1 = LeNPL

TTMCTY = ITMATL{L»2)~-1ITMCI)/2
CONTINUE

JIH = NF2

GOTO 800




TECIMOUT LT NP2 GOTO 600
TG = TEAMINFL)
TFCIGLERNFLY  GOTD 500

SMOUT = NP2
COBELYy T=NP1

0o 43 T 2enF

o= NPd-I+1

THAMCORKELY = TGAMOK)

CONTINUE

TEAMOLY = I6

JIN =

00 450 L = 1yNPiL

ETMCDY = TTMAT CLy 1)L THAT CLy JMOUT= 1) T THAT (T » JMOUT
CONTINUE

GOTO 850

SHOUT NP2
CASE(2)

ng SLo T o= LeNkl

ITGAMCT)Y = I-1
CONTINUE
LGAMCL) = NP
0o B0 I ow LeNFl
LTHMOLY = TTMATCTs L)+ ITHAT CIy NEL)

520 CONTINUE
JIN = 1
GOTO 850

SO0 IFCIGAMCIMOUT-1) «NE L IGAMCJMOUT) ~1)  GOTO 642
DO 620 T = 1yNFIL
TECITMAT CLy JMOUT) o NEL2KITMAT CLyNF2Y)Y  GOTO 700

620 CONTINUE

G

: Lo JHOUT < NP2
CASECLY s T=JMOUT

LI = TEAMCIMOUT~1)

LOGAMCIMOUT -1 = IGAMCJIMOUT)

LGAMCIMOUT Y = TDUM

DO &5 T = 1eNPi , _
TTHCLY = ITMﬁT(IvJHOUT~1)+ITMﬁT(IvJMOUT+1)mITMﬁT(IydMUUT)
CONTINUE

ST = JMOUT

GOTO 200




ITFCEGAMGIMOUTY SNELNFLY  GOTO 6460

Lo JMOUT s NP2
CASE(E)y T=JMOUT y JuNPL

0o 730 1 = LeNPl
LTGAMCTY = ITGaMiIr+l
COMTINUE

0o 740 1 = 2y JMOUT
o= JHMOuUT-1T41
TEAMORELY = TGAMURD)
CONTINUE

IGaMoLy =

GOTO 440

ng o820 J o= 2y JIN
TTNUMCS-1) = TTNUMCD
0o 820 1 = 1yNP1
TTMATC Ly =12 = TTMATC(L»d)
820 CONTINUE
GOTO 200
BEO DO ave  J o= 2. IMOUT
SdE JMOUT U4
TTNUMCIIELY = TTNUMCOLDD
noe 870 I o= 1yNPI1
ITHATCDy JJ41) = TTMAT (L2 J)
CONTINUE

ng ¢1e I o= LyNP1
ITMAT Ly JINY = ITMCL)
CONTINUE

TTNUMCIINY = TTMNU
RETURN

ENI




SUPHOUTINE  LARELS(ITMyNFLsaINyNACT)
IMPLICIT  REALX8 (A~Hy0~2)
DIMENSION  ITMC1) yAINCL)

Aokl ok ok ok sk sk sk stk sk skok okoRok sk ok sk ok sk ok ioKKOKR R OR KK K
¥ ABB0CIATE LAREL TO SLACK-VECTOR X
ek oRok iRk ROk kKRR R RoRoRK Kok R stk ok ok Kok Kk

Do 10 I = LleNFIL

Y = 1

IFCITMCTIY LEQR.Q)  GOTO 15
CONTINUE

NACT = 0

RETURN

00 20 K o= LeNPL

TIO = TT4HK

TFCIRLGTNFLY  TR=TK-NF1
TFCITMCIRY LGT.0)  GOTO 25
CONTINUE

KELEK = IK-1
ITF(RSLEK.EQ. Q)  KSLEK=NF1
Do 30 I = LeyNFL '
AINCE) =-0,10

CONTINUE
AIN(KSLER) = 1.0
NACT = KSLER
RETURN

ENI

SUBROUTINE LABELF (TTMsNFLyATND
IMPLICIT  REALYXE  (A~Hy0-Z)
DIMENSTION  ITMCLY yAINCL)

***%*****K*****K**********************
¥ ASSOCIATE LAREL TO INTERIOR VECTOR X
koo koK KKKtk KoK Kk KR kKK o OK K K KK oK K

NGRIT = 0O

DO 10 I = 1syNFI

NGRID = NGRIIMITMCID)

CONTINUE

GRIIN = NGRID

0o 30 I o= 2yNFI

ALNCI-1) = CITMOI) =ITMCI~1) ) AGRIDEL 1O
CONTINUE

ALNCNFLY = (ITMCL) ~ITMONFLY ) ZGRID+HL . 110
RETURN .

ENI




SUBROUTINE  FIVOT(AINVYRDIMyAINy Wy PHULFyCRITERyNFLyNF2y IAATT s NACT »
$ INVE » TANUMy TTNUM » JMOUT » TTMNLUD

IMPLICIT REALX8 (A~Hy0-Z)

DIMENSTON  AINV(RDIMyROIM) s AINCL) s WD) s FHULF (L)

DIMENSTON  IAACTCL) » TANUMCL) » TTNUMCL)

ARk sk sk ek ook
¥ FIVOT STEP X
ook oRokkskokokok kol

TFONACT EQL Q) GOTO 213

no o205 T o= 1eNFI

SA0OUT = T

TFCIanCT D) JEQ.NACTY  GOTO 235
CONTINUE

XKMAX = Q.10

no o218 I o= LeNFIL

FHULFCLY = 0,10

noo218  J o= LeNPL

FHULFCLY = PHULFCIYFATNVCT v JIRKAINCDD
CONTINUE

no o230 I = LyNRPI1

IFCPHULFCDY JLELCRITERY  GOTO 230
QAHULF = 0.0

no 222 0 o= LeNPI

QHULF = QHUILP+HATINVCT » )XW )
CONT INUE

TFCQHULLF W GTLCRITER)  GOTO 226
SJAOUT = T \
GOTO 232
EUOT = FHULF D) ZQHULF
: GOTO 230

XMax = QUOT
JAOUT = T
CONTINUE

INVE = INVE+L

BARTELS S FPROCEDURE

0o 234 IC = LeNPIL

CONGT = AINVCIA0UTy I ZFHULF CJADUT)

oo 233 JR o= LeNPIL

ATNVCIR» T = AINVCIRy IC) ~FHULF CJRYXCONST
CONTINUE

ATNVCIAQUTy TG = CONST

CONTINUE

IA0uUD = IANUMCJAOUT)
ITANUMCIAOUTY = TTHNLU
IAACTCJAOUT) = NACT

00 270 I = LyNP2

ITFCITNUMCT) JEQ.IADUDD  GOTO 300
CONTINUE

SMOUT m T

TTMNG = TTNUMCIMOUT)

RETURN

END




EXAMPLE OF THE USE OF EAVES PROCEDURE

FUNCTION FOX(I)) =

FOXINY) =

X(I+1)
XL

FOR  I=lyessN-1

N o= 10

GRIDSIZE # OF ITERATIONS ¥ OF INVERSTIONS

2 0 0

4 10 0

8 38 0

16 117 0
32 188

&4 206 63
128 224
206 242
512 260
1024 278
2048 296
4096 314
8192 332
16384 350
32768 368
65036 386
131072 404

FIRST COLUMN OF FINAL MATRIX cITMAT

13107 13108 13106 13108 13108 13106 13108

END QF
L LRU
EXET

EXECUTION

TIME: 1.94 ELAFSED TIME: 1:2.78

MAX(ARS (F(X)-X))

0.300000004+00
0.50000000400
0., 25000000400
0.,12300000400
0.62500000-01
0.312500001-01
0.+15625000-01
0.78125000-02
0.39062500-02
0.,19531230-02

- 0.P76B6250-03

13106

0.48828130~03
0.24414060-03
0.12207030~03
0.610351601-04
0.30517580~-04
0. 1325879004

13108 13107




EXAMFLE OF THE USE OF EAVES’ FROCEDURE

FOXCL)) I=1lyeerN-1

FOX{NY)

FUNCTION X(I+1) FOR

X (1)
N = 20

GRIDSIZE # OF ITERATIONS | £ OF INVERSIONS
2 0
4 20
8 . - 78
16 287
32 . BA46
&4 1558
128 1620
256 1682
512 1744
1024 1806
2048 1868
4096 . 1930
8192 1992
16384 2054
32768 2116
65536 2178
131072 2240

FIRST COLUMN OF FINQL MATRIX fITﬂAT

6G53 - 6354 6352 6354

6354 6554

GGG 6554 6554 6554 5554 6554
ENDN OF EXECUTION :

CPU TIME: 25.76 ELAPSED TIMES: 1:31.16

EXTT '

MAX (ARS(F (X)) -X))

6554

6554

0. 350000000400
0300000011400
0+ 25000000400
0., 1250000I1+00
0+62500000-01
0.31235000-01
0.,15625000-01
0.781250001-02
0.32062500-02
0.,1953125D-02
0. 97656250-03
0.48828130~03
0.24414060-03
01220703003
0.61035160-04
0.30517580-04
0.15258790-04

46554

6554




REFERENCES

Bartels, R.,H., A Stabilization of the simplex method, Num. Math
16, 414-434 (1971).

Dohmen, J, and J. Schoeber, Approximated fixed points, Research
memorandum EIT/55, Dep. of Econometrics; Tilburg University;
Tilburg (1975).

Eaves, B.C., Homotopies for Computation of Fixed Poihts,
Mathematical Programming 3, 1-2 (1972)

Scarf, H., The Approximation of Fixed Points of a continuous

Mapping, SIAM Journal of Applied Mathematics 15, 1328-1343 (1967).

Scarf, H., The computation of economic equilibria, Yale University
Press, London (1973).




APPENDIX A PROOF OF THE EQUIVALENCE OF THE REFORMULATED
AND EAVES' ORIGINAL REPLACEMENT STEP

In our proofs of the equivalence we will follow the chart
flow of fig, 6.

1. JMOUT = 1, Y, = 1 and T'= 2x7"!

1 i . .
T = 2xTn+1 implies To(v]) = 2xTO(Vn+1) and since T 1is a
: 9]
linear transformation on ¢ having full rank we may conclude

that v1 2vn+l -

|
n .
2wl T q(y.)) = 2| O D
i=1 * :

0

and therefore V:l = . Moreover V2 =

2
0
0

Computing v we find:

v = vn+!+ vZ 0 ) yielding

case (1), 1i = 1.
Case (1) shows that q(ul,B) does not change and so

* TO,(V) = Tg(v) = Tq(vn+]) + Tq(vz) - Tg(v]) or in our notation:

v = 0 4 1? - 7!

Table 1 shows furthermore that the new T, denoted by T' is

built up in the following way:

.
T = {Vz,v3,...,vn+l,v} and so TIN must be introduced

in T on the (n+1)-th place. (JIN=nt+l)

* All expressions with a prime will refer throughout this appendix
to situations after the replacement step has been carried out.




1

1
2, JMOUT = 1, v, = 1 and T # 2 x "
2
T] #2x Tn+l implies v] # (0) and since Y, = 1, the first

element of v], denoted by vi must be 1 and v? = 0,

n+l +1

1 n
From 1 we saw that v. - v = and so v

1

QO eee O =

Computing v, = v?+] 2 } = -1 we arrive at case (3),

with i =1 and j =1,

Table 2 shows that in this case, ¢' = {uz,...,un,un+q(81)}

and using the changes in v] and y as stated in table 3, we find:

def B iv v mloag : IR

= I u . = I . V{4 Sincev = 0
i=1 i=1 t
o i 2
Zu.v, , sincey, =1 and so v, =0
i=1 1 1 1

To(vz)

2', def o i' 2 i 3 . 2" _ Voo
Tg,(v ) = izlu vy ;412 Simce v_ = 0 and Y=Y, 1
n .
= 7 ul.v§ =T (v3), since v3 = 0.
. 1 o] 1
1=1
. k'
This procedure may be continued untill TO,(V ), Yy = D.
Table 3 learns that:

TO‘ (Vk')

n, k n _ k
+ u.(vn 1) + u + q(B]) = TQ(V ) + q(@])
It is igmediate that this is the vector to be introduced in T,

. R 1 . 1
since TO,(V ) = Tg(v ), 1= k+l, n+l, so JIN = k, and since Y = D
k = NRLH.




It is straightforward to prove the calculation rule:

_ pNRLH .2 _ o1

To(vk) + I u}vi -z u}v! , and since Y, = 1 we may write:

1
1 1
T (vk) +Zu.1v! _— +u2—211.1‘7!=T (Vk) *+a(B)
O’ N 1 . 1 O ]
1 1
k'
= TG,(V )

3. JMOUT = 1, Y, =

=}

n+1

. 1 1
From vl-v and Y, =n it 1s seen that v, and v cannot be zero.

O ese O =

Therefore v1

— e e e O =

Computing v = ) , we arrive at case (4).

JMOUT = 1 , Y, # 1,n

n+1 2

2 1 . ..
Fromv =v + v - v or otherwise v = v~ - 1t 1s seen that

1

0
0
<

case (1) only may appear if a. v? # 0 and b. 0 Zvi < 2.

ad.a. Since Y4 # 1 it follows that v% = vi # 0.

ad.b. Since Yy # n, I vi = Zv; =2, and so 0 < I v, < 2,

i i
The proof that TIN = Tn+1 + T2 - Tl and JIN = n + 1 is completely

analogue with 1.




5. JMOUT = n + 1, Y_=n

From Yn = n it follows that X v? = 2, So if we compute
i

n+1 n . .
- v = + v, we arrive at case (2) since

rLv. =3,
. 1
i

We will prove now that the new vector to be introduced in T may be

1

computed as TIN = T + T and that JIN = 1.

| .
The scheme of case (2) tells us that T] = u; + u;, since

Y'= (1,0,...,0,1). This may be rewritten as:

X n-1
T z q(Bi)
1=1
1 n-1
2{u 0, + ‘z] Gi+lq(8i)} + I q(B))

1= 1

2 {igzei(ui—ui—l) +ule )} + T q(8))
=l i n 1

2 {izl u (0,-6,, ) +u en} + f a(B,)

n

ulvli + 3 q(8,) = 2.3+ a(8;)
i=1
1 n—-1
20v + I q(Y.), since Y =n
o 1 n
1=]
1 n—-1
20v. + 0L q(y;)
i=1

0(v]+vn) = T] + T8

6. JMOUT = n+1, Y, # n

. n . n ., . . .
Since Yn #n, I v, = 1, Computing v = + v' it is immediate
i

that 0 < I A < 2 and v, > 0, for all i, which correspond to
i

case (1), i = n+1

The proof that TIN = T1;+ ™ - Tn+] and JIN = 1 is analogue

with 1,




7. JMOUT # 1, n + 1,

_ _ JMOUT _ n+1
Yamour-1 = Yamour ~ 10 T =2xT

+
In 1 we already stated that TJMOUT =2x Tn'] implies

VJMOUT =2 x Vn+] and moreover that'vJMOUT can only have one

entry differing from zero equalling 2 and since JMOUT # 1 this

entry cannot be the first element of VJMOUT.

Suppose the k—-th element of vJMOUT is 2. It is seen

immediately that viMOUT-] = 1 and/virf?UT—1 = 1 and

VJMOUT+1 - and JMOUT+1 _
k Vi+1 B

JMOUT-1 JMOUT+1 JMOUT
v + v -V

From v = it follows then that

only v =v 1, while all other elements of v are zero.

k-1 k+1
So we are in case(l), i = JMOUT.

The new vector TIN may be computed as TIN = ']JJ]“'IOU'I‘"1 +

+ TJMOUT+] - TJMOUT and JIN = JMOUT, which is easily proved
according to 1.

JMOUT

JMOUT # 1,n+1, T 42 x T 1

1
> Yomour-1 = Yamour

Suppose YJMDUT = k and YJMOUT—I =k -1,

. JMOUT _ JMOUT
Since Vi # 2 and YJMOUT = k, Vi

and ViMOUi+] = 0 and moreover viMOUT—l = 0,

So vy = ViMOUT~1 + viMOUT+1 - viMOUT = -1, corresponding to case(3).

a. yJMOUT # n.
Since Y IMOUT

must equalling 1

=k -1,

since Y pyaypo)

# 1,n it is noticed that v, # -1 and v # - 1.

Therefore we are dealing with 1 < j < n in table 2 and
1<3j<n,1<1ic<n+l in table 3.
From table 2 it is seen that o is unchanged, except for

' -
uk, uk = uk by uk+] - uk. So in general this may affect
QT(T) for all vl, having a non-zero element on the k-th place.

. . . . JMOUT
But from our previous discussion it appears that v can

only have a non-zero element on the k-th place, implying that in

JMOUT,

TG(T) only TO(V ) can change; so JIN = JMOUT.




We compute TIN according to:

TIN = TJMOUT—] + TJMOUT+1 _ TJMOUT

def - JMOUT-1 JMOUT+1
= 06 .V + 0.V -

JMOUT
v

JMOUT
v

JMOUT

-q(k-1)+ o(v JMOUT

= o( +q(k)) - g.v
VO L 5(q) =g (k-1))

JMOUT | k=1 _ 5k ket

= @-l
= 0,V

1
- O.VJMDUT + uk _ uk - o'vJMOUT, since viMOUT -

JMOUT JMOUT"

Yy =T (v ), since T(V,Y)

= TO-I(V a'
does not change according to table 3.
Yamour ~ "

In this case we are dealing with j = n in table 2 and j = n,
1 <i<nin table 3.

v _ I
If we are able to prove that TIN = Tl + TJMOUT Iy TJMOUT B TG,(v )

then it is clear that ﬂj,(vl') is the new vector to be introduced,
since {T],...,TJMOUT} consisting of vectors in the same level must
form a linear independent set. So in that case JIN = 1.

We will compute 13,(v1') in the following way.

1 1
1 def O,V]

TG )
" 1
Using the definition of v1 in table 3, we may write:

1 L1 it
Tg1(v y=0.wv =u . i1 and from

table 2, this may be reformulated in terms of the original
L1
o(u ,B) by:
n—-1 .
1 _ 1 i1
u (B ;) —u + 121 utv,,

1 . 1
V., since v_ must
i n

be zero; an impact of the fact that Yy - = = n-1.

n and Y pyapr-)




- g.q(n-1) + T,

JMO

1, + o™ oq@1)) - o

_ T] + TJMOUT—] o TJMOUT’

9. JMOUT # 1,n+1 Y L FYs -
aMout-1 7 “TimouT

Y 1MOUT-1 # Y smour 1 implies that if Y mouT = k,
JMOUT _ 1 JMOUT+1 _ 0 and JMOUT-1 _ 1 . :
Vi =1, v, = 0 and v, = and supposing further

that Y MouT-1 = 2 # k-1;we are in the following position

LIMOUT-1 _ JMOUT _
2 M)

JMOUT-1 _ vJMOUT _ JMOUT+1 _
V2+1 241 Yo+l

,IMOUT=1 _ JMOUT _ ,JMOUT+1 _
k : ko Kk

Computing v it follows then that v, > 0, for all i and

h) A < 2, corresponding to case (1), i = JMOUT, which on its
i

turn come up for the same implementations as in 7.












