TRIANGULAR - SQUARE - PENTAGONAL NUMBERS

R.J. STROEKER

REPORT 7701/M

ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738, ROTTERDAM, THE NETHERLANDS
TRIANGULAR - SQUARE - PENTAGONAL NUMBERS

R.J. Stroeker

ABSTRACT. In this note it is shown that no integer \(m > 1 \) is simultaneously triangular, square and pentagonal.

1. Polygonal numbers may be defined as follows: let \(n \) and \(k \) be positive integers. The \((n+2) \)-gonal number of rank \(k \), denoted by \(p(n;k) \), is the sum of the first \(k \) natural numbers of the form \(1 \pmod{n} \). Thus

\[
p(n;k) = \sum_{j=0}^{k-1} (nj+1) = \frac{1}{2}k(kn-n+2).
\]

The name "polygonal number" is adequately explained by the following picture:

![Polygonal numbers diagram](image)

1 3 6 10
triangular numbers
\((n=1)\)

1 4 9 16
square numbers
\((n=2)\)

1 5 12 22
pentagonal numbers
\((n=3)\)

Polygonal numbers have many interesting properties, most of which are at present looked upon as merely recreational.
A nice property, discovered by Fermat and proved by Cauchy, is the following one: every positive integer may be written as the sum of at most \(n \) \(n \)-gonal numbers.

For more information on polygonal numbers, the reader is referred to [2], pp. 185 - 199.

Our aim is to investigate whether polygonal numbers of a different kind (i.e. \(n \)-gonal numbers and \(m \)-gonal numbers with \(n \neq m \)) may be equal. As a matter of fact, it is easy to show that each of the following equations has infinitely many solutions \((k,t) \):

\[
\begin{align*}
1) & \quad p(1;k) = p(2;t) \\
2) & \quad p(1;k) = p(3;t) \\
3) & \quad p(2;k) = p(3;t)
\end{align*}
\]

Thus there are infinitely many triangular-square numbers and the same is true for triangular-pentagonal numbers and square-pentagonal numbers. Indeed, solving (1) boils down to solving the Pellian equations

\[x^2 - 2y^2 = \pm 1 \]

in integers \(x \) and \(y \). Similarly, the solutions of (2) may be derived from the solutions \((x,y) \) of the Diophantine equation

\[3x^2 - y^2 = 2 \]

and finally, (3) may be solved by determining all solutions \((x,y) \) of

\[3x^2 - 2y^2 = 1. \]
In [1], p. 740, A.J. Phelps poses the following problem: find all triangular-square-pentagonal numbers. The object of this note is to prove that 1 is the only such number.

2. This section is devoted to the proof of

Theorem. \(p(1;k) = p(2;\ell) = p(3;m) \) if and only if \(k = \ell = m = 1 \).

To this end we shall need two lemmas. Firstly,

Lemma 1. If \(p(1;k) = p(2;\ell) = p(3;m) \) then \(m = u^2v^2 \), where \(u \) and \(v \) are odd integers such that

\[
(4)
\quad u^4 + 2u^2v^2 - 2v^4 = 1.
\]

The proof of the theorem is then completed by

Lemma 2. The only solution of equation (4) in odd positive integers \(u \) and \(v \) is \((u,v) = (1,1)\).

Indeed, if \(p(1;k) = p(2;\ell) = p(3;m) \) then \(m = u^2v^2 \) with \(u = v = 1 \). Hence \(p(3;m) = 1 \). The converse of the assertion is trivial.

Proof of Lemma 1.

From \(p(1;k) = p(2;\ell) = p(3;m) \) it follows that

\[
k(k+1) = 2\ell^2 = m(3m-1)
\]

and hence

\[
k = 2^r a^2, \quad k + 1 = 2^{1-r}b^2 \quad \text{with} \quad a, b \in \mathbb{N}, \quad (a, b) = 1 \quad \text{and} \quad r \in \{0, 1\},
\]
\[
m = 2^s c^2, \quad 3m - 1 = 2^{1-s}d^2 \quad \text{with} \quad c, d \in \mathbb{N}, \quad (c, d) = 1 \quad \text{and} \quad s \in \{0, 1\},
\]
\[
\ell = ab = cd.
\]

From \(3m - 1 = 2^{1-s}d^2 \) we deduce that \(2^{1-s}d^2 \equiv -1 \pmod{3} \) and consequently \(s = 0 \). Then \(m \) is odd and both \(c \) and \(d \) are odd.
This shows that \(l \) is odd and hence both \(a \) and \(b \) are odd. Now \(2^r + 1 \equiv 2^{1-r} \) (mod 8) yields \(r = 0 \). So we have

\[
\begin{align*}
2b^2 - a^2 &= 1 \\
3c^2 - 2d^2 &= 1 \\
ab &= cd
\end{align*}
\]

(5)

We define \(v := (a,c) \), \(u := (b,c) \), \(v' := \frac{a}{v} \) and \(u' := \frac{b}{u} \). Then \((u,v) = (u',v) = (u',v') = 1 \), since \((a,b) = 1 \).

Clearly, \(c = uv \) and \(d = u'v' \). Indeed, \(cd = ab = uu'vv' \) and both \(c/uv \) and \(d/u'v' \) are positive integers.

Expressing (5) in terms of \(u, u', v \) and \(v' \) gives in particular

\[
2u^2v^2 = (u^2 + v'^2)(2u'^2 - v'^2).
\]

(6)

Now \((u^2, u^2 + v'^2) = (2v^2, 2u'^2 - v'^2) = (u^2 + v'^2, 2u'^2 - v'^2) = 1 \). This follows easily from \((u,v) = (u',v) = (u,v') = 1 \) and the fact that \(u, u', v \) and \(v' \) are odd.

From (6) we deduce that

\[
2v^2 = u^2 + v'^2 \quad \text{and} \quad u^2 = 2u'^2 - v'^2.
\]

Hence \(a^2 = 2v^4 - u^2v^2 \) and \(2b^2 = u^4 + u^2v^2 \). Since \(2b^2 - a^2 = 1 \), according to (5), this leads immediately to the quartic equation (4). Also note that \(m = c^2 = u^2v^2 \).

Proof of Lemma 2.

Let \(u \) and \(v \) be odd positive integers, satisfying (4).

Further, consider the irreducible polynomial
\[f(x) := x^4 + 2x^2 - 2 \in \mathbb{Q}[x]. \]

The discriminant of \(f \) equals \(-2^93^3\). Hence, the equation \(f(x) = 0 \) has two real roots and one pair of complex conjugate ones. Let \(\theta \) be one of the real roots of \(f(x) = 0 \).

The quartic extension \(K := \mathbb{Q}(\theta) \) of \(\mathbb{Q} \) has the sub-field \(\mathbb{Q}(\sqrt{3}) \). It is not difficult to show that \(\{1, \theta, \theta^2, \theta^3\} \) is an integer basis of \(K \) and that \(\{1+\theta, 1-\theta\} \) is a fundamental set of units (cf. [3]).

Now (4) may be written as

\[\text{Norm}_{K/\mathbb{Q}}(u-v\theta) = 1, \]

and hence

\[(7) \quad u - v\theta = \pm(1+\theta)^p(1-\theta)^q \]

with \(p, q \in \mathbb{Z} \) (the only cyclotomic units of \(K \) are \(\pm 1 \)). If we disregard the sign of \(u \) and that of \(v \), we may neglect the \(\pm \) sign in (7). Moreover, there is no loss of generality in assuming that \(p > q \). Then

\[(8) \quad u - v\theta = (1+\theta)^p-q(1-\theta^2)^q. \]

Now \(p - q \) is odd, for otherwise \(v \) could not be odd, as can be seen from

\[u^2 - v^2\theta^2 = (1-\theta^2)^p+q = \sum_{j=0}^{\infty} (p+q)_j (-\theta^2)^j = 1 - (p+q)\theta^2 + 2(...). \]

Set \(2n + 1 := p - q \). Then \(n \in \mathbb{Z}, n \geq 0 \). We intend to show that \(n = 0 \). To this end we define rational integers \(a_i, b_i, c_i \) and \(d_i \) for each \(i = 0, 1, 2, \ldots \) by

\[(1+\theta)^{2i+1} = a_i + b_i\theta + c_i\theta^2 + d_i\theta^3. \]
This gives
\[
\begin{align*}
 a_i + c_i \theta^2 &= \sum_{j=0}^{i} (2i+1) \theta^{2j}, \\
 b_i + d_i \theta^2 &= \sum_{j=0}^{i} (2i+1) \theta^{2j}.
\end{align*}
\]

From (9) we obtain the relations
\[
\begin{align*}
 a_n &= 2 \sum_{j=0}^{n} (2n+1) \beta_{j-1}, \\
 b_n &= 2 \sum_{j=0}^{n} (2n+1) \beta_{j-1}, \\
 c_n &= \sum_{j=0}^{n} (2n+1) \beta_j \\
 d_n &= \sum_{j=0}^{n} (2n+1) \beta_j.
\end{align*}
\]

Inserting these values for \(a_n, b_n, c_n\) and \(d_n\) into (11) yields
\[
0 = \sum_{i,j=0}^{n} \left\{ (2n+1)(2n+1) - (2n+1)(2n+1) \right\} \beta_{i-1} \beta_j =
\]
\[\begin{align*}
\sum_{i,j=0}^{n} r_{ij}(n) \binom{2n}{2i} \binom{2n}{2j} \beta_{i-1} \beta_{j},
\end{align*} \]

with
\[r_{ij}(n) := \frac{j-i}{(2i+1)(2j+1)(2n-2i+1)(2n-2j+1)}, \quad i, j = 0, 1, 2, \ldots, n \]

Dividing through by \(2(n+1)(2n+1)^2\) and making use of (12), we deduce that (the sums considered are empty in case \(n = 0\) or \(1\))
\[(13) \quad 0 = \sum_{j=1}^{n} r_{0j}(n) \binom{2n}{2j} \beta_j + 2 \sum_{i=2}^{n} \sum_{j=1}^{n} r_{ij}(n) \binom{2n}{2i} \binom{2n}{2j} \beta_{i-1} \beta_j. \]

Let \(v_2\) be the 2-adic valuation, defined on \(\mathbb{Q}\), written additively. We have for \(i, j = 1, 2, \ldots, n\)
\[v_2(r_{0j}(n)) = v_2(j), \]
\[v_2(r_{ij}(n)) = v_2(j-i) \geq 0, \]
\[v_2(\frac{2n}{2j}) \geq v_2(n) - v_2(j) \quad \text{and} \]
\[v_2(\beta_j) \geq [\frac{1}{j}]. \]

Clearly, (14)\(_1\) and (14)\(_2\) follow immediately from the definition of \(r_{ij}(n)\); (14)\(_3\) is a consequence of the fact that for \(j = 1, \ldots, n\)
\[\binom{2n}{2j} = \frac{n(n-1)}{j(2j-1)} \quad \text{and} \quad (14)\(_4\) \text{ may be derived from (12) by means of induction. Consequently,} \]
\[v_2(r_{0j}(n) \binom{2n}{2j} \beta_j) \begin{cases} = v_2(n) & \text{if } j = 1 \\ \geq v_2(n) + [\frac{1}{j}] \geq v_2(n) + 1 & \text{if } j \geq 2, \end{cases} \]

and
\[v_2(2r_{ij}(n) \binom{2n}{2i} \binom{2n}{2j} \beta_{i-1} \beta_j) \geq 1 + v_2(\binom{2n}{2j} \beta_j) \geq 1 + v_2(n) - v_2(j) + [\frac{1}{j}] \geq 1 + v_2(n) \quad \text{for } i \geq 2, \ j \geq 1. \]
Applying this to (13), we see that $v_2(n) = -\infty$ and hence $n = 0$. Having established this, it follows from (8) that

$$ (15) \quad u - v^2 = (1+\theta)(1-\theta^2)q. $$

Since $(1-\theta^2)q$ is a unit of the form $A + B\theta^2$ with $A, B \in \mathbb{Z}$, (15) can only be true when $(1-\theta^2)q = 1$, i.e. $q = 0$. This proves the lemma.

For the p-adic method used in the proof of LEMMA 2, we refer to [6] and [5], chapter 23.

REFERENCES.

Econometric Institute
ERASMUS University
Rotterdam, The Netherlands
REPORTS 1977

7700 List of Reprints, nos. 179-194; List of Reports, 1976
7701/M "Triangular - Square - Pentagonal Numbers", by R.J. Stroeker.