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BAYESIAN ESTIMATES OF EQUATION SYSTEM PARAMETERS*

An Application of Integration by Monte Carlo

by T. Kloek and H.K. van Dijk

ABSTRACT

Monte Carlo (MC) is used to draw parameter values from a distribution

defined on the structural parameter space of an equation system. Making

use of the prior density, the likelihood, and Bayes Theorem it is possible

to estimate posterior moments of both structural and reduced form para-

meters. The MC method allows a rather liberal choice of prior distributions.

The number of elementary operations to be performed need not be an ex-

plosive function of the number of parameters involved. The method overcomes

some existing difficulties of applying Bayesian methods to medium size

models.

The method is applied to a small scale macro-model. The prior in-

formation used stems from considerations regarding short and long run

behavior of the model and from extraneous observations on empirical long

term ratios of economic variables. Likelihood contours for several para-

meter combinations are plotted and some marginal posterior densities are

assessed by MC.
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1. INTRODUCTION

In recent years several Bayesian methods of estimating parameters

of simultaneous equation systems have been introduced; see ,e.g., Dreze

[5], Zellner [21], Harkema [12], Rothenberg 118, 19], and Richard [17],

and the references cited there. An important motive for research in this

area is the analysis of economic policy problems from a decision theoretic

point of view. It appears that in this context Bayesian estimates are more

satisfactory than classical ones. The analysis of these problems requires

the use of numerical methods, for, in order to obtain analytically tractable

results, restrictions have to be imposed which are less attractive from

an economic point of view; see Rothenberg [18, pp.139-144] and Harkema [12].

The application of numerical methods appears to be hampered by the

amount of computational -work involved; see Rothenberg 118, p.140]. However,

the numerical work for several econometric problems is restricted to the

computation of first and second order moments, e.g., analysis of economic

policy problems based on a quadratic loss function, see Zellner [21,

Chapter 11], or MELO estimators of ratios of parameters; see Zellner [22].

Usually, standard numerical integration methods, like Cartesian

product rules based on Gaussian or Newton-Cotes quadrature formulas, are

used. We propose a Monte Carlo method, which enables one to compute the

moments mentioned above in the following way. One starts with specifying

a so-called importance function. This is a density function defined on

the space of structural parameters, or on the space of a subset of these

parameters in case part of the integration is carried out analytically.

It should have convenient Monte Carlo properties,• in the sense that it

is not difficult to generate drawings from such a distribution. In addition,

the importance function should be an approximation of the posterior density.

In some cases the prior density can be used. Making use of the prior

density, the likelihood of a given sample, and Bayes' theorem it is possible

to obtain estimates of the posterior moments of both structural and

reduced form parameters. In case the numerical accuracy of these estimates

(which can also be estimated) is not satisfactory, one performs a second

round of Monte Carlo using the preliminary estimates of the first round

as moments of a new importance function. We name this technique: Posterior

Moments computed by means of a Monte Carlo method (PMMC). We also use

a Monte Carlo technique to derive marginal posterior distributions for

some particularly interesting parameters. In fact, their approximations
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can be interpreted as moments of certain functions of the parameters.

The important advantage of Monte Carlo is that a large number of

posterior moments can be estimated at a reasonable computational effort

and that estimates of the numerical accuracy of these results are ob-

tained in a simple way. There are several indications that Monte Carlo

is computationally efficient in problems with many dimensions, say, more

than five or six.

Since Monte Carlo is a sampling method, the error goes to zero as

where N is the number of points where the integrand f is evaluated.

Haber [10, p.515] comments on this as follows:1

"This convergence does not seem to be very rapid until we note that
neither the dimensionality s of the integration region, nor any
specification of the degree of smoothness of f, entered into the
determination of the error estimate. All that is required of f is
that the integrals entering into the quantity a(f) exist and are finite -

neea not even be continuous. In this situation no detelmaiistic error
bound is ayailable at all. By Bahvalov's theorem, even if we assumed
'that f E G i, the best that we could say about the error c?; any non-
probabilistic quadrature formula would be that it is (N- Is) - and
if s is; say, 5, this is much slower convei-gence than is givenby
the Monte Carlo method."

This comparison is a simplification in two respects. On the one

hand more sophisticated methods of integration require 'amendments to the

statements made above. On the other hand, in most cases a will be an

increasing function of d. To what extent a will increase with d is, in

general, unknown and will depend on the properties of the integrand. The

same holds for the improvements that can be obtained by employing more

sophisticated integration methods. This explains why it is so difficult

to give general conclusions. Some of our own experiments with a nine-

dimensional integrand suggest that the advantage of Monte Carlo is a real

one. For expository reasons, however, we prefer to present a three-

dimensional example.

By using a numerical method, we get rid of the restrictions on the

prior distribution imposed by the use of analytical techniques; therefore,

a liberal choice of prior distributions is possible. To demonstrate this

we used prior information of two types in our example. Firstly, we ex-

perimented with prior distributions on structural parameters; in most

cases the larger part of prior information will pertain to structural

parameters. Secondly, we used prior information on short term and long

• 21 
Haber uses the symbol a (f) for the variance of the integrand and C1
for the class of functions of s real variables of whose first order
partial derivatives exist.



term multipliers. Also, it was possible to handle a case of nonlinear

dependence between two structural parameters.

In section 2 we describe the model assumptions and the class of

prior distributions considered. The method we used is formally described

in section 3. Sections 4 and 5 deal with an illustration (prior specifi-

cation and posterior moments, respectively). In section 6 problems of

numerical precision are discussed and illustrated. In section 7, we

investigated the information conveyed -. by the likelihood contours of

structural parameters and by the marginal posterior densities of some

interesting parameters. Section 8 contains concluding remarks.

. MODEL AND CLASS OF PRIOR DISTRIBUTIONS

Our starting point is the standard version of a linear simultaneous

equation system

(2,1)_ yr ZB = U

where the matrix Y consists of n observations on G current endogenous

variables and the matrix Z of n observations on K predetermined variables;

r is a Ci.x0 matrix and B a KxG matrix of constants, some of which are known

a priori; U is a matrix of disturbances. The system (2.1) is supposed to

satisfy the following assumptions: (1) Irl o; (2) the n rows of U are

independently and identically distributed as N(0, E), where E is a

positive-definite
2
 symmetric matrix; (3) Z has full column rank; (4) the

row vectors 
z', u'' 

u
t+1
l 
, .." 

ul are independently distributed for any
s t 

s, t = 1, ..., n with s < t.

These assumptions enable us to specify the likelihood function of

t(r, B, Z) cc lEi-nlirlin

x expl-itrUnror (B 11)Tz'z(B fi.))E-111

where the exponent has been rewritten and = (Z'Z)-1ZIY, B = -fir, and

= (Y Zfi)'(Y Zfi).

2
This means-that 1(2.1) is not supposed -to cohtain identities. Possible

identities may be removed by a preliminary substitution procedure; see

Rothenberg [18, Chapter 4, Appendix B]. A simple solution is to ignore
the identities, except in the Jacobian lirli n; see Rothenberg and

Leenders [20, Section 7].
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We next define a rather wide class of prior distributions on the

elements of r, B, and E. We distinguish four types of structural parameters.

1. Some parameters are supposed to be known exactly a priori. These

may include the unit diagonal elements of r following from normalization

and a number of zero elements implied by identifying restrictions
3 
. (We

follow the classical approach to the identification problem.) No sample

information can change our prior information on these parameters, so that

no posterior computations are needed. Hence, we substitute these known

parameter values in our likelihood function. This will be done throughout

the paper without further discussion.

2, The so-called constant terms. We assume that each of the equations

in (2.1) contains a nonzero constant term. We arrange these in a vector

denoted by (I). Since usually little is known a priori, we assume a (locally)

uniform prior. As a consequence we can handle these parameters by analytical

integration.

3. The elements of the variance-covariance matrix, E. We shall assume

that little is known a priori and that our prior information is adequately

described by the expression LE1-2(G+1); compare Zellner [21, p.225 and 226).4
4. All remaining elements of r and B; that is, all elements which

are a priori unknown, apart from the constant terms. We arrange these in

a vector denoted by the symbol 0. Prior distributions of the elements of

e will be discussed later.

Assuming independence, we can summarize our prior density by

(2.3) D(0, (1), E) p(e)I zi—i(c141)

Where p(0) is the prior density of 0, to be specified later. Combining

the prior density (2.3) and the likelihood (2.2) one obtains, according

to Bayes i theorem, the joint posterior density.

The computational burden can be considerably reauced by handling 4)

and E by analytical procedures. So we eliminate E and (1) from the posterior

distribution. This is performed in two steps. We firstly integrate the

3
No problem arises when one wants to introduce more complicated restrictions,,

such as general linear restrictions, nonlinear restrictions, or
restrictions across equations.

Alternatively, one may specify an Invered7Wishgrt furjetigni In this '
case one also has to specify a matrix H of prior parameters; see
Z_ellner [21, 15.395]. This leads to slight mogfication in the K function_
defined in (2.5)-below.
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posterior density with respect to the elements of E, which yields the

joint marginal distribution of (0, 4). This distribution is, except for

p(e) and 11111 11 of the generalized Student t form.5 As a second step we

eliminate the elements of (I) by integrating this distribution with respect

to if.. According to a theorem by Dickey [3] we then obtain for the marginal

posterior of e

(2.4)

where

p'(0 Y,z) e Y,Z p(e)

(2.5) (01Y,Z) = lirli n . Inr* [131 'Z'NZ1 EB1 1 )14(n-1)1 

Here B and Z have been partitioned according to B' = [4! B1], Z = Z1],
where t is a column vector of unit elements and N = I - ti.'/n. Note that r
and B depend on e but not on cp.

3. POSTERIOR MOMENTS COMPUTED BY A MONTE CARLO METHOD

Starting from the marginal posterior of 0, given in (2.4), we want

to find posterior moments of the structural parameters. For the time being

we disregard the constant terms. Hence, all moments to be computed are

expectations of functions of e, g(e), say. Notice, that g(e) may be a

scalar, a vector, or a matrix. The existence of these moments depends on

both the likelihood and the prior distribution of e. If the existence
conditions are satisfied, such expectations are given by

(3.1)
E[g(e)11.,z] f (e)K(elY,z)p(e)de

K(elY,)p(Ode

where the region of integration is.a_subspace of the parameter space.

A simple sufficient condition for the existence of the moments con-

sidered is that all integrals required are defined on bounded regions

-and have integrands of bounded variation. Recall the assumption that

irl 0 O. Then it is easily seen that K is bounded on any bounded region

_

See Dickey [3] or Zellner [21, p.273 and Appendix B5].



if Q is positive definite.
6 
The bounded region condition can always be

satisfied by choosing truncated prior distributions. For the structural

parameters this is obvious. For the reduced form parameters it can be met

by choosing the truncation in such a way that the prior density is zero

on an open set containing all values of e, where 111 = 0. This condition

implies that 111-11> 0 in the region of integration. The extension to other

functions of e such as long term multipliers is obvious. Examples of these

conditions are discussed in section 4.

Next, we consider the computation of the moments just defined by

means of a Monte Carlo procedure. Let I(0) be a density function defined

on the parameter space, to be called importance function. The choice of

I(e) will be discussed below. Let m(e) be defined by

(3.2 M( o) I(e)

This function is defined on the region where 1(0) > 0. Then the numerator

of (3.1) can be written as

(3.3) fm(e)I(o) 0 r.7, E[m(e)]

where the expectation is taken with respect to i(e). The denominator is
obtained by taking g( o) = 1.

Now, by means of standard Monte Carlo procedures
7
, parameter values

0 are drawn at random from the distribution with density 1(e). For each

drawn value of e, the function m(e) is evaluat
e
d.8 Let eve 2, en

be our sequence of random drawings. Then we have approximately

n
E[M(e)] 7.4 En

The latter condition may cause problems in large models if the number of
observations is small. This problem is well known from classical esti-
mation; see, e.g., Fisher [8]. The most natural Bayesian way to solve
the problem is by specification of a proper prior distribution on E;
compare footnote 4. Finally, the possibility that gk is bounded but not
of bounded variation does not seem to be realistic in the type of pro-
blems we consider.

7 
See, for instance, Hammersley and Handscomb [11].

One may have to scale M(0) in order to avoid overflow. This can be done
by scaling the data or by means of a preliminary optimization applied
to m(e).
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for sufficiently large n. This is the basic formula of our method.

Next, we discuss the choice of the importance function 1(0. Obvious-

ly, the first requirement is that it should have convenient Monte Carlo

properties; that is, generating random drawings 0. should be relatively

simple. Many standard distributions satisfy this requirement. Among the

univariate families of distributions we mention the uniform, exponential,

Gamma, Beta, Normal, and Student t families. For details see Naylor [15]

and the references cited there. If multivariate densities can be factored

as products of independent marginal densities or marginal and conditional

densities, the above families provide a large number of possibilities.

The most obvious choices are the multivariate Normal and Student t families.
2

The second requirement for the choice of 1(e) is that the variance a

of M(0) [with respect to I(8)] should be kept small. If one takes a uni-1

form I(o), one obtains a few drawings for which M(0) is *important and a

large number of drawings for which M is very close to zero. So, even

if one has drawn a sample of several thousands of drawings, the right

hand side of (3.4) may mainly depend on a very few values Wei) which are

not close to zero. This explains both why in this case one obtains an un-

reliable estimate and also why I(e) is called importance function. It
serves to select as many important drawings as possible. The same con-

clusion may also be reached in 4 more formal way. The sample size n

required to obtain a given amount of accuracy is proportional to a
2
 , as

is easily seen from (3.4).

Now, for every estimation problem we have one function K, one function

p, but as many functions g as the number of moments we want to compute

plus the zero order moment required for the denominator of (3.1). So

two different strategies may be chosen: (i) find a density I for each g

to reduce var M as much as possible; (ii) find a density I which is

proportional to a good approximation of the posterior kernel Kp.

The second approach has several advantages. First, Kp is a kernel

of a density while gKp is not. (In some cases g may change sign in the

region of integration.) So it is probably simpler to find a density which

is a good approximation. Second, finding a density I which is a good

approximation to a function which is not very well known may be difficult.

For that reason it seems preferable if one can confine oneself to solving

such a problem only once. Third, if the posterior density is not too far

from normal we may start with a rough approximation to the posterior

distribution and use the so obtained posterior moments as moments of a



multivariate Normal (or Student) importance function in the second

stage. If the prior density is informative and not conflicting with the

likelihood, it may be used as importance function in the first stage.

Finally, it should be noted that if the sample is not extremely small

and if the prior density is not very informative the variation of K will

be much greater than that of either g or p. For that reason one also may

start to maximize K and to evaluate the Hessian of log K at the maximum

as a basis for constructing a normal approximation to K which may serve

as importance function in the Monte Carlo procedure.9

This concludes the introduction of the PMMC method. More details

will be commented upon in the discussion of the illustration.

4. ILLUSTRATION: MODEL AND PRIOR INFORMATION

For illustration purposes we shall make use of a small scale demand-

oriented macroeconomic model described by Johnston
10
 13, p.269]. The

structural equations read as follows

C
t = 

a
l1

Y
t 

u
lt

I =a+pY+yI ut 2 2 t 2 t-1 2t

Y
tttt

Ct represents consumer expenditure, Yt total expenditure, It investment,

t 
exogenous expenditure. The interpretation of the parameters will play

an important role when specifying the prior distributions. It is seen that

(3 is the marginal propensity to consume with respect to total expenditure,1
the short run marginal propensity to spend on investment goods (not the2

fixed accelerator), and y2 an adjustment parameter of investment. It seems

reasonable to assume that these three parameters satisfy

0 < 0 < < 0 < y2 < 1

The determinant of r, which is not allowed to vanish, equals
Pi - 02. The short'term income multiplier (STM) of Zt is given by

33 1/(1 - 0,1 - v.
2
)

* Evidence from many investigations suggestst t

We are indebted to A. Zellner for this suggestion.
10

Lyttkens (14] used the same model to compare estimates based on several
estimation techniques. Some of his results will be commented upon below.
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that 
n33 

is positive and not extremely high, say less than a fixed number

n1 to be specified in Section 5. So we obtain the prior restriction

(4.5) 1 
1 STM = < n

1 -
1 
- f3.

2 
1

The lower bound both in (4.5) and in ()-.6) below is implied by the con-

ditions (4.4) and the positivity restrictions on the multipliers.

We also investigated the long term multiplier (LTM) of autonomous

expenditure with respect to total expenditure. We shall assume that it

is positive and less than n2 (to be specified in Section 5). So our

restriction is

(4,6) I < LTM =
< n2

These restrictions imply that the stability condition of the final form

is satisfied. Though the present model is not very realistic and the

cQnclusiona must be handled with caution, it is interesting to investigate

the implied dynamic characteristics and verify their a priori accepta-

bility; see also Dhrymes [2, p.542].

For the importance function we started to choose the prior densities.

This worked well in two out of three cases.
11 

In the third case we applied

a two-stage procedure: we took the prior in the first stage and the re-

sulting rough approximation of the posterior in the second stage.

The generating process of a sequence of a priori acceptable values

of (al, /32, y2) runs as follows. Monte Carlo is used to draw a sequence
of values of structural parameters and these are tested for some or all

of the restrictions (4.4)-(4.6).12 If a value of (al, (32, y2) does not
pass such a test a new value is drawn and tested. So the restrictions

may be used to truncate the prior densities (and the importance functions).

The prior distributions we use differ widely with respect to the

amount of prior information incorporated. We start with a rather weak

prior, viz., a uniform distribution on the unit region specified by (4.4).

11
As was pointed out to us by J.F. Richard, this result may not be

representative. The accordance between two of our priors and our like-
lihood seems to be greater than usual.

12
The results of Lyttkens [14, p.362] satisfy (4.4) and (4.5) in all cases;

the FIML estimates satisfy (4.6), the Fix-point estimates imply a negative
LTM, while the limited information techniques lead to relatively large

LTM values (even 28.33 for 2SLS).
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We also experimented with prior distributions reflecting somewhat stronger

information. On the basis of various results stated in the empirical

literature, we specify a prior 95 per cent interval
13 

for the marginal

propensity to consume as .2 <
1 

< .8. With respect to y
2 
we do not know

very much, except that it will be positive, less than 1 and probably not

close to 1; so we specify 0 < y2 < .8 as a prior 95 per cent interval.

The short term marginal propensity to spend on investment goods is not

very well known, but its long term analogue appears to show a fairly

good empirical stability. So we specify .05 < 2/(1 - y2) < .25 as a

prior 95 per cent interval.

We make use of both the Normal and the Beta family of prior distri-

butions. The generating process of a sequence of normal drawings runs as

follows. Draw at random a value of pi from N(.5, .0225), a value of y2

from N(.4, .04) and a value of the auxiliary variable u from N(.15, .0025).

Then compute f2 from 2 = (1 - y2)u. The Beta family has the property that

the range of the parameter is restricted to the interval [0, 1]. To specify

parameters for the Beta distributions corresponding with the prior 95 per

cent intervals specified above, we made use of the tables of Pearson [16].

This resulted in the choice of B(5,5) for B(2,3) for y2, and B(7,40)

for t32/(1

In the case of the uniform prior, the prior density differred too

much from the posterior to be acceptable as importance function. The

function K, defined in (2.5) for the Johnston model, has a sharp peak on a

small subregion of the unit interval. Only two per cent of the number of
-drawings had a K-value exceeding 13.6 per cent (e 2) of the maximum value

of K. The remaining drawings got a negligible weight and a large number

of drawings would be necessary to obtain a reasonable degree of accuracy.

So we used the two stage procedure mentioned above. In the second stage

we experimented with Normal and Cauchy densities as importance function.

The rather thick tails of the latter prevent explosive behavior of the

ratio Kp/I. We took the posterior moments of the first stage with a
4uniform distribution to specify the parameters of 1(0. The second

order moments from the first stage were multiplied by a factor k > I in

13
More precisely: a 95 per cent "highest prior density" interval; compare
Zenner [21, p.27]. Note that the intervals were slightly modified for
the case of the Beta distribution.

14
Of course, the Cauchy density has no moments of order > 1. In fact, we
drew from a multivariate Normal distribution with the moments mentioned
in the text and divided each vector of drawings by an independent
drawing from an N(0, 1) distribution.
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order to enlarge the region from which most of the drawings were made.

The optimal value of k was experimentally determined as one which yield

the smallest coefficient of variation of the weights IT/I. This was

reached by the Cauchy type with a k value of 1.5.

Another variance reduction technique, the antithetic variable method,

was tried in combination with importance sampling. This did not yield

satisfactory results. The probable reason was lack of symmetry of both

the K function for the Johnston model and the (truncated) importance

functions (prior densities).

5. NUMERICAL POSTERIOR MOMENTS15

Prior and posterior means and standard deviations were computed for

the structural parameters y ) 
2' 

for the reduced form parameters
1' 2' 

(apart from the constant terms) and for the long term multiplier. The three

prior distributions discussed in Section 4 were used. Furthermore, we

investigated the sensitivity of the results with respect to changes in

n
1 
and n

2 
of the restrictions (4.5) and (4.6).

Tables 1 and 2 show some results for the posterior moments of the

structural and reduced form parameters and the LTM. The restriction (4.5)

with ni = 100 was applied. The FIML point estimates have been presented

for comparison. The results based on the Normal and Beta priors are

virtually the same. In a number of cases the results based on the two in-

formative priors are somewhere between the FIML point estimates and the

posterior results based on the uniform prior. This is due to the skewness

of the K function which stretches out into the negative quadrant of

2
), due to the factor Ilriln. The standard deviations are much

smaller in the cases were an informative prior has been used, as was to

be expected. In addition, Table 2 shows the importance of prior information

for the posterior standard deviations, in particular that of the LTM.

Note, however, that restriction (4.6) was not used in this case.

Next, we investigated the sensitivity of the posterior moments with

respect to restrictions (4.5) and (4.6) for various values of ni and n2.

If one uses the informative Normal and Beta prior distributions, the

results are not sensitive. In case of the uniform prior the structural

15
The authors are indebted to Mr. A.S. Louter of the Econometric Institute

for valuable advice and assistance in preparing the necessary computer

programs.
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TABLE 1. STRUCTURAL POSTERIOR MEANS AND STANDARD DEVIATIONS*

Prior Distribution 
1 (32 2

Classical FIML

estimates *•*

Uniform
(stage 2)

Normal

Beta

0.458 0.089 0.363

(0.095) (0.035) (0.066)

0.341 0.054 0.372

(0.121) (0.034) (0.144)

0.432 0.079 0.401

(0.073) (0.025) (0.113)

0.428 0.076 0.407

(0.076) (0.025) (0.128)

* The numbers within brackets are standard deviations.

** Lyttkens results [14, p.361] are slightly different.

TABLE 2; REDUCED FORM* AND LTM POSTERIOR MEANS AND STANDARD DEVIATIONS

Prior Distribution 'T21 731 Tr22 1.32 723
733=STM LTM

FIML. No prior

Uniform

(stage 2)

Normal

Beta

0.37'

0.25

(0.20)

0.38

(0.17)

0.37

(0.18)

1,01

0.66

(0.41)

0.94

(0.33)

0.92

(0.34)

0.43
0.41

(0.16)

0.47

(0.12)

0.47

(0.14)

0.20

0.11

(0.10)

0.18

(0.08)

0.17

(0.08)

0.80 2.21 2.49

0.67 1.77 1.99

(0.34) (0.50) (1.16)

0.84 2.12 2.44

(0.27) (o.41) (o.64)

0.85 2.09 2.41

(0.3q) (0.41) (0.67) 
* See the notes of Table 1. The row indices 2 and 3 of Tr refer

column indices 1, 2, 3 to C, 1, Y, respectively.
o I

-1 
and Z, the

TABLE 3. SENSITIVITY ANALYSIS OF STM AND LTM FOR RESTRICTIONS*

LTM < n2, with STM < 10 STM LTM n
1
/n**

n
2 
= 100

n
2 
= 50

n
2 
= 25

n
2 
= 12.5

6.25r12

1.76 (0.49)

1.76 (0.49)

1.76 (0.49)

1.76 (0.50)

1.76 (0.48)

1.99 (1.07)

1.99 (1.03)

1.99 (1.00)

1.97 (0.81)

1.95 (0.74)

0.72

. 0.72

0.73

0.75

0.82

* A uniform prior on
((31' 132' Y2)

** n is the number of drawings, which passed the
is the number of rejected drawings.

is used, with importance sampling.

restrictions,.



and reduced form posteriors are not sensitive (provided that ()-.5) is

maintained for fl
1 
= 100) but the posterior standard deviation of the LTM

is; see Table 3.

6. NUMERICAL ACCURACY

We are interested in the trade-off between the level of numerical

precision of Monte Carlo (MC) estimators of integrals and the number (n)

of drawings performed. For example, the results for the first order

posterior moments, presented in tables 1 and 2, are based on 1500 drawings.

We want to know the accuracy .of these results and we want to obtain an

idea about the number of drawings sufficient for a given level of accuracy.

MC estimators make use of mean values of a random sample, compare

equation (3.)4). For sufficiently large n, they possess the property of

approximate normality, under the usual conditions of the Central Limit

Theorem
16 

and the existence conditions of the moments,discussed in section

3. Therefore an asymptotically valid 95 per cent confidence interval for

a 1 per cent relative error in the MC estimate indicates a required number

of drawings in the following way. Let H be an MC estimator for the value

of an integral p and let u
2 

denote the variance of each drawing, then

(6.1)

When one imposes

(6.2

H - pip(l aivia < 1.96) 21 0.95

H
1— - 1 1 < 0.005
11

with a 95 per cent confidence level, it follows that

(6.3
,  1.96 a2

n > (-) 160,000(2)2
- 0.005 p

is a sufficient number of drawings. This result illustrates the importance

of variance reduction; compare section 3.

In our case, we deal with MC estimators of ratios of integrals, as

shown in equation (3.1). The coefficient of variation of this ratio is

derived ,as follows. Let t. be an MC estimator of the i-th element of the

numerator of (3.1) and let t
0 

be an MC estimator of the denominator. So

we have in our case H = t. /t0. Under certain regularity conditions, see

16
Cramr 1, Chapters 16 and ITJ.
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Cramr [1, pp.353-359], we have

DH DEI
(6.4) var H (

H 
)
2 
var t.

H
 2- . cov(t t0) + )2 var t

3t. i Dt 3t
o 1 ±

3t
0 

0

and for the coefficient of variation (squared) one obtains

var H 
(6.5)

H
2

var t. var t
1 0

2
t.

2
t
o

ivar t
i 
var t0

- 2p(ti,t0)  
t. . t
1 0

Some numerical results for the structural parameters 
(132' 

y2) and

the short and long term multiplier are presented in tables 4 and 5.

The results show clearly that the coefficients of variation of the

first order PMMC estimates are much smaller than the coefficients of

variation of the numerator of such estimates, due to the substantial

correlation between numerator and denominator. It is interesting to

observe that a good importance function (as used in stage 2) decreases

the correlation between numerator and denominator (which is plausible)

but this is more than offset by the decrease in the variation coefficients

of numerator and denominator. It is also seen from Table 4 that the coef-

ficients of variation for the denominator (for which the importance function

was constructed) is not considerably smaller than the corresponding

coefficients of variation for the numerator. This justifies our decision

to work with one importance fun6tion for all integrals.

Table 5 shows the number of required drawings at the prescribed level

of accuracy. Notice that if one is satisfied with a two per cent relative

error, the numbers have to be divided by four. Similarly if one is satisfied

with a 68 per cent confidence level. In fact a round of 1500 drawings
was performed which gave reasonably accurate results, except in the case

of a uniform prior without importance sampling.

Special attention should be given to fi2, which has a posterior mean

of 0.054 if the prior is uniform. In fact, most economists would be satis-

fied to have an interval estimate with an interval width of 0.01 of such

a parameter. But this interval is eighteen times as large as the interval

required in Table 5. So for this level of accuracy we
18
2 
= 324 so that 426 drawings would suffice, instead

actually used in computing Table 1 or the 138,000 (of

to reach the one per cent relative accuracy discussed

this section.

may divide n by

of the 1500 we

Table 5) required

in the beginning of
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TABLE . SQUARED VARIATION COEFFICIENTS (TIMES n) OF FIRST ORDER PMMC

ESTIMATES AND CORRELATION COEFFICIENTS OF NUMERATOR AND DENOMINATOR

OF SUCH ESTIMATES OF (fi f3
2' 

y
2' 

STM, LTM)*

Coefficient of
Variation (squared)
for: Y2

STM LTM

Uniform Prior (Stage 1)

Uniform Prior (Stage 2)

Normal Prior

Beta Prior

3.19

0.25

0.09

0.09

12.00

0.86

0.30

0.30

2.36

0.21

0.20

0.24

1.87

0.15

0.11

0.11

19.00

3.28

0.19

0.19

Coefficient of
Variation (squared) 1322 

STM LTM'
of Numerator for:

Uniform Prior (Stage 1) 40.36 46.42 35.39 36.93 53.42
Uniform Prior (Stage 2) 0.87 1.39 0.70 0.82 3.93
Normal Prior 3.37 3.56 3.20 3.31 3.21

Beta Prior 3.63 3.81 3.47 3.55 3.46

Correlation Coefficient
of Numerator and 

2 2
STM LTM13 1Denominator

Uniform Prior (Stage 1) 0.96 0.86 0.97 0.97 0.80
Uniform Prior (Stage 2) 0.84 0.62 0.84 0.90 0.41

Normal Prior 0.99 0.96 0.97 0.98 0.97

Beta Prior 0.99 0.96 0.97 0.98 0.97

Coefficient of Variation
(squared)of Denominator
for:

all parameters

Uniform Prior (Stage 1)

Uniform Prior (Stage 2)

Normal Prior

Beta Prior

35.62

0.64

3.4o

3.63

* Based on 80,000 drawings.
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TABLE 5. REQUIRED NUMBER (x 1,000) OF DRAWINGS FOR A 1 % ACCURACY
* **

OF PMMC ESTIMATES '

Prior Distribution Y2 
STM LTM1

Uniform Prior (Stage 1) 510 1,920 378 299 3,140

Uniform Prior (Stage 2) 4o 138 314 24 525

Normal Prior 14 48 32 18 30

Beta Prior 14 48 38 18 30

* The numbers are rounded off in thousands

** The accuracy is based on a (asymptotically valid) 95 % confidence
interval estimate.

Finally, we mention a much simpler way to get some idea about the accuracy

of the results. One may always print the results at, say, ?n, ;n, and 411

and check the stability in the answers.

7. MESSAGES OBTAINED FROM LIKELIHOOD CONTOURS
AND MARGINAL POSTERIOR DENSITIES

Up to now, we concentrated on the computation of first and second
order posterior moments. These are useful distribution characteristics
for normal and nearnormal distributions, but their value is doubtful for
multimodal or very skew distributions. Furthermore, many researchers are
reluctant to include prior information in the estimation of parameters
of a model, because of the (supposed) subjectiveness of such information.
For these reasons, the analyst, who has confined himself to computing low
order moments, may feel the need to obtain some messages from the material
which warn him in cases where the likelihood surface is multimodal or
very skew, or exhibits nonlinear ridges.

17

Some of these problems can be detected by a careful study of the shape

of the likelihood function. In our opinion it is a good strategy to start

with computing full-information maximum-likelihood estimates. Numerical
optimization routines usually indicate such problems as flat segments of

the likelihood function and secondary maxima. The flat likelihood function
17

If the ridges are linear (or near-linear) and relatively flat they are
• reflected by large correlation coefficients, which can easily be found

by the moment approach, but are not presented here • to save space.
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18
reflects near-identification, or multicollinearity or both. Furthermore

the Jacobian of the transformation from the structural disturbances to the

dependent variables usually introduces skewness in the likelihood function.

In order to gain some insight into the likelihood function of the

Johnston model, we plotted likelihood contours for several parameter

combinations of the well known concentrated likelihood function

(7.1) v(olY,z) - 11 II I + (B1 - t1)TZ;NZ1(B1
1 )14n

obtained by algebraic maximization of equation 2.2) of section 2 with

respect to (I) and E. Note that

V(e y,z) c MelY,z)/11 I 1 /(n-1)

Three graphs of the likelihood surface of the Johnston model are presented

for the following combinations: 03l'2
) (13 y

2
) and (13 y ). see

2' 2'

figures 1 A, 1 B, and 1 C. These contours are conditional with respect to

the third parameter, which is fixed at its FIML-value. The figures are

sufficiently suggestive about the shape of the contours. They reveal that

the only prior restriction which plays a serious role in the analysis is

13
2 

> O.

One can assess the influence of the prior information from the shape

of the posterior densities.
19 

These posterior densities are obtained in

the same run as the posterior moments. In fact, if appropriate functions

g(0) are defined, they are posterior moments. The posterior probability

P(a < (32 < b), for example, is obtained by (3.1) with

(7.2) g(e) = 1 if a < 132 < b

= 0 otherwise

It may be estimated by the method described in section 3. And, provided

that the intervals (a, b) are small enough, the marginal posterior

density of (32 evaluated at + b) is approximately given by

(7.3)
P(a < 2 < b)

b a

18
In many cases it is difficult to distinguish between these phenomena.

For illustrations, see Goldfeld and Quandt [9] and Fair and Jaffee [7]

9 Alternatively one may compute higher order moments, compare Van Dijk

and Kloek [6]
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The marginal posterior densities of the structural parameter (32 and
of the STM and LTM parameters are presented in figure 2. The prior

information used has been described in section 4. Figure 2 reveals that
the posteriors based on the uniform prior are skewed to the right as was
to be expected because of the Jacobian. The significance of the restriction
a > 0 is clearly seen in the marginal posterior density of (3

2 
for the2

uniform prior.'° The Normal prior shifts the mean of the posterior densities
somewhat to the right. The STM and L'IMposteriordensities indicate very
small probabilities for STM and LTM values greater than 4. This is in
contrast to several results obtained by classical estimators.

This section gives some procedures to get an overall picture of the
functions to be integrated. Not all aspects, however, could be covered
and, obviously, more work is needed in this area.

8. CONCLUDING REMARKS

In this paper we applied Monte Carlo methods in order to obtain
estimates of posterior moments of structural and reduced form parameters
of simultaneous equation systems. The MC methods allow the analyst to
make use of several types of exact and stochastic prior information. The
MC methods carry a computational workload in high dimensional problems
(say, more than five), which appears to be efficient, compared to other
methods. In addition, estimates of numerical errors can directly be
obtained. Our illustrative example was a small equation system, which
served to indicate different ways of using prior information in a Bayesian
analysis of a simultaneous equation system. The approach is general

enough, however, to be used in the context of other types of models.

We also used Monte Carlo methods in order to compute marginal posterior
distributions of some particularly interesting parameters. It is a problem
in any, numerical integration technique to obtain accurate results in cases
of flat tails of the posterior densities. It seems a sensible strategy
first to obtain posterior moments, especially in cases of high dimensionality.
In such cases summarizing quantities are called for, as a rule, compare
Dickey [4).

It may be possible to apply this numerical method to medium size

20 The effect on the marginal posterior densities of a
1 
and y was much2less pronounced. Figures for marginal posterior densities of these

parameters are therefore omitted.
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models. Such a possibility has been a subject of doubt in the Bayesian

literature; see Rothenberg [18, p.153] and Richard [17, p.10]. It seems

then a good strategy to use partly analytical integration methods and

partly the Monte Carlo methods. Such a principle of reducing the compu-

tational workload, by using analytical integration whenever possible,

is often advocated; see, e.g., Hammersley and Handscomb [11, p.74]. Here

we will mention two examples.
21

(i) We eliminated the constant terms and the E matrix by integration

from the posterior distributions of the structural and reduced form para-

meters. It is possible to evaluate the moments of these parameters by

using analytical integration methods and numerical results of the Monte

Carlo methods; see Van Dijk and Kloek [6]. Then one can use the posterior

moments in some prediction and decision problems.

(ii) In case the researcher has prior information, which allows him

to restrict his attention to the estimation of subsystems of equation

systems, he may use Dr.6ze's [5] limited information analysis to derive

a posterior density for the parameters of the subsystem. Next, one uses

Monte Carlo methods to evaluate posterior moments of the subsystem para-

meters using prior information of several types.

Finally, we want to emphasize that Monte Carlo methods are a branch

of experimental mathematics; compare Hammersley and Hands comb [11, p.2].

Although we are satisfied with the results reported in this paper, much

experimentation is still needed before a final answer about the usefulness

of Monte Carlo methods in Bayesian simultaneous equation estimation is

possible.
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