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A CLASS OF DIOPHANTINE EQUATIONS 
CONNECTED WITH CERTAIN

ELLIPTIC CURVES OVER Q(/T).

by R.J. Stroeker

0. INTRODUCTION

In the course of trying to construct an elliptic curve with good

reduction everywhere over an imaginary quadratic *umber field K of

small discriminant (if such .a curve exists then the classnumber of

K has to be unequal to 1, see [5),p. 16), we came across the following

Diophantine equation

n 3x3-13y2 = + 2 3

in rational integers x,y and n (n>0). Some of the solutions of (O.

correspond to elliptic curves over K:= WV:ij-) with good reduction at

every. place, with the possible exception of the prime above 2 (cf.

[5], p. 37). Although, unfortunately, we did not achieve our goal

(i.e. find a curve with good reduction at i? as well), we feel that

equation (0.1) is interesting enough in itself to justify a detailed

discussion.

Clearly, equation (0.1) has infinitely many solutions (x,y,n) or no

2f 3t
solution at all. Indeed, if (x,y,n) is a solution, so is (2 x,2 y,n+6t)

for every t t>0. This leads to

DEFINITION. A solution (x,y,n) E'Z
3

nk0 of (O. is called basic iff



2.
••

x = x)t2, y=y't3, n>6t 

1

t = + .

It is obvious that a solution is either basic or res
ults from a

basic solution in the above indicated way.

Firstly, we note that any solution ( ,y,n) satisfies n
E0 (mod 3).

Indeed, this is an immediate consequence of x
3E0,.±. 1 or ± 8 (mod 13).

In the following sections we shall therefore study the 
Diophantine

equation

(0.2) x3-13y2 = T23m33,T = + 1

with x,y,m E and y,me.

The object of this paper is to prove

THEOREM. The Diophantine equation (0.2) has precisely nine basi
c solutions,

namely

(x,y,m)=(3,0,0) and (6,0,1) in case T=1 and (x,y,m)=(-3 
o,o),(-6 o 1

(-2,4,1),(21,27,1), (1438,15124,1), (-11,31,3) and (1189,1156
1,7) in case

T =

1. TWO LEMMA'S

• In this section we shall state and prove two lemmas which play an

essential part in the proof of the theorem.
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LEMMA 1. The Diophantine equation

13 
2
=(2

n 
)
2
-108 x, ii E IN

has the solutions (x,n) = (1,j),(11,5) and no others.

PROOF. Let (x,n) be a solution of ( . ). Put K:=Q(13). Then (1.1) may

be written as

NormKA(2n+9+61/3)= 13x
2
.

Thus

(1.2) 2n+9±6 = E2r (4+ a+bt/3 )2

where r,s E {0,1} a and bare rational integers and r is unit of OK,

the ring of integers of K. Taking norms, we obtain r=0, s=1 and NormKA 
c=1.
I

Now n:= -,/3 is a fundamental unit of K. Hence we may take E=.±Twith

t E {0,0. In case t=0, we have, by comparing the coefficients of /3

on either side of (1.2),

a
2
+3b

2 
E ± 2 (mod 8)

and this is impossible. Hence t=1. Now (1.2) becomes

(1.3) ±(2T1+9)±6/3 = (2-,3)(4+13)(a+b)

where the + signs are independent. Equating coefficients in (1.3) leads to

.4)1

and

± (2n+ 5(a + b ) 12ab



4.

(1.4)2 + 6 = -2 (a2+3b2) + 10 ab

with independent ± signs.

The right-hand side of (1.4)1 is positi
ve definite, whence the

+ sign is the correct one. It is easy t
o check that, in case n=1, .4)

is only possible when a=2b and b2=1. This g
ives (x,n)=(1 1).

Considering (1.4)1 modulo 3 shows that n h
as to be odd. Thus n>3.

From (1.4) 1 
modulo 8, we deduce that a is odd and bE2 (mod 4)

 Combining

this result with (1.4)2 modulo 8 shows that we 
must have the - sign in

(1.4)2.

Put a=u, b=2v then both u and v are odd.

In terms of u and v, (1.14) reads

and

(1.5)2

13uv = 2
n-1 

-

(2u+3v) +3 v
2 
= 2

n+1 
.

Equation (1.5)1 then implies

Put n=: 5+12T (TeE,TZ0).

n-1 3 
(mod 13) and thus nE5 mod 12).

Consider the number field L:=(/:T§). 
The class number of L equals

14 and(2)=N9 with prime ideals V:=(2,0), ')':=(2,) wh
ere

We write (1.5)2 in the form

Norm u+v+ve
L

-
1 n=5+12T.



Because both u and v are odd ( 1.6) imp
lies that

u+v+ve) =
14( +3T)

or
t),4( 1+3T)

Now = (2+0) and .15P 2+0 - (3-0). Hence

_0 1+3T 1 \ 1+3T
u-t.v+ve = 2+0) or -LA -) .

because .± 1 are the only units in CL. Now u+v+ve =
(5_

12)
1+3T gives .

0 E 1 + 0 (mod 2) since both u and v are odd. This is c
learly impossible.

Choosing the sign of u and v appropriately, we
 arrive at

u+v+v0 =(2+0)
1+3T.

Put : = 2+0, then( 1.5) takes the form

u_v+vc . 0+3T

(1.7)

4+12T
13uv = 2 -3

It is easily seen that

X X+1
E +3

\-
let T=: 3 1t, >1. Then

X+2,
mod 3 ),

,1+3T_ 1+3 t_ t X+1
=g1+3 E) E —t4(

and we deduce .from 1.7) that

a 0)

+ 
t)E

• • •

in

X+ X+2 )01-1 X+2
u-vs-3 t (mod 3 and vE1-3 t mod 3 )

d 
X +2 
)
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and thus uv E 1 ( mod 3X+2).Combining this with the seco
nd equation in

(1.7) gives

2
2
4'
3 t 

E 1 mod 3X

The implication is that t E 0 (mod 3), si
nce the multiplicative cyclic

group of '3  is generated by 2 for each X
=1 2, . .

By means of induction it is then easy to sho
w that T E 0 (mod )

for all .E IN. Hence T=0. This given n=5, u=v
=1, which leads to (x,n)=(11,5).

This completes the proof of the lemma.

LEMMA 2. The Diophantine equation

(1.8)
x3-91xy +338y3=8 x,y E'

has exactly four solutions viz. ( x,y)
( 2,0) ,( 5,1),( 6,1) and -11,1).

PROOF. Let f EZ(x y) be given by f(x,y):
=x3-91xy2+338y . The discriminant

5 3
of f equals -2 13 . let 0 be the real vo

ot of f (t,1)=0 and put K:=4 0).

142

Now w:= -ie + t6'E Oloth
e ring of integers of K and 0=-13-1Q4

+w
2
 . Hence

K and lqw) coincide. The absolute disc
riminant of K equals -23.13 and

,
the set flolya

2 
I is an Vbasis.

Further, we claim that the unit n:=
17+9(0-4 is fundamental. We prove

this as follows. Because 1<q4,85 let := a+bw+cw
2 

with a,b,c ES be

a unit, satisfying

•1 <
1

E < 5 and hence --< clE,.< 1.
5
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It then easily follows that 0<lcl<2. Checking all possibilities shows

that only c=-1 satisfies the requirements. This gives cr. Consequently

n is the unit >1 of minimal size.

Finally,(2)= VI with y:= (2+4) and OU=(15+8W-uF). This gives

us sufficient information on the number field K to tackle equation (1.8)

successfully. We note that f 0,0 also is an OK-basis.

Let (x,y) be a solution of ( 1.8). Then

Norm (u-ve) = 8

for some rational integers u and v. This gives the ideal equation.

1 19) u-ve) =rot,
with r, s E , r s > 0 and r + s = 3.

We consider the four cases r,, 3,0 2,1), 1,2) and (0,3)

separately.

T : (r, =(3,0).

From( .9) we have

u-ve = 3 = 5-8.

let a„c E 7Z be given in such a way that

u-v8 5-O)( a+b8+c 4.



Then u E V (mod 4). Put u-5v=:I4t. It is easily established that -

= -33t+v, b=9t and c=13t. Hence

.10)
a+be+co = ±n k E E

13b = 9c .

8.

• Considering ( 1.10) modulo 8, we deduce that 13b=9c can only be 
satisfied

if k E 0 (mod 4). There are two possibilities to be cons
idered, namely

A
-4+2 T with XEIN, An and T odd if T 0 0

1

and

='2 T with AEG, and T odd if T 0.

It is an easy exercise to check that

E 1-2( 1+38+3)(mod 
2A+3) 

A >3.

In the first case (I ) we have

-4 T -4 f 
1T _

a+b9+cw E±ri• • n n 
r 1-2 Ak 1+30+3 =

E 133-360-52 (4){1-2XT( 1+30+3 (kW:-

E +{133-360-52W-2 T(14.30+3camod 2 ).

It now follows from 13b = 9c that 3.
X4-2

T E 0 (mod 2
X+3

which implies T=0. Then k=-4 and(u,v) = (-11,1).

Similarly, in case I,. we find

Hence T is even,
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,
a+be+cw = n 

2
x
T 

= i 1-2
X 

k 
1303)}T E

17' {1-2X
 
T( 1+30+3(40 mod 2X+3).

Again 13b = 9c implies 3.2X+2T E 0 (mod +3). Thus T is even T = 0.

This gives k=0, (u v) 5,1).

IT: (r, =(2,1).

From ( 1.9) we deduce

and thus

(u-ve

u-v0= ±
k 

k E7Z.

In an entirely analogous way ( see I), we deduce that k = 0, making use

of X X+2,
= 1 + 2 1+0+w)( mod 2 ),

This gives (u,v) =(2,0).

III: (r1s) = 1,2).

Now we have from ( 1.9)

u—ve = (,2

and thus u-v 0= ±nk( 2+.0.)( 2-0-2w)2 , k E

This implies modulo 2 that

u-ve n
k 

cAD
2

E1
k k+1

1+0+0 u n -1-11 Es 1+04w, because

E 0+w (mod 2) and E 1 (mod 2).
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Clearly, we have arrived at an impossibility.

IV: r =(0,3).

Finally, ( 1.9) gives in this ease

u-ve) = 01, = 6-6

Suppose a,c E 7L are given in such a way that

u-v6=C E,-O)( a+116+c ca).

Then

a+be +c = Ian

and

26b = 19c.

. s in I, we. deduce from ( 1.11) that k m o d .

Making use of

2 A/ A+1
n 1+2 ( 1+v+ w)( mod 2 , X >

we again find that kr-..0. This gives ( u,v) 6,1).

This completes the proof of the lemma.



2. THE PROOF OF THE THEOREM.

Let (x,y,m) be a basic solution of (0.2). We distinguish between

the following cases, according as 1112, m=1 or m=0.

In the first case (m>2), we see immediately that x has to be odd.

For otherwise, (x,y,m) would not be basic. Write (0.2) in the form

(2.1)
(x...3T2m)(x +3 2mx+3222m,) = 13y

2
.

11 4

The only possible common prime divisor of the two factors in the left-hand

side of (2.1) is the prime 3. Hence

2
x - 3t2 = Aa

(2.2) ( and
•2 m 2 2m 2
x +3T2 x+3 2 =Bb,

with A,B C/Z, A,B>0 and squarefree (if 0 0), (A,B)

a0).'.0 with (a.b)

or 3 and a,b CT,

. Since AB(ab)
2 
= 13y

2
, we have AB = 13 in case (A,B)=1

and AB = 9.13 in case (A,B) = 3. From the quadratic equation of (2.2), we

deduce that

(3T2m)2 - 4 (3222m-Bb2) = square

and thus

2 3 2m-2
Bb -3 2 = square .

This gives, because of ma2 and the fact that both b and B are odd, that

2m-2
B E +2 . (mod 8).

Hence B EI or 5 (mod 8). Since B E {1,3,13,39} it follows that B E {1,13}

and consequently (A,B) 1. This leaves the two possibilities

A = 1, B = 13 and A = 13,
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Put K:

be written as

Hence

(2.3)

Q(/) with ç : ;V.:J. The second equation of (2..2
) may

Normx/Q(x+312 = b with 1 or 13. •

x+3T2mc = (-1+40r(-14-4i)s(c+d
c)2

where n is a unit of OK, r,s
 E {0,1} and c,d are rational int

egers.

Taking norms in (2.3) yields:

r+s
N 
rmxial(n)13(c2 

cd+d2+,2 
Bb2,) 

which implies that we may tak
e n. = + 1 (2.3) - every unit in 0 may

be written as + the square of 
a unit - and (r,$) =.(0.0), (1.0) or (0,1).

This leaves the following cases 
to be investigated:

(2.3.1) x+3T2
m 

= n(c+dg)
2 
with n = 1, A = 13 and B = 1,

(2.3.2) x+3T2m 4.40(c+dc)2 with n = +1, A = 
1 and B = 13,

(2.3.3) x+3-r2mc = n(-1+4)(c+d02 with n = 
4- 1, A = 1 and B = 13.

We first consider (2.3.1).
 Equating coefficients of 

I and in (2.3.1)

we obtain, taking also the 
first equation in (2.2) into co

nsideration,

(2.4)

X = n(c 
) 3t2m+13a

2
, = a(c

2
+cd+d

2
)2 2

3i2m = pd(2c+d).

Now c and d are co-prime, because
 (x,y,m) is a basic soluti

on. Moreover

d is even and c is odd since m22.
 If we consider the first 

equation in

(2.4) modulo 4, we find n a2 = 1 (mod 4) and hence n

third equation modulo 8 gives:

. Then the



(2.7)

13.

2
m 
a d
(
2+d) = (d+1)2'1 5 0 (mod 8).

Thus re3. Combining the first and the third equation in (2.4) leads

to:

(7.5) 13a
2 
= -d)

2
-3d

2

and consequently, 3Ia if 3120-d. However, this gives 31d and hence also

31c, a contradiction.

Hence 3f2c+d, which implies that 31d.

Now 211d, since 4Id would imply (see (2.5)) that

- 3 E (c-d)
2 
(mod 8),

which is clearly contradictory. Because of (2.4), the third equation,

we deduce that Id! = 6. Then (2.4) and (2.5) yield:

(2.6) 13a ,-,(-i.2 +9) -108.

Considering (2.6) modulo 13 shows that m E 0 or (mod 3).

But then a2 = 3-(2(T-1))2 = 3 (mod 7) in case T = 1.. But 3 is a quadratic

non-residue mod 7. Hence T = -1 and (2.6) becomes equation (1.1) of lemma 1.

Thus (a,m) = (1,3) or (11,7) and this leads to the solutions

(x,Y01) = (-11,31,3), (1189,11561,7).

Next we look at (2.3.2). This time we find

x -n(c2+8cd+3d2) = 3T2714a2 y = a(c +cd+d2)

m 2 •23T2= n(4c +6cd-d ).
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The first and the third equation in (2.7) imply that c is odd and d is

even. Also a is odd. Since ran, we have a
2 

E -n (mod 4) and thus n = -1.

Considering the first and third equation modulo 8, it is an easy exercise

to show that 21Id and consequently m = 2. Then

2
a
2 
= c +8cd+3d

2
-I2T = c

2
+8cd+3d -I2T+3(4c +6cd-d +I2T)

= I3c
2
+26cd+24T E -2T (mod 13

However 2 and -2 are quadratic non-residues mod. 13. It is not difficult

to show that (2.3.3.) can be treated in a completely analogous fashion,

so that no solutions are found in either case.

This completes the discussion of (0.2) in case m?-2.

We now wish to solve (0.2) in case m = I, and again the cases T = 1

and T = -1 will be treated separately. First, let t = 1. If K:

then the class number -fix = 4 and (2)= 2, (3) =Ce, where and 9, are

prime ideals. We write (0.2), with m = I and t = I, in the form

Thus

(2.8)

iNormK/Q(23 
3
3 
+6yY-78) = (6x)

3
.

(2333-1-6yi) = teruts 01 ,

where r,s E f0,1„21 and (Xis an integral ideal of K. Taking norms, we

deduce that we may take r = s = 0, in the ideal equation (2.8). Apparently,

a
3 

is a principal ideal, and since ,3) = 1, also UL is principal. Put

a= (a+bi-78) with a,b EZ. We have



2
3
3
3
+ = (a+b1-78)3

and equating coefficients of 1 and I=7a- yields:

(2.9 = 
3 2
-234aba 3a 2b-78b3

15.

We see immediately that 6Ia and 21b. Put a = : 6a1 and b = : 2b then from

(2.9) we obtain:

= a a
2 
-26b

2
I 1

Hence al = 1, b i = 0 which leads •to the solution

(2)

(x,y,m) = (6,0,1).

Next, 1 in (0.2) with m = 1. Put L: = Q0/7716, then 4t = 2,

2 2
(3) =est and n = 53+6ñ1i. is a fundamental unit of L. As in

the previous case, we write

r---
Normi,m( 

33 
+6y08) = (6x)3,

and we deduce, since

2 and 3, that

(2.10)

• I and because of the factorization of

3
3
3
+6y175 = e (a+blig)

3

where a,b EZ and e = 4-n
t 
with t = 0,1 or 2. If we do not specify the sign

of y, it is sufficient to consider only the possibilities c = I and c = n.

Let c = 1 in (2.10). As before, see (2.9), we find immediately that a = 6

and b = 0. This gives the solution

(x,y, ) = (-6,00).
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If c = n in (2.10), we find by equating coefficients, noting that

again a = 6a11
for some rational integer a

l'
2 

x = -6a
1
4-13b

2

(2.11) y = 216a
3
4-954a

2
b+1404a b

2
+689b

1 1

2 = 106a
3
+468a

2
b+689a b

2 
+338b

3
1 1

The last equation of (2.11) has the following solutions (al,b) = (3,-2),

(-4,3) and (35,-26). We also note that al and b do not have the same parity

The substitution

u = 19á1+26b

V = 3a +413
1

transforms the third equation of (2.11) into

(2.12)
3 

u -91uv
2 
-038v

3 
= 8.

We stress that the substitution used is not unimodular, so that the

number of solutions (u,v) of (2.12) could be different from the number of

solutions (a 1
,b) of equation (2.11)

3. 
In fact, we have to solve (2.12)

under the condition that u and v have the same parity. (See also the remark

at the end of this section.)

Lemma 2 supplies the answer to our question. The solutions (u,v) of

(2.12), where u and v have the same parity, are (u,v) = (2,0), (5,1) and

(-11,1). This gives the following basic solutions of (0.2):

(x,y,m) = (-2,4,1)0 (21,27,1) and (1438,15124,1).

Finally, we are left to solve (0.2) when m 0. We first deal with the

case T " 1. Let F: = Q(1/-71-0, then -fti; ... 4, (2) vs (at with

2 (2,i(1-F1)) and (3) =(4,2. The ideals 6, 0 and al, are prime ideals.
02

From (0.2) with m = 0 and T " 1, it follows that



and thus

(2.13.).

NormF/Q 
(9+yil="39) = 3x3

(9 yi-39) =

17.

with r 1 ,r2,s E {0„2} and integral ideal a. On taking norms in (2.13)

.we see that r 1 
+r E 0 (mod 3) and s 1 (mod 3). Hence r 1

+r
2 
= 0 or 3 and

S = I.

We shall treat the three possibilities in turn.

(2.13.1)

We have

(2.14)

s = 1 in (2.13).

(27+3y/-39) = 012 (9 1:73-9) =

Since ( ,3) = 1, we deduce that (lais a principal ideal, say (3101 = (ia+11)

with a,b EcZ and a a b (mod 2). Inserting the expression for (la in (2.14)

and equating coefficients, gives

216= a
2
-117b

2
), 24y = 3b(a-13b

2
).

It easily follows that a = 6 and b = O. Hence, the corresponding basic

solution is

(2.13.2)

x,y,m) = (3,0,0).

r = 1 r
2 
= 2,s = 1 in (2.13).

1 

Since y is odd in this case, we have

(9-+-4722) =2t1J0-3
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Now belongs to the same ideal class as oio03, for

• (2.15)  27+3y„,47§. i 2 9+y vA39

= S)161 ( ---i---) = 1.' i)2((i,°1-)3 = (2)(4°1°1)3

The prime ideal 6 is non-principal. However, NO is principal, because

11,L =4 and thus (p 1019,belongs to the same ideal class as (9004 which i
s the

K

principal one. Put ri(5101-= (a41"2439) with a,b Erg and a--4 b (mod 2).

4 
(
544-3(4

Since . 
1 9
 ), we obtain from (2.15) in integers of F, 

,

(
5417J9 27+3y,/-39 a+h/-39 3

(. 16)  )( 2 
) 2 )

Note that the units i.e. + 1 may he ohsorbed in the cube.
.M1111.

We have, equating coefficients in (2.16):

(2,17) 135-117 = a(a -117b
2
), 27+15y = 3b(a-1313

2
).

Clearly 3Ia and 31b. Put a = :3a1, 
b = 

!3b1" 
Then elimination of y from

the equations (2.17) yields:

3 2 3
64 = 5a +117a

2
h -585a --1521h

1 1 1 1,

which implies the impossible congruence

(2.13.3)

5a
3 

= 1 ( mod 9)-
1 -

=2,r
2 
= 1 s = 1 in (2.13),

In this case we have the ideal equation

(9+y,/=T) = (2) (51,(Y?
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the conjugate of which is

r3i) = Ot (2 3.

This enuation shows that we are in the same situation as in case

(2.13.2 ) This means that no further solutions of (0.2) with m = 0 a
nd

1 are found.

Finally we consider equation (0.2) with m = 0 and T = -1. Put

G: = 0(1-3- ), then &G = 2, (2) = 2, (3) =L51, and n: = 25+4139 is a

fundamental unit of G.

As before we have

= 3(-x
3

Norm m(9+y)15.7i) 

and thus

(2.18) (9+S39) 
=

(3115°°'

with r,s E {0,1,2} and integral ideal 01. Taking norms we find that r E 0

(mod 3) and s E 1 (mod 3). Hence we may take r = 0 and s

Multiplication Ct 
2
 yields:

(27+3y1379)
3

=Ii (2.18).

and consequently el 01., is a principal ideal, since (1_01)
3 
is principal and

1,

(tvG,3) =

G:

(Z.19)

1. Put 90t= (a+b)17) with a,b Ea. Then we have in integers of

(27+3y/39 ix r (8+1)/39) 3
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with c = +n
t 

t E {0,1,2}. Since n 
2 
= flin t

-3
, where n' denotes the conjugate

of n, and since 4. 1 may be absorbed in the cube, we only need to consider

c = 1 and E =n.

Equating coefficients of 1 and ñ in (2.19) in case E = 1, gives

27 = a(a
2
+117b), 3y = 3b(a

2
+13b

2 •

We see immediately that 31a. It is a small step to deduce that a = 3 and

b = 0. This leads to the basic solution

(x,y,m) = (-3,0,0).

When c = e have

27+3y/39= (25+41P) (a+b139)3.

We find that

(2.26 27 = 25a +468a -b+2925ab2+60840,

and it follows that 3Ia and 31b; Insenting a = :3a and b = • in

(2.20) yields the impossible congruence

-2a
3 

= (mod 9),

This completes the proof of the theorem.

REMARK. In [4] and [2] Nagell and Delaunay show that a binary cubic with

negative discriminant represents 1 in at most 3 disinct ways with a few

exceptions, in which there are 4 or 5 such representations. Now solving

(2.11) i.e. the third equation of (2.11)(the cubic involved does not

. belong to any of the exceptional classes), is the same as solving two
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equations of the type •f(x,y) = 1, where the two f's are binary cubics

belonging to different classes. It is clear from the above proof that

one of these cubics represents 1 only once and that the other represents

1 twice. So neither achieves the maximum possible number of represen-

• tations of 1. Consequently, the application of the above mentioned

result does not bring us any closer to solving (2.11)3 completely. This

is the reason why we have chosen to solve equation (2.12)(or rather

(1.8)), given by a cubic inequivalent to the cubic of (2.11)3, but with

the advantage of determining all solutions in one go.
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