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A CLASS OF DIOPHANTINE EQUATIONS CONNECTED WITH CERTAIN

ELLIPTIC CURVES OVER Q(/-13).

by R.J. Stroeker

0. INTRODUCTION

' In the course of trying to construct an elliptic curve with good
reduction everywhere over'an”imaginary quadratic gumber field'K of
small discriminant (if such: a curve exists then fhe class number of

K has to be unequal to 1, see [S5], p. 16), we came across the following

Diophantine equation

(0.1) x3_13y

in rational integers x,y and n (n>0). Some of the solutions of (0.1)
corresvond to elliptic curves over K:= Q(¥-13) with good reduction at
every place, with the possible exception of the prime vﬁ above 2 (cf.
(5], p. 37). Although, unfortunately, we did hot achieve our goal
(i.e. find a curve with good reduction at P as well), we feel that
equation (0.1) is interesting enough in itself to justify a detailed
discussion.

Clearly, equation (0.1) has infinitely many solutions (x,y,n) or no
solution at all. Indeed, if (x,y,n) is a solution, so is (22tx,23ty,n+6t)

for every t € Z, t20. This leads to

DEFINITION. A solution (x,y,n) €123, n20 of (0.1) is called basic iff




x = x‘tz, y=y’t3, n>6t

]

x ,v .t €EZ

It is obvious that a solution is either basic or results from a
basic solution in the above indicated way.

Firstly, we note that any solution (x,y,n) satisfies n=0 (mod 3).
Indeed, this is an immediate consequence of X350,i 1 or + 8 (mod 13).

In the fdllowing sections we shall therefore study the Diophantine

equation
(0.2) x3-13y2 = 123331 = + 1

with x,y,m € Z and y,m20.

The object of this paper is to prove
THEOREM, The Diophantine equation (0.2) has precisely nine basic solutions,

namely

(x,y,m)=(3,0,0) and (6,0,1) in case t=1 and (x,y,m)=(-3,0,0),(-6,0,1),

(-2,4,1),(21,27,1), (1438,1512k,1), (-11,31,3) and (1189,11561,7) in case

-1,

1. TWO LEMMA'S
In this section we shall state and prove two lemmas, which play an

essential part in the proof of the theorem.




LEMMA 1. The Diophantine equation

(1.1) 13x°=(2%49)°-108 x,n € N

has the solutions (x,n) = (1,1),(11,5) and no others.

PROOF. Let (x,n) be a solution of (1.1). Put K:=Q(v3). Then (1.1) may
be written as

NormK/Q(2n+9+6/3) = 13x2.

(1.2) o"4+946v3 = szr(h+¢§)s(a+b¢3)2.

vhere r,s € {0,1}, a and b are rational integers and ¢ is unit of Ok s
the ring of integers of K. Taking norms, we obtain r=0, s=1 and NormK/Qe=1.
Now n:=2-¥3 is a fundamental unit of K. Hence we may take e=ierith

t € {0,1}. In case t=0, we have, by comparing the coefficients of V3

on either side of (1.2)

a2+3b2 = 4+ 2 (mod 8)

and this is impossible. Hence t=1. Now (1.2) becomes

(1.3) + (2%49)46V3 = (2-v3)(4+/3)(a+bv3)2,

where the + signs are independent. Equating coefficients in (1.3) leads to

(1.4, + (2™9) = 5(a®+3v7) - 128D




(1.4),, + 6= -2 (a®4367) + 10 &b

with independent * signs.

The right-hand side of (1.h)1 is positive definite, whence the
+ sign is the correct one. It is easy to check that, in case n=1, (1.4)
is only possible when a=2b and b2=1. This gives (x,n)=(1,1).

Considering (1.h)1 modulo 3 shows that n has to be odd. Thus n>3.
From (1.11)1 modulo 8, we deduce that a is odd and b=2 (mod 4). Combining
this result with (1.h)2 modulo 8 shows that we must have the. - sign in
(1.1),.

Put a=u, b=2v then both‘u and v are odd.

In terms of u and v, (1.4) reads

(1.5),

(1.5), (ou+3v)2430vC = 2771,

Equation (1.5)1 then implies 2n—153 (mod 13) and thus nz5 (mod 12).

Put n=: 5+12T (T€Z,T20).

Consider the number field L:=@(V-39). The class number of L equals
L and(2)=§)9' with prime ideals.%n=(2,6), ~?ﬁ=(2,§) where 6:=3(14/-39).

We write (1.5)2 in the form

(1.6) Norm L/Q(u+v+v9 )=?_‘n.1 , n=5+12T.




Because both u and v are odd, (1.6) implies that

_S,h( 1431) %,.h( 1+3T)

»(u+v+v8) =
Now @h = (2+8) and .p'h (2+8) = (3-9). Hence

utv+vd = % ( 2+9)1+3T or i(3—9)1f3T,

1+3T

because + 1 are the only units in Ci. Now utv+ve = + ( 3-8) gives

8 =14+ 6 (mod 2) since both u and v are odd. This is clearly impossible.

Choosing the sign of u and vrappropriately, we arrive at

utvivd = (2+e)1*3T.

Put £ : = 246, then ( 1.5) takes the form

uvivE = £743T ,
(1.7) (T 2 0)

_ 2h+12T_

13uv 3

It is easily seen that

) ,
- A+1 )N
53 = 143 £ (mod 3 +2), X=1,2;...

Iet T=: 3x-1t, X31. Then

A
A
g WIT_p 143 b s +1E)t5_3k+1t+( 1-3“%)5

and we deduce from ( 1.7) that

)

u—v5—3x+1t ( mod 3X+2) and v=1-3 e ( mod 3}+2)




- + . . . ‘ . e
and thus uv = 1 (mod 3 2). Combining this with the second equation 1n
(1.7) gives

b
M3t = 1 (moa 2

The implica’tibn is that t = 0 (mod 3), since the multiplicative cyelic
group of 'Z3x is generated by 2 for each A=1,2,.. .z

By means of induction it is then easy to show that T = 0 (mod 3 )
f.or all M€ IN. Hence T=0. This given n=5, u=v=1, which leads to (x n)=( 11 5)

This completes the proof of the lemma. | D

LEMMA 2. The Diophantine equation
(1.8)
x3_91xy 4338y =8 x,y €T

has exactly four solutions viz. (x,¥)< 2,0) 5,1),(6,1) and ( -11,1).

PROOF. Let £ € Zlx,y] ve given by f{ X,¥):=x —91xy +338y . The discrimiriant

of f equals —25133. let 6 be the real voot of f (t 1)=0 and put K"‘QX 8)."
. % | 2
Now w:= -46 + 26€0K,the ring of integers of K and 8=-13-10w+u". Hence

K and § w) coincide. The absolute discriminant of K equals -23;13 and
the set {1,(»,«»2} is an q(—basis.

Further, we claim that the unit nN:=1T+9w- & is fundamental. We prove

this as follows. Because 1<p<h,85 let €:= a+bm+cw2 with a,b,c €7Z be

a unit, satisfying

1<e<5 and hence e ergr<n,

5




It -then easily follows that 0<lc|_<_2. Checking all possibilities shows
that only c=-1 satisfies the requirements. This gives €=n. Tonsequently
n is the unit >1 of minimal size.

Finally,(2)= {??Ol with &H= (2+w) and o= ( 15+899-'m2). This gives
us sufficient informatién on the nurber field K to tackle equation ( 1.8)

successfully. We note that {1,0,w also is an ()K-—basis.
let ( x,y) be a solution of ( 1.8). Then

Norm, , (u-v8) = 8

K/Q

for some rational integers u and v. This gives the ideal equation.

(1.9) (u-vg) = @rOLS

with r, s €7, r,sZOandr+s=3.k
We consider the four cases (r,s) =(3,0), (2,1), (1,2) and (0,3)

separately.

T:(r,s) =(3,0).

From ( 1.9) we have
= b3 =
(u-ve) = p~ =(5-8).
Iet a,b,c €EZ bve giveh in such a way that

_ u—‘}9=( 5-8 )( a+bb+c 4.




Then u = v (mod 4). Put u-5v=:ht. It is easily established that
a = -33t+v, b=0t and c=13t. Hence
. ' k
: a+hB+aw = tn , k €7
(1.10) ¢ and :

13b = 9c

.. Considering (1.10) modulo 8, we deduce that 13b=9c can only be satisfied

if k= 0 (mod L4). There are two possibilities to be considered, narely

A
442 T with AN, A>3 and T odd if T # O

and

A . R
2T with XN, 23 and T odd if T # 0.

easy exercise to check that

X .
A A
02 = -2 1430434)(mod 2 T3), A23.

In the first case (11) we have

oy B L A T
a+bB+cw th—.n =+ {1-2 (1+39+3w&} E

# 133-368-52 W){ 1-2>‘1( 143043 @} =

' A
= +{133-360-52w-2 T 1430+3 ) }{ mod 2A+3).

A2

o ‘ +2 At3
Tt now follows from 13b = 9c that 3.2 T = 0 (mod 2 )

. Hence T is even,
which implies T=0. Then k=-l and w,v) = (-11,1).

~ Similerly, in case I2 we find




) A
T A
atbbtcw = £ no | =+ {13 (1430430)}T =

+ {1-2>\T( 1+30+3 w) H mod 2“3).

. . LA+ A+
Again 13b = 9c implies 3.2 2T z 0 (mod 2 3)

. Thus T is even = T = 0.

This gives k=0, (u,v)=(5,1).

I1T: (r,s) =(2,1).

From (1.9) we deduce
(u-ve) = 2
and thus

u-vo= ':t.42nk , k €.

In an entirely analogous way (see I), we deduce that k = 0, making use

of 24 r+2,

A
NS = 1+ 2 (140+)(mod 2 » A22.

This gives ~ (u,v) = (2,0).

ITI: (r,s) = (1,2).

Now we have from ( 1.9)
\ 2
(u-ve) = K)GL
k 2
and thus u-v 6= #n (2+w)(2-6-2w)” , k € Z.
This implies modulo 2 that

u-vh = nk uﬂga ”k( 1+e+u,) =3 ,,k+nk+1 = 1+0+w, because

n = 6+w(mod 2) and W = 1 (mod 2).




Clearly, we have arrived at an impossibility.

1v: (r,s) = (0,3).

Finally, ( 1.9) gives in this case
8) = o =
(u-v8) =0 = (6-09).
Sunpose a,b,c € Z are given in such a way that

u-vo= (6-0) a+hd+c w).

k
atbg+cw= xn , KEZ

(1.11)-gand
26b = 19c.

As in I, we deduce from (1.11) thatk = 0 (mod L).
Making use of
A

A A
£ 142 ( 140+ w)(mod 2 ”), 122

we again find that k=0. This gives (u,v)=6,1).

This completes the proof of the lemma.




2. THE PROOF OF THE THEOREM.
Let (x,y,m) be a basic solution of (0.2). We distinguish between
the following cases, according as m22, m=1 or m=0.
In the first case (m22), we see immediately that x has to be odd.
For otherwise, (x,y,m) would not be basic. Write (0.2) in the form
2.1) (x-312™) (x2+372%x+3%27™) = 13y%,
The only poséible common prime @ivisor of fhe two factors in the left-hand
side of (2.1) is the priﬁe 3. Hence
2

X - 312m = Aa

(2.2){and
: 2

x 4302 32220 = Bb?,

with A,B € Z, A,B20 and squarefree (if # 0), (A,B) = 1 or 3 and a,b ¢Z,
a,b20 with (a,b) =1. Since AB(ab)2 = l3y2, we have AB = 13 in case (A,B)=l

and AB = 9.13 in case (A,B) = 3. From the quadratic equation of (2.2), we

deduce that )
2
(312m)2 -4 (32 m-Bbz) = square
and thus
Bb2—3322m-2 = square .

This gives, because of m22 and the fact that both b and B are odd, that

B = 14272 (mod 8).

Hence B = | or 5 (mod 8). Since B € {1,3,13,39} it follows that B € {1,13}

and consequently (A,B) = |. This leaves the two possibilities

"A=1,B=13 and A= 13, B.= 1.




Put K: = Q(¢) with ¢: = i+i/c§. The second equation of (2.2) may

be written as

NormK/Q(x+312mg) = Bb2, with B = 1 or 13.

Hence
(2.3) xs3127g = n(-1+40) T (=144 (ed)?,
where n is a unit of OK’ r,s € {0,1} and c,d are rational integers.

Taking norms in (2.3) yields:

2 2 2
NormK/Q(n)l3r+8(c +cd+d )2 = Bb,

which implies that we may take n = *+ | in (2.3) - every unit in OK may
be written as * the square of a unit - and (r,s) = (0,0), (1,0) or (0,1).

‘This leaves the following cases to be investigated:

(2.3.1) x+312"¢ n(c+dg)” with n = # 1, A =13 and
2.3.27 %312 = n(-1+4g) (e+dg)” with n =

(2.3.3) x+312m§ n(—l+4g)(c+d9)2 with n =+ 1, A =1 and B = 13.
We first consider (2.3.1). Equating coefficients of 1 and ¢ in (2.3.1)
we obtain, taking also the first equation in (2.2) into consideraticnm,
2 2
X = n(cz-dz) = 3L2m+13a2, y = a(c +cd+d)

(2.4)
m
312" = pd(2c+d).
Now c and d are co-prime, because (x,y,m) is a basic solution. Moreover
d is even and c is odd since m22. If we consider the first equation in
(2.4) modulo 4, we find n = 32 = | (mod 4) and hence n = 1. Then the

third equation modulo 8 gives:




2™ = d(2+4d) = (d+1)%-1 = 0 (mod 8).

Thus m23. Combining the first and the third equation in (2.4) leads

(2.5) l3a2 = (c-d)2-3d2

and consequently, 3|a if 3|2c+d. However, this gives 3|d and hence also

3|c, a contradiction.
Hence 3{2c+d, which implies that 3}d.

Now 2||d, since 4|d would imply (see (2.5)) that

-3 = (c-d)z(mod 8),

which is clearly contradictory. Because of (2.4), the third equation,

we deduce that |d| = 6. Then (2.4) and (2.5) yield:

(2.6) 13a° < (-1.2" 249)%-108.
Considering (2.6) modulo 13 shows that m = 0 or 1(mod 3).

But then 32 = 3-(2(1—1))2 = 3 (mod 7) in case 1 = 1. But 3 is a quadratic

non-residue mod 7. Hence t = -1 and (2.6) becomes equation (1.1) of lemma 1.

Thus (a,m) = (1,3) or (11,7) and this leads to the solutions

(x,y,m) = (-11,31,3), (1189,11561,7).

Next we look at (2.3.2). This time we find

2
x = —n(c’+8cd+3d’) = 3:2™a%, y = a(ci+cd+d?)

(2.7)
3:2™ = n(4c4bod=d?).




The first and the third equation in (2.7) imply that c is odd and d is
even. Also a is odd. Since m22, we have 32‘5 -n (mod 4) and thus n
Considering the first and third equation modulo 8, it is an easy exercise

to show that 2||d and consequently m = 2. Then

32 = c2+8cd+3d2-IZT = c2+8cd+3d2—l21+3(4c2+6cd-d2+121) =

= I3c2+26cd+241 = =21 (mod 13).

However 2 and -2 are quadratic non-residues mod. 13. It is not difficult
to show that (2.3.3.) can be treated in a completely analogous fashionm,
so that no solutions are found in either case.

This completes the discussion of (0.2) in case m22.

We now wish to solve (0.2) in case m = 1, and again the cases 1 = 1
and T = -1 will be treated separately. First, let t = 1. If K: = Q(/~78),

2 2

then the class number &K = 4 and (2)=& , (3) =q, where %) and<% are

prime ideals. We write (0.2), withm =1 and T = 1, in the form

NormK/Q(2333+6y/:7§) = (6*)3.

Thus

(2.8)  (2°3°+6y/778) = P oFOC,

where r,s € {0,1,2} and Ol is an integral ideal of K. Taking norms, we

deduce that we may take r = s = 0, in the ideal equation (2.8). Apparently,
3. .. . . 3 _ Ol ; ..

OU” is a principal ideal, and since ( K.B) = 1, also is principal. Put

OL= (a+bv-78) with a,b €EZ. We have




2333+6y/—78 = (a+b/f7§)3

and equating coefficients of 1 and v-78 yields:

(2.9) 2333 o 23-234ab2 | 6y = 3a’b-78b°.

We see immediately that 6|a and 2|b. Put a = ¢ 6al and b = : Zb], then from

(2.9) we obtain:
2 2
1 al(al 26bl)°
Hence a, = 1, bl = 0 which leads to the soluﬁion

1

(x,y,m) = (6,0,1).

Next, T = -1 in (0.2) with m = 1. Put L: = Q(/78), then{uL =2,
2 . .
(2) =-? , (3) = QF and n : = 53+6/78 is a fundamental unit of L. As 1n

the previous cése. we write
NormL/Q(2333+6y/7§) = (6x)3,

and we deduce, since dkL’3) = | and because of the factorizatiom of

2 and 3, that

(2.10) 233346y/78 = ¢ (a+bv78)>,

where a,b €7Z and € = :nt with t = 0,1 or 2. If we do not specify the sign
of y, it is sufficient to consider only the possibilities € = 1 and € = n.
Let € = 1 in (2.10). As before, see (2.9), we find immediately that a =

and b = 0. This gives the solution

(x,y,m) = (-6,0,1).
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If ¢ = n in (2.10), we find by equating coefficients, noting

again a = 6a,,for some rational integer a,
X —63%+l3b2

3 2 3

(2.11) 3 216a‘+954a b+l404a]b +689b

106a?+468a b+689alb2+338b3.

The last equation of (2.11) has the following solutions (a],b) = (3,-2),

(-4,3) and (35,-26). We also note that a, and b do not have the same parity

1
The substitution ’
l9al+26b

3a]+4b

transforms the third equation of (2.11) into

(2.12) w-91uvi+338vS = 8.

We stress that the substitution used is not unimodular, so that the
number of solutions (u,v) of (2.12) could be different from the number of
solutions (al,b) of equation (2.11)3. In fact, we have to solve (2.12)
under the condition that u and v have the same parity.(See also the remark
at the end of this section.)

Lemma 2 supplies the answer to our question. The solutions (u,v) of

(2.12), where u and v have the same parity are (u,v) = (2,0), (5,1) and

(-11,1). This gives the following basic solutions of (0.2):

(x,y,m) = (-2,4,1), (21,27,1) and (1438,15124,1).

Finally, we are left to solve (0.2) when m = 0. We first deal with the
case vt = 1. Let F: = Q(v-39), t:hen‘e\_F = 4, (2) -%%?z with ?l = (2,31 (1+/-39)),
2 . . .
%’2 = (2,4(1-/=39)) and (3) =] . The ideals ?‘, ?2 and q are prime ideals.

From (0.2) withm=0 and t = 1, it follows that




— .3
NormF/Q(9+y/:39) = 3x

and thus

. r Y,
(2.13) (9+y/-39) = X’.' K’y_?' %SOB

with T aTyes E‘{O,I,Z} and integral ideal OL. on taking norms in (2.13)

- we see that rl+r2 =0 (mod 3) and s 5 | (mod 3). Hence r]+r2 = 0 or 3 and
s = 1. A

We shall treat the three possibilities in turn.

(2.13.1) ‘ =1 in (2.13).

We have

(2.14) (2743yv/-39) = 0(2(9»,,,/539) = (0(()1.)3,
Since (ﬂ?,B) = |, we deduce that q(lis a principal ideal, say QCR = ($a+}bv=39)
with a,b €7 and a = b (mod 2). Inserting the expression for q(ﬂ in (2.14)

and equating coefficients, gives

216 = a(32-|l7b2). 24y 3b(a2—13b2).

It easily follows that a = 6 and b = 0. Hence, the corresponding basic

solution 1is
(x,y,m) = (3,0,0).

(2.13.2) T - 1 in (2.13).

Since y is odd in this case, we have

9+y/-39, _ . 3
=) = Ut




Now ?1 belongs to the same ideal class as (Ol(jl)a

(2.15) 27+3y /39
i ("”m )'\ﬂ(

ML)« (0D = () (O’

The prime ideal ?I is non-principal. However, ?‘q(Jlls prlncupal because

ﬁk=4 and thus 'qu()lbelongs to the same ideal class as (q(ﬂ) which 1s the

principal one. Put ?‘q0‘= (E:E;LEE) with a,b €% and a = b (mod 2).

. 5+/-39 . ..
Since rl = (——=—), we obtain from (2.15) in intepers of F,

(2.16) EALAELAY| =) = 2 ) -

5+/-39. ,27+3yv/-39 a+hy/~39 3
)

Note that the units i.e. + | may be ohsorbed in the cube.

We have, equating coefficients in (2.16):

)
(2.17) 135-117y = aa’-117b%), 27+15y = 3p(a’-13p7).

Clearly 313 and 3|h. Put a = :3al, b = :3b‘. Then elimination of y from

the equations (2.17) yields:

64 = 5a?+ll7nfhl-58531b?-152|b?,

which implies the impossible coneruence

( mod 9).

(2.13. , 1 in (2.13

In this case we have the ideal equation

(9+y/=39) = (2) @lq(ﬂ?,




the conjugate of which is
' 3

- Y- = ) 1
(9-yV=-39) (2) XAZGLOT_ .

This eaquation shows that we are in the same situation as in case

(2.13.2 ) This means that no further solutions of (0.2) with m = 0 and

"1 = | are found,

Finally we consider equation (0.2) with m = 0 and T = -1. Put
C=V= Q(V§§), then-ﬁG =2, (2) = & 2, (3) =¢L2 and n: = 25+4Y39 ié a
fundameptal unit of‘G.

As beforg.we have

NormG/ (9+y/§§) 3(-x)3

Q

and thus

(2.18) (9+v/39) = p* qSUL3.

with r,s € {O,l,?} and integral ideal Ol. Taking norms we find that r = 0
(mod 3) and s = 1 (mod 3)">Hence we may take r = 0 and s = 1 in (2.18).

Multiplication by 012 yields:
(27437/3) = (g O’

and consequently'q’OL is a principal ideal, since Q{CE)3 is principal and
(&C,3) = ]. Put chR = (a+bv/39) with a,b € Z. Then we have in integers of

G:

(3.19) (27+43y/39 = ¢ (a+b/30) °,




) St . 2 3 ’ .
with ¢ = +n , t € {0,1,2}. Since n~ = n'n' °, where n' denotes the conjugate
of n, and since + | may be absorbed in the cube, we onlv need to consider

e =1 and € =n.

Equating cogfficients of 1 and /39 in (2.19) in case ¢ = |, gives

27 = a(a2+117%), 3y = 3b(a’+13b2).

We see immediately that 3}3. It is a small step to deduce that a = 3 and

b = 0. This leads to the basic solution

(x,v,m) = (-3,0,0).

When ¢ = n, we have
27+3y/39 = (25+4¢39) (a+by39) "

We find that .

(2.20) 27 = 2523+468a%b+2925ab2+6084b",

and it follows that 3|a and 3|b: Insenting a = :3a

(2.20) yields the impossible congruence

—2a? = 1 (mod 9).

This completes the proof of the theorem.

REMARK. In'[é] and [2] Nagell and Delaunay show that a binary cubic with
" negative discriminant represents | in at most 3 disinct ways with a few
exceptions, in which there are 4 or 5 such representations..Now solving
(2-11)3 i.e. the third equation of (2.11)(the cubic involved does not

belong to any of the exceptional classes), is the same as solving two




equations of the type f(x,y) = 1, where the two f's are binary cubics
‘belonging to different classes. It is clear from the above proof that
one of thesg cubics represents | only once and that the.other represents
1 twice. So neither achieves the maximum possible number of represen-

. tations of 1. Consequently, the application of the above mentioned

result does not bring us any closer to solving (2.11)3 completely. This

is the reason why we have chosen to solve equation (2.12)(or rather
(1.8)), given by a cubic inequivalent to the cubic of (2.11)3. but with

the advantage of determining all solutions in one go.
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