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A characterization of multidimensional

extreme-value distributions

Laurens de Haan

1. Introduction. One can ask to what extent there is an analogue in extreme-

value theory of the preponderant role which the normal distribution plays

in the limit theory for partial sums of i.i.d. summands. In this note we

prove a characterization of multidimensional extreme-value distributions

similar to a well known characterization of the multivariate normal law.

The characterization of the normal law using the independence of certain

linear combinations of independent random variables fails to have an analogue

for sample maxima.

2. The result. It is well known (Lukacs and Laha [8] th. 2.1.)4) that every

linear combination of the components of a p-dimensional random vector has

a univariate normal distribution if and only if the random vector has a

p-variate normal df. We prove the following analogue for extreme-value

distributions (for information about multidimensional extreme-value

distributions we refer to [3] and Dn.

Theorem. Let X = (X
1' 

X
2' ''

X
p
) be a random vector with non-negative

components and a > O. X has a p-variate extreme value distribution with
_a

for some b
1' ' 

b > 0, P{X
k

_f_x} = exp -(b
k
x) = (I) 

a 
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x) forp 

k = 1, 2, ..., p if and only if every random variable Y of the form

Y = max X a X ..., a X )
1 l' 2 2' pp

with a
k 

> 0 (k = 1, 2, • p) is a multiple of a random variable with

df (I)

a
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X
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• Xl/a) it is clear that it is

sufficient to prove the case a = 1.

First suppose that X has a p-variate extreme value distribution with the

mentioned marginals. Denoting the df of X by G(xl, x2, x 
P
) one then

has (Geffroy [3] Ch. VI, p. 167 s qq
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for all
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1 

> 0, ..., a > 0 (Balkema andp 

Resnick [1] th. 3 and its cor. 2), the distribution of Y is of type (D i.

- Conversely suppose Y satisfies the conditions of the theorem for all
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a
2' 

. • a. Then G satisfies

c(a ..., a)
..., a
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for x > 0 where c(a
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which (Geffroy, loc. cit.) implies that G is a p-variate extreme value

distribution with all marginals of type (D i. ca

Remark. By applying the transformations

and

- -1(T
1' T2' T) = (a

1 
log X1
' 

a
-1 

log X
2' **" 

a log x)

(S1, S2, • -1s) = (-X
T1
' 

-X
1 

.. • -X )

one gets from the theorem characterizations of the extreme value distributions

with marginals exp (_e-x) and exp -(-x)
a 
respectively, which are the two

other classes of one-dimensional extreme value distributions given by

Gnedenko E4].



_3_

Examlole. Let En (n = 0, + 1, + 2, . be independent random variables
+00

with df 0 
' 

Suppose that the sequence fx
n
1
n=-oo 

of random variables1 

satisfies

X
n+ 

= max(pXn,

for some p (0 < p <1) and n = 0, + 1, + 2, . cf. Helland and Nilsen [6]).

It is easily checked that then Xn = max p'3E and hence

j=0,1,2,.. 
n-j

= max(a X a X apXn+p) satisfies the conditions of the
1 n-F1' 2n+2' •••'

theorem for any n and positive p. One could thus call the distribution

of IX r an infinite-dimensional extreme value distribution.
n n=--00

The statement of the theorem can be extended to the domain of attraction

of the extreme-value distributions: the random vector X = (X
1' 

X
2' 

..., X
p
)

is in the domain of symmetric attraction of a simple extreme value distri-

bution (for explanation of the terms "symmetric" and "simple" see de Haan

and Resnick [5] section 3) if and only if every Y of the form given in

the theorem is in the domain of attraction of
1'

3. Other characterizations. We wish to add some remarks about possible other

characterizations. There are two famous characterizations of the normal

distribution by means of properties of linear combinations of independent

random variables: one involves the existence of two stochastically indepen-

dent linear combinations and the other the existence of two different

linear combinations with the same probability distribution (Chapters 5 and

These properties can be formulated as properties of multidimensional
regularly varying functions i.e. measurable positive functions
h(x x ) such that {h(t, t, t)}-lii(tx tx

2' 
..., tx )1'

converges toPa positive limit as t-÷.°° for any positive xi, x2, ... X.
The limit function g(x

1' 
x
2' x ) then satisfies for

1' 
aPg
(
x x

2' 
..., x )

where p is a real constant. It follows from ,he above that h is
regularly varying as a multivariate function if and only if for any
positive a

1, a2' 
..., a the function h(tai, ita2, ta )is

regularly varying as a anivariate function of t.



8 of Lukacs and Laha [8] respectively). The second characterization
(due mainly to Marcinkiewicz and Linnik) has an analogue in extreme
value theory due also to Linnik (see [7] section 2.6): the property
characterizes a much wider class than the extreme value distributions.

We shall now consider a possible analogue of the first characterization
of the normal distribution. A simple argument shows that a characterization
of this sort is impossible in extreme value theory:
Let X

1' 
X
2' X be independent positive random variables and suppose

that for non-negative numbers al, a2, ..., a, b
1' 

b
2' 

b the
random variables

and

Y = max (a X a X ..., a X )1 ' 2 2' P P

Y, = max (131 X1, b2 . ▪ b X
pp

areindeperident.LetG.bethedistributionfunctionofX.for i
Then for all x,y >.O

H(x,y) = P{Yi < x,

▪ P

< y} = G
1 
(min 

' b 
--)•) G (min 

a )—C-.' b 
-))a 

21- 21
1 1 P P

fso that for y
-1
x < min kb a

1' 
b
-1
a2'.." 

• b a ) the df H(x,y) does not1 2  P Pdepend on y. So independence of Yl and Y2 is possible only if the latter
minimum is zero i.e. only in the trivial case that Yl and Y2 are based
on disjoint subsets of the X's.

We finish with the following remark. Let again X1, X2, ..., Xp be independent,
but let now P{X. < x} = exp (-1/x) for x > 0. Let A = 

1
. be a matrix

with non-negative elements and define Y. = max (ail Xl, ai2 p X2, ..., ai Xp)
for i = 1, 2, p. The joint distribution of (Y1, Y2, ..., Yp) then
is a p-dimensional extreme-value distribution but one of special type,
namely the measure occurring in the standard representation for such
functions (see [5] section 2) is concentrated in p points. These points are
taken as the column vectors of a conjugate matrix A* of A in an interesting



paper on the kind of matrix algebra that is relevant here by Cuninghame-
Green [2].
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