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PREDICTIVE MOMENTS OF SIMULTANEOUS ECONOMETRIC MODELS*

A Bayesian Approach

by
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ABSTRACT

Bayesian full-information predictive moments are derived using both

exact and stochastic prior information about the structural and reduced

form of an econometric model. The prior information on the nuisance

parameters (constant terms and covariance matrix) is such that analytical

integration is possible. The prior information on the economically inte-

resting parameters is allowed to be much more flexible, so that numerical

methods are required. The numerical part of the integration problem is

being solved by Monte Carlo methods; compare [12]. In that paper we con-

centrated ourselves on the economically interesting parameters. For

prediction purposes, however, we also need the constant terms. In this

area a number of analytical results can be obtained. These are derived in

the present paper. Small sample results are produced, contrary to the

classical approach and Rothenberg's large sample Bayesian analysis [16].
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1. INTRODUCTION

This paper is part of a larger research project, which deals with

a Bayesian full-information analysis of the simultaneous linear equation

system. Nowadays there are various Bayesian approaches to this problem,

see the recent survey by Rothenberg [17] and the references cited there,

especially Drze (5], Harkema [9], Morales [131, and Richard [15].

A particular difficult problem is the conflict between two - apparently

reasonable - requirements on prior information,i.e., analytical tractability

and richness of prior information. Rothenberg [16, section 6.4] points
out that the class of analytically tractable priors is not rich enough.

The main advantage of these priors is that integration can be performed

analytically. This is important in view of the problems rising when

numerical integration has to be performed in spaces with high dimensionality.

Our objective is to develop methods which are computationally efficient

so that ultimately medium-size econometric models may be handled and

which are flexible enough to allow for a rich set of possible prior

densities on economically meaningful parameters.

We opted for a mixed analytical numerical approach. To reduce the

dimensionality of the numerical integration problem we used analytical

integration on a subset of parameters with non-informative or conjugate

priors. On another subset of parameters, with informative priors, which

are not subjected to many (mathematical) restrictions, we use numerical

integration methods. This enables the researcher to make use of a much

wider class of prior densities than the analytically tractable priors.

Examples of such priors are given in [12, section 31.In that paper we

concentrated ourselves on the economically interesting parameters. For

prediction purposes, however, we also need the constant terms. In this

area a number of analytical results can be obtained. These are derived

in the present paper. We advocate the use of Monte Carlo integration

methods for the computation of posterior moments and marginal posterior

densities. Monte Carlo has the advantage above standard numerical inte-

gration methods, like product rules, that it is easier to work with in

large dimensions.
1 
The application of Monte Carlo to Bayesian estimation

problems was introduced by Kloek and van Dijk [12].

The subject matter of this paper is organized as follows. In section

2 expressions for the posterior moments of structural and reduced form

parameters are derived except for the covariance matrix of the disturbances.

1
For a survey of numerical integration methods see Haber [8].



In section 3,multiperiod predictive moments are derived, following a

suggestion from Chow [2]. In section 4 some remarks are made about

Bayesian approaches to full-information posterior analysis and prediction.

The notation used is a slight variant of Theil's [18] notation of

the simultaneous equation system.

2. FULL INFORMATION POSTERIOR MOMENTS OF STRUCTURAL AND REDUCED FORM

PARAMETERS

2.1. The Statistical Model

We consider the simultaneous linear equation model

(2.1) Yr + XB = U

where the matrix Y consists of n observations on G current endogenous

variables and the matrix X consists of n observations on K predetermined

variables; U is an nxG matrix of unobservable disturbances. The jointly

dependent variables are linked to the predetermined variables and the

disturbances through the GxG matrix r and the KxG matrix B. These matrices

contain constants, some of which are known a priori (see Assumption (5)

below).

Several assumptions are specified with respect to the system (2.1),

partly in order to keep the information processing at a tractable level.

ASSUMPTION 1. I I 0 0.

The determinant of r should not equal zero. So, the reduced form
- -.1

Y = -xBr 1 ur exists.

ASSUMPTION 2. The n rows of U are independently and identically
-

distributed as N(0, H 1), where H is a positive definite symmetric

(PDS) matrix.

We abstract from serial correlation in the structural disturbances. The

matrix H has the interpretation of a precisionmatrixof a multinormal
-1 

process. H is the variance covariance matrix. The PDS requirement on

the variance covariance matrix implies that any identities in the model



(2.1) are removed by a preliminary substitution procedure; compare

Rothenberg [16, Ch. 4, Appendix B].

ASSUMPTION 3. The vectors x' u' u' u' are independentlys' t' t+1'
distributed for any s < t and any t = 1, n.

Here x represents the s-th row of X and u' the t-th row of U. The

predetermined variables are independently distributed of current and

future values of the disturbances.

ASSUMPTION 4. Rank (X) = K < n.

Linear dependence between the columns of X is excluded.

Assumptions (1)-(3) enable us to write the likelihood function of

the system (2.1) as

(2.2) k(Y; x, r, B, H) IH12 1 I 11exp[4tr(0)]

where Irl denotes the absolute value of the determinant of r and Q is
defined by

(2.2a) Q = (Yr + xB),(yr + xB)

Using Assumption (4) we define

(2.3) ft = octx)-1xfY
(2.1)_ = - fir
(2.5)_ W = (Y ANY - Xfi)

Note that II and W are classical (ordinary) least squares estimates, but

that B is a "hybrid" containing estimated elements, II, and unknown

elements, r. We can make use of (2.3) to find

X T(Y - Xi) = 0

If a constant term is present in each equation of the model so that X

contains a column of unit elements to be denoted by 1, (2.6) implies
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(2.6a)_

Furthermore we use

0(Y xfi) = 0

(2.7) Yr + XB = (Y + + x(B

= (y — xi)r + x(B

Now we write

(2.8) = r'wT + (B — —

This factorization will prove useful in the following subsections.

Usually, more information is available then we stated sofar. Plausible

intervals of parameters as the marginal propensity to consume and the

short term multiplier are immediate examples. We will define a rather

wide class of prior distributions on the elements of r, B and H. This
is summarized in assumptions 5 and 6.

ASSUMPTION 5. Some restrictions on the elements of r and B are
known exactly a priori.

Examples are the unit diagonal elements of r following from normali-
zation and a number of zero elements of r and B implied by zero identifying
restrictions.

1 
If preliminary substitution of identities has been performed

(compare the comments on Assumption 2), these unit and zero restrictions

may be replaced by other restrictions. The known parameter values and

other restrictions are substituted in the likelihood function (2.2) and

the prior density to be specified below.

The remaining parameters of r and B are unrestricted. We shall
distinguish between two types: the constant terms (the first row of B,

to be denoted 13') and the economically interesting parameters, to be0
arranged in a vector e. So we can write r = r(e) and B = B( 0, 0)

ASSUMPTION 6. The stochastic prior information available can be
described la the prior density

p(0, 13c' 11) cc p(0)p*(H)

1
We follow the classical approach to identification.



p*(H) is either Wishart or has the limiting form 

p*(H) cc
14(G+1)

No specific restrictions on p(8) are introduced.

It follows from Assumption 6 that our prior information on the
constant terms is (locally) uniform. With respect to H we shall confine

ourselves in the remainder of this paper to the limiting form which is

described by Zellner [19, p. 225 and 226], but we want to emphasize that

generalization of our results to the case of a Wishart prior is straight-

forward. With respect to the economically interesting parameters 8, we

make no specific restrictions in order to retain a maximum amount of

flexibility. Examples of such priors are given in [12, Section 3]. The

reason for the more restrictive assumptions on the priors of the constant

terms and the precision matrix is that they allow us to do part of the

integration analytically and, hence, save a substantial amount on numerical

work. Summarizing our discussion we shall make use of the prior density

(2,9) p(e, f30,11) p(e)1111 — G+1

How restrictive this set of assumptions is, remains to be investigated;

compare also Rothenberg [17, pp. 419 and 420].

Combining the prior density (2.9) and the likelihood (2.2) one obtains,

according to Bayes theorem, the joint posterior density

(2.10.) p(e, H. Y X
-G-1) i n

1 exp[4Itr(QH)]

This density is our point of departure for a Bayesian inference of the

simultaneous equation model.

2.2. A Scheme of Integration Steps 

In subsection 2.1 we started with the formulation of a Bayesian

statistical model for the structural form of a linear system of simultaneous

equations. In subsection 2,3 marginal posterior distributions of subsets

of the parameterset (8, 
' 

H) are derived. We will use a two step0 



integration procedure for this purpose. It may be useful to explain the

sequence of operations, since we will apply these integration steps ex-

tensively.

We will always use the following order in the integration procedure.

Firstly, we integrate analytically with respect to the inverse of the

covariance matrix of the disturbances, H. Here we make use of the properties

of the Washart density function; see Anderson [1, Ch. 7] and Zellner [19,

Appendix BLIn the second step we shall meet a conditional multivariate

Student-t distribution of the vector of constant terms. This distribution

is conditional on the remaining set of structural parameters.
1 
We can make

use of well-known properties of this distribution; see Raiffa and Schlaiffer

[14, Ch. 8.3],As a point of reference for reading the following subsections

a scheme of the integration steps is presented in figure 1.

The starting point is the joint posterior of (6, (3
0' 

H), specified

in equation (2.10). Then the Wishart step and the Student-t step are

shown (together with their equation numbers). Next it is indicated that

Monte Carlo is used in order to compute posterior moments of the remaining

(unknown) structural and reduced form parameters, see subsection 2.4.

Posterior moments of the constant terms can be evaluated using

Monte Carlo results and results of the analytical integration steps.
2
 ,

This is explained in 2.5.

2.3. Marginal Posterior Densities on the Structural Parameter Space

The specification of the prior information on H and (30 enables us to

integrate these analytically out of the joint posterior (2.10). The

regions of integration for H, 130 and 6 are denoted by

1

2

A
1 
= HI H is a G-dimensional positive definite symmetric matrix}

A
2 
= tR

G

One may interchange the order of integration operations and firstly

integrate with respect to the vector of constant terms, by making use of

properties of the multivariate normal distribution. After this, one

integrates with respect to H. The application of this order in subsection

2.5 requires the evaluation of moments which have been investigated by

Kaufman [11].

Posterior first Fder moments of the variance covariance matrix of

disturbances, H- , can be evaluated using Monte Carlo results and

results from Kaufman [11].
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FIGURE 1. SCHEME OF INTEGRATION STEPS

Posterior p(0, , H; Y, X); eq.(2.10)

Wishart step on H

p(8, .(); Y, X); eq.(2.12)

Completing squares and Student-t step on 130 1

p(0; Y, X); eq.(2.21)

4,

Monte Carlo on e

E(0; Y, X); eq.(2.24)

and

E[11/(0); Y, X]; eq.(2.30)

and A3, the set of all 0 vectors. The restrictions on A3 may vary in

different situations and will be discussed in subsection 2.4.

We start with the Wishart step on H and rewrite (2.10) as

(2.11) 
n 1,

p(e, Po, H; Y, X) cc p(0)111-1Q1-2-

x l en-G-1)1_1 2n i
exp[- 2tr(Q11)]

Now it is easily seen that the second line in (2.11) equals a kernel of

the Wishart density W(H; Q-1, n, G) under the conditions n > G and

compare Zellner, loc.cit.. So we have

(2.12) p(e, • 
Y" 

X)
0 = J p(e, f30, H; Y, X)dH

A
l

n

P(0)1r1-1QI-11

IQI >

The density in (2.12) is, except for p(0), of the generalized Student-t

type; see Dickey [4] and Zellner [19, Appendix B51.

As an introduction to the second step, notice that 130 only appears

0;
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in the expression Q, given in equation (2.8). Consider then the following

partitioning

(2.13) Q = r'wr +

_t

13of
B1 - i31

l'X
1 0

X
'1
X
1 

B
1

where = 
01' 02 

...,
OG
) is the first row vector of the matrix B

0 '

and 1 is a column vector of unit elements. We complete the square on 130

as follows

(2.14) Q = r'wr + 030 - -0)n( 0

(130 - )1'xi(B1

+ (B1 - 1730'illX1(B1

= + (Bl - _

(B1 1 
- )'

1 
X1 

0 
- 13.

0

+n[131(;), - + 1- l'X (B - )1'[13' - +1 i'X (B
n 1 1 1 0 n 1 1 1

where N = I - 1/n)11'. Define

(2.15) Ql = r'WT + (B1 - 131)1X;NX1

(2.16)

so that (2.1)4)-(2.16) imply

(2.17)

Now we make use of

(2.18)

IQI = + ntt'l

IQ + ntt'l = IQ 1(1 + nt'QV

For a proof, see Dhrymes [3, Appendix A6]. Using 2.17) and 2.18), we

rewrite (2.12) as

(2.19) p(0, (30; Y, X P(e)IrInIQ114 n(1 + nt'QVt)
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Then we integrate with respect to P. as follows
0

(2.20) p(8; Y, X) = f p(8, ; Y, X)dfio
A
2

' P(0)1 1 11 1

x f I
A
2

1 ( 2(

I -2

1,
+ nt 1 Q-It)-2-d o

1

The integrand in the last line is a kernel of the multivariate Student-t

function p(
' 

f3." 
0
- l'X

1
(B

1 
- B

1
) nQ

7.1 1
' 

n - G) under the conditions
0 n

that Ql is a positive definite symmetric matrix and n > G; see Raiffa

and Schlaifer [14, p, 256-259]. It follows that the integral is a constant,

independent of Ql and that

(2.21) p(e.; Y, X) 0: p(e)Irl I
1

1-2 —1)

So we obtained the posterior density of (e, ,c)), marginal with

respect to H in equation (2.12) and the posterior of 0, marginal with

respect to (H, 130) in (2.21). Notice that when p(8) cc const., equation

(2.12) becomes equivalent to a concentrated likelihood function of (0,

as defined by Hood and Koopmans [10, p. 191]. However, equation (2.21)

differs from the concentrated likelihood function of e.This difference

is the increase in the exponent of Q
1 
by one half.

2.4. Posterior Moments of 8 and II
1
(8)

We are interested in the posterior moments of the structural and

reduced form parameters. For many economically interesting priors, p(8),

these have to be computed using numerical integration methods. It is

convenient, for the computations based on Monte Carlo principles, to use

(2.15) and rewrite (2.21) as

(2.22) p(0; Y, X) cc p(8)K(8; Y, X)

where

(2.23) K(0; Y, X) = IrinIQ114
(n-1)

The first order posterior moments of the structural parameters 0 are
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defined as

(2.24) E(0; Y, X

O(0; Y, X)p(0)d0
A
3
fic(0; Y, X)p(0)d0
A
3

if these integrals exist. Second order moments of 0 are defined analo-

gously to (2.24).

In order to define posterior moments of the reduced form parameters,
without the constant terms, in case a prior is specified on the structural
parameter space, we proceed by considering the reduced form of (2.1),

(2.25)

with

(2.26)

and

(2.27)

and partition 2.25) as

Y = XII + V

--1-v= ur

(2.28) Y = [1. :
• •

111

-"
+ V

where Tf t is the first row vector of II containing the constant terms.0
From (2.26) and (2.28) we can write

(2.29) 11 (0)1

which shows that the elements of iiare functions of 0. Hence, under the
condition that the integrals mentioned below exist, the posterior first
order moments of the reduced form parameters II

1 
read

(2.30
A

(0)K(0; y, x)p(e)de
E[ll(0)] =  r

j (e; Y, X)p(0)d0
A3

Second order moments are defined analogously. By considering the integration
over e, we avoid difficult transformation problems involved in going from
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a distribution on me)5 0" e) 11) to a distribution on the reduced
form parameter set (II, riir,).

The integrals (2.2)-k) and (2.30) exist if the integrands are bounded

and the region of integration is bounded. This imposes restrictions on

K(8; Y, X) and p(8). Some simple sufficient conditions for the existence

of the integrals are discussed in Kloek and Van Dijk [12]. It is argued
there, that K is bounded if W is positive definite, since we assumed

that Irl 0 0; see Assumption 1. The bounded region condition can be
fulfilled by choosing truncated prior distributions. It is a topic of

further research to investigate the restrictiveness of these conditions.

2.5. Posterior Moments of ffo and P.0

For prediction purposes, one may be interested in the expected

future value of a row of Y and its covariance matrix. Then it is necessary
to compute the posterior first order moments of the constant terms of

the reduced form parameters and their covariance matrix. Consider therefore

(2.31) , e) = [r—i(o).]

and the definition of the posterior expected value of Tr'
0

(2.32)

given by

f I f — 0' lp(8, H; Y, X)dHdii. deA
3 
A
2 
A
l 

0 0' 1

= I ffp(O, 5 H; Y, X)dHd
0

P. d8
A
3 
A
2 
A

where p(8, 130, H; Y X) has been specified in (2.10).

We tackle the integration of (2.32) by analyzing the numerator.

One proceeds in the same way as in subsection 2.3. Firstly, the integration
with respect to H is performed. This is the Wishart step; compare figure 1.

In the second step one has to evaluate the first order moments of the multi-
- 1variate Student-t function p(q); , 

X1(31 - n - G). That is

to say, de can write after the W18hart step that the numerator of (2.32) is

_proportional to

(2.33) 11
A
3 
A
2

—1— p(0,
0

A
2

, X)d8d00

-1 •Q1-11
I
2(1 + nt

, 
Qi t)



-1x r p(e) ni (n-

- l'x1 1
(B — )1r—lp(e) r0 n 1 A

3

= - n
A
3

fi Ap(o) I 1
1

1-2

1

de

13

The second proportionality sign in (2.33) indicates that use is made ofthe first order moments of the multivariate Student-t function _of 13 underO'
the condition n G > 1.

Now it follows from (2.6a) that

.3)4)

= l'Y - nw l'X
1
111 = o

Substitution of this result in (2.33) yields the numerator of EN),which is proportional to,

(2.35) 1 (-
A3

1,y _ ,,x )p(e)Irl I :-(n-1)de

The same operations, which were used in the numerator, are applied tothe denominator of (2.32), where the omitted multiplicative constantsare the same. Then one obtains

(2.36) E[ff'(
0

Similarly

(2.37) EN( )J

1=

'YE

'X [11 Co)]

r(e)] itx 
1
(e)]

So we conclude that, once E(8) and E[111(e)] are computed by numericalintegration methods, the posterior expected values of 1T0 and can becomputed in a simple manner.

The computation of the covariance matrix of 7 can be analyzed asfollows



(2.38) cov(Tro) = E(Troff) - E

and the evaluation of the posterior second order moments of 71. proceeds
0

along the same lines as in the case of E(ff
0 
). We start with the definition

(2.39) ( 7r) =

, - ,
'J j j kr

1,
0 

p(e, H; Y, X)dHdii de0 0A A
2 
A
1

f f
A
3 
A
2 
A
1

p(e, 130, H; Y, X)dal ode

where p(e, H; Y, X) is given in equation (2.10). Again we consider

the numerator. The integration with respect to H is performed as before

and in the second step one has to evaluate

2 -(2.40) f (r
-1
 )'[f 

-1 
1 2(1 + nt'Q

1
1 
t 130]

0 0 1
A
3 

A

-1
x r P(e)Irl I

1(

1 -2 n-1 de

The expression within brackets is proportional to the second order moments

• of the multivariate Student-t distribution of 0 
0' 

defined in subsection

2.3 (under the condition n - G > 2). Then we can obtain

(2.41) f (r-1)'
A
3

x

n-G 1
ni(n-G-2) Qi +. to - )]'

-1'xi(B1 ill)1111-1P(0)1rInIQ1 
1)d

As an intermediate step, use equations (2.4), (2.15), and (2.29) so that

(2.)#2
PY-1

= (r -1),
[r,wr+ (B1

= w (Iii 110'xiNx1(E1

'X'NX
1 
(B -

1 1 -

When (2.42) is substituted back into (2.)-1) and when the same operations

are applied to the denominator of (2.39) as to the numerator
1
, we have

(2.43) E(Tr =
0 0 n(n G 2)

n G

.  n G + 
n(n G - 2) WIT - fi1 )'X'NX1 1 1 1

1 
Th

e 
omitted numerical constants for numerator and denominator are the same.
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E[(1 1,y ) (1 -1 rl )]n 
n 11 n n 1 1

where the last term is obtained by making use of (2.)-) and (2.34) in a
similar way as in the evaluation of E(Tr

0 
). Notice that the expectations

in (2.43) are taken with respect to 0.

The covariance matrix of the constant terms of the reduced form
parameters reads then

(2.44) cov(ff n - G n - G W + WITn(n G - 2) n(n - G - 2) 1

+ E(-1- ity - i'x 1-1)'(i'Y - -1 itx )n 11 n n 1

Li i T Y lix
1 
E(n

1 
)1'[l l'Y l i x

1 
E(n

1 
)]n n n 

n - G n G 
n(n G - 2) n(n - G 2) E[011 PX'NX (11- 1 1 1 1

1 ▪ —
n 

„ 
— X

1 
II
1 
- (Ilt)r ""--- X

1 
E(11

1 
)11 1 n 1 1 n 

where all the expectations are taken with respect to 0. The expression
(2.44) can be written in terms of variances, covariances and first moments.
We will not do so, but concentrate on the evaluation of expressions like

(2.45) R = E[Pf(0)MQ(0)]

where the expectation is taken with respect to 0. Let the positive semi-
definite matrix M be mm. •Let P be an mxr matrix and Q an lap<s matrix of
random elements, which are functions of a random vector 0. Let M be inde-
pendent of P and Q. Notice that in our case M stands for X

1
'NX

1 
and

XWX
1 
in and P = Q =

1' 
A typical element of R is

11 

(2.46)
m m

r.. = E( E E p imkhqh )ij
k=1 h=

••

m m
E E 

k=1 h1 
mich[cov(p

= qnj

So the matrix R is computed by simple (albeit tedious) calculations once
1

the i-th column of P and q. is the
j-th column of Q.
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the covariance matrix of P and Q and the expectations of P and Q are
known. A similar statement holds for the covariance matrix of Tr

0.For prediction purposes, we finally want to know the covariance
matrix of the constant terms, Tro, and the other reduced form parameters

1. 
We will discuss the evaluation of these cross moments for a particular

column of II
1' 

say Tr,. Obviously,

cov(ff., 7.
0
1) = E(Tr.ff') - E(Tr).a_  0

The evaluation of E(TriR;) is done in the same way as the evaluation of
E(Tro), except that we carry along now the vector of 71- . Then one obtains,
proceeding along the lines indicated in equations (2.32)-(2.36),

(2.48) E(Tr.Tr') - 1'X )i 0

Using (2.L8) and (2.36) one obtains for the cross moments of d7Ti 
0

(2.49) cov(Trior;) = E(iii)1 ( i 
-1 tX )n

- E( 7r.)

= E(Tri)

+ E(7r.) -1- i tX E01n 1

1
1
— 'X )in

The evaluation of the last term of (2.49) is done analogously to 2.45),
1 except that instead of a matrix M, one has a vector mi =Tc 

, 
Xi.

3. MULTIPERIOD PREDICTIVE MOMENTS WITH STRUCTURAL INFORMATION

Assume that values of the jointly dependent variables will be gene-
rated for the period n+r by the same stochastic economic system as described
in section 2. So we have

(3.1) y' r + x, B = u'n+r n+r n+r

Extending Assumptions (2)-(3) and (5) from section 2, we. can formulate the
predictive density of yilfr conditional upon (xn+r, r, B, H) as1

1
Remember that Ir stands for mod Irl and that r = F(8) and B = B(0



(3.2) p(y •x TBHn+r' n+r,

x exp{-itrUy
n+r
i r + x' BP(y.,!,÷rr + x;14.rB)Hiln+r
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We are interested in predictive moments of yn+r, incorporating
prior information on the structural parameters, i.e., we want to consider
predictive moments, marginal with respect to (0, H) but conditional
on the sample information (Y, X) and the future values of the (truly)
exogenous variables.

We start with considering the joint density of (yn+r, 8, H)
conditional upon (Y, X, x

n+r 
) as the product of the predictive density

(3.2) and the posterior density of (0, f30, H); see equation (2.10). So
one can write

(3.3)

where

P(Yn+r' 8' Y,
, X

n r
)

1141 
len-G)P(e)Ir1 exp[-tr(Q*H)]

* = (yr + Yr + xB) + (44.rr + x;14.1.B
'n+r

+x' B)
n+r

In order to derive predictive moments we will again use a two step
integration procedure. The first step is the Wishart step with respect
to H, i.e., we make use of the properties of the Wishart density function
W(H; Q*-/ G, n). Note that the conditions 1Q*I > 0 and n > G are fulfilled
since the matrix Q given in equation (2.8) is required to be positive
definite and we work already under the condition n > G. Then one obtains

(3.5)
13(Yn+r' e'

which is written as

(3.6)

where

n+r'

P(e)ir1111-1 1 *14(11+1)

Y, X, x114.1. cc p(0)IA
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(3.7) IA' -(n+1) n 1)

= 1(y - xH),(y - xH) x1,14.r11),(y;14.r - )

using H = - Br-1 and (3.4).
' Define now

(3.8) A
1 
= (Y XII)'(Y -

1
and make use of

(3.9)

= Yn+r

I -A + t*t*'
1 = 

A
1
111 + t*'A

1
1 
t
*I

Then we reformulate (3.6) as

(3.10)
13(Yn+r' e'

, X
' 

)x 
n+r- p(e)

1-(n+1)11 
+ t*,A.

1 
t*I- (n+1)

-(n+1)

Conditional upon (0, Y, X, xn+r) we have in (3.10) a kernel of the
-1multivariate Student-t function of yni.r,•p(41.r; AT, n G + 1).

Therefore we have

( 3 , 1 ) Cy ;n+r
n+r

'
Y, X, x = x'

n+r - n+r

under the condition n > G, where the subscript y
+r 

means that the ex-

pectation is taken with respect to yn+r. Furthermore, under the condition

n > G + 1, the covariance matrix of yn+r, conditional upon (e, Y, X,

x
n+r
) is

(3.12) cov(yn+r, n - G + 1 Y X x ) =' ' ' n+r n- G - 1 
A
l

We are interested in moments of y 
, 

marginal with respect to (8, Cis )n+r 0
1 
Notice that A

1 
= r Qr where Q is given in equation (2.8) and that

equation (3.9) corresponds to equation (2.18).
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In case of the expected value of 
yn+r' 

marginal with respect to (e, )
o 'we have

(3.13)
E(Yn+r; Y, X' xn+r n+r) 

= E0,0[Ey 0, ' Y, X, xn+r)]

= x' E
0 

(1)n+r ,
o

In case of the covariance matrix of yn+r, marginal with respect to (8,
0
)
'we proceed as follows

'O n+r ' ' x
n+r

)]
(3.14) cov(yrri.r; x) = E EE (Y Y' n+r n+r e ' 

[x'+r 
E (1-1)]'[x

n+r
' E0 (01n,0

0 0

Now the first integral at the right hand side of (3.1)4) equals

(3.15) E in
= 

G 1 + x' ill
000Ln G - 1 n+r n+r

n G + 1 
n G 1 [(Y - XIINY - XII)] + E (11'x x' II)

0,0 n+r n+r00 0

In the last line above we meet expressions which are computed in a similar
way as described at the end of subsection 2.5 equation (2.45).

If a simultaneous equation system does not contain any lagged
endogenous variables, formulae (3.13) and (3.15) suffice for the expected
value and covariance matrix of the jointly dependent variables for any
period r = 1, 2, Note that for any period beyond the period n+1,
say n+s, the expected value and the covariance matrix of yn+s differ only
in the term x .

n+s
In case lagged endogenous variables are present', one may proceed

as follows
1
; compare Chow [2]. Consider the partitioning

(3.16) x l II = (yin+r n+r-1
_-

z)LD(p. e)o'

where 4.4.r....1 is a kl-vector of lagged endogenous variables and zi!).4.r a
(K k

1
)-vector of exogenous variables. The matrices C and D are appro-

priate submatrices of H. Applying a well-known substitution procedure

1
We treat the case of one period lagged endogenous variables. The
generalization to more periods is straiglorward, see Chow [2].
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v for 
n+r1 n+1

in (3.16), one can obtain
v
- - 5 Yn+r-25 .." ' 

(3.17) , z )E(4.1.1.; Y, X, zn+1, . = y'E(Cr)n+r n

r-1+ z;14.1E(DC ) + z'
+2 

E(DCr-2) + + zn+r' E(Dn 

where the expectation at the left hand side of the equality sign is taken
with respect to 

n+r5 Yn+r-1 5 Yn+1 
(or, equivalently, u

n+r, .."un+1), and the expectations at the right hand side are taken with respect
to f2.0 and 0.

So, for r = 1, the first order moments and the covariance matrix
of the jointly dependent variables, marginal with respect to (0,
can be determined once the posterior first and second order moments of
II are known (equations (3.13) and (3.15) directly apply). Furthermore
when r = 2, the expected value of y' , marginal with respect to (0, s()),n+r
can be determined once the second order posterior moments of IT are known.
Notice that a covariance matrix of 

•yn+2 
requires the evaluation of

fourth order posterior moments of H. For r = 3, one would need to evaluate
sixth order moments, and so on.

4. FINAL REMARKS

We obtained small sample results for first and second order multi
period predictive moments, using prior information on the structural
parameters. The wide class of prior densities allowed makes numerical
integration on a subset of parameters necessary, for which we advocate
Monte Carlo methods [12].

The classical approach to prediction in simultaneous equation
models is limited to asymptotic results; compare Goldberger, Nagar and
Odeh [7]. Rothenberg's [16] Bayesian approach is asymptotic as well.

It is noteworthy that we did not make use of a criterion function,
such as a quadratic loss function, to derive multi period predictive
moments, compare Chow's [2] approach in this respect.

The feasibility of our approach to predictions a long period ahead,
say ten years or more, remains doubtful, especially the computation of
estimates of second order moments. But medium term predictions, say two
or three years ahead, appear worth the (computational) effort. In addition,
it is possible to estimate total multipliers with our approach if one
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wants to obtain an idea about the long run implications of a dynamic

econometric model; see [12].

It appears interesting to compare our approach of allowing richness

of prior information with the non-informative approach of Zellner [19,

Ch. 9]; with the natural conjugate approach of Harkema [A; with the

extended natural conjugate of Dreze [5], Dreze and Morales [6], Morales

[13] and Richard [15].

Further research obviously consists of numerical experiments with

the algebraic results presented here, for instance, with Klein's model I.
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