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PREDICTIVE MOMENTS OF SIMULTANEOUS ECONOMETRIC MODELS*
A Bayesian Approach
by
H.K. van Dijk and T. Kloek

ABSTRACT

Bayesian full-information predictive moments are derived using both
exact and stochastic prior information about the structural and reduced
form of an econometric model. The prior information on the nuisance
parameters (constant terms and covariance matrix) is such that analytical
integration is possible. The prior information on the economically inte-
resting parameters is allowed to be much more flexible, so that numerical
methods are required. The numerical part of the integration problem is
being solved by Monte Carlo methods; compare [12]. In that paper we con-
centrated ourselves on the economically interesting parameters. For
prediction purposes, however, we also need the constant terms. In this
area a number of analytical results can be obtained. These are derived in
the present paper. Small sample results are produced, contrary to the

classical approach and Rothenberg's large sample Bayesian analysis [16].
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1. INTRODUCTION

This paper is part of a larger research project, which deals with
a Bayesian full-information analysis of the simultaneous linear equation
system. Nowadays there are various Bayesian approaches to this problem,
see the recent survey by Rothenberg [17] and the references cited there,
especially Dréze [5], Harkema [9], Morales [13], and Richard [15].

A particular difficult problem is the conflict between two - apparently
reasonable - requirements on prior information,i.e., analytical tractability
and richness of prior information. Rothenberg [16, section 6.4] points
out that the class of analytically tractable priors is not rich enough.

The main advantage of these priors is that integration can be performed
analytically. This is important in view of the problems rising when
numerical integration has to be performed in spaces with high dimensionality.

Our objective is to develop methods which are computationally efficient
so that ultimately medium-size econometric models may be handled and
which are flexible enough to allow for a rich set of possible prior
densities on economically meaningful parameters.

We opted for a mixed analytical numerical approach. To reduce the

dimensionality of the numerical integration problem we used analytical
integration on a subset of parameters with non-informative or conjugate
priors. On another subset of parameters, with informative priors, which
are not subjected to many (mathematical) restrictions, we use numerical
integration methods. This enables the researcher to make use of a much
wider class of prior densities than the analytically tractable priors.
Examples of such priors are given in [12, section 3].In that paper we
concentrated ourselves on the economically interesting parameters. For
prediction purposes, however, we also need the constant terms. In this
area a number of analytical results can be obtained. These are derived
in the present paper. We advocate the use of Monte Carlo integration
methods for the computation of posterior moments and marginal posterior
densities. Monte Carlo has the advantage above standard numerical inte—
. gration methods, like product rules, that it is easier to work with in
large dimensions.1 The application of Monte Carlo to Bayesian estimation
problems was introduced by Kloek and van Dijk [12].

The subject matter of this paper is organized as follows. In section

2 expressions for the posterior moments of structural and reduced form

parameters are derived except for the covariance matrix of the disturbances. °

For a survey of numerical integration methods see Haber [8].




In section 3, multi period predictive moments are derived, following a

suggestion from Chow [2]. In section 4 some remarks are made about

Bayesian approaches to full-information posterior analysis and prediction.
The notation used is a slight variant of Theil's [18] notation of

the simultaneous equation system.

2. FULL INFORMATION POSTERIOR MOMENTS OF STRUCTURAL AND REDUCED FORM
PARAMETERS

2.1. The Statistical Model

We consider the simultaneous linear equation model
(2.1) YT + XB=1U

where the matrix Y consists of n observations on G current endogenous
variables and the matrix X consists of n observations on K predetermined
variables; U is an nxG matrix of unobservable disturbances. The jointly
dependent variables are linked to the predetermined variables and the
disturbances through the GxG matrix I' and the KxG matrix B. These matrices
contain constants, some of which are known a priori (see Assumption (5)
below).

Several assumptions are specified with respect to the system (2.1),

partly in order to keep the information processing at a tractable level.

ASSUMPTION 1. |T| # o.

The determinant of T should not equal zero. So, the reduced form
Y = —XBI'_‘I + UI‘-1 exists.

ASSUMPTION 2. The n rows of U are independently and identically

distributed as N(O, H-1), where H is a positive definite symmetric
(PDS) matrix.

We abstract from serial correlation in the structural disturbances. The

matrix H has the interpretation of a precision matrixof a multinormal

-1 . . . . .
process. H 1s the variance covariance matrix. The PDS requirement on

the variance covariance matrix implies that any identities in the model




(2.1) are removed by a preliminary substitution procedure; compare

Rothenberg [16, Ch. L, Appendix BI.

ASSUMPTION 3. The vectors xé, u!, . ué are independently

ul
t+1° °°
distributed for any s <t and any t = 1, ..., n.

Here xé represents the s-th row of X and u% the t-th row of U. The
predetermined variables are independently distributed of current and

future values of the disturbances.
ASSUMPTION k4. Rank (X) = K < n.
Linear dependence between the coluns of X is excluded.
Assumptions (1)-(3) enable us to write the likelihood function of

the system (2.1) as

1
(2.2)  o(Y; X, T, B, H) « |H]|?"|r| expl-1tr(qH)]

where |F| denotes the absolute value of the determinant of I and Q is

defined by
(2.2a) Q = (Yr + XB)'(YTr + XB)
Using Assumption (4) we define

(2.3) = (x'x)"'x'y

-~

(2.4) - Ir

(2.5) W= (Y - XI)'"(Y - XT)

Note that T and W are classical (ordinary) least squares estimates, but
that B is a "hybrid" containing estimated elements, ﬁ, and unknown
elements, I'. We can make use of (2.3) to find

(2.6) X'(Y - XII) =0

If a constant term is present in each equation of the model so that X

contains a column of unit elements to be denoted by 1, (2.6) implies




(2.6a)

Furthermore we use

(2.7) YT + XB = (Y + XBI™ )T + X(B - B)

(Y - xI)T + X(B - B)

Now we write

(2.8) Q=T'WI+ (B - B)'X'X(B - B)

This factorization will prove useful in the following subsections. ,
Usually, more information is available then we stated sofar. Plausible

intervals of parameters as the marginal propensity to consume and the

short term multiplier are immediate examples. We will define a rather

 wide class of prior distributions on the elements of 'y B and H. This

is summarized in assumptions 5 and 6.

ASSUMPTION 5. Some restrictions on the elements of T and B are
known exactly a priori.

Examples are the unit diagonal elements of T following from normali-
zation and a number of zero elements of T and B implied by zero identifying
i‘estrictions.1 If preliminary substitution of identities has been performed
(compare the comments on Assumption 2), these unit and zero restrictions
may be replaced by other restrictions. The known parameter values and
other restrictions are substituted in the likelihood function (2.2) and
the prior density to be specified below.

The remaining parameters of T' and B are unrestricted. We shall
distinguish between two types: the constant terms (the first row of B,
to be denoted Bé) and the economically interesting parameters, to be

arranged in a vector 6. So we can write T = r'(e) and B = B(BO, ).

ASSUMPTION 6. The stochastic prior information available can be

described by the prior density

p(0, By, H) = p(6)p*(H)

We follow the classical approach to identification.




p*(H) is either Wishart or has the limiting form

pe(u) « [g] 72O

No specific restrictions on p(6) are introduced.

It follows from Assumption 6 that our prior information on the
constant terms is (locally) uniform. With respect to H we shall confine
ourselves in the remainder of this paper to the limiting form which is
described by Zellner [19, p. 225 and 226], but we want to emphasize that
generalization of our results to the case of a Wishart prior is straight-
forward. With respect to the economically interestihg parameters 6, we
make no specific restrictions in order to retain a maximum amount of
flexibility. Examples of such priors are given in [12, Section 3]. The
reason for the more restrictive assumptions on the priors of the constant
terms and the precision matrix is that they allow us to do part of the
integration analytically and, hence, save a substantial amount on numerical
work. Summarizing our discussion we shall make use of the prior density

(2.9) p(6, By,H) « plo)|u] 2(C+T)

How restrictive this set of assumptions is, remains to be investigated;
compare also Rothenberg [17, pp. 419 and 420].
Combining the prior density (2.9) and the likelihood (2.2) one obtains,

according to Bayes theorem, the joint posterior density

1(n-G-
(2.10) p(6, Bys H; ¥, X) « p(6)|H|2(n G 1)|I‘|nexp[—-%tr(QH)]

This density is our point of departure for a Bayesian inference of the

simultaneous equation model.

2.2. A Scheme of Integration Steps

In subsection 2.1 we started with the formulation of a Bayesian
statistical model for the structural form of a linear system of simultaneous
equations. In subsection 2.3 marginal posterior distributions of subsets

of the parameterset (6, By H) are derived. We will use a two step




integration procedure for this purpose. It may be useful to explain the
sequence of operations, since we will apply these integration stepé ex—
tensively.

We will always use the following order in the integration procedure.
Firstly, we integrate analytically with respect to the inverse of the
covariance matrix of the disturbances, H. Here we make use of the properties
of the Wishart density functionj see Anderson [1, Ch. 7] and Zellner [19,
Appendix BliIn the second step we shall meet a conditional multivariate
Student-t distribution of the vector of constant terms. This distribution
is conditional on the remaining set of structural pare.meters.1 We can make
use of well-known properties of this distribution; see Raiffa and Schlaiffer
[14, cCh. 8.3].As a point of reference for reading the following subsections
a scheme of the integration steps is presented in figure 1.

The starting point is the joint posterior of (8, B., H), specified

5

in equation (2.10). Then the Wishart step and the Studegt—t step are

shown (together with their equation numbers). Next it is indicated that

Monte Carlo is used in order to compute posterior moments of the remaining

(unknown) structural and reduced form parameters, see subsection 2.h.
Posterior moments of the constant terms can be evaluated using

' . . . 2
Monte Carlo results and results of the analytical integration steps.

This is explained in 2.5.

2.3. Marginal Posterior Densities on the Structural Parameter Space

The specification of the prior information on H and 8o enables us to

integrate these analytically out of the joint posterior (2.10). The

regions of integration for H, BO and 6 are denoted by

A, {H | H is a G-dimensional positive definite symmetric matrix}

_ oG
A, =R
One may interchange the order of integration operations and firstly
integrate with respect to the vector of constant terms, by making use of
properties of the multivariate normal distribution. After this, one
integrates with respect to H. The application of this order in subsection

2.5 requires the evaluation of moments which have been investigated by
Kaufman [11].

Posterior first order moments of the variance covariance matrix of

disturbances, H , can be evaluated using Monte Carlo results and
results from Kaufman [11].




FIGURE 1. SCHEME OF INTEGRATION STEPS

Posterior p(6, B., H; Y, X); eq.(2.10)

0’
¥

Wishart step on H
¥

p(e: 605 Y: X); eq.(2.12)
¥

rﬁbmpleting squares and Student-t step on BO
¥
p(6; Y, X); eq.(2.21)
¥

Monte Carlo on 6
_ ¥
E(6; Y, X); eq.(2.2h)

and
E[H1(6); Y, X]; eq.(2.30)

and A3, the set of all 6 vectors. The restrictions on A, may vary in

3
different situations and will be discussed in subsection 2.L.

We start with the Wishart step on H and rewrite (2.10) as

1
(2.11) (6, By, Hs ¥, X) « p(e)|r|"q| 2"

1 3 '
< ] o enpl- per(qu)]

Now it is easily seen that the second line in (2.11) equals a kernel of
the Wishart density W(H; Q-1, n, G) under the conditions n > G and |Q| > 0;

compare Zellner, loc.cit.. So we have

(2.12) p(0, Bys ¥, X) = [ (o, 8y, H; ¥, X)aH

&

1
= p(o)|r|"q|™*"

05

The density in (2.12) is, except for p(6), of the generalized Student-t
type; see Dickey [4] and Zellner [19, Appendix B5].

As an introduction to the second step, notice that BO only appears
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in the expressidn Q, given in equation (2.8). Consider then the following

partitioning

B
‘(2.13) Q = T'Wr +-[B1

1™

1 = 3 - . .
where BO (601, 802, ey BOG) is the first row vector of the matrix B
and 1 is a column vector of unit elements. We complete the square on BO

as follows
(2.1h) r'ur + (8, - Bo)n(so - By)'
(BO - Eo)l'X1(B1 - ﬁ-I) + (B1 - §1)'X!]1(BO = go)'

(B, - 31)'X*X (B

%108y - By)

1

1 _Alv _A
T'Wl + (B1 B1) X1NX1(B1 31)

“1 -~ A1
1 _ RY o o— it - tfRr' - RY 4 — !
+ n[BO By + o0 X1(B1 31)] [30 BY + 4t X1(B1
where N =TI - (1/n)11'. Define

1 _Av| _‘A :
(2.15) Q, = T'WI + (B1 B1) X1Nx1(B1 B1)

(2.16) ' =8} - [B) --%,1'x1<31 - 3]

so that (2.14)-(2.16) imply

(2.17) la| = |q, + ntt"

Now we make use of

(2.18) |Q1 + ntt'| = |Q11(1 + nt'Q;1t)

For a proof, see Dhrymes [3, Appendix A6]. Using (2.17) and (2.18), we
rewrite (2.12) as

’ 1 ; _1
(2.19) (6, 803 Y, X) « p(e)[T|?|q|72R(1 + nt'Q]'t) 7"




Then we integrate with respect to BO as follows

(2.20) p(6; Y, X) = p(6, B .; Y, X)dB

By

p(0)|r|[a,| 72>V

0’ 0

1 _ _1
/ IQ]112(1 + nt'Q11t) 2ag
A2

0

The integrand in the last line is a kernel of the multivariate Student-t
-~ 1
: '. v _ L oo
function D( 0 By - @t X1(B1
that Q, is a positive definite symmetric matrix and n > Gj see Raiffa
and Schlaifer [14, p. 256-259]. It follows that the integral is a constant,

independent of Q1 and that

- §1), nQ;1, n - G) under the conditions

(2.21) p(6; ¥, X) « p(o)|r|"|q,|72(m1)

So we obtained the posterior density of (8, BO), marginal with
respect to H in equation (2.12) and the posterior of 6, marginal with
respect to (H, BO) in (2.21). Notice that when p(6) « const., equation
(2.12) becomes equivalent to a concentrated likelihood function of (6, BO)’
as defined by Hood and Koopmans [10, p. 191]. However, equation (2.21)
differs from the concentrated likelihood function of 6.This difference

is the increase in the exponent of Q,by one half.

2.4. Posterior Moments of 6 and H1(6)

We are interested in the posterior moments of the structural and
reduced form parameters. For many economically interesting priors, p(6),
these have to be computed using numerical integration methods. It is
convenient, for the computations based on Monte Carlo principles, to use

(2.15) and rewrite (2.21) as
(2.22) p(6; ¥, X) « p(6)k(6; Y, X)

where

(2.23) k(03 Y, X) = lr[n|Q1|'%(n'J)

~ The first order posterior moments of the structural parameters 6 are.




defined as

J ek(8; Y, X)p(6)as

As

Jx(e; Y, X)p(6)ase

A3

(2.24) E(6; Y, X) =

if these integrals exist. Second order moments of 6 are defined analo-
gously to (2.24).

In order to define posterior moments of the reduced form parameters,
without the constant terms, in case a prior is specified on the structural

parameter space, we proceed by considering the reduced form of (2.1),

(2.25) = XI + V
with

(2.26)

and

(2.27)

and partition (2.25) as

(2.28) [v:x,] ™|
T

where is the first row vector of II containing the constant terms.

From (2.26) and (2.28) we can write
(2.29) m,(6) = -B,(8)[r(e)]”"

which shows that the elements of H1 are functions of 6. Hence, under the
condition that the integrals mentioned below exist, the posterior first .
order moments of the reduced form parameters II1 read

n H1(6)K(9; Y, X)p(e)ae

(2.30) E[H1(e)] =

k(63 Y, X)p(e)de
3

Second order moments are defined analogously. By considering the integration

over 0, we avoid difficult transformation problems involved in going from
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a distribution on (T(6), B(BO, 0), H) to a distribution on the reduced
form parameter set (II, THT'). ‘ ’

The integrals (2.24) and (2.30) exist if the integrands are bounded
and the region of integration is bounded. This imposes restrictions on
k(8; Y, X) and p(6). Some simple sufficient conditions for the existence
of the integrals are discussed in Kloek and Van Dijk [12]. It is argued
there, that k is bounded if W is positive definite, since we assumed
that IP] # 03 see Assumption 1. The bounded region condition can be
fulfilled by choosing truncated prior distributions. It is a topic of

further research to investigate the restrictiveness of these conditions.

2.5. Posterior Moments of Ty 2nd B

For prediction purposes, one may be interested in the expected
future value of a row of Y and its covariance matrix. Then it is necessary
to compute the posterior first order moments of the constant terms of

the reduced form parameters and their covariance matrix. Consider therefore
-1
' = _ @t
(2.31). m(Bgs €) BoLr™ (e)]
and the definition of the posterior expected value of ﬂé is given by

- B'P’Tp(e, B~> H; Y, X)dHAR.de
o A, 0 0 1

(2.32) E(m)) = p(6, By, H; Y, X)dHABd6

2

where p(6, Bys H; Y, X) has been specified in (2.10).
We tackle the integration of (2.32) by analyzing the numerator.

Cne proceeds in the same way as in subsection 2.3. Firstly, the integration
with respect to H is performed. This is the Wishart step; compare figure 1.
V‘In the second step one has tovevaluafe the first order momenté éf the multi-
variate Student-t function p(Bé; éé —‘% 1'X1(B1 - §1),.nQ;1, n - G). That is
to say, one can write after the Wishart step that the numerator of (2.32) is

proportional to

0 Y, X)dedBO

(2.33) [ - BéF_1p(6, B
Ag By

1 1
«- gl solal'2(1 + nt'Q;1t)—2ndBo]
ABLAQ




17 'p(0) 7] ™q, | 72(n=1)gg
0 - %'1'X1(B1 - E1)]P_1p(e)]r]le1,-%(n-1)de

e E - VX = ) Ip(e) | r[ g |72 (m=T g
A | |

n
3
The second proportionélity sign in (2.33) indicates that use is made of
the first order moments of the multivariate Student-t function of Bys under
the condition n - ¢ > 1,
Now it follows from (2.6a) that

Y - (v X1)
(2.3)4) 1! )

b

are the same. Then one obtains

(2.36) Eln}(e)] =% 'Y -'% VX ELI (6)]

Similarly

I RO = - L vvEre)) Lo ae (o))

So we conclude that, once E(6) and E[H1(9)] are computed by numerical
integration methods, the posterior expected values of “O and BO can be

computed in a simple manner,

The computation of the covariance matrix of Ty can be analyzed as
follows




(2.38) cov(m ) = E(w ﬂé) - E(m

. 0 0 JE(mg)

0

and the evaluation of the posterior second order moments of To proceeds

along the same lines as in the case of E(rw We start with the definition

O)'

1
(0, Bp» Hs Y, X)desode

-1 -
f (r™") g ger

ey 3t
(2.39)  E(mgmy) J (6, B, H; ¥, X)auap o
A

37271

where p(e,_BO, H; Y, X) is given in equation (2.10). Again we consider
the numerator. The integration with respect to H is performed as before

and in the second step one has to evaluate

1 -1 =ln
(2.50) £ (TS gesyla |21+ merel ) E g )
A3 A2

1
« 17 'p(0) | r|a, | 725 g

The expression within brackets is proportional to the second order moments
of the multivariate Student-t distribution of 80, defined in subsection

2.3 (under the condition n - G > 2). Then we can obtain

(2.11) f<f”W:ﬁ£5Q1*Wé-%“¥@1-En'
A ) : .
3 o e

< 18y - L (5, - )13 "n(0) 1|7, |2 a

As an intermediate step, use equations (2.4), (2.15), and (2.29) so that

-1

=Ty = =Ty tny B Yrye B -1
(2.42) (r)rer (r=")[r'wr+ (B, - B,) X1NX1(B1‘— BIr

W (ng - m) e (- )

When (2.42) is substituted back into (2.41) and when the same operations

are applied to the denominator of (2.39) as to the numerator1, we have

)= n—G
n(n - G - 2)

.n -G
n(n - ¢ = 2)

(2.L43) E(

1 .
”OWO W

+ E[(n1 - H1) X1NX1(H1 - n1)]

! The omitted numerical constants for numerator and denominator are the same.




_1. 1 .1. 1 l.l l\,,_l 1
+ E[(n 'y - — X1H1) (n "'y -1 X1H1)]

where the last term is obtained by making use of (2.4) and (2.3L4) in a

similar way as in the evaluation of E(ﬂo). Notice that the expectations

in (2.43) are taken with respect to 6.

The covariance matrix of the constant terms of the reduced form
parameters reads then '

L n -G n - G
(2.4k) cov(no) R 57-w + am -G

=y BT - R g (- 1))

+ E(i'l'Y = &'1'Xin1)'<%"'Y "% VX))

1 L vl ey U1
[n 'Y - — X1E(H1)] [n 1 i -ot X1E(H1)]

n-aG n-a_Gg R, _ =
nn-6-2) " *am-o-py El(n - @) xx, (my - my)]

l![E(H'X' u’ X,I.) - E(n")x! iii—x E(m,)]
n ™1 n 11 1771 n 1 1°

where all the expectations are taken with respect to 6. The expression
(2.44) can be written in terms of variances, covariances and first moments.

We will not do so, but concentrate on the evaluation of expressions like
(2.45) : R = E[P'(6)MQ(6)]

where the expectation is taken with respect to 6.

Let the positive semi-
definite matrix M be mxm.

Let P be an mxr matrix and Q an mxs.matrix of

random elements, which are functions of a random vector 6. Let M be inde-

pendent of P and Q. Notice that in our case M stands for X{NX1 and
X%LI'X1/n and P = Q = H1. A typical element of R‘is1

n m
(2.46) .. =E(Z 1 p. q, -) i
k=1 h=1 klmkh hJ .
J
m m

I I [cov(p. . .) + E .)E ; ]
o mepleov(p ., th) (py ;) (th)

So the matrix R is computed by simple (albeit tedious) calculations once

Or Ty = tr[M E(qui)], where p: is the i-th column of P and a; is the
J-th column of Q.
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the covariance matrix of P and Q and the expectations of P and Q are
known. A similar statement holds for the covariance matrix of Ty

For prediction purposes, we finally want to know the covariance
matrix of the constant terms, Moo and the other reduced form parameters
H1. We will discuss the evaluation of these cross moments for a particular

column of H1, say . Obviously,

(2.47) covlny, mg) = E(nny) - E(n; )E(n)

The evaluation of E(ﬂiﬂé) is done in the same way as the evaluation of

E(ﬂo), except that we carry along now the vector of ML Then one obtains,
proceeding along the lines indicated in equations (2.32)-(2.36),
(2.48) E(m.w

1 1
' = — 'y —_ g
O) E(Tri)n 'y E(ﬂi ” 1,X1H1)

Using (2.48) and (2.36) one obtains for the cross moments of m. and U

(2.49) . cov(ﬂi,wb) E(ni)% 'Y - E(ﬂi i~1'X1H1)

1, 1oy
- E(ﬂi) 'Y+ E(ni) 1 X1E(H1)

1 1 .
E(ﬂi) =1 X1,E(H1) - E(ﬂi 1 X1H1)

The evaluation of the last term of (2.49) is done analogously to (2.L45),
except that instead of a matrix M, one has a vector m, = %-1'X1.
3. MULTIPERIOD PREDICTIVE MOMENTS WITH STRUCTURAL INFORMATION

Assume that values of the Jointly dependent variables will be gene-
rated for the period n+r by the same stochastic economic system as described

in section 2. So we have

(3.1) v!

'+ x' B=
n+r n+r

ul
n+r

Extending Assumptions (2)-(3) and (5) from section 2, we can formulate the

predictive density of Yty conditional upon (Xn+r’ r, B, H) as1

! Remember that |T'| stands for mod IT| and that T = r(9) and B = B(BO,G ).




1
P(Y 4ps X > Ts B, H) = [H|?|T|

JH]}

x exp{—%tr[(y£+rr + x£+rB)'(y£+rT + Xﬁ+rB

We are interested in predictive moments of Ypap? incorporating
prior information on the structural parameters, i.e., we want to consider
' predictive.moments, marginal with respect to (6, Bo, H) but conditional
on the sample information (Y, X) and the future values of the (truly)
exogenous variables.

We start with considering the joint density of (yn+r’ 0, BO, H)
conditional upon (Y, X, Xn+r) as the product of the predictive density
(3.2) and the posterior density of (6, Bo» H); see equation (2.10). So
one can write

(3.3) PV 85 By H3 Y, X, x ) @

n+r

p(0) |72 [ 2() oo dr () ]

where

(3.4) Q* = (Yr + XB)'(YT + XB) + (v}, + B)'(y

x! r +x' B
n+r n+r )

1
n+r
In order to derive predictive moments we will again use a two step
integration procedure. The first step is the Wishart step with respect

to H, i.e., we make use of the properties of the Wishart density function
W(H; Q¥7', G, n). Note that the conditions |Q*| > 0 and n > G are fulfilled
since the matrix Q given in equation (2.8) is required to be positive

definite and we work already under the condition n > G. Then one obtains

(3.5) ply

1
mir> 0 B3 Yo X, x ) « p(o) || g2 (1)

which is written as

-1 (n+1
(3.6) P(¥paps 05 Bps Yo X, x ) « p(e)|a]72(n*1)




l—%(n+1) _ .yt l-%(n+1)

(3.7) |a [T |57 | q*

(Y = xm)'(Y - X)) + (y', - x'. 1)'(y H)|—%(n+1)

- x!
n+r n+r

!
n+r n+r

1

using I = - BI ' and (3.Lk).

Define now

(3.8) (Y - Xm)' (Y - xm)

I

] 1]
b'd
yn+r n+r

and make use of1

1

(3.9) |A, + tRexr] = la, ]+ L Wi

Then we reformulate (3.6) as

s 0, BO; stX: X ) o P(e)

n+r

(3.10) (Y4

. 1 1
x ]A1|-2(n+1)|1 XA gr| 72 (nF1)

Conditional upon (6, Bys Y5 X, Xn+r) we have in (3.10) a kernel of the

. -1
3 > 1 . ? : -
multivariate Student-t function of yn+r? p(yn+r, xn+rn’ A1 ,n -G+ 1).
Therefore we have

(3.11) . E (y

) =x' 1
yn+r

> 8, B n+r

Y, X, x

n+r 0? n+r

under the condition n > G, where the subscript Y4y Beans that the ex-
pectation is taken with respect to N Furthermore, under the condition
n>G + 1, the covariance matrix of yn+r’ conditional upon (8, BO’ Y, X,
Xn+r) is

(3.12) | cov(y ,ps 85 Bgs Yo Xy x
We are interested in moments of Ypar? marginal with respect to (6, BO)

1 . -1 - . . . .
Notice that Ay =T ! Qr 1, where Q is given in equation (2.8) and that

equation (3.9) corresponds to equation (2.18).
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In case of the expected value of Yy

S marginal with respect to (e, BO),

we have

) = E [

n+r ’ 6,60 )]

(3-13) E(yn+r§ Y, X, x 50, BO’ Y, X, x

E ntr
Yntr

]
Xn+rEe,BO(H)
In case of the covariance matrix of Yp4p> Barginal with respect to (6, BO),

we proceed as follows

. . - . 1 .
(3.14)  covly,, 3 ¥, Xo %) = EG,BO[E (Vg s €5 Bgo Y5 X, x_ )]

n+r
Yn+r

- [X£+rE6,BO(H)]'[xg+rEe’BO(H)]

Now the first integral at the right hand side of (3.14) equals

[a -G+ 1 . _—
(3.15) EeaBoln e At T et ]|

(Y - xm)"(y - xm)] + Ee,so(n'xn+rxé+rn)
Invthe last line above we meet expressions which are computed in a similar
way as described at the end of subsection 2.5 equation -(2.45).

If.é simultaneous equation system does not contain any lagged
endogenous variables, formulae (3.13) and (3.15) suffice for the expected
value and covariance matrix of the Jjointly dependent variables for any
period r =1, 2, .... Note that for any period bejond the period n+1,

say n+s, the expected value and the covariance matrix of Yoes differ only

in the term x .
n+s

In case lagged endogenous variables are Present’, one may proceed

as follows1; campare Chow [2]. Consider the partitioning
I

e
(3.16) Eoapl = (Vg Z£+r)LD(so,e)

where y) ¢ 1s a k -vector of laggeq endogenous variables and 20, 8

(K - k1)—vector of exogenous variables. The matrices C and D are appro-

priate submatrices of .- Applying a well-known substitution procedure

We treat the case of one period lagged endogenous variables. The
generalization to more periods is straigh”forward, see Chow [2].




for y ces Vi in (3.16), one can obtain

n+r-1° Intr-o°

(3.17) E(y!

ntr> 1> X5 2

- r
- 1
n+i? "°°2 Zn+r) '--'YnE(C )

+ 2! BTN 4 g r=2)

n+1 n+2E(Dc

+ ... !
+z!, E(D)
where the expectation at the left hand side of the equality sign is taken

with respect to Yy . yn+1 (or, equivalently, un+r’ ey

ntr’ Yn+r-1°
un+1), and the expectations at the right hand side are taken with respect
to BO and 6.

5o, for r = 1, the first order moments and the covariance matrix
of the jointly dependent variables, marginal with respect to (6, B )s
can be determined once the posterior first and second order moments of
I are known (equations (3.13) and (3. 15) directly apply). Furthermore
when r = 2, the expected value of y! ntp® Berginal with respect to (g, By )
can be determined once the second order posterior moments of II are known
Notice that a covariance matrix of V4o requires the evaluation of
fourth order posterior moments of M. For r = 3, one would need to evaluate

sixth order moments, and so on.

4. FINAL REMARKS

We obtained small sample results for first and second order multi

period predictive moments, using prior information on the structural
parameters. The wide class of prior densities allowed makes numerical
integration on a subset of parameters necessary, for which we advocate
Monte Carlo methods [12].

The classical approach to prediction in simultaneous equation
models is limited to asymptotic results; compare Goldberger, Nagar and
Odeh [T]. Rothenberg's [16] Bayesian approach is asymptotic as well.

It is note&orthy that we did not make use of a criterion function,
such as a quadratic loss function, to derive multi period predictive
moments, compare Chow's [2] approach in this respect.

The feasibility of our approach to predictions a long period ahead,
say ten years or more, remains doubtful, especially the computation of
estimates of second order moments. But medium term predictions, say two
or three years ahead, appear worth the (computatlonal) effort. In addition,

it is possible to estimate total multipliers with our approach if one
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wants to obtain an idea about the long run implications of a dynamic
econometric model; see [12].

It appears interesting to compare our approach of allowing richness
of prior information with the non-informative approach of Zellner [19,
Ch. 9]; with the natural conjugate approach of Harkema [9]; with the
extended natural conjugate of Dréze [5], Dréze and Morales [6], Morales
[13] and Richard [15].

Further research obviously consists of numerical experiments with

the algebraic results presented here, for instance, with Klein's model I.
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