
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Erasmus University Rotterdam

ECONOMETRIC INSTITUTE

Report 7606/E

SOLUTION OF ECONOMETRIC EQUATION SYSTEMS

BY MEANS OF A MODIFIED GAUSS-SEIDEL PROCEDURE

by A. Kunstman and T. Kloek

GIANNINI FOUNDATION OF
AGRICULTURAL ECOAregICS

'

JUL 1 9 1976

March 1976



SOLUTION OF ECONOMETRIC EQUATION SYSTEMS

BY MEANS OF A MODIFIED GAUSS-SEIDEL PROCEDURE

by A. Kunstman and T. Kloek

Contents

Abstract

1. Introduction and summary

2. Derivation of the method

3. Application to linear systems

4. Application to nonlinear systems

References

Abstract

Page

14

1

10

17

23

The Gauss-Seidel method for solving equation systems is modified

by using certain weighted averages of current Gauss-Seidel values and

corresponding values from the preceding iteration step. This modified

Gauss-Seidel method is shown to converge for all linear systems. It is

relatively efficient for systems with many zeros in the coefficient

matrix. It has also been succesfully applied to some nonlinear econometric

equation systems.

1. INTRODUCTION AND SUMMARY

The starting point of our approach is the well-known Gauss-Seidel

(hereafter G.S.) method for solving linear equation systems.
1 
This method

can be described as follows. Consider a system of n linear equations in

n unknowns, which can be written as

(1.1) Ax = b

1 
For a treatment of iterative methods for the solution of systems of

equations an extensive literature is available. See for example Faddeev

and Faddeeva (1963), Hildebrand (1974) or Varga (1962). For an application

of this method to the solution of econometric systems see Fromm and

Klein (1969); Klein and Evans (1969) or Ball et al. (1975).



•

where A is a given nxn matrix of full rank, b a given n-vector and x an

n-vector of unknowns. Without loss of generality
2 

we can assume that

= 1 (i = 1, n). The matrix A of (1.1) is split up as follows.

(1.2) A = L U

where

(1.3) L=

1 0 0 • • 0-

a
21 

1 0 0

a31 a32 1 0

a
n2 

a • 1
n3

Then can be rewritten as

-Ux=b

G.S. consists of a sequence of computed values x
(1)

on an initial guess x
(o)

, wh
er
e x

(t) 
is obtained by

(1.5)

The sequence x

t) Lb L-1ux(t-1)

• • • , x
(T)

, depending

• x
(t)
, . converges to a finite limit if

U)t -± 0 as t-'-.

as can easily be verified. For an arbitrary system this convergence is

2
The normalized system ( . ) can be obtained from a general linear system

A*x = b* by means of
D-1A.*x = Db*

where D is a diagonal matrix with typical element at., provided that

at. 0 0 for all i. This condition can always be metikr an appropriate
11
oraering of the equations of the system. Normalization implies that for

every variable x. we have an explicit expression in terms of the other

variables (x .1 x. x x )
1' 1-1' i+1, n



3

not guaranteed automatically, because convergence depends on the magnitude
-

of the eigenvalues of L
1 
U.
3
 Reordering of the equations of the original

system and a new normalization in the way of (1.1) can lead to a convergent

process, but there are no general rules with respect to performing such

a reordering.

For that reason it has been our goal to develop a modification of

G.S., which enables the application of the method to every linear system,

even in cases where the original G.S. procedure leads to a divergent

process. An additional advantage is that in the case of a convergent G.S.

process, the speed of convergence can be improved upon. As far as non-

linear systems of equations are concerned, in a number of cases G.S. has

been proven a useful tool as well. For those cases our modified procedure

(henceforth indicated as M.G.S.) can be applied, as well, with the same

useful property that convergence is guaranteed.

In principle, M.G.S. can be applied to every normalized system. For

. a number of these systems, however, the method is inefficient, compared

with, for example, straightforward inversion. This is especially the case

for large systems Ax = b with a full matrix A.

A large class of econometric systems, however, possesses properties

that make them very well suited for the application of M.G.S. These

properties are:

• 4(1) Normalization can be performed, even in the case of non-linearities;

(2) Even.in large systems the endogenous variables are explained by only

a few other endogenous variables (in terms of the linear system (1.1):

the matrix A contains a great number of zero off-diagonal elements);

(3) Many or all equations of the system are linear. In such systems the

relative efficiency of the method is much greater (as will be shown

by one of our experiments).

The order of discussion is as follows. In section 2 the mathematical

formulation is presented. Section 3 contains the results of the application

3
Economists can easily demonstrate a divergent G.S. procedure by drawing
a cobweb diagram. For the conditions for convergence see the references
mentioned in footnote (1). Special conditions on the matrix A ensue that
G.Salways converges to the solution. This is, for example, the case if
A is symmetric or Hermitian and positive-definite. See Faddeev and
Faddeeva (1963).

For econometric systems with nonlinearities the use of G.S. is widespread.
See, for example, Fromm and Taubman (1967), Fromm and Klein (1969), and
Ball et al. (1975).



of the method to a number of linear models and a comparison is 
made with

straigtforward inversion. Finally, in section 4, the method is used to

solve two systems of non-linear equations.

The results, which are qualitatively the same for the linear and

the non-linear examples, can be summarized as follows. First, when 
G.S. was

applied to a specific order of solution, this led to a divergent 
process.

Without any difficulty M.G.S. could be applied, leading to a conv
ergent

process. Second, in an alternative order of solution, G.S. led to a

convergent process. However, the speed of convergence could be conside
rably

improved by application of M.G.S.

(2.1)

2. DERIVATION OF THE METHOD

Consider the following system of two linear equations in two unknowns

x +a x = b
1 12 2 1

a 
1
x
1 
+ x

2 
= b

2

It is supposed that this system has a unique solution, leading to the

necessary and sufficient condition a
12 a21 

0 1. Writing system (2.1) in

the way of (1.)4) we obtain

(2.2)
x
1

x
2

0 -a
12

0 0

Application of G.S. eq. (1.5)) leads to

(2.3

[- 1

a
21 

1 

] -1

b
2

bi

-a
21 

1

a
21

12
0 a a

12 21

x
(t) 

= b -a 
- 
x
(t-1)

1g 1 122

ro -a12

LO 0
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(2.5) x(t) =b -ab-Faax(t-1)
2g 2 21 1 12 21 2

where the subscript g indicates the computation by means of a G.S. step.

A sufficient condition for convergence of the sequence generated by (2.5)

to a finit limit is

l al2 1 1

However, this condition is not necessarily satisfied. In that case G.S.

leads to a divergent process.
5

Now we consider a modified method. Given'some value x
(t-1) 

(2.5) is
2

replaced by

( 2 . 6 )
(t) (t)
x2 = "

22g
 • (. - "2)x2

= {1 - h2(1 - a
12 
a
21 

)x
(t-1)2 

h (b
2 
- a 

lb )

t
that is, by a weighted sum of 

4g 
and x(t-1). A sufficient condition for

2
the convergence of the sequence generated by (2.6) to some finite limit

(c°) .x
2 

is

(2.7) 11 h
2
(1 - a

12
a
21

)1 < 1

It will be clear from (2.7) that not only the speed of convergence depends

on the value of h but also that convergence always can be obtained by an

appropriate choice of
6 h

2° 
Now the speed of convergence is as high as

6

It can easily be shown that a convergent process can be reached by

computing xl by means of equation 2, that is by another ordering and

normalization of (2.1). In that case we have

(1/812)x1 x
2 
= b

1
/a

12
+ (1/a20x2 

= b2/a21x
1

A sufficient condition for convergence is 1( 1/
a12 

)(1/
a21 

)1 < 1; this

condition is automatically satified if 1a12 a21 1 > 1.

Fromm and Klein (1969) indicate the possibility of chosing an h such that

the speed of convergence is increased. Klein and Evans (1969) mention the

fact that an appropriate choice of the weighting factor h2 in a system

of two equations in two unknowns "is capable of converting a divergent

in a convergent path".



possible if h
2 
is chosen such that

or

(2.8)

1 h
2
(1 - a

12
a
21
) = 0

h=
2 - a

12
a
21

1

leading to the solution of x
2 
in the first step of the iterative procedure.

The computation of h2 by (2.8) is not a good starting point, since

its generalization for a system of n equations will turn out to be

computationally inefficient. There is, however, another way to compute

h2' 
that has a useful generalization for systems of n equations. Starting

0) (
with an initial value 

40) 
we obtain from (2.5)

(2.9)

and

(2.10)

(1) . 
b 
2 
- ax2g 

1 
+ a 12a 21x

(o)
2

x(2)
2g

(1)
- 

a21b1 
+ a

12
a
21
x
2g

Subtracting (2.9) from (2.10) leads to

x(2) - x(1) = a a (x(/) - x(0))2g 2g 12 21 2g 2

a a = (x
(2) 

- x
(1)

)/(x
(

1
) 
- x

(o))12 21 2g 2g 2g 2

Instead of the coefficients a
12 

and a
21 

we thus can use the first
(0)differences (x

2g
(2) 

- 
x2g 
(1)
) and 

(x2(g
1) 

- x
2 
) to compute the weighting

factor h
2. 

This result, rather trivial for a system of two equations,

will turn out to be applicable for a system of n equations, as well.

So for a system of two linear equations in two unknowns it has been

proved that M.G.S. always in a few steps leads to the solution.
8 

Starting

with some value x
(o) 

G.S. is used to compute x
1g 
, x

2g 
, x 

(1) (1) (2) 
, and x

(2)
,2 ' 1g 2g

7 If h = 1/(1 - a12a21), formula (2.6) leads to
(t)2
x 

_ 
o (bo - a21b1)/(1 - aloa01), which is nothing but the solution

*ottained ty straightforwara-ii5iersion.
8

This is even the case in the situation were a
1221 

= -1 leading to a
G.S.-process that neither converges, nor diverges.

7



by means of formulas (2.4) and (2.5), respectively. Then h2 is computed

by means of (2.8), using relation (2.12). Finally, (2.6) is used to compute•

x
2' 

whereas from (2.4) we obtain x1 
= x(3).

1g

We next generalize this procedure for the n-dimensional system (1.1).

This system is partitioned as follows

(2.13)

A11 A
12

A
21 

A
22

A
31 

A
32

A
13 

x
1

A
23 

x
2

A
33

x3
••••

1

where A, x, and b are comformably partitioned, such that All is

(i-1) x (i-1) A22 of order lx1 and A33 of order (n-i) x (n-i).

procedure for the solution of the subvectors x1 
and x

2
(where

of only one element) is defined in three stages.
(t-1

First, let the subvector x
3 
be given and let x2 

= x
2

(2.13) we take the subsystem

(2.14)

leading to the solution

(2.15)

A x + 
1 

x + Al3x = b 
1 1 1 1

x
(t) 

= 
1 

A
-1 
[b - A x

(t-1) 
11 1 12 2 

- A
13x] 

= b* -
1

x
2

of order

Now a

consists

. Then, from

-1 x(t-1)

11 12 2

where b* = A [b
1 
- A

13 
x
3 
]. It will be clear that the existence of A

1 11 11

has to be assumed, which is slightly more restrictive
9 than the original

-
existence assumption for A

1 
.

Second, from (2.13) we take the subsystem

(2.16)

Let x
3

(2.17)

where b* = b
2 2

A
21
x +A x + x = b2

2 23 3 2

(t)(t)
given as before. Then x

2

x(t) = b A4t)
2g 21 

is computed from (2.16) as follows

1
x t)- A x = - A

23 3 2

23
x
3' 

and where x
(t) 

comes from (2.15). It has to be
1

9 To our knowledge, econometric equation systems (normalized, with

a. = 1 for all i) satisfy this condition as a rule.



realized that A is a diagonal element of A, equal to 1.

(t 2
Third, x

2 
is computed as a weighted sum; compare (2.6). We replace

(2.17) by

(2.18) x( = h.x(t) + (1 - h )x(t-1)
2g I 2

(
{b= h - A
i 

)1 + (1 - . 
(t-1)

* 
2 1 1 

h
i 2

After substitution of (2.15) we obtain

(2.19 x(t) = h.b* - h.A * -1 x(t-1) 
(t-1)

(1 - hi)x2
2 2 1 

21(b - A
1 11 12 2

-1 -

A21 
b*) + (1 - h. + 

h.A21 
A 

1
)x
(t1)
2

1 2 1 1 1 11 

Then the computation of x(t) and x(t) as an iterative step can be
1 2

summarized as

(2.20)
= 

[ 

[bT 

(t) 
h. b* - A b*

x 1 2 21 1

0 -A-1A
11 12

0 1-h.+h.A A lA
1 1 21 11 12

as follows from (2.15) and (2.19). The sequence generated by 2.20)

converges to a finite limit if

(2.21)

n
-AA

11 12

0 1-h.+h.A A-1
1 1 21 11 12

÷ 0 as n 00

which results in the sufficient condition

(2,22)
-1

11 - h. + .A
1 
A A

1 
< 1

1 1 11 

It will be clear that always a value for hi can be found such that (2.22)

is satisfied. As can be seen from (2.22) the speed of convergence is as

high as possible for a value of h that
1

(2.23)

or

1 - h. + h.A A lA = 0
1 1 21 11 12



(2.24) h. =
1

1 - A
-1
A

21 11 12

1

As indicated earlier, the computation of h. in this way is inefficient,

because it depends on A. 
' 

But the way in which h2 
was computed (see

11 
equations (2.8) and (2.12)) can easily be generalized. Consider formula

(2.19), and suppose that initially h. is taken equal to 1, so that a G.S.

(1).
step results. Then we obtain for x

2g 
and x

(2)
2g

(2.25) x(1) = b* - A
21 
b* + A

21 
A-1A

12 
x(°)

2g 2 1 11  2

(2.26) x(2) = b* - A
21 
b* + A

21 
A-1A

12 
x(1)

2g 2 1 11  2g

Subtracting (2.25) from (2.26) results in

(2.27)

or

(2.28)

x(2) x(1) -1 (1) x(0))
2g 2g 

=A 
21
A
11
A
l2
(x

2g 
-

2

-1 (2) (1) (1) (0)N
A A A = (x -x )/(x•- x )

1 11 12 2g 2g 2g 2

So the value for A21AA12, and therefore 
-1

, 
n be obtained from two

1 

unweighteastepsinthecomputationofx2.0ncell.has been computed the

solution for x
2 
and x

l' 
given x

3' 
can be obtained by means of (2.18) and

(2.15).

Solution of the system as a whole is carried out in a recursive way,

by successively putting i = 2, ..., n. Once the optimal hi has been computed

in step i, it need not be recomputed in step i+1, since it is a constant,

as follows from (2.24). The procedure will be illustrated in detail in the

next section.

Finally, it follows from the construction of the solution procedure

that under the condition mentioned the procedure always converges to the

solution A
-1
b of Ax = b. The proof is by induction and makes use of the

following steps:

(i) a system of two linear equations can be made convergent to a

finite solution by means of an appropriate weighting factor h2; compare

(2.8) and (2.12);

(ii) given the possibility to obtain a solution for the vector x
1

from the first 1-1 equations, a stepwise procedure for the solution of
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x
1 
and x (the i-th element of x) given x

3 
can be made convergent to a

2 
finite limit by means of an appropriate weighting factor hi; compare

(2.24) and (2.28).

3. APPLICATION TO LINEAR SYSTEMS

In this section we shall describe the results of the application of

the M.G.S. method to linear systems. First, the method will be illustrated

by means of two very simple systems, namely of three and five equations,

respectively.

Consider the following system of three linear equations in three

unknowns.

( )

(ii) -2x
1 
+ x

2 
+ 2x3 = 

10

(iii) 4x1 - 3x2 
+ x3 = 20

x
1 
+ 2x

2 
+ 3x3 = 

60
•

The solution to this system is

= x3.= 10

as easily can be verified- Application of G.S. in such a way that lc- is

computed by means of the 
th 

equation results in a divergent process,

as can be seen from table 3.1.

TABLE 3. 1. APPLICATION OF G. S. TO SYSTEM (.1)

Iteration
t =

x
(t)
1

(t) '
x2

(t)
x3

,

1.0 1.0

55.0 118.0 154.0

-638.0 -1574.0 -2150.0

3 9658.0 23626.0 32266.0

4 -143990.0 -352592.0 -481526.0

5 2149642.0 5262346.0 , 7188490.0

To apply M.G.S. two points are to be noted. (i) The variable x. can be

considered only after a solution for xl, x
1

. has been reached,
1-

that holds for the equations 1, ..., 1-1, given the values of x., . , x .
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(ii)AfterthecomputationofxCt),the solution for x x. , from
1'

equations 1, ..., 1-1 has to be adapted, given the new value x.
(0) _ (0) _ 

- 
1

Consider again model (3.1) starting with x
2 

- x
3 

 1.0 we obtain

from equations (3.1.i) and (3.1.ii) the following sequence of values,

10
obtained by G.S. steps.

X(1) = 55.0 x(1) = 118.0
1g 2g

x(2) = -179.0 x(2) = -350.0
1g 2g

Nowthreesuccessivemweightedvaluesof x2 are available, which enables

us to compute h2:

h
2
=

{-1

x(2)
2g -

-4681
= 0.2

117

according to formulas (2.8) and (2.12). Then x(22 is recomputed as a

weighted sum of two successive values

x(2) = h
2 
x(2) + (1 - h

2 
)x(/)

2 2g  2g

= (0.2)(-350.0) + (0.8)(118.0)

= 24.4o

whereas finally we obtain from equation 3.1.

x
(3) = 8.20
1

It has to be noted that x(3) = 8.20 and x(2) = 24.40 is the solution1 2

to equations (3.1.i) and (3.1.ii), given x
(o) 

= 1.00.3
(1) (3)

Now x, is computed by means of equation (3.1.iii given x
1

and x
(2)

: 
-)g

2

10
Here the subscript g is introduced again to distinguish between

G.S. and M.G.S.



(1)
x3g = 60.40

12

Then the process turns back to the computation of new values for xi

and x
2
:

X(4) = -170.0
lg

x(3) = h
2 
x(3) h

2 
)x(2 = -70.64

2 2g  2

where x(3) is obtained by means of equation (3. ii)
2g

x(3) = 10.0 + 2x(4) 
(1) 

= -450.80
2g 1g 3

and finally

(5 = 20.08

(5) _ (3)
Again it can easily be verified that xi - 20.08 and x, -70.64

' (1)
is the solution to (3.1.i) and (3.1.ii), given x

3g 
= 60.4 . Now a new

value for x3 can be computed

(2) 
,

x3g = -272.24

Three successive values for x
3 
are available, leading to the weighting

factor h
3 ( 2 ) ( 1 )

x3g x3g = 0.1515
(1) (0)

- x3x3g

and to the ultimate solution for x

x ( 2 )
3

(2)- h -(1)3x3g • .4. (1 . - "3)x3g.

= (0.1515)(-272.24) (o.8485)(60.40

= 10.00

after which the process returns for the last time to equations 3.1.

(3.1.ii) and (3.1.i) for the computation of xig, x2 and xi. The whole

sequence is given in table 3.2.
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TABLE 3.2. APPLICATION OF M.G.S. TO SYSTEM 3.1)

Elementary
step

h.
1

x
1

x
2

x3

0 ....... 1.00 1.00

1 55.00

2 118.00

3 -179.0o

f

-35o.00a

4 h = 0.2000
2I

24.4 b

5 8.20

6 60.40

7 -170.00

-450.80a

8 . - 70.6413

9 20.08
_272.2)4a

10 h
3 
= 0.1515

10.0013

11 171.28

12 332.56a
b

10.00 ,
I

13 10.00
_

a
Unweighted value, obtained by a G.S. step.

Weighted value.

The iterative scheme for the system of three equations rapidly

leadstoasolution.Ifthecomputationofonevaiuex. 
(t) 

is considered

as one elementary step, where the computation of the unweighted values
(t) (t)
x.andtheirweightedcounterpartx.are taken together, a number ofig
13 elementary steps is needed, apart from the weighting factors h.. As

will be clear, however, the number of steps grows rapidly, when the number

of equations becomes larger, due to the fact that every time a new variable

xi, say, has been computed, the values of xl, ..., xi...1 have to be adapted.

In general, for a system of n equations the number of elementary steps is

given by

(3.2) 2
n+1 

- 3
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This leads to the conclusion that for large systems the method is far

less efficient than ordinary matrix inversion.

There are, however, situations where the method becomes more

attractive. Consider as an illustration the following system.

(3.3)

(i) xl + 9x = 10

(ii) 2x1 + x2 + 3x
3 

= 6

(iii) 3x1 - 4x
2 
+ x

3 
= 0

(iv) 5x1 + 2K2 - 1 3 + x4 = 4

(v) 4x
1 
- 2x

2 
+ x

3 
+ 3x + x5 = 14 

The solution to this system is

x. = 1
1

as can easily be verified. Application of G.S. such that jc.
1 
is computed

by equation i for every i leads to a divergent process. For a system of

five linear equations in five unknowns without zero coefficients M.G.S.

needs t = 2
6 
- 3 = 61 elementary steps, according to (3.2). However, in

the case of system (3.3) effective use can be made of the fact that's,

number of coefficients is zero. It has to be noted that after the computation
(t)

of X all the variables 
Y:1' 

x l are . e to be adapted. It will bel_ 

clear, hOwever, that such an adaptation can be omitted as soon as the

values of 
1 x1' 
x.

1 
are not affected by the value of x.. Such cases

-
arise in the system under consideration, where the variables x

2 
and x_

do not appear in equation (3.3.i), whereas x4 is not contained in the

first three equations (3.3.i - 3.3.iii). This reduces the number of

elementary steps to 19, as can be seen from table 3.3, in which the

results of the computation are summarized. The way in which in this

simple system a considerable saving of computations could be achieved

indicates the way in which larger systems with a great number of zero

coefficients are to be tackled.

To investigate such a system a matrix A of order 25x25 was constructed

in the following way.

(a) The diagonal elements a.
1 
. were put equal to 1.
1

(b) For every element a.. (i j) a random number was chosen from
ij < •

a rectangular distribution between 0 and 1. For a number = 0.95
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TABLE 3.3. APPLICATION OF M.G.S. TO SYSTEM (3.3)
1
Elementary

step
h.
1

x
1

x3 xli.

0 ........ ........ 5.00 5.00 5.00 5.00

1 -35.00

2 61.00

3 349.00

4 -971.00

5 h = 0.0769 -.377900
a

31.40

6 -18.38

7 341.62

8 1097.62

9 - -9868.514

10 19648.69

11 . 8352.15

12 -5313.37

13 93382.02

300642.33a
14 h5 -0.0036

1.00b

15 1.00

16 -25052.44
,

17 1.00

18 1.00

19 1.00

a Unweighted value

Weighted value

the element a.
j 

was put equal to zero, whereas for a numberi 
> 0.95 the value of the element was obtained by means of a random

drawing from a normal distribution, with zero mean and standard

deviation 2.

So about 95% of the off-diagonal elements are zero, not so unlikely a

situation in an econometric model. This matrix was put in the system.

( 3.14 ) Ax =
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where 1 is a column vector of unit elements. By means of computer routines

we tried to solve (3.4) in the following three ways.

(a) Straightforward inversion;

(b) G.S.

(c) M.G.S.

However, to apply methods (b) and (c) as efficiently as possible, the

rows and columns of A were interchanged by means of a simple heuristic algo-

x'ithm in such a way that as much as possible zero elements appeared above and

right from the main diagonal. Furthermore the non-zero elements above

and right from the main diagonal were shifted to the right as far as

possible. One restriction was imposed upon these operations: the diagonal

elements of the original matrix were maintained on the diagonal. It

should be noted that for the application of M.G.S. a vector of indices

was constructed, indicating the order in which the computations are to

be performed. In this way we avoided to test over and over again the non-

diagonal elements.

The results of our computations,
11 

applied to 10 different systems

Ax = 1, are as follows. For the computation of 10 solutions by means of
12

straightforward inversion about 65 sec. were needed. M.G.S. needed

about 85 sec. for the computation of the same solutions. So for sparse

matrices M.G.S. is only slightly less efficient if compared with straight-

forward inversion. For the comparison of G.S. and M.G.S. see table 3.4.

In five of the ten cases G.S. did not lead to a solution because of a

divergent process (nrs. 2, 3, 4, 8, 10). In two other cases (6 and 9)

the results of the computations were exactly the same for both methods.

This was due to the fact that the matrix A, after the interchange of rows

and columns, was triangular, as can be seen from the number of elementary

operations of M.G.S., which was 25.
13 

Finally, in three cases (1, 5 and

7) both methods lead to the same result, apart from differences after the
th .5 decimal. However, G.S. is far less efficient, as can be seen from a

comparison of the number of elementary operations.

11
Performed by means of the I.B.M. 1130 computer of the Econometric
Institute.

1
The inversion routine is based on the well-known Gauss-Jordan reduction
technique.

13
The number of elementary operations for G.S. was 50, because an
additional round had to be performed in order to test the rate of
convergence.
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TABLE 3.4. NUMBERS OF OPERATIONS NEEDRD FOR THE SOLUTION

OF 10 SYSTEMS OF ORDER 25 BY MEANS OF G.S. AND M.G.S.

System
nr.

_

G.S.
a

-

M.G.S.
Number of
elementary

c
operations

Number of
b

Iterationselementary
Number of

operations

1 83 2075 327

2 ...... ...... 30

3 __ -7 345

4 --. -- 282

5 54 I350 38

6 2 50 25

7 28 700 113

8 , ___ _._ 352

9 2 50 25

10 ........ 80
,
a 1 (t) (t-1
The computations were terminated when ix. x.

110
-7xct-1)1 for all i. The results obtained in this way were

up to at least 5 decimals equal to those obtained by M.G.S.

By one iteration we mean the computation of a new vector x.

According to our earlier definition an elementary operation

is the computation of one element x..

4. THE APPLICATION OF THE METHOD: THE CASE OF A NONLINEAR MODEL

For the application of our method to nonlinear systems we used

two economic models, taken from the existing literature.

The first one, a small Keynesian model,
14 

runs as follows

(4,1)

where

(1) 
Cw 

= WN

(2) Cr/P = 10 + 0.6(P -

(3) I/P = 30

(4) Py = Cw + Cr +1

(5) y = 50 + 7N - 0.02 N2

(6) w/P = 7 - o.o4 N

= consumption of profit recipients

14 
This model was taken from Ackley (1961).
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C = consumption of wage earners

I = investment

= employment

P = price level

W = wage level

y = real national income

The wage level is taken to be autonomous, and it is supposed to be 5.

Then the solution to the model is

C = 70

C
w 
= 250

= 30

N = 50

P= 1

w= 5

y = 350

There area number of alternative ways in which the model can be

solved by means of an iterative procedure. Two of these alternatives

were picked out for illustrative purposes. The first one demonstrates

the way in which the convergence speed of a convergent G.S.-procedure

can be increased by means of M.G.S. The solution scheme which needs no

further explanation is given in table 4.1.

TABLE 4. 1. ITERATIVE SCHEME FOR THE SOLUTION OF MODEL 4. 1.

Equation Variable

C
w

5

3

2

(0)
Starting with y = y = 300, the results of the iterations are summarized

in table 4.2. For M.G.S. the weighting factor h was computed at the end

of iteration 2, and thereafter maintained throughout the whole process.

It would have been possible to compute a new h after some iterations,

but we learned from some tests that not much was gained in that way.
15

15
Only one h, related to the last equation of the iterative scheme, has
to be computed, because the rest of the system is recursive.
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TABLE 4.2. APPLICATION OF ORDINARY AND MODIFIED

GAUSS-SEIDEL TO THE ITERATIVE SCHEME

OF TABLE 4.1.

Iteration Value of y 
a

G.S. M.G.S.

2 313.0705 356.8439

4 323.0316 350.6771

6 330.4806 350.0640

8 335.9683 350.0060

9 338.1271 349.9982

10 339.9648 350.0006

20 348.1957

30 349.6829

40 349.9445

.45 349.9768

46 349.9805

47 349.9836

a
The iterative process was terpiriated
when the relative change of y` was
less then 10-'.

As can be seen from table 4.2 G.S. terminates after 47 iterations,

whereas M.G.S. only needs 10 iterations.
16

The second alternative shows a situation in which G.S. did not

converge to the solution. The iterative scheme is given in table 4.3.

The iterations were started with I = I( = 50. The G.S. process was

stopped after a few iterations, because the values of I
(t) 

increased

rapidly, as can be seen from table 4.4. On the other hand, even in this

case M.G.S. converges rapidly to the solution, that is obtained after

17 iterations up to three decimal places accurate. These last results

are not presented here, however, because in this case convergence could

be speeded up by the computation of a new value for h after a number

of iterations. In our example h was recomputed after 4 iterations, which

lead to a reduction in the number of iterations from 17 to 11, as can

be seen from the results as presented in table 4.4.

16
For this case the number of iterations of G.S. and M.G.S. can be
compared directly, because in both procedures every iteration covers
all the equations.
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TABLE 4.3. ALTERNATIVE ITERATIVE SCHEME

FOR THE SOLUTION OF MODEL 4.1

Equation

(

Variable

P N C
w

y

,
C
r

3 x

.

x

6 x x

1 x x

5 x x

2 x x x x

14
,

x x x x x
1

TABLE 4.4. ORDINARY AND MODIFIED GAUSS-SEIDEL,

APPLIED TO THE ITERATIVE SCHEME OF TABLE 4.3

Iteration Value of I a

G.S. M.G.S.

1 150.00000 150.00000

2 950.00000 35.71429

3 7728.94741 32.44898

it 65346.53825 31.17278

5 555095.63334 35.26590

6 ....... 30.17174

8 ......... 30.00565

10 __ 30.00019

11 .......P. 30.00004
-

a 
The iterative process was terT.Wted
when the relqive change of I` / was
less than 10

AS a second example use was made of the Klein III model, a system

of 16 non-linear equations in 16 variables 17 For the specification of

the entire model we refer to the publication mentioned. For our purposes

it has to be noted that the model can be written as a blockrecursive

system. The first block consists of 2 equations, the second block contains

10 equations, whereas finally It equations constitute the third block.

17
This model was taken from Klein (1950). Our solution is for 19140.
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We concentrate on the second block. The iterative scheme is given

in table 4.5. The order of the equations in this scheme leads to an

almost recursive system. Note that both equations and variables have been

reordered in the same way, so that all diagonal (unit) elements have been

maintained on the diagonal. A procedure like this one probably has been

referred to by Klein and Evans.
18 

Note, however, that in a simultaneous model

"the main lines of economic causation" are not uniquely defined. This

last point is stressed, because as will be clear from our results, G.S.

applied to the submodel of table 4.5 leads to a divergent process, which

seems to be in contradiction with the opinion of Klein and Evans. The

difficulties arise because there remain a number of equations which can

be ordered in different ways. For the latter ordering there are no simple

rules. In table 4.5, for example, the last two rows (and the corresponding

columns) could have been interchanged, without disturbing the recursive

character of the remaining equations.

TABLE 4.5. ITERATIVE SCHEME FOR THE SOLUTION OF THE KLEIN III MODEL

Equationa Variable

X D
1

R
1

49

39

4o

45

44

42

41

37

34

35

a
See for the numbering of the equations Klein (1950),
pages 108-110.

8
Klein and Evans (1969) state that for the application of G.S. there is
"no silule. rule for showing in advance how to normalize and order
equations in a model to find convergent algorithms leadin6 to solutions.
We do know, in many applied cases, that convergent patterns easily can
be found, and the one used in the present model does, in fact, converge
readily. If one traces the main lines of economic causation through a
model and then normalizes and orders equations to reproduce this pattern
of causation, it is likely that a convergent algorithm will result."
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The results of our computation are given in table 4.6. The results

obtained by means of G.S. need no further comments. With respect to
(0)

M.G.S. the following can be remarked. Starting with an initial value p ,

values for X, I and H can be obtained. Then, given an initial value

values for r, v, D1, C and Ri are computed, ultimately leading to a new

value for Y. So the equations 45, 44, 42, 41, 37 and 34 form an inner loop,

leading to values for v, D
1' 

C, R
1 
and Y by means of an iterative

process, given the values of X, I, H and p. For the computation of the

variables within the inner loop use is made of a weighting factor h
9.

Once the inner loop has converged, a new value for p is obtained. Then

the process returns to equation 49 and the same procedure starts again.

For the computation of p also use is made of a weighting factor (h10).

It has to be remarked, that the number of iterations could be reduced

here by recomputing h10 during the procedure. In this case h10 was re-

computed after every second step, leading to a reduction in the number of

steps for the computation of p from 19 to 13.

TABLE 4.6. G. S. AND M.G.S., APPLIED TO THE ITERATIVE SCHEME

OF TABLE 4.5 a'b

G.S. M.G.S.

Iteration p Iteration Y P
.. .

1 1.2557 1 62.8700 1.9021

2 14.2053 2 188.8467 1.3412

5 0.0532 3 101.4189 0.8113

lo 0.0837 4 38.8034 1.2778

15 0.2627 5 92.8980 0.9417

20 0.1800 6 52.4107 1.2234

30 4.0940 7 85.8172 1.0807

4o 0.1600 8 68.2117 1.1942

50 0.1602 9 82.0965 1.1686

60 -2.7910 10 78.8916 1.1883

70 0.1354 11 81.3581 1.1875

80 0.7093 12 81.2579 1.1881

90 0.1342 13 81.3346 1.1881'

100 0.0654

a
For M.G.S. only the number of iterations qr the computation
of p are counted. For the computation of Y two iterations were
sufficient in all cases except the first time, where three
iterations were needed.

See next page.
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It can be concluded, that for the solution of non-linear systems

M.G.S. can be a useful tool in all cases where G.S. would be applicable,

but not automatically leads to a convergent process. Instead of searching

for another ordering such that G.S. converges, use can be made of M.G.S.,

where only a reordering of the equations is helpful as far as it depends

on the recursiveness of parts of the system.

References

[1] Ackley, G. (1961), Macroeconomic Theory, The Macmillan Company, New York.

[2] Ball, R.J., B.D. Boatwright, T. Burns, P.W.M. Lobban, and G.W. Miller

(1975), "The London Business School Quarterly Econometric Model of the

UK Economy", from G.A. Renton (editor), Modelling the Economy, Heinemann

Educational Books Limited, London.

[3] Faddeev, D.K., and V.N. Faddeeva (1963), Computational Methods of

Linear Algebra, W. H. Freeman & Comp., San Francisco and London.

[4] Fromm, G., and L.R. Klein (1969), "Solutions of the Complete System",

from J.S. Duessenberry, G. Fromm, L.R. Klein and E. Kuh (editors),

The Brookings Model: Some Further Results, North-Holland Publishing

Company, Amsterdam/London, Rand McNally & Company, Chicago.

[5] Fromm, G., and P. Taubman (1967), Policy Simulations with an Econometric

Model, North-Holland Publishing Company, Amsterdam/London, Rand

McNally & Company, Chicago.

[6] Hildebrand, F.B. (1974), Introduction to Numerical Analysis, McGraw

Hill, New York.

[7] Klein, L.R. (1950), Economic Fluctuations in the United States 1921-1941,

John Wiley & Sons, Inc., New York, Chapman & Hall, Limited, London.

[8] Klein, L.R., and M.K. Evans (1969), Econometric Gaining, The Macmillan

Company, Collier-Macmillan Limited, London.

[9] Varga, R. (1962), Matrix Iterative Analysis, Prentice Hall, Inc.,

Englewood Cliffs, New Jersey.

The computations were terminated when the relative change of both Y
(t)

(t)
and p - was less than 10

-6
.






