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1. Introduction

In 1971 an article was published presenting a new estimator for the

disturbance vector in the linear model, see Abrahamse and Koerts (1971).

This estimator was developed for the purpose of constructing a tabulable

test on autocorrelation in the disturbances, u, of the general linear

model y = X + u.

In a following article, Abrahamse and Lout..er (1971), some properties of

the new estimator were examined and a test on autocorrelation, based on

the new estimator, was evaluated on some examples stemming from the field

of economic time series.

The powers appeared to be high in comparison with those of some competing

procedures.

The test statistic involved is the well-known Durbin-Watson (DW)

statistic, with the least-squares residual vector replaced by the new

estimator. This modification makes the distribution of the DW statistic,

under the null hypothesis of no autocorrelation, independent of the

regressors. This happens because the new estimator, besides being linear

in y and unbiased, possesses a fixed, a. priori chosen, covariance matrix.

Different choices for this covariance matrix imply different estimators.

The estimator is best in the sense that the ."distance" from the (best

linear unbiased). least-squares residual vector is minimized. This

distance will vary, however; if the same estimator (having the same

given *covariance matrix) is used in different sets of data.

In the two basic articles mentioned above, it was suggested that the

quality ofa test based on the new estimator would only be attractive

if the distance from the least-squares residual vector were not too

great. Then it is important to choose the covariance matrix such that,



for the sets of .data where the new estimator is used, the distance

between the least-squares residual vector and the new estimator is small,

on the average.

'Obviously, :the use of the new estimator in a given category of sets of

data would only be relevant if the distance within that category would

show little variation. Of course, in the case of much variation, one

could decompose the category into subcategories and use different

covariance matrices and, thus, different new estimators for the different

subcategories. But this would require the computation of a table of

.significance points for each Subcategory. In factthere is no end; one

could go so far, as to define an estimator for each particular set of data,.

which would then equal the least-squares residual vector. And this is

precisely what we do not want. For instance, when we want to test for

autocorrelation in economic time series problems, we prefer to use a

standard procedure with one single table of significance points: Evidently,

there should be a sufficient amount of regularity in the behaviour of

regressors ("X-matrices") in order to form a category in the above sense.

Now it was known that economic time series contain some regularity and

in Abrahamse and Koerts (1971) a particular new estimator was given which

should be close to the least-squares residual vector in problems involving

economic time series. This estimator was specified by fixing its

covariance matrix in such a way that the DW statistic based on this

estimator has the distribution of the Durbin-Watson upper bound.

For some examples, the powers of an autocorrelation test based on the new

estimator have been given in Abrahamse and Louter (1971), and they were

,compared with the corresponding powers of some customary test procedures.

In these examples, the powers of the new test appear to be relatively high.

In the course of time, we have collected several .X-matrices appearing in

econometric literature and we have used them to compute powers of the 'new

procedure and of competing procedures. The almost unanimous result is that

the new procedure is superior to the BLUS procedure and also to "Durbin's

exact alternative to the bounds test". These results are published in

P-1-,belman (1972).



Now l' Esperance and Taylor (1975). have written an article in which they

come to quite different results There are many inconsistencies between .our

results and those by l' Esperance and Taylor. Some of them, in particular

those referring to Durbin's exact test, are probably due to an incorrect

derivation of the formulae needed to compute powers. Most of them, however,

can be explained by a basic difference in experimental design. Whereas we

always took X-matrices from the literature, l' Esperance and Taylor generated

X-matrices by simulating columns from a first-order autoregress.ive scheme.

We believe that the particular scheme used by l' Esperance and Taylor is

•not 'capable of generating series having the basic characteristics of economic

time series The line of our article is as follows - In Section 2, We first

make critical remarks on some propositions and derivations appearing in the

article by l' Esperance and Taylor and, accordingly, we correct some errors.

All five tests we are considering can be brought into a general framework.

This is done in Section 3.1 by defining a general test statistic Q which

serves as a parameter for selecting the particular test from the general_

framework. In Section3,2 the distribution of Q is discussed, in particular

the. way in which power functions can be computed. In fact, this section

contains a concise summary of known results and brings in only a few new

elements. We feel that it is now time to give such a-summary,

In Section 4, the qualities of the tests are considered from a theoretical

point of view. In Section 5, we discuss the typical characteristics of

sets of data consisting of economic time series and a design to generate

such kind of data is proposed. Finally, in Section 6, the results of a

number of power calculations for five tests, based on this design, are

presented. The results appear to affirm the conclusions mentioned in

Abrahamse and Louter (1971) and, accordingly, the conclusions drawn by

Esperance and Taylor should be revised radically.

2. Comments and corrections on the article by l' Esperance and Taylor

(i) On page 2 of their article, Esperance and Taylor (to be called

"the authors" henceforth) claim to review an alternative BLUE approach

to derive the AL estimator. However, their approach is not really an

alternative. The derivation they give is incomplete and contains a



superfluous part, namely, that where the Lagrangian multipliers are

used. The result in their formula (14),

= -BtX(X'X)-1X' = 0

follows immediately from the restriction B'X = 0 given in (8) (I).-

Thus, the interjacent derivation is redundant. The rest of the

authors' proof, as far as it is presented, has already been given in

Abrahamse and Koerts (1971). Formula (3) should read KK' = Q.

.•
At the bottom of page 5, the authors make the proposition that any

BLUS estimator entails a loss of degrees of freedom so that, for

small samples, the testing procedure would become less powerful. This

proposition rests on a misconception. Both a BLUS estimator and the

least-squares residual vector possess (T-k)-dimensional distributions.

That this is true for the least-squares residual vector can

immediately be concluded by considering the rank of its covariance

• 
matrix a

2
 [I-X(X'X)

-1
X'], which equals T-k. Thus, both estimators

have the same number of degrees of freedom.

(iii) At the top of page 6, the authors say that, if K is specified as a

subset of eigenvectors of A corresponding to the k' smallest non-zero

eigenvalues of A, then the probability distribution of the DW-

statistic based on the AL estimator is the same as that of the DW

upper bound. This is not true as can immediately be concluded by

considering the rank (T-k). of K. In fact, it was shown in Abrahamse

and Koerts (1971) that, for this purpose, K should contain eigenvectors

corresponding to the T-k largest eigenvalues of A.

v) According to the authors, the eigenvalues of A would be

2[1-cos (7j/T-1) 1, j = 0, ..., T-1. In this formula -1 should be

omitted, see (2) in the present paper.
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In their Alipendix, the authors say to derive the power functions of

three test procedures. This suggests that they were not aware of the

fact that the procedure outlined in Abrahamse and Koerts (1969) is

completely general. It is obvious that the formula (A- q*E)C 1 QC
5.

which is denoted by (3.)4) in that article, and which refers to

formula (2.4) in the same article:

Q* u'CAC'u

u T CEC'u

u N(0, Q),

is valid for any matrix C, provided C is independent ofy
1
 . Q*. is the

DW statistic based on a disturbance estimator Ciy. Thus to compute•

powers for the exact DW test, the only thing one has to do is to

replace C by

M = I-X(X'X

For the AL estimator one should choose

C•= .K(K'MK)-4K'M,

and so on. If Q is replaced by the identity matrix I, one obtains

significance points:

This method has been used to compute powers and significance points

for BLUS, DW's exact test, and other procedures in several of the

articles mentioned in the reference list, Thus, the derivations by

Esperance and Taylor do not add new results.

i) Because the procedure of approximating power functions is so general,

the procedure for Durbin's exact alternative was not spelled out in

Abrahamse and Louter (1971), though, in that article, it is mentioned

that the power has been computed for certain cases. Perhaps this was

an unwise decision because it may be a problem to write Durbin's

In the rest of this article, the symbols C and Q are no longer used in
this sehse. They are replaced by the symbols B and r, respectively.
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estimator as a linear form in y. Whatever it may be, the derivation

given by l' Esperance and Taylor in their Appendix (c) is incorrect

and, consequently, their power computations are wrong. They slip

in assumingequivalent distributions for Durbin's transformed •

disturbances z and "*. as defined in their formula (48), while this
is only true under the null hypothesis of no autocorrelation, as

Durbin has shown. In particular, formula (56) is senseless, since

it is independent of the regression matrix, which is impossible

because, then, the power function would be independent of the

regression matrix.

In this connection, the difference between the results for Durbin's

exact test for X = 0.1 and X = 0.7 as presented by the authors in

their tables is inexplicable.

In the appendix to the present article Durbin's implied estimator

is Written as a linear form in y.

(vii) In the summary of their article, the authors mention that the parameters

of their regression model are presumed to be .known. The sense of this

is not clear since the power functions of all test procedures

investigated are completely independent of the parameters. The .fact

that the authors always mention the --parameters explicitly in the

heads of their tables suggests that they influence the results, which

should apparently be untrue, see our Section 3.2.

3. The fcrm and the distribution of the test statistic Q

3.1. Definition of a

• It is assumed that y has a normal distribution with mean XP. and

covariance matrix a
2r, where X is an n x k matrix with rank k, specified

by observation, where is a k-element vector of unknown constants,
2 .

a is an unknown scalar constant, and r is the n x n matrix



(1)

-1 
= 

1 
2

1 -p

• 2
P
3

2

n- n-2 n- n-4
P P P

0

0

• • •

-p 0 0 ... 0 0

1+p
2 

-p 0 . 0 0

-p +p -p ... 0 0

• • 1+p -p

-p 1

5

We wish to test for H
0 
(the null hypothesis): p = 0 against HA 

the alternative
. 

hym7ithesis): p > 0. We consider five tests, all of which have. a critical

region of the form 1
)

(Wy)TA(B l y) 
=< q

(B'y)'E(B'y)

for some matrix B, where q is determined by Pr N

level of the test. Here A and E are the matrices

A =

• • •

• • •

• •

••

-1

1

the significance

-1
and E = 

where 1. = [1 1 • 1]'. The order of A and E is n .x .n in all tests but

the BLUS test, where the order is (n-k) x (n-k). Usually, most of the tests

undr. consideration are not defined with E in the, denominator of Q. However,

we restrict the present analysis to X-matrices. including a constant term, and

1)
When testing against II p <'0, the critical region has the form Q > q with

determined by Pr N < q H = 1 - a.



in this case E can be inserted, since the constant term implies EB' = B',

as we shall see. The matrices A and E are related as follows:

A=Ii*

d 0
1

0 d

• • •

• • •

0 0 d 0
3

•

0
•

0 ▪ d 0
n-1

0 0 0 • 0 d
n

ll*' E=H*

0 0 0 0

o 1 0...0 o

0 0 1

•

0 0

0 0 0 •••

0 0
•
•

0

where H*' = , D is the diagonal matrix with i-th diagonal element

(?) d. = 2 El - cos ff(i-1)/n}i

so that we have 0 = d
1 

< d
2 

d
n 

4, and where the -th element

*
of h
'
. the i-th column of H*, is

* i.\
h. u) = c cos{ff

It is easily verified that AE = A..

1771—
c if i = 1

V 2 .
c = if = 2,3, .

As we just said, five tests will be considered, which are denoted by the

abbreviations: test (D-W), test (BLUS), test (A-L), test (DURA), and•

test (sel). The matrices B' in these tests are as follows:

test (D-W) B' = M = I(n) - X(X 1 X)
-1

X'. This is the well-known exact Durbin-

Watson test, based on a. M'y.

test (BLUS) B' = (PMJ)-2PM, where J is an n x (n-k) matrix obtained from

I
(n) 

by deleting k of its columns. This test is based on the

BLUS estimator of J'u. The matrix J is chosen in accordance

with the selection device given in Theil (1971), p. 218. See

also Appendix A.

test (A-L B' = K(K'MK)-2K'M, where K is the n x (n-k) matrix
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[h* h* . • h*]. This test is based on the new estimator
k+1 • k+2 •

of u, which was introduced in Abrahamse and Koerts (1971).

- --
test (Du)B' = KK'EI -X(X'KK'X) 1

X'KK' + XP
1 
P'P'1M, where K is equal
2

to K in test (A-L), X is the n x (k-1) matrix obtained from

X by deleting the constant term column, P is the n x (k-1) matrix

[h h... :h
k
*LandP

1 
and 

P2 
are lower triangular matrices2' 3* 

_ _ 1 I _
such that P

1 
P = X'KK'X) and P

2 
P' = (P MP) . This is Durbin's2

exact alternative to the bounds test, liqtroduced. in Durbin (1970).

The formula of B' has not been given by Durbin, but it can be

derived from his formula for the calculation of z, the vector

of regression residuals, see Appendix B. The above formula has

been presented and used in Dubbelman (1972).

test (sel) B' is equal to B' in test (A-L) apart, incidentally, from the

specification of the n x (n-k) matrix K. In this test K consists

of n-k h*-vectors which are selected after the X-matrix has

become known. The selection device has been introduced in

Dubbelman (1972). It reads: compose K of those n-k vectors ht

for which ht'Mh
'
t i = 1,2,..., n, takes the greatest values.
.1 

For instance, when X contains a constant term, then hl"Mh = 0

and K does certainly not include 
h*. 

Quite often, test (sel) and
1 

test (A-L) coincide.

Test (BLUS) is defined with E in the denominator of Q. In all other tests

E can be omitted, since E.B' = Bl. (Note that i'M = 0 since X'M = 0 and

X contains and that l'K =. 0 since i = Vi-ih* and h* t ht = 0 for i = 2,3, ...,n.1 1

Note also that B'X = 0, in all five tests.)

3. . The distribution of Q

The probability distribution function of Q is

F(q) = p (Q [ y'BAB.'y 

y!BEB'y 7-

= Pr Ey'BAB'y < q y'BEB'y = Pr y'B(A-qE)B l y < 0]
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where y-- N(X13,a
2
r) and B satisfies B'X =. 0. Let. us define F and A by •

B'I'B = FAF' such that F'F = I and A is diagonal and nonsingular. In other

words, the diagonal elements of A are. the nonzero (positive) eigenvalues

of B'FB and the columns of F are the corresponding eigenvectors. Denoting

the space spanned by the columns of a matrix X by MOO, .we have M(F) =

1V(FA2) = WFAF') = 1V(B'FB) =11/(B'), since both A and r are nonsingular.

Hence, the vector B'y lies in Irt/(B') = /4(FA2), while .the columns of FA2

form a basis of this space. It follows that B'y = FA2v for some unique

vector v for given y. We obtain

F(q) = Pr [v AFt(A_qE)FA2v < 0

where v = A CFIBIY N(0,aI). Writing A2F'(A-qE)Fe = H A H' with

1
H' = H- and A diagonal, and defining z = we have

a

(3) F(q) = Pr [z' A z < 0] = Pr [EX-i
Z < 0

where z N(0,I) and the A. are the eigenvalues of A2P(A-qE)FA2. Below
i

it is proved that the nonzero Ai are the eigenvalues of S'B(A-qE)B'S,

where S is a square matrixsuch that SS! = F. For instance, given r in (1),

One may take

2

0 0 ... 0 0

0 ... 0 0

ap a ... 0 0

p
n-1 n-2 

apap • • •

a=
2

-P

Under H
0. 
• F = I, the calculations can be simplified, as we list below. "

From B'FB = B'SS'B = FAF' it follows that B'S = FA2V T, •since

AAB'S) = NB'SS'B) =M (FAF') = MFA2), and V satisfies V'V = I, since
•

B'SS'B = FA2V'VA2F' = FAF' where F'F = I and A-2 exists.
1 1

Then S'B(A-qE)B'S = VA2P(A-qE)FA 2V' = (VH)'A (vii)' where (VH)'(VH) = I,

so that A contains all nonzero eigenvalues of S'B(A-qE)B'S. In a1,1 tests,
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the calculation of F (qIHA) requires the complete calculation of the

matrix S T B(A-qE)B'S and the determination of its (at most n-k) nonzero

eigenvalues. In test (D-W), the calculation of F(q1H0) requires the

determination of the eigenvalues of M(A-qE)M (here B' = M and S = I),

'so that the distribution depends on X by means of M. In test (BLUS),

we have B'TB = I(n_k) .under H. so that we may take F = ° = i(n-k)

and hence F(q1110) depends on the eigenvalues of A-qE In accordance with

(2), these eigenvalues are

= 0; [1 - cos -1 ) /(n-k ) - q 33 • n-k

In test (A-L), test (DURA), and test (s 1) we have B'rB = KK' under

H so that we may take F = K and A = I
(k) 

and hence F(q111
0 
) depends

0' n- 

on the eigenvalues of K'(A-qE)K = K'AK-qI(n_k) (since l'K-= 0 in all

cases) In test (A-L) and test (DURA) we have K = I h'11, •

SC) that

In test s 1

-q,.

we have

0 < 114: Mh* < 114."Mht.'

— J2. J2 —

say, and hence

< h*. 1vPat
J
n •n

i = k+1, k+2,

• (A choise problem could arise when h'I'Mh4f •= h4f' . Mh?if so that
3k tik 3k+1 Jk+1

. it is not clear whether h4f .or h4f must be included into K. In this
3Jk k+1

case we recommend to include 12!' if j and t include h)t
3
k+1 

k+1 ' - 3k
otherwise.)
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4. The quality of the tests theoretically seen 

For arbitrary X, none of the five tests can claim theoretical superiority

in a power sense. Test (D-W) has the best theoretical recommendations:

for .a restricted class of X-matrices, namely all X-matrices whose k

columns are linear combinations of k h-vectors, this test is uniformly

most powerful similar when testing for Ho: p = 0 against HA: p > 0 in

-1 
F = 

1 

1-i-p
2
-p -0 0 0

-P 1+p
2

-P 0 0

1+p
2

0 -p 0 0

0

0

P
0 0 ... l+p -P

,
0 0 . -P

-
which matrix is close to 

F1 
in (1). Also, this test is uniformly most

powerful invariant in the neighbourhood of p = 0. Berenblut and Webb

(1973) constructed a uniformly most powerful invariant test in the

neighbourhood of p = i. The power of their test is, roughly speaking,

1.05 times the power of test (D-W) at p = 0.9, while the difference

between the power functions is very small at 0 < p < 0.7.

In this paper, the power function of test (D-W) is regarded

as indicating the maximum power attainable. Therefore the powers of

this test are included in Tables 3, 4 and 5. The other four tests claim'

some optimality in an estimation sense, i.e. they approximate test

(D-W) either in the sense that B'y is close to (a subvector of) u,

like test (BLUS), or in the sense that the covariance matrix of B'y

is close to the covariance matrix of a, which is a2M, like test (DURA
or both, like test (A-L) and, a fortiori, test (sel).

For the comparison of the Dowers of the tests, it is necessary to adopt

several X-matrices and to calculate the powers for several values of p,

for each of these X-matrices. The choice of the X-matrices is the subject
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of the following section. We emphasize that knowledge of (3 or a sample

y within this context is redundant.

5. Typical characteristics of economic time series.

We wish to evaluate the five tests by comparing their powers in applications

to economic time series. To this end one or more*X-matrices must be adopted,

which can be regarded as representative for economic time series. Unfortunately,

no analytical rule can be given to decide whether a series does or does not

belong to the class of economic time series. It must be learned from practice,

which properties are typical of economic time series X-matrices. Before

turning to the relevant remarks, made in the literature, we observe that in

all tests but test (DURA) the matrix B' depends on X by means of M alone. Let

R be an n x k orthogonal matrix such that X = RG, where G is some nonsingular

k x k matrix, then

-
= I - RG(G'R'RG) 

1 
G'R' = RR'

This means that the relevant feature of X is its space, which is spanned

by the columns of R, while the location of the columns of X within this

space, represented by G, is irrelevant. Test (DURA) is not independent

of G, which, we feel, is a deficiency of this test. Accepting the space

of X, which is often called the regression space, as the only relevant

feature of Y, our question becomes: which regression space is typical of

economic tim,_ series?

5.1. Typical characteristics in the frequency domain 

L'Esperance and Taylor simulated their series by means Of a first-order

autoregressive scheme x. = Ax.
1 
+ n,ni — NW, .1), where A = 0.1 and 0.7.

1 1-

The power functions of the tests concerned and, thus,- the results- obtained -

by l'Esperance and Taylor are conditional on these series.. Since the power

functions are highly. sensitive to changes in the character of the underlying

series, the relevance of the results depends on whether the first-order



autoregressive scheme adopted by l'Esperance and Taylor generates series

having the essential characteristics of time series.

One possible way of examining the structure of a Series is to consider

its power spectrum. As is known, covariance stationary. stochastic processes

can be decomposed into a number of orthogonal .components, each of which

is associated with a given frequency. The power spectrum records the

contribution of the components belonging to a given frequency band to the

total variance of the process.

The power spectrum of the above mentioned autoregressive scheme is defined

by

f(y) =
1

27T(1 + X2 - 2X cos y)

The shape of f(y) is as follows

Figure 1. Spectral shape

For A = 0 f(y) is a horizontal line. The larger A becomes the higher f(y)

is at frequency zero and the lower it is at frequency if.

the course of time a fairly large number of ppwer spectra have been

estimated for economic series. The results obtained thus far were reviewed
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by Granger (1966). He concluded that there is regularity in the basic

characteristics of economic variables. It appeared that the vast majority

of economic variables investigated, after removal of trend and seasonal

'components, have similarly shaped power spectra, the typical Shape being as

in the following figure
1)

Figure 2. Typical spectral shape

Thus the contribution of the low frequency components to the variance of

an economic series is relatively high. One of the most obvious properties

of a sample from a stochastic process having a spectrum of the typical

shape is a visual long-term fluctuation which is not periodic.

Comparison of figures 1 and 2 suggests that a first-order autoregressive

•scheme might enerate typical economic series. Empirical investigations

seem to approve this conclusion provided the autocorrelation.parameter is

given a very high value e.g. 0.95 or higher,, so that much weight is given

to the low frequency components, see Granger. This agrees with the idea

that economic processes are often almost unstable.

200 If A = 0.95, e.g., the height of f(y) at frequency zero is , whereas
71

1) .
This figure is the lower part of a scaled up version of a graph published
in .Granger (1966)- Unlike. Figure 1, this figure uses a,logarj_thmic scale
for measuring the power spectrum. This should be born in mind when
comparing both figures.



2
for A = .7 (the value used by l'Esperance and Taylor) it is — . Thus

the power spectrum corresponding to the series simulated by l'Esperance

and Taylor differs very much from the typical power spectrum of

trendless economic time series. The simulation method used by ..l'Esperance

and Taylor can of course be repaired by taking a much higher value for

X and adding a trend in the means of the series. This raises the

power spectrum at low frequencies. The model then becomes xi,= trend

in mean + e. where e. =  

5.2. Typical characteristics in the time domain

In Dubbelman (1972) the space MP),- where P is the n X k matrix
Eh* h* 1, emerges as the mean of m regression spaces : 2 i - : k p where

)C is an empirical n x k matrix including a constant term, i = 1,2, ..., m.

This result has been found for n = 15, .k = 3, and m = 30, and the assumed

general Validity of this result is verified for n = •12, n = 10, and for

k = 4, and k = 5, both with and without a constant term.

When we would adopt only X-matrices with R = P = Eh* :h* ih*l,
k

which matrix is regarded as typical of economic time series, then test

(D-W) = test (A-L) = test (sel) = test (DURA), and there is nothing left to

be evaluated. Practically, it would be a matter of pure coincidence that

the k columns of an X-matrix are linear combinations of 11 through q.
Every vector x, consisting. of subsequent time series data, can be written

as a linear combination of all h*-vectors.

x = c.,h* + c h* + 
-- 

+ c h* + . + * = H*c1 1 22 c
n n

The point is that, on average, the values of ci 7;Tith i small are much greater

than the values of c. with i large. That .is, the major components of x are,

generally, a constant term (h*)
' 

an almost linear trend (h*)
' 

and waves1 2 
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with low frequency (h* h*)' while the higher frequency vectors are3' 
relatively unimportant. (It is a matter of taste to call h, or even II,

a low frequency vector for n in the neighbourhood of 15.) The observation,

that the low frequency vectors are the major components Of a vector of

time series data, has been mentioned in literature by several authors.

Several approximation procedures of significance points are based on

this observation. In particular, Durbin (1970) says:

"Subsequently, Theil and Nagar [13] argued that in many applications the

regressors are "slowly changing" in the sense that their successive

differences of orders one to four are small in relation to the ranges of

the variables themselves. More precisely, they assumed that quantities

such as tr {X,ArX(X T X)-1}, r = 1, ., 4, are small enough to be neglected

in formulae for the first four moments of d, X being the matrix of

observations of the regressors".

Below we use T(s), defined by

= tr {X'A X(XIX s 3, 4

as indicators. It would be nice when we could say: a matrix X is not

representative of economic time series if T(s) exceeds some given number,

which is possibly a function of s. However, at this moment we have not

the faintest idea about such numbers. Therefore we must learn from

empiric& data what values of T(s) can be expected.

To keep the analysis simple, we consider k = 2, and we write X = El : x] = RG,

as above, where R = [h*: r] and r = (x'Ex)-2Ex. We obtain
1:

= t IGWAsRG(G'R'RG)

= tr (R'AsR)

= r'Asr

= x'Asx/x'Ex

where we used Ah* = 0. For several 15-element vectors x we calculated
1

T(s) for s = 1, .., 4, see Table 1. It may be noted that
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T(s) = ht'Asht/ht'Eht = e when we take x = ht i = 2, 3, ..., 15.
1 1 1 1 1 1,

Table . Values of T(s) for several x-vectors

name of x-vector T(2) 3) T(4)

xd(1)

(2)

xD(1)

xD(2)

xK(1)
xic(2)

xS(1)

xS(2)

T
(1)

xT(2)

0.014 0.00 o.00

0.17 0.03 0.01

0.38 0.15 0.o6

o.66 0.44 0.29

1.00 1.00 1.00

1.38 1.91 2.64

1.79 3.21 5.74

2.21 4.88 10.78

2.62 6.85 17.94

3.00 9.00 27.00

3.34 11.14 37.20

3.62 13.09 47.36

3.83 14.65 56.05

3.96 15.65 61.93

0.25

0.52

0.22

0.30

0.49

0.43

0.07

0.88

0.36

0.16

0.15 0.23

1.12 3.09

0.31 0.82

0.46 1.06

0.112 0.81

0.59 1.53

0.05 0.14

2.13 5.88

0.43 1.18

0.31 0.90

0.00

0.00

0.02

0.19

1.00

3.65

10.29

23.81

46.98

81.00

124.19

171.35

214.52

244.99

0.56

9.39

2.50

2.82

2.46

11.96

'0.43

17.143

4.12

2.86
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The vectors 
C 

x 
(1)' x(2), 

x
D 

. (1 
..' 

X(2) are 15-element regressor 
CT

vectors, described in Appendix C. Expressing an n-element vector x as

a linear combination of the n-element h*-vectors, x = H*c, we have

T(S) = TH* 7 A5H*c/ cill*'EH*c =

n n
2 s , 2

/E c. d.  E c.
1 1 . 1

i=2 1=2

2
c.

=
1

E   d.
1

i=2
2

E c.
j=2

i.e. T(s) is a weighted sum of the e, the weights being nonnegative
1

and adding up to 1. Hence, each row in the lower half of Table 1 is

such a weighted sum of the rows in the upper half of that table.

On the basis of our conclusions in the previous section and our findings

in the present section, we propose to consider the following scheme

(5)

x. = i t e.
1 1

e. = Xe. +n.1 1-11

i = 1, 2, ...,n

where t ir, a constant, to be interpreted as a trend, A is a first-order

autocorrela—ion coefficient, IX' < 1, and e0, n1' n2' -.., nn are

independent random drawings, e from N (0,
1

1-X
2
) and

1' n2' "" nn

from N (0, 1). For t = 0, this scheme is identical to the. scheme adopted

by l'Esperance and Taylor. In Table 2 the average values of T(s) are

presented for several values of t and X. Every presented value of T(s)

in Table 2 is the average of 500 values of T(s); for every row in Table 2

we simulated. another set of 500 x-vectors. When comparing Table 2 and-the

lower half of Table 1, we conclude that, on average, the scheme (5) with

= 0 is not representative for our empirical data, apart, perhaps, from

x,(2) when A= 0.9. All other empirical data show values for T(4) which
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Table 2. Average values of T(s) for 500 x-vectors -simulated by (5)

t T(1) T(2) T(4)

0.0 0.1 1.85 5.29 17.13 58.69

0.3 1.57 4.21 13.17 44.20

0.5 1.27 3.26 10.09 33.67

0.7 1.00 2.42 7.37 24.53

0.9 .70 1.59 4.74 15.54

0.2 0.1 1.09 ,. 10 10.09 34.69

0.3 0.96 2.53 7.97 26.85

0.5 0.82 2.00 6.09 20.15

0.7 0.74 1.73 521 17.19

0.9 0.59 1.28 3.77 12.31

0.4 0.1 0.50 1.30 4.16 14.11

0.3 0.44 1.08 3.39 11.43

0.5 0.40 0.92 2.81 9.36

0.7 0.38 0.81 2.38 7.81

0.9 0.39 0.83 2.49 8.20

0.6 0.1 0.27 0.65 2.05 7.15

0.3 0.24 0.52 1.62 5.48

0.5 0.22 0.45 1.37 4.54

0.7 0.21 0.39 1.17 3.86

0.9 0.21 0.37 1.10 3.60

0.8 0.1 0.18 0.39 1.23 14,17

• 0.3 . 0.16 0.30 0.94 3.14

0.5 0.15 0.26 • 0.77 2.55

0.7 0.114 0.22.0.64,
2.08

0.9 0.13 0.20 0.57 1.83
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correspond to t > 0.4 in Table 2. Considering t > 0.4, the trend becomes

so. dominant that T(1) becomes very small while T(4) is not that small. In

fact, when looking at T(1) in Table 2, we prefer t = 0.4; but when lookinp:

at T(4), we prefer t = 0.8. Reconsidering the scheme (5), and writing

[e
1 e2 e]' = e, the simulated x-vector is approximately equal to

c
2 
h* + e for some value of c

2 
Probably the scheme can be improved, in2 .

the sense of a better balance between T(1) and T(4), when we add another

component, so that the simulated x--vector is approximately equal to

c
2 
h* c

3 h* + e for some values of c2 and c3 However
' 

such an extension2 3 ' 
of the scheme would require a further study. In this paper we adopt the

scheme (5) and we shall take t = 0.4 and t = 0.8, with A = 0.7 in both

cases.

6. The quality of the tests empirically seen

Table 3 contains average, powers of test (D-W) for 15- x 2 X-matrices,

all of which consist of a constant term column and a 15-element vector

simulated according to the scheme (5). Given t and X, five X-matrices are

simulated. We calculated the powers of test (D-W) at significance level

0.05 against various alternative (to Ho: p = 0) values of p for these

five X-matrices. The average power values are presented in the table. There

we consider five different sets of values for t and A, so that we simulated

five sets of five X-matrices. Analogously, we calculated the average

powers of the four tabulable tests for the same sets of X-matrices. The

average losses of power, i.e. the average power of test (D7W) minus the

average power of a tabulable test, are also presented in Table 3. Note that

a negative loss of power is -a positive gain of power. The average gains

of power never exceeded 0.005.

A remark must be made with regard to test (DURA). In Appendix B it is

proved that, when k = 2, test (DURA) and test (A-L) are identical if

x < 0, where x is the column of X other than the constant term column.

All tests but test (DURA) are invariant under multiplication by -1 of either

x or h or both. On our computer, theh*-vectors are generated by subroutine

such that the first (nonzero) element of eachht.vector is positive) For the
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Table 3. Average powers and losses of power for simulated 15 x 2. N.-matrices

Power of

test (D-W)

Loss of power in the case of

test (BLUS) test (A-L) test (DURA) test (sel)

0.0 0.1

0.0 0.7

0.0 0.95

0.4 0.7

0.8 0.7

0.9 
J 

0.85 0.10 0.39 0.41

.0.7 0.69 0.10 0.25 0.27

0.5 0.46 0.07 0.13 0.15

-0.5 0.48 0.08 0.02 0.07

-0.7 0.72 0.12 0.01 0.09

-0.9 0.90 0.11 -0.00 0.06

-0.00

0.00

0.00

0.00

0.00

-0.00

0.9 0.78 0.10 0.12 0.20 0.06

0.7 0.64 0.09 0.07 0.16 0.04

0.5 0.43 0.07 0.04 0.11 0.02

-0.5 0.47 0.08 0.00 0.08 0.00

-0.7 0.72 0.13 0.00 0.10 0.00

-0.9 0.90 0.15 -0.00 0.08 -0.00

0.9 0.76 0.09 0.13 0.24

0.7 0.61 0.09 0.08 0.19

0.5 0.41 0.08 0.04 0.12

-0.5 0.46 0.10 0.01 0.08

-0.7 0.71 0.16 0.01 0.11

-0.9 0.89 0.19 0.01 0.09

0.07

0.05

0.02

0.00

-0.00

-0.00

0.9 0.72 0.16 0.09 0.27 0.02

0.7 0,61 0.13 0.05 • 0.22 0.01

0,5 0.42 0.10 0.02 0.14 0.01

-0.5 0.47 0.10 0.01 0.10 0.00

-0.7 0.73 0.15 0.01 0.13 -0.00

-0.9 0.9u 0.16 0.00 0.11 -0.00

0.') 0.73 0.11 0.00 0.19

0.7 0.61 0.11 0.00 0.17

0.5 0.42 0.09 0.00 0.12

-0.5 0.48 0.10 -o.00 o.o6

-0.7 0.73 0.15 0.00 9.07
-o. 0.91 0.16 0.00 Ocsit

0.00

0.00

0.00

-0.00

0.00

0.00
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sake of a useful comparison we changed the sign of x, where necessary,

such that test (DURA) and test (A-L) differ. In OUT experiments with

k = 3 we did not alter the signs of the simulated x-vectors. Sims (1975)

proposed a small change in the calculation procedure of Durbin's alternative

disturbance estimator z, see also Appendix B, which is theoretically

aCtvantageous in that it reduces the "distance" between z and

Considering Table 3, we see that the first two subtables account for the

cases considered by l'Esperance and Taylor. Test (sel) emerges as the best

tablaalple. test, particularly when testing against negative autocorrelation,

in which case test (A-L) is almost as good as test (sel). The third

subtable accounts for the casa which arose from a consideration of the

typical power spectrum in time series. Also here test (sel) imparts the

smallest loss of power for all Values of p. In the last two subtables,

the values of t and A are chosen on the basis of the slowly changing

.character of time series regressors. Again, test (sel) is the best test,

while test (sel) and test (A-L) coincide in all individual cases when

t = 0.8. As stated in the preceding paragraph, test (DIJA). and test (A-L

would coincide if the sign of every simulated vector x is such that

<0. Summarizing„test (sel) is,the'best tabulable test against positive

and negative autocorrelation, both when the X-matrices show some of the

typical characteristics of economic time series and when this is not the

case. Against negative autocorrelation, test (A-L) is a very good second

best Choice. Of course, these conclusions concern 15 x. 2 X-matrices.

.We next consider 15 x 3 X-matrices. In Table 4 the powers and the losses of

power are presented for. five empirical X-matrices,.descrilped in Appendix C.

T-1'.1 average powers' and losses. of Dower for these five X-Matrices are

presented in Table 5, together with the average results for fiie simulated

15 X-matrices.. All five simulated X-matrices consist of a constant

term column and two vectors, both of which are simulated .according to the

Lfierle (5) with t = 0.-4 and A = 0.7,

Coparihg the losses of. power on each rov- in Table 14, we see that the

loss of power is found in the iss%st col= in all cases but one,



-2)4-

x
c

X
D

Table 4. Powers and losses of power for empirical 15 X 3 X-matrices

Power of

test (D-W)

Loss of power in the case of

test (BLUS) test (A-L) test (DURA) test (sel)

0.9

0.7

0.5

-0.5

-0.7

-0.9

0.9

0.7

0.5

-0.5

-0.7

-0.9

X
K 

0.9

0.7

0.5

-0.5

-0.9

xs 0.9

0.7

0.5

-0.5

- 0.7

- 0.9

X 0.9

3.7

3.5

- 0.5

- 0.7

- 0.9

0.57

0.48

0.35

0.44

0.70

0.90

0.65

0.54

0.37

0.44

0.70

0.89

0.69

2.55

0.38

0.44

0.69

0.89

0.68

0.56

0.38

0.44

0.70

0.89

0.4

0.46

0.33

0.42

0.68

0.88

0.11

0.10

0.08

0.09

'0.15

0.17

0.13

0.12

0.10

0.12

0.21

0.24

0.19

0.18

0.13

0.14

0.24

0.28

0.19

0.16

0.11

0.12

0.19

0.19

0.17

0.17

0.13

0.15

. 0.27

0.33

0.10

0.05

0.02

-0.00

-0.00

-0.00

0.05

0.04

0.0

0.01

0.02

0.01

0.03

0.02

0.01

0.00

0.00

0.00

0.32

0.22

0.12

0.03

0.03

0.02

0.01

0.01

0.00

-0.00

-0.00

-0.00

0. o6

0.07

0.06

0.09

0.12

0.07

0.12

0.11

0.08

0.02

0.02

0.01

0.08

0.07

0.05

0.03

0.03

0.02

0.32.

0.23

0.12

0.03

.0.03

0.02

0.16

0.15

0.10

0.09

0.12

0.10

0.10

0.05

0.02

-0.00

-0.00

-0.00

0.02

0.02

0.01

-0.00

-0.00

-0.00

0.02

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

0.00

-0.00

-0.00
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TabLe 5. Average powers and losses of power fo
r simulated 15 x3 X-matrices (t = 0.4,

= 0.7) and for the five empirical 15 x 3 X-matrices

KLA of

the data

simulated 0.9

0.7

0.5

-0.5

-0.9

0.9

0.7

0.5

-0.5

-0.7

-0.9

Power of Loss of power in the case of

test (D-W) test (BLUS) test (A-L) test (DURA) test (sel)

0.0

0.53

0.37

0.43

0.68

0.88

0.63

0.52

0.36

0.44

0.69

0.89

0.14

0.14

0.11

0.12

0.21

0.24

0.16

0.14

0.11

0.12

0.21

0.24

0.15

0.10

0.06

0.02

0.02

0.01

0.10

0.07

0.04

0.01

0.01

0.00

0.21

0.17

0.11

0.06

0.08

0.07

0.15

0.13

0.08

0.05

0.06

0.04

0.04

0.03

0.01

0.02

0.03

0.03

0.03

0.02

0.01

0.00

0.00

0.00 .

namely for X = Xc 
and .p = 0.9- Test (AL) and test (seI) Coincide for

X X
c 
and - = XT, 

where test (DURA) imparts a considerable loss of

power for p 0. A dramatic loss of power is scoredby test (A-L).an
d

test (DURA) for X = Xs and p > Q. Apart from the case X -=
 Xc and p > 0,

test (BUM) cannot stand the power comparison. Table 
14 clearly suggests

that test .(sel) is the best tabulable test -Against-aut
Ocorrelation in the

ca,se of empirical - 15 x 3 Xmatrices. Against negative autocor
relation,

•test, (A-L) is a very good second best 'choice, see also 
the lower half of

rabte 5,,The conclusion from the upper half of Table 
5 is almost the .

srlme Here test (A-L) is even slightly better than -test (sel) w
hen p <0.



The unanimous result of all power calculations is that test (sel) is the

best tabulable test against autocorrelation. The only real competitive

procedure is test (A-L) against HA: p < 0. Compared with test (A-L),

test (sel) has the disadvantage that a much larger table of significance

points is required. Tables of 5 and 10 per cent significance points for

test (sel), ranging from 9 to 20 for n and from 1 to 4 for k, are

available. A Fortran computer program for test (sel) is given in Louter

and Dubbelman (1973).

We considered only 15. x 2 and 15 x 3 X-matrices in this paper. In the

first place, we believe that a much larger number of observations rarely

occurs in practice, .and in the second place we believe that the losses

of power of all tests diminish when n increases, see e.g. Koerts and

Abrahamse (1969), p. 106. With respect to k we remark that it would be

better to compare powers for empirical X-matrices rather than simulated

X-matrices when k > 3. In our opinion the scheme (5) does not account for

the typical characteristics of economic time series other than a trend

component, see Section 5.2. As far as our experience goes, the powers

of test (sel) for n x k X-matrices, with 10 < n < 20 and 2 < k < 14,

are satisfactory, compared with the powers of test (D-W).
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Appendix A

The BLU, BLUS and BLUF disturbance estimators

Abrahamse and Koerts (1971) presented their new estimators as follows.

Given the linear model, y = XIS + u, where E(u) = 0 and E(uu') = a
2
I
(n)5

the new estimator v of u is linear (L) in y, so that v = B'y with B

independent of y, and v is unbiased (U) in the sense that E(v) = E(u) = 0,

so that B'X = 0, and the covariance matrix of v is a
2
Q, where 0 is a fixed

(F) symmetric idempotent n x n matrix with rank n k, so that 0 = KK' with

and, finally, v is best (B) in the sense that it minimizesK 1K = I(n_k), 

EUv-u)'v-u)].The reasoning, used to derive v, can also be applied to a

more general context, .see Dubbelman (1973), as follows.

First, replace E(uul) = a
2 
I()by E(uu') = a2 r, where r is a fixed symmetric

n 
positive definite n x n matrix. Second, consider a linear unbiased

estimator w of J'u, where J is a fixed n x p matrix, so that w has p elements.

Third, impose E(ww') = a
2 
Q, ,There 0 is a fixed symmetric p x p matrix

with rank r, not necessarily idempotent, so thatapxrmatrixKexists

such that Q = KK'. Fourth, take w best in the sense that it minimizes

E[(w-Pu)'Q(w-J'u)], where Q is a fixed symmetric nonnegative definite

p x p matrix. Provided that r < n-k and that KIQJIM*FJQK is nonsingular,

where

M* =
(n) 

- x(x'r-1

the BLUF estimator of J'u is

w = K(K'QPM*rJQK) 21('QJTM*y

It is seen that w = v if J = Q = r = I(n) and 0 idempotent, and w is the

least-squares (BLU) residual vector if 'besides M = KM, and w is a BLUS

vector if r =
(n)' 

K = Q = I(n-k), and J consists of n-k columns from I .
(n)
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Appendix B

Durbin's estimator z versus BLUF

Assuming y = )C, + u with uf-, /7(0,a
2 
I), Durbin 1970) constructed the

vector z such that z = By N(0,a
2
Q), where Q = KK' =•I -PP' and

z (n)
P = Eh* i h*: 

- 
i h*]. X and P are partitioned as Eh*:. XT and [h* EP],

1 2- k 1 1
respectively. Durbin proposed the following computing procedure for z:

(13:1) z = y ha Xbi - Pb + QXP1P2

wher
e 
a
' 

b
1' 

an
d 
b
2 

are the coefficients of 
h*, 

X, and P in the least-

squares fit of the regression of y on lalc, X, and P, and where Pi and P2

are lower triangular matrices such that a
2
P

1 
P'
1 
and a

2
P
2 
P are the covariance
2

matrices of b
1 
and b

2' 
respectively. For the calculation of the power

of test. (DURA) an explicit expression for B
z 

is required, which reads

(B.2) = Q QX(X'QX
z.

-1-
+ QXP P'P'M

1 2

Below, (B.2) is derived from (13.1). Sims (1975) proposed another vector,

which we denote by s,

(B.3) - -s = y - Xb - PP'Xb QXP
1
P

1
3 
b
3

- -1when:- b
3 

b
2 

and P
3 
is lower triangular such that

2
P
3 
1" is the
3

covariance matrix of b
3. 

Sims argued that his modifications of the
computing procedure for z, namely reversion of the sign before Q in (13.1)
and use of PPX instead of P, improve that vector. Following the notation
of Sims, we write

(BA)

I= [Q - Q

z = [Q Q

Q. + Q2Q2 ] Y

CV1 Q1Q2 Y

EQ Qi(Vi QiHsK ]y

EC2 Q1Q1 QiilwQL y
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where QI = QXP1, Q2 = MPP2' H = P (P'X) P and Hws 3 2' (q1Q2Q2Q1)-2Q1Q2'

It is proved that every vector, which can be written as EQ - Q1Q1 + QiHK]y

has zero mean and that such a vector has covariance matrix a
2
Q if and only

-
if H' = H 1. Finally, we consider k = 2, in which case H and P'X are

•••••

scalars. In particular, z = w if the scalar P'X is negative, while s = w,

regardless of the sign of the scalar P'X.

Consider

: --
Z =Eh:X ,PJ = Ex : ID] and Y =

or

a

Here h stands for h*
, 
for notational convenience. Then I =

1 

It can be verified that

1 ; h'X

and that

(ztz

Z'Z = X'X X'P
_

o pox

•

9.1111

l+h'XVX h -h'XV: h'XVX 1P

-VX'h V -VX'P

P'XVX'h -P'XV I+P'XVX'P

X'X X'P

P'X I

immy.

-1
(X'X +G'(P'MP

-1
-(PIMP) G

Z 1Z)-1Z, T y.

•

-
-G' (p) 1

(Pie)

- -1 - - -1
with V = (X'X) and G = P'X(X'X)

1
Q . We find Pill = (X'QX) and P2P =

- - 
-

(P'MP)
1
 = I + PX(X'OX) . X'P. Using the first partitioning of Z, we have

Y

1-a
b
l

b
2 [-_

h'(I+iVi'hh'-iVR'+iVi'PP')
.... _._

-VX'hh l+VX'-VX 1PP

h l(I-XVX 1Q)

VX'2

P'(I-XVX 1Q)P'(XVX'hh ?-XVX 7+I+XVX'PP') ..1

=

-l-
and from the second partitioning it follows that b2 = (P'MP) P'My, so that•

- -
P2

1 
b2 = P2

1
,13217'My IrMy. Substitution of the expressions for a, bl,

b and P
-
2

1
b
2 

into (B.1) yields
2' 
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B' = I - hh'(I XVX'Q) XVX'S2 - PP'(I - XVX'Q) + QXP
1 
P'P'M
2

= I - hh' - PP' - (I - hh' - PP')XVX'Q + QX13113F'M

and (B.2) follpws. It may be noted that [Q-QX--(X-1QX)X'Q]X = [0 IQX] -
QX(X'QX)- [0 X'QX] = 0, so that BM = B.

Let Ql and Q2 be orthogonal n x (k-1) matrices, whose column vectors lie

in M(X:1, 13), such that Q113 = 0 and KX = 0, and let Q0 be an orthogonal

n x (n-2k+1) matrix whose column vectors span M(CE P)1 = M(I! XI P)1.

Then the column vectors of K = [Q0! span M(P)
1 
, K'K = T and

-(n-k)'

the column vectors of N = EQ
0 Q2] span M(X)1, NIN = (n-k)' 

and we have

= KK' and M = NN'. The matrices Ql and Q2 can be made explicit as follows.

We consider Q1, whose column vectors lie in M(X: P) = M(X IP), i.e.
Q
1 
= XF + PF

2 
for some matrices F

1 
and F

2. 
From P'Q

1 
= 0 it follows

1 _ 

that P'XF1 = -F2, so that Ql = XF1 PP'XF1 =_QXF1. Taking F1 = 131, the

lower triangular matrix such that P1P = (ICTQX)-1, we have Q;Qi =

Of course, we could also take F1 = (X'QX)-2 in order to obtain Q;Qi =

Analogously, Q2 = MP13 . Both Ql and Q2 can be postmultiplied by an

arbitrary orthogonal (k-1) x (k-1) matrix. It is easily seen that

= My = NN'y = [Q0Q6 + Q2C]y, where Q0Q6 = KK' - Q1Q1. Further,
substitution o.P Q/ and 02 into (B.2) yields z = EQ 0101 + Q/q1y.

Comparing (B.1) and (B.3), we see that s = [S2 - QlQi]y Q1P51b3. Using

- -
b3 = (P X) 

1 1 
b2 = (P'X) P2Pg'My, we find s = [Q-- Q1Q1 - QiHsc]y, where

-1 - - -1 
H
s 
= P3 (P'X) P2. Since the covariance matrix ofb2 is a

2 
P the

-1 - - - -1
covariance matrix of b = (13TX) b

2 
is a

2
P
3 
P' = (P'X)- (a

2 
P
2 
P')(X'P)

3  2

Hence, HsH's = I. Considering w = K(K T MK)-2K'My, we first observe that

QMQ0 = 
= 0, and

2k+1) Q0MQ6 n- 
QM = %. Then

MOM.

w = LQ

= [Q0

n-2k+0

n-2k+1):

0 
(Q1MQ1)-2—

= Q
1
(Q1M )-2Q;M]Y

.0

Q1M



Substitution of Q0Q6 = Q - Q1Q1 and of QM = Q1Q2Q yields

w = EQ - Q1Q1 + Q1HwQ0y, where Hw = (Q1Q2qQ1)-2Q1Q2 and Hw satisfies

H' = H .w w

In view of QJ)X = 0 and QX = 0, we have EN - Q1 Q1 + Q111Qpy =

- Q1Q1 Q11 'HO'iu = 0 for H arbitrary. The covariance matrix of2
EQ - Q1Q1 + QIHQ0y = No% + Q111Q0y is E{[Q0Q6 + Q HQ]uut No% Q2H'W.1]}

= a2N0Q + = (52NX + Q111 'Q.1], where we used Q6Q2 = 0 and

KQ2 = I. Now Q0Q6 + Q1HIPQ1 = KK' = Q0Q + Q1Q1 if and only

Q1Q1, i.e. if and only if HH' = I, in view of Q1Q1 = I.

if Q1HHIQI

Given the vector EQ - QIQ; + Q.111Q0y with H' = H-/, the matrix H is a

scalar if k = 2, so that H = 1 or H = -1. In the vector w we have

H = H
w 
=  where (Q'Q Q'Q )-2 is positive, by definition,

so that the sign of H
w 
is equal to the sign of Q;Q2 = PIX'MQPP2, where

P
1 
and P are positive, by definition. Using Q = I - hthl" - PP', we-

have X'MQP = -X'PP'MP, since NT XPM = X'M = 0, and P'MP is positive.
Hence, -the sign of H is opposite to the sign of X'P. Clearly, H = 1

yields the vector z, so that z = w if X'P is negative. In the vector s
-1 - - -1

we have -H = H
s 
= P

3 
(P 'X) P

2' 
where P

3 
and P

2 
are positive, by

definition. Hence, the sign of H 
s
is equal to the sign of X'P, so that
-

s = w, regardless of the sign of X'P, owing to the minus sign before"

in (B.4). When k is greater than 2, z and s and w are all different,
1 s 2

generally.
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Appendix C

The empirical data

The 15-element x-vectors listed below consist of subsequent annual

observations. The 15 x 3 matrices Xc, XD, XK, Xs, and XT consist of

two of these vectors and a constant term vector.

Chow (1957), logarithms of Table 1; xc(1): log automobile stock

per capita; xc(2). log personal money stock per capita; for the

United States, 1921 - 1935.

Durbin and Watson (1951), Table 1; x,(1): log real income per capita;

XD (2) log relative price of spirits; for the United Kingdom,

1870 - 1884.

Klein (1950) p. 135; x (1): profits; 
K
(2): wages; for the United

States, 1923 - 1937.

Sato (1970), p. 203; (1) capital; x5(2): man hours; for the United

States, 1946 - 1960.

Theil (1971), Table 3.1; xT(1): log real income per capita; x(2):

log relative price of textiles; for the Netherlands, 1923 - 1937.






