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Limit Theory for Multivariate Sample Extremes

by Laurens de Haan* and Sidney I. Resnick**

Abstract

Let{(Xél), ceey Xék%, n = 1} be k-dimensional iid random vectors.

Necessary and sufficient conditions are found for the weak convergence of

4 . n (1) n
the maxima {Vj=l Xj y ey Vj=l

limit dAf. The class of such limits is specified and conditions stated

X‘k)} suitably normed to a nonedegenerate

for the limit joint d4f to be a product of marginal df's. Some results are

presented concerning extremal processes generated by multivariate daf's.
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1. “Introduction.

1 k : '
Suppose {Xn, n=>1} = {(Xé ), vies Xé )), n = 1} are independent,

idéntically distributed (iid) random vectors with k-dimensional distribution

(1) (k)

function (df) F.. Define the sample maxima as Yn = (Yn ey Yn ) =

n (1) n (k)
(V. X0 ceer V. X,
Vym1 %5 =1 %5
ar(ll) > 0, bI(IJ)' n>1, 1<j<k such that

). We seek conditions under which =} normalizing

constants

1 _ @ | _p
n . n . n
o )
n n

(1)

donverges'weakly to a non-degenerate 1imit'df and we seek specifications of
the ciéss of such limits. To avoid trivialities we assume each marginal

(3) _ (), ()

nc Y
“sequence ( n = n

in (1) converges weakly to avnon~degene:ate
limit. This problem has been chsidered previously by Geffroy (1958),
.fiago’de-oliveifa (1959)'and SibuYa (1960). Their results‘areifor k=2~
and do not extend in an'obvious'manner to highérvdimensioné.

A multivariate convergencé,to types argument (see Geffroy (1958))
qﬁiékly shqws that the class of limit df's for (1) is the class §f méx—stéble

distributions where we define a df G in Rk to be max-stable iff for every

n, 3 “r(lj) > 0, 81:.3),'1 < j <k such that

(1) (k)

n, (1) o + B(k)
n poeeer O bl

@) 6o %+ 8 x * B

)’= G(xl, eeey xk) .

Noté that each marginal of G must be one of the three cli#sidal'extremé
value df's studied by Gnedenko (1943) and de Haan (1970, 1971). Max-stable
dffé form a subclass of the max-infinitely divisible (max-id) dfis
'ihtroduced and charaétérized‘in Balkema and‘Resnick (1975) .

We begin in section 1 by deriving the form of max-stable df'sV‘
iﬁ Rk ﬁhich have specified marginals. Several representations are given.
" The festxiction on' the marginals is next removed aftervwhich'wé take up

domain of attraction and asymptotic independence questions. Finally we




close with'some observations about the extremal processes generated by
the max-stable and max id df's.

The max id df's as discussed in Balkema and Resnick (1975) are a
proper subclass of the df's on Rk which can be defined as fqllows:
F(xlf ceey xk) is max id iff for every t > O, Ft(xl, ceey xk) is a df or
, »equiyalenfly iff ¥n Fl/ is a df.. It is then immediate from (2) that
- max-stable df's are max id.
The following is a criterion for F tc be max id:

Let‘A(xl, ey xk) = (=, xllx eee X(=0, xk], Then there must exist a measure

V on [fw,M)k; called the exponent measure, such that v([bm,w)k) = o

r

. c : . N
V(A (xl, Y xk) < o fgr some (xl, ceey xk) apd

' F(xl{ cees xk) = ekp{—v(AC(xl, . xk))}.

From a process point of view the max id df's are .precisely the class
of df's F which can be used to define a multivariate extremal process
Y(t) = (Yl(t), ceey Yk(t)f. " Such a process is defined to have marginals:

¥n, VO<t, <...<t

1 n

(1)
1 ’

< —_
ceer Y (ti) x 1= 1,...,n]

. L
(3)} P [Yl(ti) X K

n . n . .
Ftl /\ x(l) v X]il)

ﬁtn-t“HT(x{n), ey

A related vieWpoint is that F is max id iff there exists a measure V on [-w,w)k

. . : k . o
such that if we construct a Poisson random measure on R+ X | -»,0)" with points

(1)

n,.“,dm}mdmmmwwmdtxw&r.”,&QtMnﬁﬁmW'

{Tn; J

. the extrémal process Y(t) by




v e D)«
(49 Y. () =sup {7, |Tk \t}

we'ﬁave Ft(xl,>;.., x,) =P [Yi‘t) <§xi, i=l(...{k] = exp'{;tv(gixi,,,,, gk))}',
Our methods diffef from those of previous authors'becausekbf

our reliance on the concept of ma# infinite divisibility and judicious

'useiof polor coordinates. Also insight is gained by comparing the

'mulﬁivériate stable Lévy processes with certain of our'exﬁremal provesses Y

which satisfy {¥(at), t > o} = {a% g(t), t > d} ¥ a > 0 where o ié a

positive parameter.

'2. Max-stable df's with prescribed marginals

o ' ko . . ‘ . . '
Call a max-stable df G in R simple if each marginal is equal to the

. . E— 4
" extreme value df @l(x) =e X o, X > 0; i.e.

=1

e , X, > 0.
-7

We 5eginjby deriﬁing.the’form of a simp;eAG. The reason why it is senéible
to start with a'simple G becomes clear in section 4'where'we remove tﬁis
restricﬁion.on fhe marginals.

| ';Consideration of propertieé exhibited by‘®1(x)_shows that (2)'can bé

-‘| .
l, o e ey Il}ﬁ( "le, -..ka

' ¥nand it is easy to switch to a continuous Variablé s in place of n so.

. that ¥ s > 0

>(5) ' _ Gs(sxl,i.;., sxk) = G(Xl' ey xk) .

fLettiné V-be the exponent measure of G (5) becomes

‘6) | sv(AC(sxl, "f} sxk)) = v(AF(xl, ...,vxk)




where recall A(xl, ceey xk)'= (=, Xl] X oo X (=0, xk] so that (6) entails
v (sa® (x )) = v(ax %))
sV (s 17 e xk = 17 ceer X))

For fixed s the measure sV(s-) agrees with V on a generating class closed

under intersections and hence we conclude ¥B € B(Rk)

(7) sV(sB) = Vv(B) .

Let £ : =[o0, ‘rr/2]k'-l and let T : Rk - R+ X = be the transformation to polar

e : ’ 2 k 2
" coordinates: T(xl, e xk) = (r, 9) where r = zi=l X" 9 = (el, cees Bk)
2

S L2 ' . 2, ,.2 2 ; .
and sin Gi = (xi+l + ... + xk)/xi + ... + xk) for i =1, ..., k - 1. Fix
a Borel set C C E and set D(r,C) = {(s, e)|s >r, 8 €c}. Note that for
Z20,i=1...%

r >0, v(T_l(D(r,C))) < © because for some x ceey X

1’ k' *i
-1 . c - c .
we have T (D(r,C)) Ca (xl, see xk) and V(A (xl, cees xk)) < o, Referring

back to (7) we have

SV(sT T (D(x,0)) = sv(TT (D(xs,0)) = vir (),
f.e. if M(r) = V(T 1(D(z,C))) we have |

M(r) = sM(rs).

Setting s =,r-l and S(C) = M(1) gives M(r) = r-lS(C) where S is a finite
measure on E. Thus we have
Theorem 1: G is simple stable with exponent measure V iff there exists a

finite measure S on E such that

vt l(ar, 48) = r%ar s(a8)

i-1 cos Si S(dg) =

for i =1, ..., k-1 with the convention that ek = 0 and for i =1 the

integrand is just cos 61. Recall T is the transformation to polar coordinates.




The integral condition in Theorem 1 arises because of the
requirement that G be simple (cf. Theorem 2) and disappears when this
requirement is waived. To check that the integral must equal 1 note

that for 1 =1, ..., k

-1 c '
xi = \)(Av(°°, ceoy O xi' ®,

i r2ar S(de)-
Ta¢ ~

N c . - . - - .
where TA =.{(r,6)|r sin 61 ee. sin Gi_ cos ei > xi}. Integrating on r

1

gives the result.
Rémark': _Fpr r >0, 0<0 <T7/2 we have \)oT-l(Aé(r,e )) = + o, Thus.\)oT'-1
canﬁqt serve  as the exponent measure of a'méx id df.

The product measure appearing in Theorem 1 has the following

interpretation:' Suppose G is the df of Y(1) where Y is related to the ,
J(l) (k)}
n

Poisson random measure (as described in (4)) with points {Tn; n

) veend

-and mean measures dt x v(dxl, ceey dxk). Transform these points into
(1)

{7 ; T(T "0 eees Jék))} = {Tn, r Qn}. The resulting set of points

n
constitute a Poisson random measure on R+ b4 R.+ x % with mean measure
-2 ' ’ . .
dt x r “dr x S(d6). Therefore {Tk}, {rk}, {ek} are independent seguences.
Further understanding of the meaning of Theorem 1 is obtained from
the following considerations: For a function x(t) which is right continuous
with finite left limits ¥t > 0 define the functional h via

omx)(E) = sup  ((x(s) - x(s-)) v 0) .
: 0 < s<t.

Corollary 1l: Let X(t) = (Xl(t), ey Xk(t)) be a k-variate stable Lévy

,progess of index 1; i.e. a process with stationary indepéndent increments
| and_fhe.prqperty ¥ a> 0'{§(at), t 2’0} = {ag(t) + c(a), ﬁ = 0} where g(é).
is a nén-random veptor. Supbose further that for i = 1, s k the Lévy
_ measure v, of X, has tﬁe property that v, (x,9) = x ! for x > 0. The class

of extremal processes generated by the simple stable df's described in




-Thedfem 1 is preéisely the class of extremal processes realized through
the scheme Y(e) = {v (8, .., Y ()} = {x) (), ..., (x) ()}
Proof: That Y is an extremal process follows (as in the l-dimensional case -

‘cf. Dwass - 1964, Resnick and Rubinovitch 1973) from the fact that X induces

. . . . 1 k .
-Poisson random measure with points {Tn; Jé ), ...,-Jé )} where Tn is the

time of a jump and (Jél), eees Jék)) = X (Tn) - X (Tn—). The mean'measure
is dt x V(dxl,'..., dxk) where V is the Lévy measure of X. However, if X

. is stable with index l;'it is well known (Lévy 1937) that V°T_1(dr, de)

r2ar S(dg) where S is a finite measure on EZ.
'Remark: Corollary 1 was deduced as a cbﬁsequence.of‘Theqremvl. ‘The order
can Sé reveised.' One can.firSt show that (hXi, e hxk) gives the totalifya
of.maxvstable extremal proéesses with prescribed marginals and use this to’
deduce the criterioﬁron the exponent measure. |

In case k = 2; the criteria obtained in terms of v°T_; for G tokbé
max stable can be'rephraéed in terms of v: v : -

Corollary 2: G(x,y) is simple stable with exponeht measure V iff

/2

! farctan y/x sin 6 s(d0)

cos 6 s(d) + |

v(a®(x,y)) =
: 0 arctan- y/x

‘where S(-) is a finite measure on [0,5] such that

[™2 cos 6 s(a®) = [™? sin 6 s(a0) =
0 o0

‘Proof: The last two conditions arise because we requiré'G(x,w) = ekp{-x—l}

2

= G(®,x). For the rest note that by Theorem 1 V>T_1(dr,d6) =r “dr S(de)

so that
valey = [ [, £ ar s
. T(A (x,y)) '

- | r~2 ar s(do)
- {(x,8)|r cos 8 <x, r sin § < y}€

2 dr s(d9)

cos O . sin ©

o> =2 A =X}




and evaluating the integral on r for fixed 6 gives

*—l Iarctan y/x cos 0 S(a0) + y—l fn/z

0 _ arctan y/x

sin 6 S(d6)

as asserted.
Corollarz 3:_ If.G is as in Corollary 2 and P(X < x, Y <y) = G(x,y) then
| (i) X,f are independent iff s{0} = s{m/2} =i1 and S places no mass
- elsewhere. This can be seen either from Corollary 2 or by checking directly
'frpm G(x,y) = exp {—(i-+ %)} that v{(t,s)|t > x, s > y} = 0 for allix,y > 0.
(ii) P(X =Y) = 1 iff s{m/4} = V2 ana S places no mass elsewhere.
Remark: If thé measure S concentrates on some point 60 € [0, m/2] with O
90,#=w/4 we have Y = (tan GO)X é.s. and hence the marginals are both‘of type
. @i(xj, but are not equal. This means thgt G is not simple according to»our
definition.
Remark: We can connect our results with théée of sibuya (1960) (see also

. Geffroy (1958)) as follows: In Corollary 2 when k = 2 set

(8) = W(t) = farctant cos 0 s(df) = ft cos (arc tan y)d S(arc tan y)
_ S 0 v 0 '
~and

@ Gty =exp (-Ge T x @),

i -le) that

1 Yy -1
~ + v + X () = "

Iarctan y/x
X . .

cos © s(a8) + < [™2 sin 6 s(a6)
0 L '

arctan y/x

tfarctani:t

£+ 1+ X(E) =
' 0

cos 6 s(d6) + L:éi sin 6 s(a8)

an. t

IN/Z—

arctan t

= twW(t) +

tan Q cos 6 s(df) + s({m/2})

tw(t) + [Ty w@y) + s({n/2h
. t

[(y-t) w(@y) + €1 - W(t)) + tw(t) + s({n/2})
t .

t + foo(l - W(s))ds + s({n/2} .
t .




Therefore we conclude

X(6) =twW(t) + [ yw@y +s{fh -1-¢

oo}

[ (1 -w(s)as + s({n/2h) - 1.
t , :
- Note X-has the properties spécified by Sibuya:

(10) -~ ¥ .is continuous and- convex since it is the*integral'bf a monotone fuhction
(11) max (-t, -1) <x(t) <0, ¥ t=0.

Copverséif if.G is of form (9) where X satisfieé (10) and (11)-then one
' checké directly that G is max’stable; |
Exvamgvlé 1: (Cf. Geffroy 1958, p.71): Let s[o, 6] =6 for 0 <o < m/2 so
that fg/z cos 6 s(d8) =.fg/2 sin 6 S(d6) = 1. Then X(t) = (1+t2);2 - (l¥t)

and G(x,y) = exg:- {- (_x'2'+ y'z);’} for x >0, y = 0. |

v Examgle 2: Takg slo, 8] = 3fg cost sin£ dat, d <§é <§ﬁ/2. Then -
X(t) = - t(1 + t2)_%.and for x 2 0, y 2 0 G(x,y) % exp {—(x—1 +'y—l - (Xzﬂnyz)-%)}-
Exémgle 3: (Sibuya 1960, p.208): x(t) = -kt(1+t)—l férlo <vk <§i corresponds V

£ _ L _ e
to S(t) = fO 2k(cos y + sin y) 3dy and G(x,y) = exp {-(x 1 + vy 1-k(x+y) 1)}.

. A constructive approéch:

'Négt &e follow a constructive approach whichfleads to a,repfesentation.
of the simple stable df's in Cartesian coordinates. Recalling thé£ the |
~ required marginals are @i(x) =-e—x~ r X > 0 observe tﬁaﬁ in R? the Frechet df
G(x,y)-=_®i(x) AN N6 =-exp {- 1TV y_1} for X, y >0 is a simpie stable

~ df. This df is concentrated on the line x = y. The df

G(x,y) = exp {- (1+a)-1((ax—l) \ y-1-+ x~1'\/ (ay_l))}

, ' s ' =1
is simple stable for a > 0 and concentrates on the lines x = ay and x = a ' Y.

- (G is the product of two distribution functions each of which conceﬁtnating on

one of the lines.) Generalizing this procedure we get the most general simple
. | hanih :
stable af in . RS ILet @ ={lx;, ..., ) [x; >0, i=1, ..., k I xi2 = 1}.
' . : -1




‘Theorem 2: G(xl, ;..,'xk):is simple stable iff there exists a finite measure
U on § with
fQ ai U(day, «.., day) =1 fori=1, ..., k

Proof: That any G of the given form is simple can be verified easily. To o

prove the converse we use Theorem l. We have

- log G(xy, +-.r %) = [ % ar s(dd) , Sy
. B ; - : : 3 ~ : < 1= » :
v {Q;;Q)lr sin 91 e slp Gi_1>cos Gi Sx, i 1, 7..,k}

and integrating on r gives

sin 61 ... sin ei_l cos Gi

= f max { — % . i=1, ---r'k} S(de)

which cgmplefes the proof.
Remark : ,Independéncé of the k-marginals of G cofrespopds to a méasure U
e concéﬁfrated pn_the k extféme points of Q. If U concentratesvon.a subset of (2,
ﬁhen G concentrates 6n the straight lines through tﬁe origih and this subset
_of Q. |
'ﬁefe arevéome examples in R3: o ‘ ‘ _
:,V Example 4: Suppose U{(l//é,-i//é, 0} = v{(1/v2, o,vl//é)} = v{(0, 1/¥2, 1/¥2)}

= 1//2 with U placing no mass elsewhere. Then

. . -1 _ _ — _ o
G(x, y, 2) =exp {- 5(x " Vy ! +y vz 1 sxtVvzhy
for %, y, z = 0.
' JExémBle 5: Let U~c9ncentraté on N {(x, y, z)|x=0 or y=0 or z=0} and have

density % there. Then




G(x, vy, 2) = exp {2y e 22 HE s (T

_Ekamgle 6: Let U have constant density 4/m on f. Then

yz% : R y_l arcsin — :Z% %

(x+y) (y+z)

G(x, y, z) = exp {—%(x_l arcsin

(x + v) (x + z )

+ zflAarcsin 2' 'zy% 5 5% }
: (x™+ z7) “(y + 27)

for x, y, 2 = 0.

'Rgmérk: Examples 4 and 5 are baséd on the observation that if § is

. partitioned into n measurable sets Ql, ceey Qn' the stable df can be Qritteh
as £hé product of n stable df's with angular measures concentrated on

Qi’(i=l, eeey M)

3. Domains of attraction of simple max-stable distributions.

Here we characterize the domain of attraction of a éimple stable
v _ - e T ‘
af G and again we recall that each marginal of G equals @1(x) = e x s X > 0.

Suppose F is in the domain of attractidn of a simple stable df G;

(3)

i.e. Ea(J) >0, b , n=1, j=1, ..., k such that

n, (1) (1) (k) k), -
: 12y F (an_._xl + bn ’ a xk + bn ) f G(xl, e xk)

_ for(xl,_,.., xk)va continuity point of G, xi,>=0, i=1, ..., k. Cdnsidérétion

of the marginals shows that (12) still holds if b3’ =0, n>1,'j=1, ..., k

(cf. Gnedenko (1943), de Haan (1970)). ‘Suppose for the moment a = a£1)=

When this is the case we say F is in the domain of symmetric attraction of G.

Recal¥ the notation A(xl,'..., x) = (=2, xl]x ee. X(=, xk]. Note (12)
holds iff

' lim n(l-F(a X
n- ®

1’ ...,,anxk) = - log G(xl, ceey xk)

_so that if v is the exponent measure of G we have




"~ 1im nP [X € a Ac(xl, vaey xk)] = v(Ac(xl, T xk))
n > o« ¥ ’

: fof all A with V(d9A) = 0, where we suppose X is a random vector with df F.
Hence ¥ B € B(Rk) with V(3B) = 0 we have

" 1im nP [X € a_B] = v(B).

: ~ n

‘n->oo . i
Now we switch to polar coordinates. -Let C be a Borel subset of £ and set
for r > 0

. k 2 5
-B(rfc)' ={(xlr ceey }Lk)l :Zin >r, ge C} .

 Then :

1im nP [X€B (a r, ¢)] = lim nP [X € a B(r, O]
,n—foo ~ n. n > © ~ n

= V(B(£,Q) = r TS(C)
(by Théorem 1 provided S(3C) = 0), i.e.
(13 Lim ne [IX 1 > ar, 6WEC = r 1 50
n - © ~ n ~ R
~ where lIXll, © are the polar coordinates of X. Setting r=1 and C = Q we |

obtain
” -1

(14) lim P [lIxll > anr]/ pLIxll> an] =r
n > © ~ ~ :

and furthermore it follows from (13) .that
(15) lm P [lxll>a, 6x) €cl/plixl>a ] =
) n > © ~ ~ : ~ n

lim plox €cllixll>al =s©@/s@ .

n>e
It is hét hard to see that a, may be replaced by a continuous variable t
land fhét in this form (14) and (15) imply (13). Thué wé have proved
Theorem 3: The r;ndom vector X with df F is in the domain ofvsymmetric
attraction of the'simple stable df G with exponentimeasure Vv and

~

o T lar, a9) = r %ar s(d) iff




(16)  lim B [Ixl > exl/ 2 (x> €] = 77

Tt >

(17) 1lim PO €c | Ixll> ] = s@/s@.
t > A

Corollary 3: in the case of symmetric attraction to G, the partiai maxima
of “§i|| where gi' i 2 1 are iid vectors from F, conveige to @l.
i Remark: The criteria for convergence of sums.of iid vectors are the same.
See Rvateva (1962 Theorem 4.2; set a=1).

The situation of non-symmetric attraction is discussed in the next:
section. .

Sufficient conditions for convergence can be given in terms of the
AAQensity of F when this density exists.
’ Coroliafz 4: Suppose G is simple stable and the measure S apéearing in the
representation of Theorém 1 has density s(Q), 9 = (61, ey Gk) EE.E,
Suppose F has density f£. Then F is in the domain of symmetric attraétion of.
.G if for all r > 0

. f

—

3
-

lF(trcqsel,tr51nelcos62,‘..,tr31n61..i51n6k_2co§6k_l,trslnel...sinek_fdg

©(18)  lim™:
o -
COos k-

'f(tcosel,t51nelcosez,...,t51n61...sinek_ ,tsinel...sinek)dg

2 1

- oD

. : f(pcosel,t51nelcos62,...,t51n91...51n6k_2co$%¢q!tsin61...sinek_l)
(19) lim S

tro £(ENV2, t/(V2)2, ..., t/(/)5)

= s(8)/s(%) .

. ' k L

: 2 :
Proof: Let f, (r,0) be the density of IxIl = (ZX. )% and © = (0., ..., Ck) where
2200~ g X ) ~ 1 i ~ 1 T

Gi = arcsin ( I xg/ z X%)% and suppose

L=i+1 © Q=i




! £, (rt,0)dd

(21 lim £,(£,0)/ £,(t, ) = s(0)/ s@
R o o]

Note that (21) and L'Hospital's rule give

£, (s,0)ds
_ : f:=t LA .s(g)
lim

: IL
L ETE r £, (s,5)ds s(4)
B o 3

and therefére

Cplligh>¢ 0€c

1lim

e f
: li £, (r Hdr
e b

) f: f‘ : f*(r,g)dr dg
BEC

r f*(rl g-)dr
& ~

J . s(6)ae
pec ~ ~

s(¥)

from which (17) follows and (16) follows directly from (20) thus implying
F is symmetrically attracted to G. The conditions (20) and (21) readily

translate into (18) and (19) and the proof is complete.




"Examg‘ le 7: On'R2 suppose S [0,9] =0 0<0<% for G. Then (19)

_ means
f(tqosel, tsinel) “’f(tcosez, t51n62)

_‘ast+’°°_.vel, 625[0, zl.

) 4. Stable df's that are not simple; domains of attraction.

We agéin suppose that (12) hc_jlds but now make no assﬁmption
'about ‘the marginals of the 11m1t G except that they be non—degerilerate.'
Denote the marglnals of F by F;., i=l, ..., k  and let U (x) be an
J.nverse of the monotone function 1/ (l-F (x)).  Then Ui satisfies

Ui(tx) - Ui(t)

lim - = ¥, (x)
t > Ui(te)‘- Ui(t)

xp—l v, l-x_p
ef-1 1-e’

: for x > 0 where p is a positive pafameter (d‘e,Haan, 1970); -in particular

/2l

a1 (4) | |
(23) - lim ‘(Ui(nx_) -b ‘i’i(x)

n
n > .

 where ar(xl) >0, br(lj) , 3=, ... ,k, n>1 _are the normalizing constants

é.pp’earihg in (12). Therefore

. lim P[i—:_LF.—
n>o i

| (@) _ ()
lim P [(Y b

n > ©

(1)
)/ a Tt S

G(Y (%)) -eer Y (1))




from (12) and (23). If we suppose the marginals of G(Wl(xl), cees ?k(xk))_
ey S . : :
are e §T , x>0 (in any event, the marginals will be of this type), - then

(1) . 1
Yo eeer T (X )i
1- Fk

1} to the 51mple stable af G(Wl(xl), cees Yk(x )). Using this we can

we have symmetrlc convergence of the maxima of{-—jg— (X
i

generallze ‘the results in the prev1ous two sectlons to the general case-k
The type of the most general max-stable df with non-degenerate marginals is
oy -1 R . : ~
»of the form G*(‘Pl (xl), cees Wk (xk)) with G, a 51mple‘stable df and Wi
‘one of the functions given in (22), i=1, ..., k. Adf F vis in the domain
 of attraction'of G iff» F(Ul(xl), ...}~Uk(xk)) is in the domain of
symmetric attractlonvof G‘Wl(xl), ooy Wk(xk)). B

We end this section with a remark concerning our definition of_the
- simple Stable df's. We chose the approach used in section 2 because of the
vlinks deSCribed in Corollary l'with the stable Lévy processes. However an
alternatlve approach would be to start w1th df's whose marglnals are double
exponentlal df's. The transformation to polar coordlnates is then replaced -

by the transformation

zl"=,xl_ e +xk, Z —X - x2, ceey zk=vxk-l —Ax'k

“and all results can then be derived in an analogous fashion to the one given

lin sectioh 2. For example in R? if
é‘(fn,.-z) = { (x,y) | x4y > *2w; X -y > 2z}
ftﬁen (G)Iis replaceovby
lsi+ log V(B(w + 5, z) = log Q(B(w, z))
:whiohventaile
VB, 2) = e p(z)

where p is decreasing. There is a problem here however. In the previous




z1k-1

case we had measures on the closed set [0,3 so that. here we have to

_consider measures on the closed set [-x, W]k_l.

In R2 the approach using merginais equal to GX§ {—e-x} coﬁld’be :
iinked to;the‘approach using marginale equal to e—x-lbdirectly if in’the :
xlatter approach we had ueed the transformation z = xy, w = arctan y/x ihsfead'

of the conventional transformation (x,y) - (r,0) to polar coordinates.

Ssimilar remarks hold in higher dimensions.

15. Aeymptotic Independence

| Fer eempleteness we derive by our methods two resﬁlts of Sibuya

(1960)cohceining asymptotic independenee and asymptotic'fuilbdepehdence of

’the componenﬁs of the vector of maxima. We suppose that the vector of
Aimakimavconverges to a limit 4f and fer ease ef writing we assume symmetric
»conVeréehce to a siﬁple stable df. Asymptotic independence then earries
over to the éeneral cese. We confine ourselves to R2 as the generalization
to_Rk is ciear.' | ’
Theorem 4 (Sibuya): Sﬁppose F is in the domain_of.symmetric’attraction of

the simple stable df G and (X,Y) has df F. Then asymptotic independence

holds i.e.,

(24) - lim n(l-F(anx,“)F(”lény)) = lim n(1-F(a x, a y))

n - . n >
1= - log G(x,y)

iff

P [Y 5 X, XA> #j

Plx > %l

(25))  1im P [¥Y > x|x > x) = Llim
X > o ’ ' X > ®

'Proof:’>Suppose asymptotic’ independence holds. Then from the marginal_e

_ convergence




(26) ~ lim n(1-F (@ _x,@)) = T

n - .

together with (24) we obtain

1im  (1-F(x, x))/(1-F(x, ©))
n > ©

lim (1-F(x, ©))/(1-F(®, x)) -
X > oo :

' “Fxém
Plx>x, ¥ >x] = (1-F(x, ) + (1-F(®, x)) - (1-F(x, x))
' wé immediate1y get (25).

_Conversely suppose  (25) holds. From marginal convergence we have

Plx>t]] ~a PI[x>t], t >, ¥ a>0 so that (25) entails

PIX > tx, ¥ > tyl
P[x>¢]

lim
t+oo'

i.e. in view of (26)
& lim nP [X > a X, Y > gny}
n’—»oo : .
Therefore

Iim n(l—F(anx, any))

nlimw n((1-F(a x, @) + (1-F(®, a y))- P[X>ax, ¥ > ay])

(using mérginal’conﬁergencé) and (24) . ensues. .
. ExamElé 8: Suppose F is the joint df of (X, -X) and is symmetrically.
attracted to a simple stable df G. ' Then (25) holds because .

p[x>x%x, -X>x] =0 for x > 0. Thus if-[xn, n =1} are. iid copies of




we have

n
A < |
*o e yl > o) 2y

and’Consequently a limit law for the range‘ensues:'

'n n’
.V x, - A x,
1 1

|

i=1 i=1 .
i an < X] ag q)l*

q)l(X) .

cf. de Haan 1974.

' 'We have the.following counterpart of Theorem 4.

Theorem 5 (Sibuya): Suppose F is in the domain of symmetric attraction
Aof the simple stable df G and (X,Y) has the df F. Then asymptotic full

dependence holds, i.e.

(27) lim n(l-F(a_x, a_y)) = x - log G(x,y)
n > n n _

for X,Y >0 iff

Plx>x, vy>x] _

(28) lim Py > x|x>x] = lim FTxS o

X > © X > ©

1.

Proof: To see (27) impliés (28) proceed in a manner analpgous to the previous
proof. For the converse supposé (28) holds andnote for t, x, y > 0 with‘
y > X:

Plx>ty, ¥>tyl o PIX>tx, ¥ > ty]
“plx > t] Plx > t]

P lx>ty, ¥y>tyl |, PIXSty, ¥>ty] - Plx>ty, ¥ > tyl
P[X > t] PIx>ty, ¥ > ty] . Plx>t] !

=

Now lim P[X<ty, ¥ >tyl/P[X>ty, ¥ >tyl =0 from (28) and hence
R ’ .




lim P[x > tx, Y > tyl/ P[x > t]
t > '

and replacing t by a ‘we see
lim n(l-F(a x, a_y)) .= 1lim n((1-F(a_x, ®)) + (1-F(®, a_y))
n n n : n
n > X . n > © .
~ > >
P[x a x, Y any])

x—l - x—l Vi y-l

as required.

56,, Mulfidimenéional E#tremal'Procésses

Here wé cbllect éome fesults about muitidimensional extremal‘
.éroéesées in Rk._ Let Y(t) = (¥l(t), ---r Y, (£)) be an extremal process
generated by the max-id df F according to (3). - From the forh of the
joint distribution of.z(tl), ooy g(tn) given By (3) it is clear that X
:is_a Mérkdv proceéé in Rk with stationary transition probabiiities. Again

f frbm (3) it follows that regular versions of the transition probabilities

[Yi(t) <yi, i=1, ..., kl

=P Ly (t+s) <y, i=l, ..., k[¥ (s) =%, i=l, ..., K]

t .
= F (yl, eeeryp) 1 [y, >x,, i=1, K]

‘The process Y is in fact a Markov jump process and we will compute
the parameters governing holding times and jumps. To facilitate this we
compute the generator S. The computation  is conducted for k=2. For £ a

. . . 2 :
‘bounded and continuous function R” * R we have for Sf:




S£(x;, x,) = lim LB (B (0, Y(0) - £(xy, X))

ed o = F1r¥

= lim t—1 f f’(f(yl; y2), - f(xl, x2)) P}’{‘

€ ‘ €
o x, [Yl(t) dy, s ¥, (t) dy2].

i o € v (t) €
Since PX11X2 [Yl(t) _dyl, Yz(t) dy2]

= P Ly, (£) € ay,, ¥, (0) dy2]1[yl > %0 ¥, > %,

ply () <x;, Y.(t) €dy 11 _
1 ‘1 2 2 .[y1 =X, ¥, >.x2]

> x

]

’ . <.
- P [Yl(t)_e dy s ¥,(%) x2]1[yl

1" Y2 5%

and recalling t_»l P [Yl(t), Yz(t) €] =v() as t * © where VvV is the
exponent measure of F (Balkema and Resnick, (1976).) we have:

SE(x)r x5) [ j (Elyyr yy) = £lxg0 X)) {1[yl > Xys ¥, > XZ]V(dy;' dy,)

l[ y]_ > le Y2 = XZ]\’(le' (-_m' X2])

l[ ]\)((—col Xl] ’ dyz)} .

= >
Yy T Fpr Y3 7 %
_Cqmparing'the form just obtained with the canonical form of the geperator .
for a Markov jump process (cf. Breiman p.331) we obtain the mean‘afl(xl, x2)
of the holding time-in state (xl, x2)‘and the conditional probability
H((xl, 32); A) that starting from (xl, x2) the process jumps into A. For

arbitrary k these quantities are given by

UKy, eer %)) = VAT, oees X))




o -
VAT(Y s ceer ¥))

(29) M((x,, eoey X )3 B(Vyys eeer V,)) =1 -
1 k 1 k VAT, ey %)

for y, Z’Xi, i=1 ... k where as usual
Alyyr «oor ¥y ={ (E)r wees tk)lti<yi, i=1,....k} .

For processes Y generated by simple stable df's this result has the
following interpretation: Let T be the time of the first jump after t=1.
Then

P[¥(1) €Aly,, ...,;yk)lyi(l) = x,, i=l,.../K]

c .
v(a (Yll ceey Yk))

=: P.(x P )lg(T) eA(yl, sens yk)] =1 -

C
1 VA (X5 eer X))

for Y; >=xi, i=1l, ..., k. Therefore .

VAs(y), el )

Py, eees LB €250 o ] = )
17 e X

£ B ={(t), ...y tk)|ti>xi, i=1l, ..., k} then

V(A N B)
[
V(A (xl, ceey xk))

Y(T) €EAaNB] =
xy ey 11X ]
for any A € B(Rk). Supposing again that T is the transformation to polar

coordinates and that TY(T) = (llYll,0) we have on sets A' such that T-lA' CB:

; o -2 c »
p(xl! el xk)[(ﬂgn,g) €n'] = J J r “dr S(d8)/V(AT(x), +-ur X))

.A'

(+) we have llYll and © independenﬁ.

so that with respect to P
’ (xll ey xk)

Another independence result is given.below which describes when

the jumps of Y are iid random vectors. Preparatory to this discussion we




discuss the range ®(Y) which we define as
R(¥) ={x|¥ open sets 02 x, P [¥(t) € O for some t|> 0]} .

For what follows we denote the support of a measure V by supp V.

To characterize 6(Y) we need hitting probabilities for rectangles.
This computation is done for k=2 and we seek P [Y hits (%), x2] x (yqs y2]]
where xl < Xy yl < Y,- Assume Y is related tb a Poisson random measure

as described in the introduction. Define 0(A) = infi{ Tk I(J(l) ’ J]iz)) € a}

to be the first time there is a point in A € B(Rz)\. Then
c L
Ply(v) (Xl"XZ] x (¥qs y2] for some t]
=P [o((~>, x,]:x (v, v,V 0((x1.VX2] x (=, y,1)

< o Nl.

27 Y3

Note G((-®, x2] x (yy y2]) = 0((-», xl] x ¥y y2] N ol(x,, x2] x (yl,‘ y2])
=: U AV and '

ol(xyr %] x (=2, y,]) = 0l(xy, x )] x (=, y) DA V= WAV

2

Set Z = G(Ac (x )) and the required probability is

2" ¥y

PLWAWY V WAV < Z]

where U, V, W, Z are independent and for any A € B(Rz') plow@m > t] = e'tV(A) .

set A; = V((x;, x,] x (v, Y1) A, = vi==, x,] x (v, v, 1)y
A3 = V((x,, x2] x (-, yl]), Ay = v(AC(xz, Y,)). Performing the required

calculation by capitalizing on independence gives

+ - -
)\4 )\1+)\2+)\3+)\4 }\1_+)\3+>\4 A +A_+A

0] = !—- l 1 l l
p[Y hits (x, %] x (v;, v,]] = "4{ 1" }

Assuming that }\4"> 0 we observe that the hitting probability is positive

. > > . . :
iff Al + }\2 0 and )\1 + >\3 0. This leads to




’ . k . :
Theorem 6: Let Y be extremal in R with exponent measure V. Then -

(Xyr weey x,) S R(X) iff for all € > 0

\_){ (—oo' X, + S]X oo X(—°°, X._ +b e] x

i-1

+¢€l} >0 for i=1, ..., k.

+€]x(xi-€,xi+€]x(—°°,x.

1 i+l

cee X(=, xk

Equivalently we have

Ry)y ={ (X5 -eey xk)|xi = sup{yily € a}, i=1, ..., k for some A C supp v}.

When Y is generated by a simple stable df, the range has the
following characterization. - Recall the transformation to polar coordinates T:

(xl; ey xk) > (x, 8).

Corollary 5: If Y ' is extremal generated by the simple stable df with

exponent measure \)°T_l(dr, dQ) = r—zdr S(df) then

supp V = { (X7 «ens xk)le € supp s}
and K(y) = { (xl, ey xk) |e € closed convex hull of supp s}.

We now consider the following problem: Let 1 < Tl < T2 < ... be

 the times Y jumps past t=1. For convenience set T0 = 1. When is
{Y(Tn) - Y(Tn_l) , n= 1} a sequence of iid random vectors? We begin by

reviewing and completing the situation for k=1 (cf. Resnick and Rubinovitch, 1973).

If Y is extremal in one dimension generated by F(x) set

‘Q(x) = - log F(x) = v(x, ®). Suppose a = inf {xIF(x) > 0}. If the jumps

bf Y are iid then
(30) {v(r), n=20}={2_+ I 2Z,, n=>0}
n 0 J
1
where _{Zn, n 2 1} are iid rv's with common df H(x). Note (30) holds iff

¥x E R(y)




(31) 1 - 9(y)/Q(x) = H(y-x)

for vy = x (cf. 29). The following facts are evident
(i) &(Y) = supp v

(ii) t € supp H iff £t 2 0 and t = x_ - x, where x_, x_ € supp V.

2 1 1 2

This follows from (31).

(iii) If x., x. € Q(Y) and x, < x, then vz € R(y)

1’ "2 1
z + (x2 - xl) € R(y).

 This is clear since X, = X5 € supp H.
(iv) Either R(y) = (a, ®)

or K(y) ={x0+nd, o < n<ooandx0+nd>a}, d > o.

© This is easily seen once one defines
d=inf{y - x|y >x%x, x, yERWM} .

Thus one is led to the possible structure of ®(Y) when independent
jmnps‘ are present. Analyzing (31) leads to functional equations which' Q _ must
satisfy. These equations are easily solved and the result is: Y has iid
jumps iff

(1) Q¥ = (a, ®), ~*<aand F is of type

F(x) =
0

(ii) R(y) ={x0 + nd, ¥n such that x, + nd > a}

concentrates on {xo + nd} and is of the form

n

for xo. + nd = a

otherwise

where 0 < p < 1.
. . k :
We now consider the problem in R  so suppose the jumps of

Y(¢) = (Yl('), ceey Yk(°)) are iid vectors. We are going to prove that the




process is then one-dimensional; i.e. that ﬁ(g) is contained in a
straight line. Pick two arbitrary components of Y. These components
constitute an extremal process in R2 and the jumps are iid pairs. The
desired result will be proved if we prove the result for any two components
of Y¥; i.e. it suffices to suppose k = 2.

Suppoée in order to get a contradiction the process is not
concentrated on a line. Then there are points (xl, x2), (yl, y2) Etﬂ(g)

with (say) Xy <§yl, X, > Yy- It is evident that the following points must

be in &(Y):
{z(n, m}: ={ (v, + nly; = %)), x, + mx, - y2))}

where n = -1, m = -1, n,m integers but we exclude n = m = -1. Define

g(n,m) = v{:Ac(z(n,m))}. Referring to (29) and using the asumption of iid

jumps we have that g(n + r, m + s)/g(n, m) does not depend on n, m(r,s:= 0,1,...).
Call this ratio f(r,s) so that

| g(n + r, m) = g(n, m)f(r, 0).

from this we deduCe

f(r + s, 0) = £(r, 0)£(s, 0)

and thus f(r, 0) = ear for some constant a which entails

ea(n—l)

g(n, m) = g(l, m).

Similar analysis on the second variable shows

- ¢&(n-1) b(m-1)

g(n, m) g(l, 1)

an bm
=ce e
where ¢, a, b are constants and c > 0.
Since g must be non-increasing in n and m we must have a< 0, b < 0.

-Define sets

= ' - 7 - < < -
Bym =121 2 lyp + (oD lyyxp) <2y Sy +onlyyex)

- - < -
x, + (m-1) (x,-y,) < z, <x, + m(x, yz)}

forn, m=1, 2, ... say and note




-g(n-1, m-1) + g(n-1, m) + g(n, m=-1) - g(n, m)

-c ean ebm (1 - e_a)(a - e-b)'< 0

which gives the desired contradiction.

Thus if Y has iid jumps then Y is one-dimensional. The
structure of 6&(Y) and the possible distributions of the process are then

obtained from the one-dimensional results.
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