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Introduction and notation

A generalization of Karamata's theorem on integrals of regularly
varying functions is proved. Using Lapla;e-Stieltjes transforms it is
shown that any regularly varying function with exponent o (o + 1 €N) is
asymptotic to another regularly varying function all of whose derivations

are regularly varying.

+ .
Suppose U is a positive function on R . U is regularly varying

[ee]
at © (or 0+) with exponent o, in short o-varying, notation U € R V(a) (or
R V(g) respectively), if for all x > 0

U(tx) a
ue) X

as t ~> w/(Or t ¥ 0 respectively); c.f. Karamata [5] and [6], Feller [2] VIII,
9 and XIII, 5.

If U is non-decreasing and if for suitable functions a(t) > 0 and
b(t) and all x > 0

HETH )~ tos x

© € () . . . . itabl
as t > ywe say U €Il . If U is non-increasing and if for suitable
functions a(t) > » and b(t) and all x > 0

U(tx) - b(t)
a(t)

- log x

(0)

as t >® we say UE€1Il"""; c.f. de Haan [3], section I, 4. By abuse of

. cn v
language we shall also write U(x) RV o

1. Integrals of regularly varying functions

We start from a well known result. Suppose F is a probability
distribution function and F(O+) = 0. Then (Feller [2], VIII, 9 th. 2. cf.

Pitman [7], lemma 3) for o >0, B<0, a+B >0
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A variant is the following. Suppose U is non-decreasing,

U(0+) =0, then for a >0, B> 0

(p2) I au(e) € R AR f lywae € r vE)
0

x o-1
St Tu(r)de
1lim O

' (=)
< U(X)ERV <=> =
B X > Xa U(x)
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X o
J t7du(r)
lim O B

<> = .
> +
X XOL U(x) at+B

We want to present some analogous statements. Proofs are

given in the next section. Firstly for probability distributions F

% () = (=)
(P3) J tdF(t) €R A <=> [(1-F(t))dt € R v0
0 0 '
X X
S(1-F(t))dt J tdF(t)
1im O lim O
-« x+®  x(1-F(x)) © = x> x(l—F(x))

A sufficient (but not necessary) condition is 1 - F(x) € R V_(olo).

Next suppose U is as above. For a > 0

x [ '
1€1® « 1 ) €r VC§°°) <> [t %qu(t) € R vf:)
0 X

Finally suppose U, is non-decreasing, U, is continuous and

1 2
strictly increasing, U2(0+) = 0. Suppose a > 0, B > 0.

(P5) Any two of the following statements imply the others.




u. €r v®
1 o

()
U, €R Vg

= (=)
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X
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X > Ul(x) U2(x) o8

This generalizes (P2). Similarly for functions in H(w) we

have the following.

(P6) Suppose U1 €R Vém), U1 is continuous and strictly increasing,

Ul(0+) = 0.

() % ()
U2(x) €1 <=> é‘ Ul(t)dUZ(t) €R VG

o du,_(t)
_ 2 ()
= [ ——<€RrRV /.
. Ul(t) -0

This generalizes (P4).

Proofs and remarks

Proof of (P3):

7% tag(e) € R v&) if and only if xl_lf‘

0 0 I5 £dF(E) /{x(1-F(x))} = =

oo}

1i 1i
by Feller [1], VIIL, 9 th 2. Now 70 Jo tdF(t)/{x(1-F(x)} = © <> T

fg(l—F(t)dt/{x(l—F(x))} = © is a matter of partial integration. If

a(x) = fg(l-F(t))dt/{x(l—F(x))} + o (x + ®) then fg(l-F(t))dt = {fé(l-F(t))dt}

exp f?{t a(t)}_ldt and the latter is in R Vém)by the representation theorem

for regularly varying functions. If fg(l—F(t))dt €R Véw) then by property

1lim

8, p. 22 of de Haan [2] x> 00

f§(1-F(t))dt/{x(1-F(x))} = o,

Remark: This is related to the weak law of large numbers (Feller [2], VII,

7, th. 2).




Remark: The statements of (P3) are implied by the set of equivalent statements

(a > 0)

X
1- FG €R VY <> f(1-F())ae €16
0

X X
> f tar(e) €1 « f *(1-F(r))dt € R véw)
0

0

(the equivalence of these statements follows from (P4)).

‘Proof of (P5):

U2 has a proper inverse~U; .

" U (x)
J Ul(t)dU2(t) = f U (U (s))ds.
0

We shall write UloUgl(s) for the compound function Ul(Ugl(é)).
Assume a) and b). Then U1 U2 € R V(/%, and hence
Ugl(x)
f Ul(t)dU (t) i) Ul(t)dUz(t)
lim O _1lim O
x> ® Ul(x) Uz(x) T g

-1
UloU2 (x)

f U oU (s)ds
_1lim 0 1 B

e 4 UloUzl(x) at+p

Assume b) and c¢). The compound function

ey

X
_ -1
Ul(t)dUz(t) = (f) U10U2 (s)ds

0

Since U oU—1 is monotone, it follows

then belongs to RV Y

() .
871 (o)

legrv®
U1 2 RV 1 . Hence
B
-1. . (oo)
=- 13
U1 U1°U2 0U2 R Va .




Assume a) and c¢). It is well known that there is a continuous

and strictly increasing function U3 such that U3(0+) = 0 and Ul(x) N U3(x)

as x +* ®, Then fg U3(t)dU2(t) N fg Ul(t)dUZ(t) as x >+ «©, The compound

function

-1
Us (%)
é U3(t)dU2(t) f sdU 003 (s)

is in R V(Ti . By (P2) then Uon;1 €R V(Ti . The rest is as before.
o “(o+B) o B

Assume d) then

UZ(X)
f UloU (s)ds f U10U2 (s)ds
lim O lim

) U, (x) U oU (U (x))

X>® -1 X>®

U1°U2 (%)

f Ul(t)dU (t)
_1im o0 B

T xoo Ul(x) U2(x) o+B

Hence U1 Uz1 €R V(wi . Once we know this a) and b) are equivalent. If in

B "o

addition to d) we assume c) then Ul(x) Uz(x) = Uz(x) UloUgl(UZ(x)) =

U,oU, (x) €R V( % where U4(x) = x UIOUZI(X)' Clearly U, €R V( i hence

(a+B)

()
U, ER Vg .

Proof of (P6):

OU'l'l(t) €R Viw)

2 21

2

[ee] - (o] X
U €H()<=>U0U1€H()<=>fth
0

U, (x)
x r -1 . (@)
<= [ U (t)dU,(t) = J tdU,oU, (t) €ERV
0 1 2 2771 a
0
and similarly for the third statement of (P6). The second equivalence above

follows from [3], theorem 1.4.1.b.




3. Derivatives

We profre the following:

Theorem 1. Any a-varying function U with o + 1 € N is asymptotic
to a function U1 all whose derivatives are regularly varying provided they
are given the correct sign.

Proof. First let a < 0. There is a decreasing function U2

(0)

1
that U(x) v Uz(x) as x + ®©, Define U3(x) = UZ(E) then U3 €R V_OL . Denote

such

its Laplace-Stieltjes transform by U

Then U3(x) v { T (1-a) }—1 63(%) as

3
as x ¥+ 0. So U(x) v {(1-o) }-1 ﬁB(x) as x + © and the latter function
satisfies the requirements (property 8 p.22 de Haan [3]).

Next let a > 0 (0o € N). There is an increasing function U2 such
that U2( 0+) = 0 and U(x) v Uz(x) as x - ®©, Denote its Laplace-Stieltjes:

transform by 52. Then

U(x) v UZ(X) v r(i_'“@ 1\32(%) as x > «,

-1 Vv
We shall prove that Ul(x) = (M(1+0)) 1 UZ(%{-) satisfies the requirements.

We have (Abramowitz and Stegun [1] Ch. 24, 1.2.I.c.)

n! n-1 n _-n-m ¥(m) 1.
“!_(m—l)(-l) X U, (X).-

By property 8 of de Haan ([3], p.22) form=1, 2, ...
X U2 (X)'b(oc)(onl) ee. (-a-mtl) UZ(x)

as x > <, Hence as x > ®

n! D" x ™ E’JZ(§

_ (~otn-1, , n _-nY 1
CH DT AT 0,0

a(a-1) ... (o-n+l) x ® 1”12(—}1;).




The theorem says that within each equivalence class of asymptotically
equivalent regularly varying functions there is at least one function satisfying
the requirements. A similar statement with a different definition of the
equivalent class holds for functions in II. This is the analogue of the previous

theorem for o = O.

Theorem 2. Any function U.€ H(m), i.e. any non-decreasing function

satisfying

lim U(tx) - b(t) _
o —a(t) log x

for all x > 0 and suitably chosen functions a(t) > O and b(t) has a companion

function U1 such that (_1)n+l Uin)

1im U(8) - Uy (0)
£ oo a(t)

(x) €R VEZ) forn=1, 2, ...and

= 0.

Proof. The Laplace-Stieltjes transform ﬁ(t) of U exists for all
t > 0. We shall prove that Ul(x) = I‘j(x—1 e_Y) satisfies the requirements;
here Yy is Euler's constant. By de Haan [4] U € H(O) and

linm U(t) - U@ _
t>o a(t) Y

As in the previous proof we have

at v _ 2 n! on-1 n _-n-m Y(m) 1
E;E'U(—J = mzl o (mrl)(—l) X uY (;)-

By the lemma in [4]

_h(l)(i).e R v(g) and by property 8, p.22 of

[3] form=1, 2, ... as X > @
x B B(m)(i) " (—1)m+1 (m-1)! g L 5(1) Ci).

Hence as x > ®

&
dxn

iﬂ:l%lﬁl (_1)m+1
m.

v —) A\ n —.
id v ot IO mzlq_})

- (D Ly T D).
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