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Introduction and notation

A generalization of Karamata's theorem on integrals of regularly

varying functions is proved. Using Laplace-Stieltjes transforms it is

shown that any regularly varying function with exponent a (a + 1 4 1\T) is

asymptotic to another regularly varying function all of whose derivations

are regularly varying.

Suppose U is a positive function on1R . U is regularly varying

at co (or 0+) with exponent a, in short a-varying, notation U V(co) (or
a

R V(o) respectively), if for all x > 0a

U(tx) .÷ xa
U(t)

as t -÷ 00 (or t 4, 0 respectively); c.f. Karamata [5] and [6], Feller [2] VIII,

9 and XIII, 5.

If U is non-decreasing and if for suitable functions a(t) > 0 and

b(t) and all x >

U(tx) - b(t)
÷ log x

a(t)

as t -÷ co we say U E: II(co). If U is non-increasing and if for suitable

functions a(t) > co and b(t) and all x > 0

U(tx) - b(t)
÷ log x

a(t)

as t we say U E: II
(0)

- c.f. de Haan [3], section I, 4. By abuse of

language we shall also write U(x) E R V(
a

4- co

1. Integrals of regularly varying functions 

We start from a well known result. Suppose F is a probability

distribution function and F(0+) = 0. Then (Feller [2], VIII, 9 th. 2. cf.

Pitman [7], lemma 3) for a > 0, < 0, a + > 0



(P1)

(00) lim  
<=> 1-F(x) E R V, <=->

f tadF(t)
<=>lim 0 

x -± co a
x (1-F(x)) a4"

13

2.

(co)
tadF(t) R V(():3 <=>

a-1(1-F(t))dt(E

0 0

f t
a-1

(1-F(t)dt
1=

xct(1-F(x))

A variant is the following. Suppose U is non-decreasing,

U(0+) = 0, then for a > 0, 13 > 0

a+P. 
- t V(°9(P2) I tadU( ta1U(t)d (ERt) E R V(c9 <=-->

0 0

<=>

f t
a-1

U(t)dt
lim 0  1
x•+00 a

x U(x)
x a
f t dU (t)

lim 0  13<-----> =
x-*00 

x
a 
U( ) 

a+fis •

We want to present some analogous statements. Proofs are

given in the next section. Firstly for probability distributions F

x x
(P3) 1 tdF(t) E. R V <=> f (1-F (t) ) dt Ei R V

0 
0 0 

0
x x
1(1-F(t))dt I tdF(t)

lim 0  lim 0 <=> - 00 <-> = co,
x-*00 x(1-F(x)) x4.00 x(1-F(x))

A sufficient (but not necessary) condition is 1 - F(x) EE R V
(cc).
-1

Next suppose U is as above. For a >

(co 
<=> tadU(t) <=> (c") t

-a
dU( ,E t) R V

((x)R V
a

Finally suppose U1 is non-decreasing, U2 is continuous and

strictly increasing, U2(0+) = 0. Suppose a > 0, 0 > 0.

(P5) Any two of the following statements imply the others.



d.

3.

a. U R V(c°)
1 a

b. U
2 

R V(°3)

(m)c. I U
1
(t)dU

2
(0 E V

0 1
x 

(t)dU
2l  1 im 0  _

x-'-°° U
1 
(x) U

2 
(x)

(09
This generalizes (P2). Similarly for functions in II we

have the following.

(P6) Suppose U
1 
(ER V(c°), U

1 
is continuous and strictly increasing,

a 

U1,(0+) = 0.

U (x) E 11(09 f U (t) dU
2 
(t) R V(cc)

2 a0 

00 dU,(t)
V(a))<=> f4

(0 _a •
x 1

This generalizes P4).

2. Proofs and remarks

Proof of (P3):

tdf(t) (ER V(r if and only if f'(; tdF(t)/{ 1-F(x))} =

lim x lim
by Feller [1], VIII, 9 th. 2. Now I tdF(t)/{x(1-F(x)} = m <=>

Co

J'(1-F(t)dtgx(1-F(x))1 = is a matter of partial integration. If
0

a(x) = f(1-F(t))dt/{x(1-F(x))} 00 (x ÷ co) then .r0(1-F(t))dt = {.1.01(1-F(t))dt}

exp a(01-1dt and the latter is in R V0 by the representation theorem

for regularly varying functions. If 01-F(t))dt (ER V((31 ) then by property

8, p. 22 of de Haan [2] 
lim fx 

(1-F(0)dtgx(1-F00)1 =
x.+00 0

Remark: This is related to the weak law of large numbers Feller [2], VII,

7, th. 2).



4.

Remark: The statements of (P3) are implied by the set of equivalent statements

(a > 0)

1 - F(x) (ER V(cc) <=> f(1-F(Mdt(E11(°9
0

<=> I tdF(t) E (c°) <=> f ta
0 0

1-F(t))dt E R
a

(the equivalence of these statements follows from (P4)).

Proof of (P5):

U
2 
has a proper inverse U

2 
. So

U
2
(x)

U (t)dU
2
(0 = I U

1 
(U
-
2
1(s))ds.

0 1 0

-1
We shall write U

1 2 
( ) for the compound function 

U1(U2 
(6)).

-)
Assume a) and b). Then U1

 
0U 1

 
(ER V

(co 
and hence

2

U
-1
(x)

2
U
1
(t)dU

2
(t) I U

1
(t)dU

2
(t)

lim 0  lim 0 
x±00 U(x) U(x) x-÷.00 -1x 

U1oU2 
(1 2 x)

lim 0

x U oU
2
1 
(x)

f U
1 
oU
-
2
1
(s)ds

Assume b) and c). The compound function

U
-
2
1
(x)

U (Odu = I u ou(s)ds
1 

0 0 
2

(') -1
then belongs to R V . Since UU

2 
is monotone, it follows

(0t-F)

-1 (00)
U
1
0U
2 
€R \T" . Hence

-1
a

((')U
1 
= U10 U

2 
E R V .

ot
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Assume a) and c). It is well known that there is a continuous

and strictly increasing function U3 such that U3(G+) = 0 and U (x) U3(x)

as x 4- co. Then Po yOdu2(t) r‘i Poc U1(t)dU2(t) as x ± co, The compound

function

-1
U3 (x) x)
f U

3
(t)dU

2
(0 = I sdU

2
oU
3
1(s)

0 0

is in R V0°) By (P2) then U oU-31 R V0°)- . The rest is as before.
a 1(a f3) a 

Assume d) then

-1
U
1
oU
2 
(s)ds

lim 0 lim

U
2
(x)

U
1
0U
2 
(s)ds

0
co -1 x±00

2
U(x) U oUx U oU

2 
(x) (x))

2

I u1(t)dU2
(t)

lim 0  .
x÷co U (x) U

2
(x)

- 00)
Hence U

1
oU
2
1
 (ER V . Once we know this a) and b) are equivalent. If in-1

13 a

addition to. d) we assume c then U
1 
(x) U2(x) = U

2
(x) U oU

-
2
1
(U
2 
(x)) =

-1 0°)U40U
2
(x) E R V03) where U

4
(x) = x U oU

2 
(x). Clearly U

4 
E R hencea+13. 

(°°)U
2 
ER .

Proof of (P6):

EITN <=> U
2
oU-11(EHN <=> tdU

2
oU

1 
(t) (ER V(cc)

1
0

u
1 (x) -<=> I u1(t) du2(t) = tdU

2
oU

1
1 
(t) E R V

0 0

and similarly for the third statement of (P6). The second equivalence above

follows from [3], theorem 1.4.1.b.
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3. Derivatives

We prove the following:

Theorem 1. Any a-varying function U with a + 1 lEN is asymptotic

to a function U
1 
all whose derivatives are regularly varying provided they

are given the correct sign.

Proof. First let a < 0. There is a decreasing function U2 such

1
that U(x) % U

2
(x) as x 4. °°. Define U

3 
(x) = U

2 
(TO then U

3 
R V

(0) 
Denote

- -ct

its Laplace-Stieltjes transform by U. Then U '63(1) as

as x 0. So U(x) { F(i-a)}-1 153(x) as x -÷ 00 and the latter function

satisfies the requirements (property 8 p.22 de Haan [3]).

Next let a > 0 (a N). There is an increasing function U2 such

that U
2
(0+) = 0 and U(x) 'A) U2

(x) as x -÷00. Denote its Laplace-Stieltjes

transform by U2. Then

1 
U(x) 

rb 
U2(x) 

rb 
(1

+a)

v
U2 asas x -÷ Co.

v
We shall prove that U

1 
(x) = ( r(1+a)) U2(--) satisfies the requirements.

x

We have (Abramowitz and Stegun [1] Ch. 24, 1.2.I.c.)

d
n 

v 1 
n

n. n-1 n 
x
-n-m v(m) 1

n 
U
2
() = E 

. 
m-1( ) U

2 
().

m 
dx m=1

By property 8 of de Haan ([3], p.22) for m = 1, • • •

-m v(m) 1 v 1
(;) (N, (-a)(-a-1) (-a-m+1) U

2
()x U

2 

as x 00. Hence as x 00

d
n 

v n -n v
U (

1
T) n! (-1) 

1 
x U

2
(i) E (

n-1
) (
-a
)

n n-m m
dx m=1

-a+n-1 n -n v •1= ( (-1) x U
2
(;)

= ot(a-,
I (a-n+1) x-n v 

1U
2
(—
x
) 
•
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The theorem says that within each equivalence class of asymptotically

equivalent regularly varying functions there is at least one function satisfying

the requirements. A similar statement with a different definition of the

equivalent class holds for functions in H. This is the analogue of the previous

theorem for a = 0.

Theorem 2. Any function 'LIE H

satisfying

lim U(tx) - b(t) = log x
t -÷c° a(t)

c°), i.e. any non-decreasing function

for all x > 0 and suitably chosen functions a(t) > 0 and b(t) has a companion

function U such that 
(-1)n+1 (n) 

(x) R V(°c) for n = 1, 2, ... and
„ TT

1 
ul 

-n

U(t) - U
lim 1 = O.
t÷00 a(t)

Proof. The Laplace-Stieltjes transform U(t) of U exists for all

t > 0. We shall prove that Ul(x) = e-Y) satisfies the requirements;

v 
here y is Euler's constant. By de Haan [4] U E II 

(0) 
and

V

liM U(t) - U(t) 

t C'13 a(t) = Y•

As in the previous proof we have

d
n 

1
U(

_
) = E 

11,7 
(
n-1
) (-1)

n 
x
-n-m v (m) 

U (-
1
).

n x m. m-1
dx m=1

By the lemma in [4]

[3] for m = 1, 2, ... as x 00

M V (M) 1
X U (7c) r 1

Hence as x 00

1

(1) 1
E R V

(0) 
and by property 8, p.22 of

-1

dn ' 1 n -n-1 v( ) 1
U(3.7c) (-1) x

n 
U 

E fn-1\ (m-1):n! (...1)m+1

X 
m=1
‘M-11 m.

dx

= (_on x-n-1(11_0!
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