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CONNECTED WITH THE GENERAL LINEAR MODEL.

Laurens de Haan and Elselien Taconis - Haantjes

I. Introduction

The general linear model can be described as follows. The n-dimensional

stochastic vector *j y= (y.)I.1 has a normal distribution with Ex = X13 and1=1
COV y =a

2
I where I is the nxn identity matrix and X a known nxk matrix of

full rank (k < n); a
2
 and the components of 13 are unknown parameters.

We will be concerned with the situation where the first column of X is

(1,1,...,1)
T
. The maximum likelihood estimator of 13 is 13 = (XTX)--1XTy.

We follow Theil ([5] p. 163-179, see also [3]) and wish to compare the
1 Tlength of the vectors Ny and N)U3 where N = I - ;711 with 1

T 
=

2 ,Thus e.g. y TNx = - (Eyi)
2
. In an econometric al context it is usual to

consider the quotient:

-T
2 (3 X

T 
NXI3

.E =n 
Z.T1\TZ.

It is wellknown [3] that if for some 0 > 0

T T
(1). l

. (3 X N)43
im  

IT*00
nd
2

0 X
T
NX

then lim R
2 
=   in probability. Observe that 1 'holds if lim = A

u
2—n

0
a positive definite matrix. Write p

2(section 2) that .11_
n 
is asymptotically normal provided

2

0+1

(2)

Using the fact that R
2 
has a non-central .--distribution, we prove—n

TX TI3NX
lim v717( 
n4c0 na

2 =0.

*j Underlined letters represent random variables (or random vectors).
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In view of an adjustment of R
2 
for practical use ((5) p. 178-179)—n

,we derive an asymptotic expression for ER
2
 (section 3) under the stronger

—n
assumption

(3) lim n
n4.00

TT
13 X NXP.

na
2

0/

for some real c. We were lead to this investigation by our failure to

understand Barten's argument Di leading to a different asymptotic ex-

pression for ER
2
.

—n

- II Asymptotic normality

We can write R
2 

as:
—n

R
2 
=  

- 2INX(31 -

NXf31
2

-12 2
Here lz - X(31 /a has a chi-squared distribution with n-k degrees of

N.-
freedom. The distribution of N)Ui = NX(X

T 
X) A

LT 
iy. s normal with mean

vector NX13 and covariance matrix a
2
I. The matrix NX(X

T
X)
-1
X
T 
is sym,

t -12, 2
metric and idempotent with rank k-1 'so INXP.1 /a has a non-central chi-_

squared distribution with k-1 degrees of freedom and non-centrality
-

1parameter (3.
T
X
T
NXPla

2 
= 0

n
. Furthermore XP. and 1.y.--.X

2
N are independent

2
so 

n 
has a non-central (3-distribution with k-1 and n-k degrees of

freedom and non-centrality parameter 0
n 
([2] p. 213).
2NWe will now prove that in (R

2 
- p j has a limiting normal—n

distribution. Write

R
2 
=

—n 
B
2 
+ C

2

2 ,where B
2
L, X k-1,0n C 

2
(n-k) and lim n-1 0

n 
= 0 = p2/(1-p2).

n.4.00

Now

(4)
B
2
-C
2
0

= 
7n. B —17-"n7. 
1 2 1 2

vn  Vn (R2 - p2) =
—n (B24.c2) (1

0) 
032.4.c2) (1.4.0)
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We first consider the denominator. According to the weak law of large

1 2 1 2 11
numbers Vl converges to 1 in probability. Write B = r-- .w.=,/3-

n
1 2 with

I w12
I = E w. and w. are independent and standard normal. It follows

2
-a -a

i=1

lim B = lim e = 
I 

0, Hence lim
1. 

0 
/ k 

+U ) (U+1) = +1)2 in pro-2 1
n —

n->00 n±=0 n-**P

k -1

bability.

The numerator of (4) can be written as

(5) 1 0 0

— n • I
vn

1 2 0 2 %
Since (B -0) and (C -n) are independent, we have to prove that

vn n vn

each part of (5) has a limiting distribution. Now

1
B
2
-e 

n)

1 k
2

= — E w.
vn i=1

2 k-1 •

E w. V'
V; i=1 n

40n
The first part tends to zero and the second part is N (0, n ). Thus the

distribution of 
1 
(B
2
 -

n
) tends to a normal distribution with mean

vn
zero and variance 40.

We apply the central limit theorem to find, that the second part

0 
;T1-- (C

2 
-n) of (5) is asymptotically N(0,202).

Combining our results and applying (2) we have that 
,- 

Combiningcon-

verges in law to

202+)40

N   =N 0,2p20 
-02 2 _102)).

(0+1)4

III. The limiting behaviour of E.
--n.

We know that R
2 
has a non-central (3-distribution with non-centrality

—n
parameter 0

n 
So its density g(r

2
) is [4]



2 
00 40n (ie )f3e ( 2 4. ° g(r) = E e -   •

r Or2

The expectation of R
2 
can be written as-n

00

ER
2 
= E e-n

P.=0

CO

= E e
(3=0

00

= E e
13=0

13:

•

k-1 • n-k
+ 13- 2

(1-r2)

r(ki )r n
2

/

1 k_i n-k
--7-- + P' 2 -1

(r2) (1-i-2) r2 .

".0n)(3 ( 2
)

2

40 ) "n n

13! n-1
+

n-kSo 1 - ER
2 
= E e 

n
-n n-1

We write

co -213 ,x -xf n-1

0

1 - ER2 = n-k
-11 n-1

dx for (1 + n_i

00

-x

n-1

and obtain

0° 40 CO
E e

13=0 13!

k -1 • -k
+P.+Or(-2-)

r(V

-2f3x
n-1

dx

00 

1

2x -I
-iOn n-1

[
n-k 

.;0
n
e dxn- f 

-x 
e e exp

0



First we prove that lim n {(l_02) - (1-ER2)1 = constant

where

Now

(6)

n÷co n
0

Co n

1 - p =
n n-1 

1 +
n-1
02 n-k n n-1

n-1 
1 e

121) (1-ER2)} =

Co

n-k I
= n

n-1
0

Co -
n-k 

e= n
n-1 •

0

-x

n-k
n-1

0

n-1 f +

dx.

0
Co

-x 1 + n
n-k n-1

0

-2x
in n-1 

]

1
e e 

n
exp [20

n
e

-x0
n 1 -2x_20

n-1 • n n-1 '
1 2x

e -e . exp 20
n
e -1+-

n-1

0
n N

1
n_.1 1.

exp

-2x
n-1

2x )
- 1 +

n-1

The next step is to compare this integral with the following ex-
pression

(7) n-k
-n

n-1

0
n N

n

n 

[7-2x
-1

en-1- 
1 4. 2x 

Ix
n-1

dx

dx.

which can be evaluated explicitly and converges to 
-20

as 1.1+00.
(1+03

We will show that the difference between (7) and (6) tends to zero.

This difference can be written as

0

n-1
(8) 

n-k
n-1 I e 

n e - 1 - g(x ) lax
0

with

-2x
n-1

gn (x) = n 
(e -1 + 2x )e

n-

We are going to use the following simple properties



p.

x
2

is an increasing function of x when x > 0,

0 < e-Y - 1 +

_
0 < e

y
 - 1 4-

< y

1 2
-2y

if y > 0 and

if y > 0.

We split the integral (8) into two parts

CQ 

1 + cfQ0 0 f
n

and will prove that both integrals converge to zero. First we consider

the second part, then (use (10))

<

co
f
n

e

f
n

0
-x(1 + eT)

n [e

Jo

f
n

gn(x)

0 Ox
-x( 1 4- —11-)

n-1 • n-1 • 0
n
x

n e

0
nn

x
C 0

n-1 n-1 • 

• I 

-f
n

n e dx 41-ne = n e

-fn 
f -logn)

Let for instance f
n 
= 2 logn then lim n e = lim e = 0

n4.00

Next consider the first part, then (use (ii'.).and

0<
n

9

-x(1 + g (x)
n-1

n e
gn(

successively)

-- 2
n 

20 x
f
n 

-x(1

<f 
n-1

D. e 
( -1)2 

20
n
x
2

(n_1)2

dx



fn

-
20
n
x
2

20 f
2

fin 

20
n
42

0

20 f
2

fin

dx

,
kn-1)

n
f2
n

2
(n-1)2 

 q
4n0 f'

fin
•

5(n-1)' 
'

Hence the first part also converges to zero as n4.c° and thus

%
lim n {(1 - 

2 
1-ER

2 
)) = 

-20  . 2 
-P ) •

n÷.0. 1+0)

Up to now we only used assumption 1 We get

lim n {(1 
2 

2)11-pP2)-(1-ER)} = (1-p 2){k-1

provided assumption (3) holds i.e.

T
NXX f3. 

lim n 
T 

_ e) = C.
n±00 na

2
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