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SUMMARY

The Nested Modified CES-type (NEMCES) utility function is introduced here;

it consists of an N-level utility tree of CES-type functions. Modifications

to the CES-type utility function are made to enable more realistic descriptions

in the limiting case where substitution is no longer possible. Attractive

price- and quantity-indices are developed and an elegant system of demand

functions, specified in terms of price-indices, results. Additionally, some

suggestions for solving estimation problems in case of NETTES and CES-type

functions are made.
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1. Introduction

In the theory of consumer demand the utility tree is a well-known concept.

This concept was developed by STROTZ (1957), who also studied implications for

problems like aggregation over commodities and corresponding price indices. The

utility tree is, however, seldom used for the formulation of operational models.

The reason is the same as for the limited use of consumer demand theory : only

from highly simplified utility functions we are able to derive analytical results.

Leaving the quadratic utility functions aside, in view of the rather awkward

demand functions which it yields, we can summarize the utility functions adopted

most frequently /yin the following function

F( E a.

j=1

B.
- 1

).)
q3

with a. > 0

where w is utility, F a monotonic transformation, q. the quantity consumed of
3

the j-th commodity 
2) 

with price p.; q a and S. are parameters. This function is

based on the 'direct additive logarithmic' utility function of HOUTHAKKER (1960).

It includes the Stone-Geary utility function (SAMUELSON (1948b), GEARY (1950),

STONE (1954)) by letting all the B.approach to zero, provided that a relevant

transformation of (1.1) has taken place; this function leads to the well-known

Linear Expenditure System (LES); see KLEIN, RUBIN (1948), SAMUELSON (1948a), STONE

(1954).

A utility function similar to the Constant Elasticity of Substitution (CES)

productionfunction(seeMMetal.(196Misobtainedifalleles.are put

equal to each other. The resulting system of demand functions was called

Generalized Linear Expenditure System (GLES) by GAMALETSOS (1973). Similar demand

functions were earlier developed by BASMANN (1968) and BREMS (1968).

Besides the demand functions mentioned here resulting from so-called 'direct'
utility functions as (1.1), there exist also demand functions derived from
'indirect' utility functions. A review of the implications of the demand
functions resulting from the indirect addilog utility function (see also LESER
(1941) and HOUTHAKKER (1960))can be found in SOMERMEIJER and LANGHOUT (1972).

2) We shall use the term commodity in a broad sense : all quantifiable obiects to
which the individual can connect utility and a price are called commodities.
An example of a 'commodity' defined in this way is leisure.



3

Unfortunately no explicit demand function has been derived for the above-

mentioned utility function (1.1). The GLES demand function is the most general

one that we are able to derive analytically from (1.1); the assumption (I =

(for all j) is indispensable in order to obtain an analytical solution. This

assumption, however, makes the interpretation of (1.1) less general; the

elasticities of substitution between all pairs of commodities are equal to each

other, viz. to (1-B)
_1
.

In this paper we shall show that a merger between the concept of the utility

tree and the CES-type utility functions, results in a more general class of demand

functions than the system of GLES demand function. The underlying utility function

consists of nested CES-type functions 
3) 
; they have the advantage that the

resulting demand functions are not hard to derive analytically and easy to

interpret. As a by-product we derive practical formulations of price-indices for

groups of commodities at various levels of aggregation.

. The implicit solution

We consider an individual faced with the problem of allocating his budget to

a set of commodities, such as to maximize his utility.

The quantities are denoted by q for j = 1, . J, corresponding to

commodities with prices p., respectively. The utility function is defined as

(2.1) = to(q.; j = 1, . • , J)

The budget restriction is

(2.2) Y = E

where y equals the individual's budget.

3) In the theory of production functions the two-level CES-function is studied
by SATO (1967). An interesting paper by BERNDT and CHRISTENSEN (1973) presents
relationships between the concept of separability, elasticities of substitution
and the CES and two-level CES production function. Their definition of strong
separability of production functions equals the additivity definition of
utility functions presented by HOUTHAKKER (1960).
Recently BROWN et al. (1972), have studied a two-level CES utility function.
The nested CES utility function presented here can be considered as a
generalization to N levels.



In order to find the maximum of (2.1) subject to

Lagrange an

(2.3) L = A(Y E P.q.)J

2.2 , we consider the

with A a Lagrange multiplier,

and differentiate it with respect to a and A and equate the result to zero.
This yields

(2.4)

(2.5)

= A p

(IJ

y = E

3 
13

for i = J

hiltiplying (2.4) by q and summing over j, yields, in combination with (2.5) :

(2.6)

where

x =

(2.7) W =

The implicit solution can be found by substituting (2.6) into (2.4) :

(2.8
Wp.

3w ... 3
Y

3. Nested utility functions

for i = 1,.., J.

We now pay attention to the specific structure of the utility function. We

assume that the utility function (2.1) is built up as a utility tree or, as we

shall call it, a nested utility function. Therefore we introduce the concept

of the utility component. The utility function , is written as a function of the

'first level' utility components 
i 
= 1, . I :

11 

(3.1 = (4). ; = 1, •1. I

andtheutilitycomponentso.are written as functions of the second level

utility components ¢.
1 1 2

1



s

(3.2) = (cPi = 1) •
1 -1 -1-2 -

and so on. Finally

•11,

(3.3) 4); i = (P. . • ; 1,.., )
-1 — N-1 

11..11,7-1 11..1N
-1--N -1

We shall call the N-th level utility components 
.iN 

the elementary or

basic utility components or in short utility elements.
1 

As the name says,

they are the basic elements of the utility function. We assume that the utility

element
s 

cl) 
.iN 

can be quantified in well-defined units, and that prices per

unit are known.

Following SAMUELSON (1948a) and FRISCH (1956) we introduce minimum quantities

of each commodity q say q.. Now we associate with each utility element the

quantity of a commodity consumed in excess of the subsistence or minimum quantity

of that commodity :

(3.4)

where

(3.5)

1 ..LN 11..1N I

'1J

q. = q. q.

J J 3

for all (i 
N
) and j

and where there exists a one-to-one correspondence between the subscript (i

and the subscript j, for j = 1, . J, where

(3.6) J = Z . . E I. .

1N-1 
1

1
..1

N-1i
1

This completes the definition of the structure of the nested utility function.

An example of the structure of such a function is given in fig. 1.

Subsequently we shall reduce the 'compounded' subscript
1.

si
n
) to simple i

n
,

for ease of notation. The utility components are now written as

(3.7)

with

(3.8)

= 4). (cf,. = 1,. I. )
n-i1

n-1 
1 n 
n 

1
n-1

(1) E ; i 1 = 1, . I) E w
0 1

and

for n = 1,. N

E qi
N



where we used the abbreviated notation
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4. The imlicit solution for the nested utility function

First we shall redefine the utility function in terms of the excess quantities

q(
. se e (3.5)) :
3

(4.1) w w(q.; j = 1,
• , )

Following the lines of (2.1) through (2.8) we find the conditions

p.
aw 1(4.2) j = 1,..,ft/a .
ciJ

where

aw rt,(4.3) W = E q.
aq.

(4.4) = y E P.q.
J J

and

We assume that y is positive ; i.e. that y exceeds minimum consumption :

(4.5)

We now state 
4)

ASSUMPTION 1. The functions (I)iu-1( ), for n = 1,. N, are linear homogeneous

(homogeneous of degree one) in their arguments.

Now. by Euler's theorem, the following holds true, for all n, i 5)

aoi
n-1

(4.6) 4). = 4).
n 

i
n-11 1

n n

4) This assumption implies that g ) is linear homogeneous. The resulting demand
functions are, however, invariant against any monotonic transformation of w( )
and therefore of 0( ). The assumption that g ) is linear homogeneous is
therefore superfluous. For reasons of symmetry we state this assumption and
suppose that a monotonic transformation has taken place in cases where the
function g ) is homogeneous of degree p 0 1.

5) Below we write 'all n, i ' in order to indicate all possible values of the
compounded index (i

n
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Repeated application of (4.6) yields for (4.3)

aw L I= E Tr. E 777_
A'j 3 i 91 i 91

21

(4.7) =
N-

n, 
=w

i q. N
N

N

acpi

The set of first order conditions can now be rewritten;

(4.8)
a

acpi w p. 
cp 'N-1 to p.

N-___-__ = ___J_ =rk, •
11 1

2 
q.
N

Where we introduce 
pi 

p
i 
( in stwshortnotatiznotation. 

) P equivalent to ., according
1.
.

N 
•1
N

j

tothecorrespondencebetweenqiN and 
qj
.Multiplying0.0by - q.-and summing up

a
Nover all the (n-1)th level higher indices (i.e. over i

n
, in+1-and so on Until i

N
),

.using (4.6) we arrive at the following set of equations:

(4.9)

(4.10)

Pi all i
111 Y 1

Pi
nn-1 

Pi
n n-1.

all n = 2,.., N; in

where the price-indices of the (n-1)th level utility component are defined as

(4.11)
1

P. E pi (f)i.

l
1
n-1 1

n-1 n 
n n

or alternatively

(4.12)
1 r‘,

E p. q.
n-1 ( 4 4 1) 1N 1N

N-1-n
i
n- 

all n = 2 • • ; n

According to (4.12) the price-indices of the utility components are weighted

averagesofthe'elementary'pricesp.,with the ratio of the corresponding
N

utility element and the utility component as weights. In (4.11) we have defined

the price-indices recursively.
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5. The nested CES-t pe utility function

We now specify the utility function further by adopting additionally

ASSUMPTION 2- Each hincticm. c1( ), for all n, 1,, has a constant elasticiv
6)

of substitution between all its arguments 4. .

Assumptions Assumptions 1 and 2 imply utility components of the CES-type 
7)

_p. -I/P.
1
n-1 

1
n-1

(5.1) 01). = A. [E a. 0. for all n, i
nn-Iin-1 ln

where we used the shorthand notation

(5.2)

(5.3)

and define

(5.4)

A.
1 

EA. 
I
. 

E A
i 

; a
i 

Ea.
. n-1

P E 
'Di 
. .

n-1 1
..1

n-1

A.=A and P. 7-."10 lo

• •in

The elasticity of substitution parameter a. is related to p. by
n-1 

i
n-1

(5.5)
1

a.
1
n-1 

l+pi
n-1

all n, in

6) We use the concept of the direct partial elasticity of substitution of a function
f(x..xm), which is defined as

a
ing.)

ar

3log(x /x )
ml m2

1
log(-

bcin

where the function value f( ) and all arguments except x
mi 

and x
m2 

are neld
constant.

7) See, e.g., ALLEN (1967) p.52.
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Under the conditions of positive derivatives and convex-to-the-origin

isoquants of the function (5.1) we have 
8)

(5.6)

(5.7)

(5.8

A. , a. >0
1
n- 

1
n

pi > - 1 or a.
1
n-1n-1

9)Without loss of generality we assume

A.
1
n-1

and E a.
i
n 
1
n

all n, in

for all n, i

The CES-function (5.1) encompasses utility functions of the linear-, the

Cobb-Douglas and the Leontief-type as limiting cases 
10) 

; in

a simplified notation; if

(5.9

then

(5.10)

(5.11)

(5.12)

= (E a.cp.
/p

min Oi; all i)

(linear)

(Cobb-Douglas)

(Leontief)

The latter relation shows that for a converging to zero the CES-type utility

function passes into a Leontief type function with all the so-called 'input-output'

8) Conditions (5.7) ensure a unique maximum of a one-level CES-type utility
function, subject to the budget constraint. The derivation of the demand equatiors
presented in this paper resembles a step-by-step maximalization procedure (see
GREEN(1964) p.25, for the conditions for a two-stage maximalization). Consequently
conditions (5.7) are sufficient to garantee a unique maximum of our nested
utility function, subject to the budget constraint.

In cases in which (5.8) do not hold, we can always transform the utility function
in such a manner that the transformed one satisfies our assumptions and
conditions (5.8).

10) See, for example, HENDERSON and QUANDT (1971) p.85.



coefficients equal to one. In order to avoid this unrealistic consequence, we

introduce the Modified CES (MCES) function by redefining the distribution parameter•

a. as a function of p ; in simplified notation the function can be written as

(5.13)

now

(I)

(1). -p _1/
. iv 

( )
alN P
i

(5.14) lim (t) = E a.4).a 03 1 1

2
cp• a•

(5.15) lim (I) = n
a -* 1 i ai

(5.16)
(1)4

liM = min ; all i)
a -* 0 ai

11)Thus, the parameters a
i 
remain effective even in the limit if a 0, and also if

a -+ co. As we shall see, an other advantage of this formulation is that the price-

index functions are similar to the corresponding utility component functions except

for the elasticity of substitution parameter.

As an illustration we have graphed isoquants (or indifference curves)

corresponding to the utility functions (5.14) through (5.16) in fig. 2, 3 and 4, for a

2-dimensional case.

fig. 2

2

(I)

fig. 3 fig. 4

-*

11) This reformulation could be important for parameter estimation ; likelihood
functions based on the CES type (5.9) become independent of the ai's if a tends
to zero. This explains the statistically insignificant estimates in a paper
by BROWN et al. (1972). They estimated the parameters of a 2-level CES-type
utility function and found insignificant ai's in case of near-zero values of
the elasticity of substitution parameter a.
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The utility components can now be formulated as

(5.17)

where 11a)

n 
-P
i 

I -1/P
in-1

2
a. n- I

i
n 

i a.
n

n

2(5.18) a. > 0 ;Ect.=1; P. > 1, for all n, ini
n 

1n n-1i
n

. The solution for a nested MCES-utility function

We now try to find explicit solutions to the allocation problem, in the case

of a nested utility function, where the utility components (1)i. for n = 1,.., N

have the MCES form as defined in (5.17). In this case we 
n-1 

shall call the

utility function (2.1) a Nested Modified CES-type utility function, or in short,

a NEMCES utility function.

For the solution of the system of equations (4.9) through (4.11) we use the

derivative of the MCES function :

(6.1

aci)
in 

4). l+p
-1

2+p. 4).i
n-1 n-1
) 

i
= a.

34)
n

Conditions (4.9) and (4.10) become

all n, in

w .2+p l+p Pi
l.4)(6.2) a. ( ) = all i

1 
.

(6.3)

2+p. l+p. Pi1
n-1 

i
n-1n-1

) 
na. all n =

n 
1n

Pi
n-1

..,N; i
n

The equation (6.3) enables us to find solUtions for the price-indices.

Substituting (6.3) into (4.11) yields

I+a

1 
i
n-11a) After finishing this report, I found that E a. = 1 would be a more

i
n

appropriate normalization. Then the 
i
n utility entropy (see (6.8)) is

zero, except for the Cobb Douglas case. The other results remain unchanged.
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(6.4)

where

(6.5)

p. .., 1

n2 -1n Pi
pi
n-1 
' [ E . a. (- n-II a.

i 1.
n 

n
n

all n

Pi
n-1 1 1 1

P 1 , hence a. -1
n-1 

l+pi 1
n-1 l+pi 

a.
1
n-In-1 1

n-1

..,N; i
n

With the knowledge of the 'elementary' prices p. we can find the price-indices

at all stages of aggregation. 
iN

Equations (6.4) show that the (n-1)th level price-indices can be expressed

as MCES functions of the n-th level price-indices, with parameters equal to the

(n-1)th level utility component function, except for the elasticity of

substitution parameter, which is the reciprocal of the one belonging to the

corresponding utility component function.

We shall illustrate the properties of the price-index by means of a one-level

model; in simplified notation (see (5.13)) :

(1).
(6.6) 

4, .{ 
Ecz -P
1

(6.7)

/p

2 13. -p' 
-I
-1

E a (--1--) with p' =
l+p

If all prices are equal (p. = p, say) the price-indices differ among the

individuals because of different tastes. Now we introduce h; for p. = p
1

(6.8)

p h/2p = [ E a.
2 
( 

n 
= p e where we defineI a.

1

-
h = log [ E a2.(1--) -PI 2/Pa.

as the 2...tlia_mc.1222 The parameter h measures the entropy of (ai; i=1 ..,I) :

if all a1 are zero except one which is equal to I, the entropy h has the minimum

valuezerointhelimit;ifallthea.are equal (namely 1/1/I) the entropy h equals

log I, which can be shown to be the maximum value, given the constraint Ea = 1.
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As a further illustration we consider the three particular cases mentioned

in (5.14) through (5.16).

a. a = ; = 0

The utility function, price-index function and the utility entropy become (in the

limit)

= E a.O.

P;
p = min (se ;all i)

= log { 1min k 2
ai

b. a = 1 ; = 1

Now

= (
a.
1

2
a.
1

; all 0}

2 2
1

P ' 
rf ( 

a

1.) 
..; 

h/2..
1

h = E a.
2
log ( 1

In this case we recognize in h the formulation by THEIL (1967) for his concept of

entropy. Our definition (6.8) appears to be a generalization.

C. • = CO

Now
Oi

a. 
; all i)(I) = min

= E aipi

= log (Eai)2

Here we find the well-known linear price-index which is similar to the one often

used in practice. Notice that this price-index is only 'consistent' with L-shaped

isoquants of the utility function (the Leontief case); this implies fixed ratio's

of the optimum quantities.
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We shall now try to solve for the utility components. Solving (Pi l from (6.2)

using w = 4), and substitution of this result in (5.17) with n = 1

yields the indirect utility function 
12)

rt,
(6.9) fti where p

o

and p. is the overall price index, equivalent to (6.4) for n = 1.10

Equations (6.3) imply recursive relations for the utility components :
2+p

(i)•
It

i
n-1

[ 

ain Pi
n-1

Pi 1
a.
1
n-1

n-1
for n =

including cpi as a function of w. By means of (6.10) and (6.9), together with the

recursive deiinition of the price indices in (6.4) and the knowledge of the

elementary prices pi , we are able to solve for the optimal utility elements

q. . 'nefore doing so, we derive from (6.10) that174

(6.11)
n-

i
n-1 i

n 
n n

for all n,

fromwhichweconcludethattheutilitycomponentscP.serve as consistent
nquantity indices 

13) 
. In empirical studies this enables us to estimate the parameters

of the utility function step by step: first estimate the parameters of the (N-1)
th

level utility components, given the prices p. , the quantities q. and the budget
1
N I p. q. From these results we construct price and quantity'

m
indices for the

iN

(N-1)th utility components and repeat the procedure, untill all the parameters are

estimated.

12) Notice that the indirect utility function is of course not invariant against
monotonic transformations of the utility function. The same holds for the
zero-th level price- and quantity-indices (see below).

13) See for the concept of consistent aggregates and step-by-step maximalization

GREEN (1964), Chapter 3.
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The optimal solution can be formulated elegantly by introducing see 6.10))

(6.12)
i

n-1 =
i

1. n

t a quantity shares, and

n-71
i
n

4). a.+1 

(pi 
a.

1n 1n 
1

- n-
n
-1= = a. -----

Oi 1
n P.

n-1 \ 1 n

i..i Pi
nn  

a. +1
11

E 
n-1 n-1W.W. . . a.

11..1n 1
n 

p. 0. 1
n

n-1 n-1

P.
n-1

all n,in

a.-1
1
n-1

all n, i
n

the value shares of the component at level n in terms of those at level n-1. Now

(6.14)
N i

n-1
qi

N

Y.. H 
n=1 1n

or alternatively

(6.15) P. q. H W.
NNnn=1

This formula shows that the excess income ;rj is allocated to the different

utility component-budgets by fractions of fractions, of fractions etc.of, fractions,

the exponent of a. in 
Vi.-n-1 and W.

n-1 
we• find the results of the

1 1 1
modifications of the CES n funcdons; in nthe case of the traditional CES function

the exponent would have been a. instead of ai +1. Therefore, if a -+ 0,1
n-1

the MCES function enables us to allocate the budgetsn-1 in not necessarily equal

quantities, by choosing a variety of values for a.
1

We now summarize our results in the following n theorem, using the reduced

notation (i.e. the index 1
n 
stands for i

1.
ei
n
) •

THEOREM

If the utility function w(q. j = 1,.., J) is a NEMCES_function, i.e. for all

n 2 1,.., N and in
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Ii
n-1

CL. -
n-1 1=1 n

n n

with

.
10

4).
'N

i
n-1

E w

E q. where q.
NN

i
N 

E q.
J 

•
5

-1/pi
n-1

0
- qi

N

utility is maximized subject to the budget constraint

by

p. q.
J J

where p. represents prices. and y the budget,

i
-1. a. II V.
n 
) or alternatively

'iN p
n=1 n

Ni 
-1

p. q. Y
n:1 

W
inn 
)1N 1N N

where the price-index of the (n-1)th level It..1._.ity.......22.or.22.Lconit is defined by

(

2 n
p. 

n-1 i
n 

• 1 a.n 
Pin

o

n-1

the overall Eisl:imia,

the elementary prices, and

with

implying a price-index function similar to the utiliçy cornppnent function,

except for a reciprocal elasticity of substitution :
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a!
1
n

the excess income is
MIM11111.101

.where a. and a! .1n l+pi 1
n l+pi

Y _ E ..Z p1 q.
i
N 

1
N 

1
Ni

1

the quantity shares are

ain-141 
( Pi

n-1 
yi

n-1
= a.

(Pi 1
n Pi

nn-

and the value shares
NONINOWIII.81.41111M.M

P• a. +1
1
n-1

1
n 

1
n . a.

P i 45. 
n-1 

1
n-1

p. a. -1
1
n- 

1
n-1

Pi
n

In the appendix we derive some elasticities for the NEMCES-case. The results

are summarized in the following theorem (in reduced notation, i.e. the index i
n

stands for i ).
1

THEOREM 2

For the NEMCES utility function as described in theorem 1, the price and income

elasticities and the elasticities of substitution,

expressed in terms of the excess quantities 
qj 

and the excess budget y, are :

a•
q,

a log q.
1N N

n-1 
i
n  = - W. - W. + E a. W. - W. )D log p. JN 3N n1 'n- JN= JNiN



b.

C.
=IND

a log q.
1N

3 log 1.5t;

a. .
1 .1
N N
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a log (1. Ati. ) rN
111 3N _

= E (A a.
1 
+ B a.

-1 
)

n-1 1
n 

n-1 3a log (-32i. /A -1 % ) n=1 n-
1N 3N

where we define the following value shares, for m n :

and

m i
k-1w.n 11 W.

m k=n+1 /k

i
n 

•
w.n

W.
Jrn Jrn if (j I' al —in)

otherwise

i
o 

p. q. p. q.

W. W.
1
N 

1
N 

1
N 

1
N

E ; 171.
1
N 

1
N 

1, 1
N 

et,
Y Y

and define

W. W.

w. 

W. -
N 

1
N 3N

W.

W. 

JN 

i
n 

i
n-1 

i
- 

n-1

1
NA 3N

n-1

WIN 
+ 1 \TT:

3N

1

#
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except for the zero-level component (f)( ) which is a function of both.

We say that the zero level component is a 'common' component of q. and q, .
1, 3NIf i1 = ji, the compensated cross-price elasticities could be posiave

as well as negative, allowing complementarity between elements.

From the expression for the elasticity of substitution we see that a. . is a

CES-type function (with p= 1) in its arguments a. an a. 
1
N
j
N

1
n-1 .1n-1

B
n-1

- W.
in in-1 in-1 in

3N JN
w .11 Pr tiiImillI.V1:11.11.01 .4 ill mi...111P

JN
W.
N

1 1 \+
WIN 

iN

In the price elasticities we can recognize three terms. The first two terms

represent the so-called income effect; the last term the substitution effect.

This part of the price elasticity is called the income compensated or Slutsky

price elasticity. From

(6.16)
I
n-1 

i
n< W.

i
NN

we conclude that the compensated own price elasticity is negative, as well as the

uncompensated own-price elasticity.

The compensated cross-price elasticities are positive if

(6.17) I1

Inthiscasetherelevantutilitycomponentsarefunctionsofeither.orq.
qi
N JN

for n = 1,.., N.

We arrive at less complicated expressions for A
n-1 

and B
n-1 

by introducing the

index M. M is such that

(6.18) i 1 11-1 = j1-4171

IN #
This implies that only the components at levels lower than M

are 'common' components of q. and q
j 
. We find then

IN

i.e. M-1, M-2,.., 0)
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(6.19) 1. A
n-1' 

B
n-1 

0 for n = 1,.., M-1

2. Am.., =

and a.
M-1

1 1 - 1 1 , -1
W and B

M-1. W. W. W. W.
M 

1
N 3M IN

JN JN

= a,

3M-1

( I 1 1 ( 1 1 -13. A
n-1 = 'W. - W. ' W. '

nn-1 
1
N J

B
n-1

=
1 _ 1

Jn Jn-1

1
ITT

N

n = M+1,.., N

A special case occurs if M = N ; the (N-1)th level component is then a common
component :

(6.20) i
1
..i

N-1

then we find

(6.21)

••••

j 1 • j N-1

0. . = a.
,j
N N-

= Cl.
3N-1
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APPENDIX

By virtue of (6.1), (6.10) and (6.4); for m n, we find

3(pi 45!
Jm

W7-- • 717-
]ra

Dpi

3p.
Jm

P.

= W.
n

P.

i
where. W.

n
 is defined as in theorem 2. From (6.14)
Jm

We derive

slog 14iN a log y

J log p. = -3 fog p.
3N 3N

3 log p

P; q;
N J N

T log p. 
.

T

3 log P = w.
-3 log P;

JN

N 
in-1fi) log Vi
n

n1 
7-1-01 

piN= 

i
a log_Vi:-

n

a log Pi a log Pi \

riois P; -- n-1 
a log p.

JN

T1:1
 

. a .
1

Jli J1

= a.
1
n-1

Consequently

3 log q.
1N

log p. 3
3N

i
W.

n-1 
- W

n
.

3N 3N

- w.
3N (

+ E a. W. 1 w.n

3N )n1 13 n-1 N
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For the income elasticity we find from (6.14)

3 log q1

a log 3;

The direct partial elasticity of substitution between q. and q.
IN

3N

a log (1. )
1N -I N

a. .
1
NN a log (- ;1'4. /;.; )

'N N

is defined by

where w and all 'utility elements other than q. and q, are held constant. Working outiN 3Na. . we find
1 IA NT
,

We find

a. .
j
N N

1
• ru + 1, I,

q. 3w/3q. q. 3w/(1; .1
N 1N 3N 

3 
N. 

-2-i- -- 3 2 '‘,
cl 

q, w/a . w/ ,iar-',? a w/aq. aq.iii .IN 1
N 
]
N _  

q, I 
2 

2 4-/
(3w/3q. ) (wPq. )

1
N IN

iN 
1N

3w 3
-717 ;7- . i 

N 
and -77 . W.

3q. q. 3(1.
i
NN qiN

and (also if i

3
2
w

3q. act.
N

= (a  )
q.

;"-iN

3 log Ow/A. )
iN

.1.01111.
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of the results in a. 
j

yields

where

A
n-1

(A a71 + B a71 ) -In-1 i
n-1 

n-1
•n-I

- W.
i
n-1/ w.n 

i
n-1 

i
W W
iN i

n

N

3

w.
N

•

/ n jn-1 j
W.n' w.n

WjN N
•

+ 
W.

IN N
B
n- 1 1

(-1;17 + w. )
N 3N

N 
3th.

-w a Jn-I
W. E lr, o- ------q, 77 4.
3N n=1 3q.q• 3ni

N3N

W. log
JN n ti. ns 

1 43!=1 
n

— 2+0, th.
n-1n-I

W.

n=I

to= ___ w.
rk, 1
q• N
i
N

n=1
a.
n-

in_ l in
W.- W -

N_

ri
n-IW.

3N

1+0.

3n-I

The last equality follows from the symmetry with respect to and (11, . Substitution
ix JN
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