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SUMMARY

Limited information maximum likelihood estimators of structural coefficients in a

system of linear equations are derived for linear restrictions imposed on these

coefficients and when the covariance matrix of the contemporaneous reduced form

disturbances is known and possible singular. In the particular case of zero-nonzero

restrictions • this method results in the so--called 'St-class estimators'. If the index

Tiatrix of the .?,--class estimator coincides with the true covariance matrix of

-.contemporaneous disturbances and if the latter are assumed to be normally distributed,

the 1:--class estimator will correspond to the maximum likelihood estimator. Both

•assumptions are superfluous, however, for proving that the Q-class estimator is

•consistent. The LIM, and the TSLS estimators are shown to be members of the Q-class,

while two other Q-class estimators are introduced,. viz. the LIIILD and the OTSLS

eStivator, both with a diagonal index matrix. In •small samples, the LIM

estimator, then being based on a poor estimate of the covariance matrix, may be

replaced by the LInD estimator.. TSLS estimators are criticized on the grounds of

being inconsistent with the stochastic nature of the endogenous variables and the

'arbitrariness of their choice. Still in large samples, the consistency and compuational

.c.,livenienc. could make the TSLS estimator attractive. Finally, it is shown that

differont TSLS estimators, resulting from different normalizations, can be considered

liNits of certain C2-class estimators, under general conditions.
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I. INTRODUCTION

The structural equation system of G equations is a mathematical

• representation of a theory which relates the G jointly endogenous variables

y 
g
(g = I,..,G) for the T observations t = 1,..,T, to the K exogenous

t 
variables x

k 
(t = 1,.., T; k = 1,..,K). The equations are assumed to be linear

t 
and stochastic. In matrix notation :

(1.1) yr + XB = E

where Y is a TxG matrix of endogenous variables,

X a TxK matrix of exogenous variables,

a TxG matrix of disturbances,

a GxG matrix of unknown coefficients,

a KxG matrix of unknown coefficients.

The theory includes restrictions on the coefficients in r and B as a means of

distinguishing the equations from each other.

The purpose of this paper is to present methods of estimating the

coefficients of any single equation of system (1.1), taking account of the

restrictions imposed on the coefficients of that particular equation. This is

called 'Limited Information estimation' (see KOOPMANS (1950)). Without loss of

generality we may assume that the first equation is the one in which we are

interested. This equation is written as follows :

.2) Yy.+ ̀A = e

where y = (y
11' 

y
21' 

. y
G1
)' a G vector

=
11' 

13
21' 

. • , fi
K1
)' a K vector

e = (c
11'21' 

. • .
'TI

)' a T vector

representing the first column of the matrices r, B and E respectively.
We make the following assumptions.

ASSUMPTION I. The T values taken 12 the G jointly dependent variables
. ytG are the realizations of a TxG stochastic matrix Y which satisfies Yt1'

(1.1), where X is a TxK matrix of exogenous variables, E a TxG matrix of

disturbances, r and B unknown coefficient-matrices of order GxG and KxG,
• respectively, with r assumed to be nonsingular.
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ASSUMPTION 2. The T rows of the TxG matrix E of disturbances are

independent random drawings from a G-dimensional population with an expectation

zero and unknown but finite covariance matrix E.

ASSUMPTION 3. The TxK matrix N of the values taken by the exogenous

variables has rank K and consists of nonstochastic elements.

For the restrictions we make a distinction between thf, so-called

'normalization rule' or normalization restriction and the other restrictions.

(1.3)

ASSUMPTION 4. The normalization restriction for the equation (1.2) is

e • = 1

where e is a Gxl unit-vector consisting of a single 1 in the i-th position and

zeroes everywhere else. This implies that yil is taken equal to 1.

The other restrictions are assumed to be formulated in one of the following

alternative modes, stated in assumption 5a and 5b, respectively.

ASSUMPTION 5a. The coefficient vectors y and fi satisfy the

(homogeneous) linear restrictions

(1.4) Qy R13 = 0

with known matrices Q and R of order sxG and sxK, respectively, where the rank

of the partitioned matrix (Q,R) equals s, the restriction being linearly independent.

ASSUMPTION 5b. The coefficient vectors y and 13 satisfy the zero-

nonzero restrictions

1.5)
•

y = (y • y 
o 1. 
)' with y

o 
= 0

= • e')' with = 0

possibly after a rearrangement, where y
+ 

and a
+ 

are G
+ 

and K vectors, and

y and 130 are G
o 

and K
o 
vectors, respectively, so that- •

C = G
+ 
+ G

o 
and K = K

+ 
+ K

Note that zero-nonzero restrictions are a special case of linear restrictions.

Restrictions on the coefficients of the equation are required for the

identification of the equation. We refer to MALINVAUD (1970), Chapter 18 for

an extensive discussion of the identification problem. The following theorem

is stated and proved in MALINVAUD (1970) p. 658.
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THEOREM. Under the assumptions 1, 2, 3, 4 and 5a, the equation (1.2)

is identified if

(1.6) rank (rice + B'R') = G -

A necessary condition for identification of equation (1.2) is

.7) s G 1

Analogous results can be formulated for the case of zero-nonzero restrictions

(assumption 5b).

ASSUMPTION 6. The equation in question is identified by the

restrictions on the coefficients, formulated in assumption 4 and 5a, or 4 and 5b.

An identified equation is called exactly identified if

(1.8) s = G 1

and overidentified if

(1.9) s > G 1

for the case of linear restrictions (assumption 5a). For the case of zero-

nonzero restrictions (assumption 5b), s in (1.8) and (1.9) has to be replaced by

K0 K + G0, the number of restrictions in that case.

Since r is nonsingular, we can solve for the jointly dependent variables

Y by pOstmultiplying both sides of (1.1) by r 1.

-1
Y = -xBr + Er

Y = XII . + U

TI
• -1- -Br a KxG matrix of coefficients

= Er-1 a TxG matrix of disturbances

(1.11) is called the reduced form of system (1.1). From assumption 2 we find for

the reduced form disturbances matrix U

(1.13) E(U) = 0 (a zero matrix)

C(U) = r-1'Er-1 (s

where e(A) is the matrix of expectations of the elements of matrix A,
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C(A) is the covariance matrix of a stochastic matrix A
1) 

and 10 the

so-called Kronecker- or direct product of matrices
2)
. Some properties of the

vec-operator and the Kronecker product are mentioned in Appendix A.2.

The GxG matrix 0 is the covariance matrix of contemporaneous reduced form

disturbances. In the following we do not exclude singularity of Q; Q is assumed

to be positive semidefinite, that is x'0x ?. 0 for every x. The covariance

matrix will be singular if the structural system (1.1) contains one or more

non-stochastic equations; e.g. the j-th equation :

(1.14) Yy. X13. = 0 where y. = re. and 13. = Be.
3

The reduced form coefficient matrix H is related to the structural

coefficients y and 13, by (see (1.12))

(1.15) Iii = -13

• Without proof we now state the following result : in the exactly identified case,

for each arbitrary KxG matrix A there are unique vectors-y and 13, satisfying

the restrictions imposed on them, for which 
3)

(1.16) Ay = -13

In the overidentified case we have to take care of the restrictions on 11

resulting from the restrictions on y and 3. Then, in general, it is not possible

to find vectors y and 13 which satisfy the restrictions, for which (1.16) holds

good for each arbitrary KxG matrix A unless we restrict the choice of A.

C(A) = E(vec A - (vec A)(vec A - E vec AY where

vec A = (a
11'' 

a ..,an2,a13,..,......
nl'

a
12' 

a ) if A is of order nxm.nm

The Kronecker product of an nxm matrix A and a matrix B is defined as

•
A El B=

a
nl

B . a 
Bnm 

3) MALINVAUD (1970) p.652, shows exceptional cases in which this result

does not hold good.
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2. MAXIHUN-LIKELIHOOD ESTIMATORS AS A FUNCTION OF Q

We shall now develop maximum-likelihood (m.1.) estimators of the reduced

form coefficient matrix II , and the structural coefficients y and 13. We shall

not derive m.l. estimators of the reduced form covariance matrix Q; instead we

formulate the estimators of II , y and 13 as functions of the unknown matrix Q.

of y

y and 13 are estimated in two steps : first, IT is estimated as a function

and 3, after which y and 13 are estimated in a second step.

Our starting point is the reduced form (1.11)

Y = +u

E(U) = 0
C(U) =C210I

The GxG matrix Q is symmetric and positive semidefinite. The rank of Q is

denoted as r (G). Now we define

an rxr diagonal matrix; d
11' 

. , d
rr 

are the r positive characteristic

roots of 0,

a Gxr matrix whose columns are the characteristic vectors of corresponding

to the positive roots d 11, , d ,
rr

a Gx(G-r) matrix whose columns are the characteristic vectors of Q

corresponding to the zero roots.

We assume orthonormality of (F,Z) :

(2.1) (F,Z)(F,Z)' = I, hence FF' + ZZ' = I

(2.2) (F,Z)'(F,Z) = I, hence F'F = I,Z7Z = I, F'Z = 0

The definitions of 'F,Z and D imply :

SO

(2.5)

QF = FD

cz = 0

= FDE"

D = F'OF

The pseudo-inverse of Q also called the Moore-Penrose inverse) is

(2.7)

hence

(2.8)

= FD 1F'

QPZ = 0

4) See appendix A.1



We now separate the reduced form (1.11) into a stochastic and a

nonstochastic part. Postmultiplying (1.11) by the nonsingular matrix (F,Z) :

Y(F,Z) = XE(F,Z) +

we obtain YF = XIIF + UF

and YZ = XHZ + UZ

for which :

(2.9)

(2.10)

(2.11)

E(UF) = E(UZ) = 0

C(UF) = E(vec UF)(vec UF)' = (F'D I)( N I)(F D I) = (D N I)

C(UZ) = E(vec UZ)(vec UZ)1 = (Z'QZ 10 I) = 0

where (2.10) and (2.11) are based on properties of the 'vec i operator and the

Kronecker product (see appendix A.2).Consequently, an equivalent reduced form

representation is

(2.12)

and

(2.13)

YF = XHF + UF with C(UF) = 0 and C(UF) = D IR I

YZ = XHZ with probability 1

Note that (2.13) .serves as a restriction on H.

Maximum-likelihood estimation requires specification of the disturbance

distribution. Instead of assumptions on the distribution of U, we specify an

r-dimensional Normal distribution for the rows of UF, the latter having a

nonsingular covariance matrix.

ASSUMPTION 7. The T rows of the Txr matrix UF of disturbances are

independent random drawings from an r-dimensional normally distributed population,

with zero expectation and an unknown but nonsingular covariance matrix D.

Under assumption 7, the log-likelihood function of II, given Q, Y and X,

can easily be found to be

or

(2.14)

1
LO IQ,Y,X) = constant -7 tr((YF - XHF)D (YF - XHF)')

L(n I Q,Y,X) = constant -+ tr((Y X11)QP(Y - XII)')

where 'tr' stands for the trace operator.
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The restrictions on H are

Qi Rlly = 0

YZ - )(HZ =

where (2.15) is based on (1.4) and (1.15), and (2.16) is based on (2.13).

Note that (2.15) will be not effective in the exactly identified case, i.e.

in that case we do not restrict the choice of IT by (2.15). We will, however,

treat the exactly identified case and the overidentified case simultaneously.

First we develop m.l. estimators of H as a function of 2, y and f, by

maximizing the log-likelihood subject to the restrictions. The Lagrangian

function is

(2.17) L
1 
= tr((Y X11)2P(Y xn)') - 2 al(Qy - RITy) - 2 tr(N(YZ - XRZ))

where a is an s vector and N a (G-OxT matrix, both containing Lagrange

multipliers. Differentiating L1 with respect to II, a and N and equating the

results to zero yields :

-2X TYQP + 2X'XHQP + 2R'ay' + 2X'N'Z' = 0

Qy -ly

YZ XITZ =0

where we have replaced H, a and N by II, a and N respectively to irdicate that we

have solutions rather than variables.

Ili order to extricate 1T from (2.18) we make use of the general solution

representation of a matrix equation, in terms of pseudoinverses (see Appendix A.1):

or

(2.21)

= (x'X)-1(X'YQP - May' - X'N'Z')2 + H(I - 2P2)

II = (x'x) X'YFF' (x ix) + HZZ'

provided that there is a solution to (2.18). (2.21) can be found by means of the

results stated in (2.1) through (2.8). The matrix H of order KxG is arbitrary.

Equation (2.18) can be solved if (consistency test)

or

. (2.22)

(X'YQP - R'ay' - X'N'Z')Qg = (X'YQP - May' X'N'Z')

a'ay'zz' = x'N'z'

.0%

Equation (2.22) represents a restriction on N. In the case of (2.22) the

consistency test shows that an N always exists, which satisfies- (2.22).
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Now we try to specify the matrix H by substituting (2.21) into (2.20)

- -
YZ - X(X'X) 

1 
X'YFF'Z X(X'X)

1 
R'ay'QZ + XHZZ'Z = 0

or

0.4

(2.23) YZ = XHZ

hence

(I. 4) ii =.(X'X)-1X'YZZ' + J - JZZ' = (X'X)-1X'YZZ' + JFF'

with J an arbitrary matrix of order KxG. The consistency test for (2.23) is

X(CX)-IX'YZZ'Z = YZ or X(X T X)-1X'YZ = YZ

which holds good with probability 1 in view of (2.13).

Substituting (2.24) into (2.21), we find

%

or

-
(X'X)-1X1YFF' (X'X) 1- R'ay'Q + (X'X)-1X'YZZ'ZZ' + JFF'ZZ'

(2.25) II = (X'X)-1X'Y - (X'X)-1R';ty'S/

In order to eliminate a, we now introduce (3. From (1.15) we derive

(2.26)

hence

(2.27)

hence

(2.28)

-
- Hy = - (X'X)-1X'Yy + (X'X)-'May'Qy

= (X'X)13(y'Sly)-1 + X'Yy(y'Qy)-1

II = (XCX) IX'Y - 13(y'Qy)
-1

y'Q - (X5X)
-1

X'Yy(y'ay)
-1

y'Q

after substitution of (2.27) into (2.25). We have now found m.l. estimator of II

as a function of the observations, and the unknown y,13 and Q.

In the second step we introduce II according to (2.28) into the log-

likelihood function and maximize this function with respect to y and 13, subject

to (1.4) which is equivalent to the remaining constraint (2.19) of the first step.

We also make use of the normalization (1.3). Instead of maximizing the log-

likelihood, we minimize (see (9.14))

(2.29) tr ((Y - X11)QP(Y-XII)').

Substituting (2.28) into (2.29) yields (after some manipulations)

- (2.30) tr(QPY'MY) + (y'Qy)-1(y'rX(X T X)-IX'Yy + 2y'Y'X13 + 13'X'n)
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by making use of tr(AB) = tr(BA) if A and B are of order mxn and nxm, respectively.

M is a TxT symmetric, idempotent matrix :

(2.31) = I - x(x'x)-Ix'

From (2.30) we conclude that the m.l. estimators of y and can be obtained by

minimizing

(2.32)

subject to :

(2.33)

- -(X(X'X)1 1 
X'Yy + XW(X(XIX) X'Yy + Xa)

ytQY

Qy + Ri3 = 0 and e'y = I.

(2.32) is equal to the second part of (2.30). Note that the existence of (2.32)

requires

(2.34) Y T QY 0 0

The minimization problem stated in (2.32) and (2.33) can be solved by

introducing a new Lagrangian with a vector a of s Lagrange multipliers :

_ (X(X 1X)-IX'Yy + X)'(X(X'X)-1X'Yy + X13) 
(2.35) L

2 
2a'Ny +

YlE2Y

(2.35) is equal to

(.36)
p lA p

1
L
2 
-  

p t A2p
where

x tY

P' = -Y'QYa')

Y'X Q'

X'X R'

0/ 0 0

and

Differentiating Ll with respect to p and equating the result to zero yields :

-c;
2.37) (A

1 
- XA

2 
)o = 0 where X'

p A p
= L

2
(p)

where we have replaced p by p to indicate that we have solutions rather than

variables. The scalar X can be found from the determinantal equation
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(2.38) det (A
1 
- AA

2
) = 0

This determinantal equation has (G+K+s) roots. The definition of A in

#7) implies that :

(2.39)
(X(X'X)-1X'Y.7,; + X)'(X(X'Xx _

Y lf2Y

+

where y and correspond to the parts of p. Consequently we should take

the smallest root in order to minimize (2.32). In order to distinguish this

smallest root from the others, we denote it by A. Assumption 6 implies

that the smallest root has a multiplicity of one : multiple roots A would

yield several solutions p all having the same value of the log-likelihood,

precluding the identifiability of the equation.
^ ^

Having obtained A we arrive at a unique solution vector p from (2.37)

and the normalization restriction.

Being interested in the consequences of the procedure outlined

above for the exactly identified case and the overidentified case, we

study the rank of matrix A
1
. Using a result obtained by KHATRI (1968) :

rank A
1 
= rank

where

hence

rank A = rank

(C
1
'C

1 
C
2
0

C
2 

0/

= rank (C1 1,C2') + rank C2

C
1 
= (X(X IX)-1X1Y, X) of order Tx(G+K)

C2 = (Q,R) of order sx(G+K)

(YIX(X'X)x'

from which we conclude

(2.40)

x'

Q T)

rank A
1 

+ 2s

+ s = rank('Y ' X (X ' X)

Since the matrix A
1 
is of order C+K+s, it follows that A

1 
is singular if

(2.41) s < G

+ s



Under assumption 6, requirement (2.41) is met only in the exactly

identified case in view of (1.7) and (1.8). In that case A = 0 is a solution
0.4

of the determinantal equation (2.38). It is also the smallest root A, since

(2.39) implies that A is always positive or zero (and real). The smallest root A

being zero, we conclude that (2.32) has attained its absolute minimum rather than

a constrained minimum, which implies a = 0. Writing out (2.37) for A = a = 0 yields :

(2.42)

(2.43)

while y is determined by

(2.44)

(x'x)-Ix'Y,

do, 40.4

f3 = fly

^
(Q - RE)y = 0 and e.'y = 1

40%

If the equation is overidentified, we can obtain the y and by solving

the determinantal equation (2.38). Unlike the exactly identified case, however,

the estimators are then a function of Q.

Finally we note that the function (2.32) that has to be minimized subject

to constraints, contains in the numerator the residual sum of squares after

replacing Y by X(X1X)-/X'Y.

We now summarize our conclusions in a theorem.

THEOREM 1. The Limited Information Maximum Likelihood estimator of
11...1111.10

y and 3, formulated as a function of the unknown positive semidefinite covariance

matrix Q, given the assumptions 1, 2, 3, 4, 5a, 6 and 7, equals y and which

minimize

(2.45)

subject to

(X(X1X)X'Yy + X)'(X(X'X)-1X'Yy + Xa)

Qy + R = 0

e.'y = 1

Y I QY

and these y and f3, are the solutions of the system :

(2.46)

••••

IIPX(X1X)-1X'Y - A Q Y'X
X'Y X'X RI

R 0

=

where is the smallest root of the corresponding determinantal equation and

a vector of s LaE;range multipliers.
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In order to indicate the estimation procedure we shall refer to the estimators

found in this way as LIML(2) estimators, the estimators being functions of 2.

. ZERO-NONZERO RESTRICTIONS

The estimation procedure outlined above will now be worked out for the

case of zero-nonzero restrictions (assumption 5b). In practice, zero-nonzero

restrictions are assumed more frequently than linear restrictions. Furthermore,

estimators are much easier to calculate in the former case than in the latter one.

We introduce the following partitions, corresponding to the partition of

y and Ci (see (1.5)):

Y =

=

(y+,,e,) +,X0); X =

k2++ 2+o\
,

I
2 

e o+ o
1 
\ I

,o
where Y

+
, Y

o
, X

+ 
and X are TxG

+ o +
, TxG, Tx1(and Txe matrices,

++
respectively and

is of order G x G. We assumed that the rows and columns in the matrices are

rearranged in order to make the partition possible.

Using this partition, the function (2.45) which had to be minimized,

becomes :

• (3.3) (X(X'X)-1X TY4-y+ + X4W4-)I(X(X'X)-1X iffy+ + X+64.) 
+ ++ +
'2 Y

Differentiating 3.3) with respect to 13 and equating the result to zero yields

(3.4)
• „+,,,+ ++

= - (A ) A Y y

Substitution of (3.4) into (3.3) leads to the following expression in y
+

(3.5)
y
+
'Y
+

111(
+ 

M)Y
+
y
+

+ ++ +
Y '2 Y

where M
+ 
= - X4.(X+'XI- -1X+'),

to be minimized with respect to y subject to the normalization restriction.

Using (2.3) and (2.37), we obtain for y
+ 
:
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+ + +
(Y '(M M)Y - X Q )y = 0

where A is the smallest root of the determinantal equation

(3.7) det(Y+'(M4.- M)Y4.-X 2) = 0

It is also possible to find a system of equations for solving y and fi

simultaneously, by combining (3.6) and (3.4) into :

(3.3 m
++ + +\

(
+ -1 +
Y'XWX)X'Y - Y 'X

+

+

0

llaking use of the normalization restriction, we can find a unique solution

vector (y ')' from equation (3.8). We shall assume that none of the elements

of this solution vector is zero; excluding cases with probability zero, this

assumption will generally hold good.

Using the normalization restriction, we can also solve the estimators

explicitly. For that purpose we introduce a further partitioning (possibly after

a rearrangement) :

(3.9) (Yi p where yi = Ye. a T vector, Yi a Tx(G-1) matrix

= (1,ii')' where y
i 
a (G

+
-1) vector, and e. 'y = 1

Q++ = 
. .
11 

W 
1, )

where w a (G+1) vector, and 2
ii 

a

w (G
+
-1)x(G

+
-1) matrix

The equation (1.2) becomes

i ++
y +YyWs =

Assuming that there exists a solution vector of the system (3.8) with non-zero

elements, we conclude that the rank of the symmetric matrix appearing in (3.8) is

(G K 1) and that each column and row vector are linearly dependent on the

other column and row vectors, respectively. This enables us to disregard a

superfluous equation of system (3.8), and to write the column vector corresponding

to the normalized position as a linear function of the other columns. Disregarding

the first equation and writing out, yields

( 3 . 1 k") )
i ̂

Y 'PY -X2

1

7+
Y X

+

(
(3,

•
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where

(3.11)

or

(3.12)

(

P = X(X‘X)-1X 1

\-1
i i _ Ac2 11 4-\
'PY Y 'X Y 'Py -Aw

+
X 'Y

We index the estimator vector with Q in order to denote its dependence

on the symmetric, positive semidefinite matrix Q.

4. THE Q-CLASS ESTIMATORS

4.1 Consistency of the Q-class estimator

Thus far we developed maximum-likelihood estimators of the structural

coefficients as a function of the unknown matrix 0, the 'covariance matrix of

the contemporaneous reduced form disturbances. In practice, the covariance

matrix Q is rarely known and the best thing we can do is to estimate the

covariance matrix from the sample, or, if the sample is very limited, to

assume a 'reasonable' covariance matrix which is predetermined. To distinguish

the true, unknown covariance matrix Q from the estimated or fixed matrix we write

Q for the latter.

(4.1)

We now define the c2-class estimator for the structural coefficients as

= fYi'PYi - 
ii 

Y 'X

+

t 
X 'Y X+1X

+
t

where X is the smallest root of the determinantal equation

(4.2)
-++

det(Y
+
f(M

+ 
- N)Y - A n ) = o

'Py - Xw

+,X y

where F?, is partitioned according to the partition of Q (see (3.2) and (3.9)).

Note that the Q=class estimator defined in (4.1) is a function of the
-++

symmetric, positive semidefinite matrix Q of order G
+
xG
+
, corresponding to

the covariance matrix Q of the rows of Y , where

(4.3)
++ ++ i ,+,+Yy+Y. =y+YY +XP =c
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Before stating an important property of the Q-class estimators, we

make the following assumptions :

ASSUMPTION 3. The KxK matrix (X'X)/T converges, as T 4' °c, to a

positive definite matrix.

-++
ASSUMPTION 9. The matrix 0 is a symmetric, positive semidefinite

-++
matrix with at least one non-zero diagonal element. If the matrix Q consists

of stochastic elements, it converges as T 4' c°, in pability to a symmetric,

positive semidefinite matrix with at least one non-zero diagonal element.

-
Assumption 9 does not imply that the matrix Q

++
 converges in probability to

++
the real matrix Q . The assumption of one non-zero diagonal element is necessary

in view of (2.34).

We now state the following theorem :

THEOREM 2. Under the assumptions 1, 2, 3, 4, 5b, 6, 8 and the...,......_
+ + -++

assumption 9 for a G xG matrix Q , the Q-class estimator defined in (4.1) and......._ ......._

(4.2) is a consistent estimator of the structural coefficients :

(4.4) plim
T.4.0

and the smallest root of (4.2) divided by T, converges, as T 4' m, in

probability to zero :

(4.5) plim A/T

T

The proof is presented in Appendix A.3, where we first prove (4.5) and then use the

result to demonstrate the asymptotic equivalence of the Q-class estimator and the

consistent'k-class estimator t.Note the analogy of the Q-class estimator to the

so-called 'k-class estimator' (see, for example, THEIL (1971), P.504) :
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( •

-+

Y 'Y -kY
i 
'MY

i

\ 

+ i
X 'Y

Y 'X
• • • \yl,y1 kyiimyl

+
X 'y

Note also the difference between the a-class estimator and the k-class estimator.

The latter class is defined on a scalar k, which must converge in probability to

one in order to ensure consistency of the estimators. The Q-class estimators are

defined on a syinmetric positive semidefinite matrix which can be chosen quite

arbitrary; under very general conditions, all the members of the class are

consistent estimators.

Having found an interesting class of estimators, we now look for interesting

species belonging to this class. Below we give some examples of such estimators;

among them, we shall come across well-known estimators (Limited Information

Maximum Likelihood and Two Stage Least Squares) as members of the Q-class

estimators.

4.2 The Limited Information Maximum Likelihood (LIML). estimator

Since the Q-class is deduced from a Maximum Likelihood procedure based on

a known covariance matrix Q, it seems reasonable to choose for Q an estimate of

the true covariance matrix. A well-known consistent estimator of the covariance

matrix of the contemporaneous reduced form disturbances is
5)

^++ + +(4.6) Q= 
1 I 

Y'MY so = Y 'MY

where ' M = I - X(X'X)-1X' = I - P

Substituting

(4.7)
-++ I + + 1Q = Y 'MY hence Q = — Y 'M. and w = Y 'My

into (4.1) and (4.2) yields,

(4.8)
-•
1

'Y - (1+ ;)Yi'MYi Yi1X+

+
X 'Y X 'X

1
1'1 i i
Y Y - (1 -1--)Y 'MY

+
X 'Y

5) Sometimes the divisor 1/(T-K) is used instead of 1/T but this makes no

difference to the results mentioned here.
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and

(4.9)
+ - +

det(Y
+
'(M -M)y _ t 

, 
MY') = 0,

respectively, where A is the smallest root of the determinantal equation (4.9).

In formulae (4.8) and (4.9) we recognize the formulae for the Limited Information

Haximum Likelihood estimator (see, for example, JOHNSTON (1963) p.260).

Thus the LIML estimator is a member of the Q-class estimator. Note that

(4.8) and (4.9) result from minimizing (see (3.5)) :

(4.10) y
++ 

-M)Y
+
y
+

y
+
'Y
+
'MY

+
y
+

subject to the normalization restriction.

A warning against the use of the LIML estimator in small samples seems to

be in order. If the number of observations is so small that

(4.11) T < K + G
+
,

the estimator c-24.4. will be singular for lack of degrees of freedom :

- 
-

.rank Y
+
'MY

+ 
rank (I-X(X X) 1 Xf ) = tr(I - X(X'X) X') = T - K

Consequently if condition (4.11) is complied with, the G
+
xG
+ 

matrix has rank

smaller than G
+
.

4.3 'An alternative to the UHL estimator

We now assume that the contemporaneous reduced form disturbances are
++ 

uncorrelated, so that Q is a diagonal matrix. We use the diagonal elements

of the estimator mentioned in (4.6), as estimator of the variances :

(4.12

(4 . 3)

and

Q = diag( — Y 'MY ) = Q

-++
Substituting the partitions of Q in (4.1) and (4.2) gives

4•46

• •
Y
1
'PY

1 
- 2ldiag(Y1'MY) Yi'X

+\ -1 (yi,pyi

+ i
X 'Y

+ i
X 'y
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(4.14)
+ A + +

det(Y+T(M+ - Y - --diag(Y 'MY )) = 0 ,

respectively, where A is the smallest root of the determinantal equation (4.14).

Note that (4.13) and (4.14) result from minimizing (see (3.5)):

+ + + ++
(4.15) y 'Y '(M - M)Yy 

+ . + + +
y f(diag Y 'MY. )y

subject to the normalization restriction.

We shall call this estimator Limited Information Maximum Likelihood

estimator based on a Diagonal covariance matrix, in short LIMLD. If the number of

observations is small in particular if condition (4.11) is complied with, the LIMLD

estimator could be preferred to the LIML estimator, since the latter is based

on an unreliable estimate of the covariance matrix.

4.4 The Two-Stap Least Squares (TSLS) estimator

In order to find the TSLS estimator as a member of the a-class estimators,

we must start with a somewhat unusual assumption for the covariance matrix

(4.16
++ 

= a
2
(e.e

J
.') with a

2 
0

J 

where e. is a G xl unit vector consisting of a single one in the j-th position
++

and zeroes everywhere else. In this case the covariance matrix is singular;

the endogenous variables represented in the matrix Y
+ 
are assumed to be

nonstochastic except for the j-th variable yi which is assumed to be stochastic

with variance a
2
.

-++
The Q-class'estimator with Q equal to (4.16) can be found by substituting

-++
z:1 into (4.1) and (4.2) but this procedure does not lead to the most appropriate

eNpression of the estimator. Instead of starting with (4.1) and (4.2) we go back

to the derivation of those formulae from (3.8). We introduce a further partition

if i j; after a rearrangement :

(4.17) j a Tx(e-1) matrix

so the last column of Y
+ 

consists of the stochastic variable (yj) and the first

columa represents the 'normalized' variable (y1). Following the arguments after

(3.3) and (3.)) with the exception that we now ignore the last equation instead

of the first one, we find
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(4.18)

It is now not necessary to solve a determinantal equation. Equation (4.18)

results from minimizing

(4.19)
+ ++
- M)Y'y

subject to the normalization restriction; y is the coefficient belonging to
1 ,

the stochastic variable yJ.

If i = j, it will not be necessary to partition (4.17); the normalized

variable coincides with the stochastic variable. In this case the estimator

equals (4.18) with i = j and the expression to be minimized is the same as in

(4.19), with the exception that 
1j1 

= y. = 1 by definition.
11

In formula (4.18) with i'= j, we recognize the so-called Two Stage Least

Squares (TSLS) estimator. In order to distinguish the other estimators defined by

(4.18) with i j from it, we shall use the abbreviation TSLS(j) where the

index j corresponds to the non-zero position on the diagonal of the index matrix
-++
Q . As can easily be seen, the TSLS(j) estimator corresponds to the estimator

defined by the following procedure :

1. estimate the coefficients by means of TSLS subject to y = 1,
1

2. divide these estimates by the estimate of yil

We have now reached the following conclusion. The TSLS estimator is a member

of the '&-class estimators, with an index matrix

(4.20)
-14
0 = 

2
( 

+
e.e. where a

2 
0 and e. is a (Ga xl) unit vector,

a.

i.e. a matrix with one non-zero element on the diagonal, which position

corresponds to the normalized variable. The TSLS estimator is a maximum-likelihood

estimator under the assumptions that the true covariance matrix n++ equals Ef+

as defined in (4.20), together with the Normality assumption 7.

Note that the assumption for Q
++ 

can 'hardly be called 'reasonable'. First,

it is arbitrary since the normalization restriction can be chosen arbitrarily.

Second, it is at variance with the simultaneous nature of the system of equation

in which stochastic variables are related to other stochastic variables. We will

return to these problems in section 5.
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4.5 The Orthogonal Two-Stage Least Squares (OTSLS) estimator

The TSLS estimator is an example of an 2-class estimator based on a

fixed rather than an estimated index matrix as in the case of the I= and

LI:*.Li) estimator. We now shall present another member of the n-class estimators

based on a fixed index matrix. In particular, we assume that the contemporaneous

reduced form disturbances are mutually uncorrelated and have equal variances :

(4.21
++ 

= a I where a
2 + +
X 0, I is a G xG identity matrix.

The fl-class estimator with an index matrix ?/-4-1. rorresponding to (4.21)

can be obtained by substituting this matrix into (4.1) and (4.2):

(4.22)

(4.23)

i i if, i
Y 'PY - AI Y Y Py-

-+ +
X
+
 'Y X 'X

+
 X

+
'v

det Y'(M
+
-MY

+ 
- A I) = 0 with smallest root A

004.

The factor a
2 
is incorporated in the smallest root A so that it has not to be known

a priori and separately.

The corresponding minimization problem is

(4.24)
Minimize

+ + + ++
'Y '(11 -m)y

+7 +
Y

subject to the normalization restriction.

Note that the estimator (4.22) is not independent of units of measurements

of the variables, in contradiction to the other estimators mentioned here. In

general, changing the units of scale for one variable does not result in a

corresponding change in the estimated coefficient of that variable.

For reasons given in the next section, we shall call the estimator (4.22)

the Orthogonal Two-Stage Least Squares (OTSLS) estimator.

5. AN 'ERRORS IN VARIABLES :10DEL' APPROACH OF THE c2-CLASS ESTIMATORS

In this section we come across the Q-class estimator as an 'Errors in

arjHs::odel t estimator in a transformed equation. This view enables us to

interret the results of the preceding section more clearly.

Let the equation under consideration be
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(5.1)

where

(5.2)

Y
+
y
+ 
+X 

+
13
+

Y
+ 
= Xil +u

+

(5.3) C(U+) = (0++ 0 I)

11 and U
+ 

are matrices of order KxG
+ 
resp. TxG

+
, corresponding to the

partitions of Y as defined in (3.1). For the symmetrix idempotent matrix

(5.4) P = X(X'X)-1X'

a KxT matrix A
1 
exists such that

(5.5)

Define

(5.6)

'A
1 
= P and A

1 
A

1 
' = I

_1
A = T 2.A

1

and consider the transformed equation (5.1)

(5.7) AY
+
y
+ 
+ AX13

 
= Ac

then, using C(:) = a
2
11 

I
' 

where a
2 

is an element of E , we obtain :
11

(5.8) C(he) = T
-1 

a
2 

(A
1 
IA

1 
') = T

-1
. a

2 
I

11 11

(5.9) , C(AY) = C(AU) = (0 0 T-1A1A1 1) = T-1(Q++ 0 I)

(5.10)

The implications of the transformation can be shown by writing out (5.7)

Ay = - AYiy 
+ +

+ Ac

and estimating the coefficients by means of ordinary least squares regression :

(5.11) YitrYi IY"PyiYi'A'AYi Yi'A'AX -1 
Y'A'Ay 

i\

= -

X
+
'A'AY

i 
X
+
'A'AX

+ 
X+IAAy X 'Y X 'X , X 'y

In this expression we recognize the TSLS estimator. Note the difference between

the TSLS procedure and the one followed here, in the first stage the transformation

*)
Consider the K orthonormal characteristic vectors of P corresponding to

the root 1.
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matrix A is used here instead of the matrix P used in the TSLS procedure. The

reason for using the transformation matrix A rather than the matrix P is the serial

correlation caused by P :

C(Pc) = 0.211 (PIP') = P

,C(PY
+
) = (Q

+4- 
D PP') = (Q++•D P)

We have now formulated the TSLS estimation procedure as ordinary least squares

regression in equation (5.10) which is based on equation (5.7). However, is the

use of ordinary least squares regression in equation (5.7) justified ?

When the sample size increases, the transformed variables in (5.7) become more

and more deterministic (see (5.8) and (5.9))and the TSLS estimates converge to

the true values. But what if the sample size is small ? Ordinary least squares

regression is justified if we assume that the right hand variables in (5.10) are

uncorrelated'with disturbances Ac . From

(5.14) Ef(vec AY - Evec AY)(vec AE Evec AE)'}

E(vec AY. vec'AE) =(or 1)

we conclude that, in general, this is not the case.

Inspection of equation (5.7) and (5.9) shows us that the relation between

the transformed variables corresponds to the so-called 'Errors in Variables Model'

(see, e.g., MALINVAUD, chapter 10). The functional relation between the

deterministic parts of the transformed variables is

++
(5.15) AXIIy + AX13 =0

The observed values are related to the deterministic parts, according to

(5.16) AY = AXII4 + AU
+ 

and AX
+ 
= AX + 0

where the covariance matrix of AU+ is expressed by (5.9).
+ .Given the covariance matrix Q

++ 
we are able to estimate y and f3 In equation

(5.7) corresponding to the principle of the so-called 'weighted regression' (see,
for example, MALINVAUD (1970), chapter 10 and KOOPMANS (1937)).

According to this principle, the estimators y+ and a+ are found as those values
y
+ 

and , satisfying the normalization restriction, for which
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(5.17)
+4-

c
/Q 0) , \

0 
+

0

)I /

Y'FY
+

( + +
X 'Y

Y-}"‘X+ (y+)

x+'X+ \

is minimized. Comparing (5.17) with (3.3) shows us that the weighted regression

estimator for equation (5.7), for a given covariance matrix Q
++
, equals the

2-class estimator with index matrix 0. Consistency of the weighted regression

estimator is garanteed by the transformation A.

We now try to interpret the various a-class estimators mentioned in the
preceding section.

The LIML estimation procedure corresponds to a weighted regression for equation

(5.7), with an estimated covariance matrix. The LIMLD estimation procedure

corresponds to a weighted regression for equation (5.7), with an estimated

covariance matrix which is assumed to be diagonal. The OTSLS estimation procedure

corresponds to the so-called orthogonal regression for equation (5.7) (see, for

example, MALINVAUD (1970) p.35). Finally, we consider the TSLS(j) (j=1,..,e)

estimation procedures. They correspond to the G
+ 

so-called elementary

regressions for equation (5.7), disregarding the fact that the variables AY see

(4.17)) are stochastic and correlated with As . In particular in the TSLS

procedure (where i=j) we erroneously project the Ay vector on the plane formed

by the vectors of the 'independent' variables AY1 and AX
+
, whereas the variables

AY
i 
are, in general, not independent of Ac

There is a relationship between the G elementary regression estimators of
equation (5.7) which are equivalent to the different TSLS(j) estimators, and the
weighted regression estimator of equation (5.7) which is equivalent to the
2-class estimator. The TSLS(j) (j=1,..,G

+
) estimators can be considered as the

limits of a certain class of weighted regression estimators, under general
conditions. First, we introduce the following assumptions :

ASSUMPTION 10. All G different TSLS(j) estimators are non-negative,
possibly after changing the sign of some of the variables

4. 
and X

+
 ,i.e. 
6)

0 for j = 1,..

where () denotes the TSLS(j) estimator.j  

6 We denote A 0 if all elements of A are non-negative.



-24 -

Assumption 10 corresponds with the case where the signs of the estimates y

and in the different TSLS(j) (j=1,..,G
+
) procedures are compatible.

-++
ASSUMPTION 11. The index matrix Q of order G

+
x G

+ 
is a symmetric,

positive semidefinite matrix with at least one non-zero diagonal element and

for which

(5.19)

We now state

THEOREM 3. The c2-class estimator of y
+ 

and
+
, defined for the

-++
index matrix Q , given the assumptions 1, 2, 3, 4, 5b, 6 and 10 (compatibility

of the TSL5(j) estimates) and assumption 11 (non-negative index matrix), is

confined to that space angle constructed on the different TSLS(j) (j=1,..,G

estimate vectors as edges, viz:

(5.20)

where

G
+

j=1

G
+

S. ?. 0 and 2: S. =1

j=1 j

-++
is the c2-class estimator defined on the index matrix Qa —++

is the TSLS(j) estimator with non-negative elements in

view of assumption 10
01..11.1.111

This theorem is based on a related theorem concerning the position of a weighted

regression vector with respect to the different elementary regression vectors

(see KOOPMANS (1937), -p.101). In appendix C we present the proof of theorem 3,

which is a somewhat more general and modernised version of the one offered by

KOOPMANS, concerning the weighted regression. As a corrollary we find that under

assumption 10 the LIMLD- and the OTSLS estimators are confined to the space angle

constructed on the different TSLS(j) estimate vectors as edges.
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6. SUMMARY AND CONCLUSIONS

We shall now try tosummarize the results and formulate some conclusions.

We derived maximum-likelihood estimators for the structural coefficients in the

case of linear restrictions imposed on these coefficients and a known positive

semidefinite covariance matrix of the contemporaneous reduced form disturbances.

In the case of zero-nonzero restrictions we introduced the P-class estimators

based on the maximum-likelihood estimators mentioned above. This class of

estimators is defined on a symmetric, positive semidefinite matrix. If this index

matrix equals the true covariance matrix of the contemporaneous reduced form

disturbances and if the disturbances are assumed to be normally distributed, the

0-class estimator will correspond to the maximum-likelihood estimator. Both

assumptions, however, are superfluous for proving that the Q-class estimator

is consistent. The well-known LIML and TSLS estimator are shown to be members of

the a-class. Besides, two other a-class estimators are introduced, viz. the

OTSLS and the LIMLD estimator, both with a diagonal index matrix. Finally, a

relationship was derived between the different TSLS(j),-j=1,..,G
+
, estimators,

resulting from different normalizations, and other members of the c2-class.

In practice, a choice has to be made from the different methods of

estimation. The theoretical considerations presented in this paper lead us to

suggest the following.

In general, the LIML estimator would have to be preferred to the LIMLD, OTSLS and

the different TSLS(j) estimators, the latter estimators being based on less

general assumptions about the covariance matrix. If, however, the sample is small,

with the number of observations T about as large as K + e, the LIML estimator

could be unreliable since it is based on a poor estimate of the covariance matrix.

In this case we suggest that a diagonal covariance matrix be used as approximation

to the unknown covariance matrix of the contemporaneous reduced form disturbances.

Since the OTSLS estimator is not independent of the units of measurements of the

variables, we recommend the use of the LIMLD estimator in small samples.

Finally, we mention the e different TSLS(j) estimators. We have found

that these estimators are theoretically justified only if almost all the

endogenous variables are nonstochastic, which is at variance with the

simultaneous nature of the system. We have also shown that the commonly used TSLS

estimator is rather arbitrary, given the existence of e-1 other TSLS(j)

estimators, none of which could be preferred to the others on reasonable grounds.

Consequently, we did not recommend the TSLS(j) estimators, although practical

considerations could lead to their being used. In large samples, in particular,

the consistency and computational convenience could make the TSLS(j) estimators

attractive. Further research on small sample properties of the 0-class estimators

should provide more detailed answers to the important question of which estimator

is to be preferred.
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APPENDIX

A. 1. The pseudo inverse of a matrix 

Where A is a nxm matrix, there exists a unique matrix AP of order mxn,

called the pseudo inverse of A (or Moore-Penrose inverse) which obeys the following

four conditions :

1) AAA = A

2) AAAP = AP

3) AA is symmetric

4) AAP is symmetric

We mention some properties of the pseudo inverse (see GRAYBILL (1969) chapter 6)

1) (A')P =

2) (AP)13

3) (A'A)P =

4) (AA)P =

5) rank A

(AP)?

A

APA P

AAP

= rank A = rank of AA, APA, AAA and AAAP

A necessary and sufficient condition for the matrix equation

AXB = C

to be consistent, is

AAP BPB = C

and the solution can be written as

P PX =A B +H- APAHBBP

where the matrix H, with the dimensions of X, can be chosen arbitrarily.

A,2 The Kronecker product and the 'vec' operator

The Kronecker-_or direct product is defined as
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i
tfallB a

12
B . . . a

1m
B

! 
a
21

B a
21

B . . . a
2m
B

(AD 13) =
, 1 .

I 
.

\a
n1
B a

n 
B . . . a

nm
B

where A is of order nxm. The 'vec' operator is defined as

vec A = (a
11'

a
21''

a
n1

,a
12
,a
22
,.. , a

nm
)'

We mention some properties of the Kronecker product and 'vec' operator :

1) (A N B)(C N D) = (AC 0 BD)

2) (A El B)-1 = (A-1 N B-1)

3) (A 10 = (A' 0 B')

4) (A 10 (B N C)) = ((A NB) N C)

5) vec ABC = (C' A) vec B

The interested reader is referred to NEUDECKER (1969).

A.3 Proof of theorem 2

First we prove that

A
Plim 74.
T ...

where A is the smallest root of

-++
d t(Y

+, 
M - M)Y

+ 
- A c2 ) = 0 or,

det
++ 

—  14)Y
+ 

A —++_ ) =0

Under the assumptions of theorem 2 it can be proved (see, e.g., GOLDBERGER (1964)
7)

p. 344 or DHRYMES (1970) p.354) that .

*7) Both proofs contain minor errors : DHRYNES p. 354 defines X2 erroneously;

r:ust be - 
Xl(X1 -1)

-1X 1'X2. GOLDBERGER p.344 states that E22.1(his notation)
X,) 

is positive semidcfinite, which must be positive definite in view of Q being

positive definite, where Q = plim (XCX)/T
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plim

T

'(M
+ 
- M)Y

+

exists and hzs rank G
+ 

1.

Since we assume that A is a single root of the determinantal equation, it is

a continuous function of the elements of the matrices in the determinantal

equation. This implies that

^
= plim AlT
T-°

is the smallest root of

det(plim
T-°°

+ +
Y'(M

+ 
M)Y

v plim 'CT") =0
T co

Inspection of this determinantal equation shows that, under the assumptions

of theorem 2,

plim A/T = 0
T -*

Now consider the k-class estimator see, e.g. THEIL (1971), p.504), where.

plim k = 1

T-°

Then see, for example, THEE, (1971), p. 505) :

plim
T-

= plim
T

0 

Y

iYi 
'Y

Y 'MY
k  

+
X 'Y

Y
- k

+
X 'Y

Y TX
+

+ +
X 'X

plim
T 00

fyi,yi

+
X 

Y 'My 

Yy
i

Y
i,
My
i"

  -

+
tXy
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= li

PT -*111°3

Yi'PY1 Y
i 
'X
+ \-1

+ i + +
'Y X 'X 

T if

. 7
Y
1
'Py

1

+
'Xy

••••••••• -4

which shows the consistency of the Q-class estimator.

A.4 Proof of theorem 3

(^i\
Y

= plim
T 03 I

We first mention the following theorem (see GANTMACHER (1959) p.66) :

THEOREM. A non-negative square matrix A : A ?. 0, always has a non-negative

characteristic root X such that the moduli of all the charactpriRtir roots of A
, ,*do not exceed X* . To this 'maximum' characteristic root A there corresponds a

non-negative characteristic vector x .

Ax = X
*
x where A

* 
0 and x 0

The 0-class estimator, defined for an index matrix can he derived from the

following set of equations (see (3.8)) •

A

0.6

1

- A A
2
)x = 0 where

Yi'X+ (F2++ 0

+ + I and A.,=
X 'X 0

and A is the smallest root of the corresponding determinantal equation. All roots

A are real and either positive or zero, as we found in section 2.
A -First we consider the case where A
1

I
 

exists, corresponding to A > 0.

Then

- 1
(A

2
A1 

1 
- 7r 1)6 0 where 6 = A

1
x a(G

+
+K
+
) - vector

A

_
so that 1/x corresponds to the maximum characteristic root of the matrix 

A2A11 
.

-
The first G column vectors of the matrix A

1

1 
contain the different TSLS(j)

(j=1,..,G
+
) estimators, apart from a normalization factor; this can be easily

-++
seen by substituting P from (4.16) into A

2 
and solving the characteristic

equation.
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The matrix A A
-
1

1 
can be written as

2 

-1
A A =
2 1

0
where

( 1

A21 A22

Because of the symmetry of the matrix A,', the partitions A
11 

and A
12 

contain

the elements of the TSLS(j) estimates. Under the assumptions 10 and 11 we find

that

-1
A
2
A

1 
?. 0

From the theorem mentioned above, we conclude

and from the partition of A2A-1 /, it follows that

Therefore

6 +
'6G

+  
•'6G++e)+1'

,x = A
1 
6 where 6 =  0G 4

The condition that the elements of the 6 vector add up to 1, is derived from the

normalization restriction.

For the case where A
1 
is singular, all the 0-class estimators coincide,

including the different TSLS estimators. This is the exactly identified cage.






