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"Learning by experience" is a well-known part of the theory of

subjective probabilities; the learning process is often derived from

some prior distribution F(p) where p is a parameter of unknown value of a

binomial process for instance. In this paper, the learning process is

explicitly formulated and the corresponding prior distribution is derived

from it. In this interpretation, subjective probabilities are part of an

inference methodology, rather than a subjective evaluation of frequentistic

probabilities. Implications are considered for a concept like the "non-

informative prior"; the situation is considered in which the learning

process seems to be in conflict with some objectively determined prior.

1. INTRODUCTION

The discussion between frequentists and subjectivists has left Dutch

statisticians remarkably untouched. It seems that the subjective approach

is thought to be a playground for psychologists. During the last few years,

some econometricians have worked on it, ,undoubtedly because they are faced
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with situations where a limited number of observations is available,

and where intuitive knowledge of some kind is present. One has to go

back as far as 1957 if one wishes to find a contribution to the more

fundamental discussion on these matters. In that year, Van Dantzig [2]

published two articles in Statistica Neerlandica under the ominous

title "Statistical Priesthood", in which he reviewed Savage's "The

Foundations of Statistics" [10] and Fisher's "Statistical Methods and

Scientific Inference" [6]. In particular, his criticism on the former

is quite severe. Now, so many years later, the criticism does not always

seem justified, and sometimes even unfair: Van Dantzig writes:

"Combining the subjectivist's view with the statement in modern
physics that radiation consists of probability waves, the reader
would have to conclude that the inhabitants of Hiroshima and
Nagasaki have been killed by waves of subjective degrees of
expectation",

giving rise to the argument that the example is not very subtle (due

to the intensity of the discussion?) and, worse, that it is unfair

towards the theory of Savage. The personalistic view, as defended by

Savage, does not deny the existence of stochastic phenomena in nature,

but it does claim that our knowledge about such phenomena is essentially

imperfect, so that a personalistic interpretation of data is (essentially)

always necessary. There are no "waves of subjective degrees of expectation"

that could have killed the people of Hiroshima and Nagasaki, but our

knowledge about the phenomenon of radiation is (essentially) subjective.

The quotation is interesting, because it demonstrates a fundamental

difference between subjective and objective probabilities: objective

probabilities are related to natural phenomena, subjective probabilities

are related to some person's knowledge about phenomena. This implies that

the subjective probability approach is incomparable with the frequency

interpretation of probabilities. If a comparison is possible, then it

should be made between the subjectivistic approach and the inference

methodology used by frequentists. In this light, it seems to be possible

that the concept of stabilizing relative frequencies can be used together

with the concept of subjective probabilities. The two concepts are

complementary, rather than contradictory. In this paper, we shall
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concentrate on the kind of problems, where complementarity might be

expected. We are interested in sequences of observations, in which

the n
th 

outcome is independent of any other outcome (although our

opinion about the n
th 

outcome is influenced by our knowledge about other

outcomes). This situation is typical for inference problems. The actual

comparison between the subjectivistic approach and the inference

methodology of the frequentists will be reserved for a second paper;

here, we shall try to construct a subjective probability theory that

can be used for inference problems. We shall restrict ourselves to

trials with only two outcomes, notated as H and T (sometimes denoting

heads and tails; the same notation is also used for other experiments).

2. THE SUBJECTIVISTIC APPROACH

Although subjective probabilities have been defined in very

sophisticated ways (see for instance Savage [10]), it alvamboils

down to the analysis of betting situations [7]. It is not necessary

that bets form an actual part of the decision problem for which

subjective probabilities must be evaluated; it is sometimes sufficient

that a person evaluates subjective degrees of belief by means of

hypothetical bets. In the latter case, the following assumption is made:

ASSUMPTION 1: If a decision problem under uncertainty is extended

with hypothetical bets on the states of nature that might prevail, then

the subjective probabilities defined on the basis of these bets will be

valid for the original decision problem as well.

This assumption says that hypothetical bets are a good yardstick

for the determination of subjective probabilities. A bet is considered

fair if one and the same person is willing to lay a wager on both sides

of the bet. Subjective probabilities can now be defined by means of

fair bets in the following way:



If a person is willing to bet on an outcome A with stakes p : q,

and if he is willing to bet on the complementary outcome A
c 

with stakes

q : p, then the subjective probability of the outcome A can be defined

as the ratio p/(p + q).

It may be noted that in this definition the utility of money is

assumed to be linear. The utility concept can be avoided when defining

subjective probabilities, but here we take the simplest possible

definition, because it is not crucial to the later part of this paper.

The notion of fair bets is not sufficient for a reasonable definition

of subjective probabilities. A person betting with stakes p : q on the

outcome A, might possibly think that A u B is worth a fair bet with

stakes p' : q with p' < p. This inconsistency is impossible if the

following assumption is made:

ASSUMPTION 2: Fair bets are acceptable only, if no combination of

such bets can result in a certain loss.

The well-known rules of calculation for probabilities can be derived

from the definition and assumption 2. It can be seen that 0 < P(A) < 1

for any A; for the certain event, we find P(S) = P(A) + P(Ac) = 1.

Finally, if A n B = 0, then P(A) + P(B) = P(A U B); indeed, suppose that

P(A U B) < P(A) + P(B) holds good. Consider then the three following

bets: a bet on A with stakes P(A) : 1 - P(A); a bet on B with stakes

P(B) : 1 - P(B); a bet on (A U B) with stakes 1 - P(A U B) P(A U B).

If A prevails, these three bets will give a net result

(1 - P(A)) - P(B) - (1 - P(A U B)) < 0. If B prevails, the net result will

be -P(A) + (1 - P(B)) - (1 - P(A U B)) < 0. If neither A nor B prevail,

the net result will be -P(A) - P(B) + P(A U B) < 0. The three bets

together result in a certain loss. In the same way, if P(A U B) > P(A)+P(B)

holds good the complementary bets will result in a certain loss.

Next, consider two experiments, each of which results in either H

or T: two coin tosses, for instance, where H stands for the outcome heads

and T stands for the outcome tails. Probabilities could be assessed for

the four points in the two-dimensional Cartesian product

{(H T
1
) x (H

2' 
T
2
)}. Marginal probabilities can be derived from these

probabilities by means of

P(H2) = P(H2T1) P(H2H1 etc



Conditional probabilities are defined by

P(H2H1)
P(H

2
/H

1
) = 

P(H )
1

, etc.

Formally, this does not restrict the probability assessor in his original

assessment of probability values in the two-dimensional space. It is

quite possible, however, that direct assessment of probabilities in the

second experiment alone, would result in values that differ from the

marginal probabilities as derived above. Such behaviour is excluded in

the theory of subjective probabilities, because of the following

assumption:

ASSUMPTION 3: Given a sequence of n experiments with probabilities

assessed to the n-tuples of possible outcomes, then any sequence of

(n k) experiments should be considered as a subsequence, i.e. as

imbedded in the larger system, and probabilities

concerning such a subsequence are marginal probabilities as derived from

the n-dimensional Cartesian product.

This assumption guarantees consistency when sequence and subsequence

are considered at the same moment.

• Conditional probabilities can be interpreted as betting quotients

for conditional bets, i.e. bets that are valid if a particular event

occurs, and not valid (called off) if the event does not occur. The

definition of conditional probabilities asserts that no combination of

unconditional bettings can be made such that the total result is a

certain loss. (Suppose, as a counter example, that

P(H
2
H
1
) = P(H

2
T
1
) = P(T2H1)= P(T

2
T
1
) = 4, and that P(H

2 
/H

1 
) is equal to

4/5 in the interpretation of a betting quotient in a conditional bet. Then

a direct bet on the outcome T
2
H
1 
would be acceptable if the net gain for

that outcome is 24 and the net loss on the three other outcomes is -8.

Equally acceptable would be the conditional bet that gives a gain of +7

if H
2
H
1 
occurs, a loss of_28 if T

2
H
1 
occurs, and 0 if T

1 
occurs (called

off). Evidently, the combination of these two bets results in a certain

loss. Conditional bets are defined at the moment that no observations

have yet been made. The probability assessor may possibly change his mind

after the first observation has been made. In that new situation, he could



accept his loss and reconsider his judgements. The following assumption

excludes this behaviour.

ASSUMPTION 4: The probability P(A/B) of an event A after the
hypothetical observation of B is equal to the probability that is

given to A after the actual observation of B.

Essentially, the construction of probabilities after the

observation of n outcomes (n = 1, 2, ...) is a dynamic process. The

overall probability model is static. According to assumption 4, the
static model must be constructed such that it contains the dynamic

elements.

In the subjectivistic theory the notion of independent trials

of an experiment is also introduced, but in an entirely different

way as compared with the frequency theory. The idea of physically

independent trials is reflected in the following assumption:

ASSUMPTION 5: If ordering numbers are assigned to all trials, then
the ordering numbers can be interchanged within any probability

statement.

In other words: if the outcomes can be described by the set of

random variables x
1' 

x then any permutation of these variablesn
has the same n-dimensional probability distribution as the original

ordering (x
1' x2' 

x 
n• 
) If this assumption is made then the

random variables are called exchangeable or symmetrically dependent.

This assumption implies that we, in our personalistic beliefs, do

not wish to learn from the ordering of the trials. In other words:

physical independence is assumed for the sequence under consideration.

Therefore, although the person does not know beforehand the results of

future observations he maintains the hypothesis that it will not be

a systematic sequence.
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Although it is assumed that the n 
th
 outcome does not influence

any other future outcome, this does not imply that our knowledge

about the n
th 

observation would not influence our subjective

probability about other future outcomes. This fact is expressed by

the expression symmetrically dependent. Hence the well-known multipli-

cation rule F[H
2 

n H
1
] = P[H2] . 

P[H1' 
] which holds good for

independent collectives in the frequency theory, does not hold good

if p denotes our subjective degree of belief.

The following important theorem about sequences of symmetrically

dependent variables is due to de Finetti:

THEOREM: Given any infinite sequence of exchangeable variables x
n

that can have values 0 or 1 only, there is a corresponding probability

distribution F(p) on some parameter p in the interval [0, 11 such that

the (subjective) probability on k successes in n experiments can be

written as

P (k successes in n experiments) =
1

(n) pk(1

0

p)11.-kdF(p).

The distribution F(p) is unique almost everywhere. For the proof of

this theorem, the reader is referred to [5] or [4]..

This theorem gives us the opportunity of introducing the concept of

a prior distribution in the subjectivistic theory. We shall first

discuss two interpretations.

In the first interpretation, subjective and frequentistic

probabilities are mixed. Suppose that a bag contains a proportion p of

black balls and a proportion 1 - p of white balls. Experiments can be

carried out by taking a ball from the bag, looking at the colour and

returning it. Suppose now that one takes a quick look at the contents

of the bag. Then one has some intuitive ideas about the true p-value.

One could translate these ideas into a subjective probability

distribution f(p) on [0, 1]. By taking out balls, in the aforementioned

manner one could apply Bayes' theorem in order to obtain the posterior

distribution of p:

f(p[Iri) =
pko p)n-kf(p)dp

k
(1p) f(p p)
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in which
T1 
in the left member denotes the observation of k successes

in n experiments. It can be shown that for n going to infinity and

for the observed relative frequency r = -- fixed, the variance of

the posterior distribution will tend to 0, whereas the mean tends to r.

For this property it is required there be at least one point in the

neighbourhood of r, where f(p) will not vanish, and that f(p) is

bounded (see, for instance, von Mises [8], who also gives some weaker

requirements). In other words, if there is something like a true

frequentistic probability r, we know that the subjective posterior

probability will become equal to it if a sufficient number of

experiments can be carried out.

The mixing of subjective probabilities and "true" frequentistic

probabilities in this first interpretation does not seem to be very

fortunate. For those subjectivists, who deny the sense of the

frequentistic probability concept, it is inadmissible to introduce

such a concept through the backdoor. It is not necessary, however,

to interpret the parameter p as a frequentistic probability. If

subjective probabilities are assigned to sequences of n outcomes

(n = 1, 2, ...) such that (a) the probabilities on the n-dimensional

space may be considered as marginal probabilities on a n-dimensional

subspace of the (n + 1)-dimensional space; (b) the sequence is

symmetric; then, the measure F(p) may be considered as a mathematical

tool for which no interpretation is necessary. Formally, the

frequentistic interpretation of F(p) can be avoided. It is worthy

of note that there is still a connection, albeit in a difference

sense, between frequencies and the distribution F(p). If rn denotes

the relative frequency of successes in n experiments, and if the

subjective probability that is assigned to the event r = -- is
n n

written as

P[r= 
hl 

k
) fp (

n n
0

n-kdF(p)

then the distribution function Fn(x) = P(rn x) will tend to the prior

distribution F(x) for n tending to infinity. Indeed, we have



[nx] 1 k
n-k

lim F( x)= lim E (n)j p (1 - p) dF(p) =
n+ k=0 

k 
0co

Enx]
= lim

tr+co 0 k=0

1 [nx]
= lim E (
0 n+ k=0

pk(1 p)n...kair(p)

) pk(1 - p)n- dF(p)

As is well-known, the integrand will vanish for large n if x < p;

the integral will equal unity for large n if x > p. So we get

lim F(x) ) = I dF(p) = F(x)
n-÷00 0

The interpretation of F(p) as a limiting distribution of (subjective)

probability distributions on the relative frequencies rn will be

called here the second interpretation of subjective prior distributions.

For this second interpretation, it is not necessary that something like

a "true" (frequentistic) probability should exist. Although the two

interpretations are rather close, one should take care to distinguish

between them; issues like the existence of "true" frequentistic

probabilities have given rise to so much discussion that one may not

neglect the subtle distinction between subjective probabilities on

the unknown frequentistic probability value p (interpretation 1) and

subjective probabilities on relative frequencies rn for arbitrarily

large values of n (interpretation 2). We shall treat the logical

interpretation of probabilities before discussing the two interpretations.

It will appear that this logical interpretation if formally a special

case of the subjective approach in its second interpretation.

3. THE LOGICAL APPROACH

For the logical approach, we shall follow the train of thought of

Carnap (see [1]). The theory is called "logical", because it describes

a formal procedure for induction. The procedure itself is independent

of the problems to which it is applied. There is no room for subjective

"beliefs", as in the subjectivistic approach. Everyone could - if they

wished - apply the methodology, and the results should then be the same
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for all concerned. For that reason, Carnap uses the terminology

"degree of confirmation" rather than "degree of belief". For comparison's

sake, we shall often use the terminology that is known from the theory of

statistics. It must be remarked, however, that Carnap claims a more

wide-spread field of application for his logic. It should be a starting

point for a more general theory of induction.

Carnap does not deny the possible existence of frequentistic

probabilities. He calls it "probability 
2
't in order to distinguish it from

betting quotients (or, if necessary, estimates of probability2), to

which he refers as probability). The theory of Carnap concentrates upon

the structure of the latter kind of probabilities. We shall consider in

brief the most important axioms underlying this structure.

The degree of confirmation that some hypothesis h is true, given

the experience e, is denoted by c(h, e). The theory of Carnap takes into

consideration sequences of experiments with only two outcomes.
1 
We shall

use the symbols H. and T. for the two possible outcomes of the 
.th

experiment, referring to coin tossing experiments. Both the hypothesis h

and the experience e (the latter containing all available experience)

must be given in the symbols H, T and i. If no experience is available,

we shall write m(h) instead of c(h, e). It is assumed that the confirmation

function is symmetric as to the outcomes H and T, i.e. in c(h, e) the

symbols H and T may be interchanged without changing the value of the

degree of confirmation. This implies m(H) = m(T); this assumption is

known in other contexts as the principle of insufficient reasoning. The

confirmation function should be insensitive to the sequence number of the

experiments, i.e. in c(h, e) these ordering numbers may be interchanged

without affecting the value of the degrees of confirmation. The third

assumption is, that the confirmation function behaves like a probability

measure: c(h, e) will always be between 0 and 1;

c(h
l' 

or h
2' 

e) = c(h e) + 
c(h2' 

e) if the conjunction (h
1 
.h
2 
) is

untrue; c(h or not -h, e) = 1; and, last but not least, the property

of conditional probabilities is fulfilled, in other words,

c(h.j, e) = c(h, j.e).c(j, e).

Under these assumptions, the theory of Carnap is formally embedded in
the subjective approach, where symmetric sequences of events have been
defined. It is a special case, because symmetry is assumed to exist

between the outcomes H and T; the latter kind of symmetry could be
introduced on subjective grounds as well, and in that case the confirmation

Strictly speaking. Carnap's theory is engaaed with independent outcomes and
their negatives, like for instance female/not female and blue eyes/not blue
eyes. Kemeny and Carnap make a further extension, including such situations
as the throwing of dice [lb].
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function of carnap seems to be identical with the specific subjective

probability measure. The interesting point of Carnap's theory, however,

is the construction of the confirmation function. According to the

subjectivists, anybody is free in the construction of the probability

measure, as long as the consistency requirements are fulfilled.

According to Carnap, it should be possible to define a generally

accepted methodology for induction.

Suppose that no experience is available. In that case the principle

of insufficient reasoning results in m(H) = m(T) = I. \Tow suppose that

experience e is available in terms of H, T and i only. The ordering

numbers j are irrelevant, and only the observed relative frequency -;17

is of importance. We shall denote this by keeping in mind that n is

the number of observations made (so ; is different from 2/4). Now

Carnal) assumes that

< c(H, —
n =

or 
n = n

k 1 k 1
for — < 2 and-- > respectively.

n = n =
In other words, c(H, is a convex combination of m(H), having

the value 3, and the observed relative frequency 1. We may write

c(H, + (1 - A).; = (1 - A).(1 
A
 - A 

+ (0 < A < 1)= =

Now the relative weight that is given to the observed relative frequency

should increase with the number of observations made. Supposing that

A  =- 
1 A 

with A a constant, we find the formula
- A

= k X.;n X 
with 0 <

For A = 0, the degree of confirmation is determined by the.observed

relative frequency only. For A = 0. we see that the degree of confirmation

is not influenced by the observed frequency; the value is and we do

not wish to change our opinion in the light of any evidence. According

to De Finetti's theorem, there is some prior distribution F(p) sucta

that the degrees of confirmatiGn are generated by a binomial process

with probability p, conditionaL to the prior distribution F(p). For
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constant values of X, this prior distribution is a beta distribution
X X

with parameters 
2' 

This can be verified by calculating the degree
2

of confirmation m(k times H and n - k times T) directly in accordance

with Carnap's theory and by calculating the binomial probability of

k successes in n experiments from a prior that
X X

with the parameters (s
'
,.- --). Direct calculation2 2

sequence of outcomes (for instance the first n

times H);

m(H .H
n n-

• • • •

n-l e

• -k+1*Tn-k* *** *T1) =

• ).m(H
n-1* **•

1 
c(H, ).c(H, k 

- 1 n ).

k - 1 + X.i k - 2 + X.i

. =

000 0C(11,

n 1 + X • n - 2 + X •

Because m(11
n-k* *** .111) = m(Hn

same way, we find as result

m(H .

• • • •

0 
k

has a beta distribution

gives for some specific

- k times T, the next k

• • •

n-k•
• •

0 + A.

n k A • 111(Tn...k.

• 
.T1)

•

. .H1) which can be evaluated in the

• • H 
. 

n-k+1n- 1

k - + X.; k - 2 + X.i 0 + X.i n k - 1 + X.i
n + X n - 2 + X •

• • •

*n -k+ X• n-k- 1 +X • n-k- 2 4-X •

0 + X.;
• • • •

On the other hand, we can calculate

1
p

0

X
p)n-kp2

• 0 + X

(1 - p) dp r( + k ) r (2-t n - k)
2 2

X
- -1

p)2 dp
r(x +n

and from the recursion formula r(x) = (x - 1) .r
equal to the directly calculated result.

r(x)
{r*}2

- this appears to be
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Mathematically speaking, this result is not new. Beta-distribt4ions

are used as so-called conjugate priors, conjugate to a binomial process,

and the results are explored quite thoroughly by subjectivists. The

interesting part is the interpretation that is given by Carnap to the

confirmation function. The value of A denotes our willingness to learn

from experience, and has nothing to do with subjective feelings. For

A = 0, our willingness to learn from experience is maximum; the

corresponding prior distribution is a two-point distribution with half

of its mass on the point p = 1. For 0 < A < 2, the density of the prior

distribution is convex. For A = 2, the prior distribution is rectangular,

and for A > 2, the density of the prior distribution is concave.

According to Carnap, any choice of A is permitted. The choice between

a convex and a concave prior distribution is not dependent upon

intuitive knowledge about the "true" value of p, but depends only upon

our open-mindedness to experience obtained as observed relative

frequencies.

We are now in the position where four different interpretations

of the prior distribution are possible. These four interpretations

are:

(a) the prior distribution reflects exact knowledge about a "true"

distribution of p (an objective interpretation);

(b) the prior distribution reflects degrees of belief that a

person has about the "true" value of p (mixed approach);

(c) the prior distribution is a mathematical idealization of

personal degrees of belief given to relative frequencies in long

sequences of events (subjective interpretation);

(d) the prior distribution is derived from some explicit learning

process (constructive interpretation).

In Section 4 we shall consider the implications of the choice

of prior distributions that are not beta-distributed for the learning

process. Section 5 will be devoted to the special case of Carnap's

confirmation function in which A = 0 is chosen.

In Section 6 we shall compare the above mentioned interpretations,

and arrive at some final conclusions.
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4. CONFIRMATION FUNCTIONS WITH VARIABLE A

Suppose that, on personalistic grounds, a prior distribution is

chosen the density (or the mass function) of which is symmetric around

p = 3, whereas the prior is not beta-distributed. We may always write

1
lc+1(1 - p)

n-k
p dF k + X(k, n).1

p(ViTti-
0
1

/ Pk(1 - P)
n-k

dF
0

n + A(k, n)

from which X(k, n) may be solved as a function of k and n. The

prior distribution defines a learning function that is similar to

the confirmation function of Carnap, the only difference being

that A is no longer a constant. We may ask ourselves to what extent

this learninf; function obeys the underlying ideas of Carnap's

learning process. The symmetry between H and T is maintained in the

prior distribution and will therefore present no problems. The

physical independence of experiments is part of the probability

model used and is found in the learning model as well. Difficulties

are met only in the gradual effect of learning, as presupposed by

Carnap. This gradual learning effect can be made explicit in the

following four requirements:

k.(1) As Carnap pointed out, the requirements --< c(H, < or,n =
< c(H, < Ishould be fulfilled. This boiled down to then n

requirement 0 < A <

Not mentioned by Carnap, but implicitly fulfilled in Carnap's

confirmation function with A a positive constant, are:
i k

(2a) If -- < < with In > n, then c(H, 4 5. c(H,m - n
i k 1 , k(2b) If --> --> 2 with m n, then c(H, --) c(H, 

.
m n

It can easily be verified that the requirements (2a) and (2b) are

fulfilled in the case where A is constant. Taking the first one, we

have to prove that i A.3 < k A. , and this can be rewritten as the
M le A 4 =1 n A A

inequality - - L= - 4411 O. Under the afore mentioned

conditions, this inequality is evidently true. Requirement 2 reflects

the monotony in the learning process. If the observed relative frequency
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is equal to with in > n, then the value of c(H, i) should be
k%

closer to the observed value --than c(H, If <11-11 < i or
i k 

n m = n =
--> > 2, this property should hold good a fortiori.
m = n =

i k
If --< --< 2 and n > in, there is no conclusion possible about

the ordering of the degrees of confirmation: The learning effect for

n observations is stronger than the learning effect for in observations,
i%

so c(H, could have a value that is rather close to i while

c(H,') could have a value rather close to -- this will happen forn'

instance if n is large, in is relatively small and A O. Some "natural"

requirements can be defined only for special cases:

k
For p this inequality is a special case of requirement 2.

n =

For l< it is natural to assume that one extra observation of II

contributes positively to the confirmation that H will occur the

next time. It can easily be verified that Carnap's confirmation

function with (positive) constant A, satisfies this requirement.
k

if
n =

c(H 
k + 1 < c(H --) if

> 2k 1
n + 2 = n n =

This requirement describes the influence of two extra observations,

once H and once T. Compare two situations, the first with the

oriqinally constructed confirmation function, the second in which

a new confirmation function is constructed on the basis of .a priori

observation of 
H2T1. 

This new confirmation function can be defined as

(3) c(H, k 14) > c(H, 1).
n +

c
1 k+1
 

n• + 2
= c(H, 

k + 1
). It has all the properties of a confirmation

function, but clearly the a priori information will cause the weight

of the observed relative frquency to be less than in the case c(H,

Our open-mindedness to observations has decreased, because the

insufficient reasoning is affirmed by H2T1. Again, this requirement

is implicitly fulfilled by Carnap's confirmation function with constant

(nonnegative) A.
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Let us now return to a learning process that is defined by some

prior distribution F(p), symmetric around p = It is not generally

true that such a prior distribution generates a learning process

that fulfills the afore mentioned requirements. Take, as an example,

a prior distribution pf which the density is given by

Then we find

f(p) = 3 12p(1 -

1 2
f P - P)

2

0 
12p(1 P) )dp

1
p(1 p)2(3 12p(1 - p))dp

0

p
,and, apparently, this value is not in the interval [-a-, - 
1
, as

requirement 1 demands.

On • the other hand, it can be shown that there are prior

distributions that fulfill the above mentioned requirements, although

they are not beta-distributed.

The following conclusions can now be drawn: (a) any prior

distribution generates a learning process such that
k + 11

c(H, ni 4, 1j> c(H, 7,-). This property is in agreement with the

intuitively appalling idea that the extra observation of H leads

to an increase of the degree of confirmation that H will occur at

a new trial; (b) Carnap's confirmation function with constant value

of A is not the only possible confirmation function that fulfills

the four requirements; (c) if the four requirements are thought 

to be relevant, then any prior distribution that is not beta-- -

distributed, should be checked on these four points.

In Section 6 we shall meet examples where the requirements are
not relevant, because the learning process is defined on the basis

of other criteria.
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5. THE NON-INFORMATIVE PRIOR

We now return to Carnap's confirmation function with constant A.

The value of A reflects the relative weight given to the observed

relative frequency 1-1, if compared with the degree of confirmation

given to the occurrence of the outcome H if no experience is available.

For large A, one is willing to change the value only if n is large

and if differs considerably from i. For small A, one is open-minded

in regard to evidence even if this would imply large changes in the

degree of confirmation that H occurs at the next trial after 1, 2, 3,

observations respectively. According to Carnap, there is no reason to

prefer one value of A above another. It should be kept in mind, however,

that in the confirmation function c(H, e) the experience e contains all

relevant information available. This information is defined in observed

relative frequencies It is quite possible that other information is

available in the form of knowledge about the structure of the experiment.

If the experiment consists of coin tosses, then we shall adhere to a

degree of confirmation of about 3, and we shall deviate from it only

after an exhaustive amount of observations. In other words, we shall

choose a large value for A. The choice of A can be used for dealing with

this kind of knowledge. At first sight, one is inclined to think that

such a use of the A parameter is inconsistent with the underlying

assumptions of Carnap's learning model: all relevant experience 'should

be contained in e, and the choice of A should only reflect our attitude

towards observed relative frequencies in general, independent of the

specific experiment we are dealing with. It is possible, however, to define

a learning process w#ere A has such a double interpretation, even within

Carnap's set of assumptions. Consider for that purpose a pure Carnapian

confirmation function

c(H 
k +, =   X  •3
n +

Now suppose that at the start of the experiment, 2n0 trials have already

been made, with no times the observed outcome H. After n observations in

the new sequence of trials, we have



k + n
0 

c(H,
n + 2n

k + n0

n + 2n +

8

We may consider this as a new confirmation function, defined on the basis

of a priori knowledge that consists of an observed relative frequency

n0 /2n0. 
The confirmation function on basis of this a priori knowledge can

be written as

c'(H, = k + 
n. n + X'

where A' = 2n
0 
+ A. Note that the value of A increases, as a result of

the a priori knowledge.

As we have already seen, there is a one-to-one correspondence between

the confirmation function c(H, 1) and the prior distribution

f(p) cc p3
A-1

(1 - p)
)t-1
. This prior distribution is dependent only on the

learning parameter A; it does not contain a priori knowledge. In the same

way, the new learning function c'(H, generates a prior distribution

VW p (1 - p) in which the a priori information is contained,

together with the originally defined learning process. The problem that

rises is the following: If somebody constructs a (subjective) prior

distribution, he defines implicitly both a priori knowledge and a learning

process. The person should ascertain himself that his feelings are

consistent as to both elements. This problem is touched upon by Raiffa

and Schlaifer, when they state (9, page 61):

... it will usually be well to check subjective prior betting
odds against hypothetical sample outcomes before beginning the
actual analysis of the decision problem; and this in turn
suggests that in some situations it may actually be better to
reverse the procedure, making the intitial fit of the prior
distribution agree with attitudes posterior to some hypothetical
samples and then checking by looking at the implied betting odds."

In our terminology, subjective prior distributions should be checked

for the learning process that is generated, and sometimes it is even

better to define the prior distribution on the basis of the learning process.

Raiffa and Schlaifer deal with learning effect in a slightly different way:

they are mainly interested in the set of posterior distributions f(p,

rather than the conditional probabili,ties c(H, 1-5-). This difference is not

essential, however.



19

Up till now, we have dealt only with prior information of the form

of relative frequencies 
n0 /2n0' 

symmetric as to the outcomes H and T.

One could easily generalize this to frequencies k0/n0. For that purpose,

we introduce the notation m(H) for the degree of confirmation that H -

occurs at a new trial if no experience is available. Symmetry argum2nts

lead Carnap to the assumption m(H) = m(T) = Now suppose that a

confirmation function is constructed on the basis of a priori knowledge

of an observed relative frequency 
k0 

/n
0* 

The new confirmation function

is related to the pure Carnapian learning function by

c'(H, =
k + ko k + k + X.

H, 
n + no

) = n x
"0

Writing mll)for c H, —a), we can easily see that e f(H, -- can be writtenno
as

c'(H 
k k + X lm f(H)

, = n + X'

with X' = n
0 
+ A. The prior distribution corresponding to the new

confirmation function is

V(P) PX'mf(H)-1(1 - p)

Again, the prior distribution is beta distributed. For k

is not symmetric.

T

The formal definition of the confirmation function c' (H,

does not violate the underlying assumptions of Carnap fs theory. It

is derived directly from the "pure" confirmation function c(H,). It

is important in that it paves the way to a generalization of Carnap's

theory. One of the serious drawbacks of that theory is the restriction

that any statement should be in terms of frequencies. There is, however,

a considerable amount of knowledge about phenomena that is not in the

form of frequencies. If one is able to transform that kind of knowledge

into validations of m'(H) and the relative weight given to this value

in comparison to observed relative frequencies (the validation of X'),
k%then a confirmation function c t(H, --) can be constructed in an analogous

way. The validation may be subjective, and in that case the confirmation

function has subjective elements. The only difference with the

subjectivistic model is the learning parameter X that is implicitly
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present in both A' and m f(H). - If someone constructs a prior distribution

.f"(p),.is he then evaluating his learning process or his uncertainty

about some "true" value of p?• Or are these two things essentially

the same? These questions have yet to be answered.

The four requirements for a learning process, as -given in Section 4,

were related to symmetric situations as to the outcomes H and T. TLis

symmetry is disturbed in the new confirmation function c f(H, --). It can.
• n

'easily be verified that analogous requirements are fulfilled for

.constant X':
k k(1a) The value of c f (11, --) is always between m i(H) and -1. 

1 k
(2a) If -- < -- < m f(H) with in > n, then c' (H, 2:-) < c f(H, 21)m = n = = m = n

(3a) c

(4a) c

'(H,
t k +  c,(H,

+ 1 =
u k + rt c,(H, k

) if l< m'(H r and m f(ll) < < 1
n = = =

where k + rt is an integer.

The arguments for these restrictions are the same as have been

mentioned in Section 4.

Now that we have seen that the parameter X' contains both the

original learning parameter X and the relative weight n
0 
that is given

to the a priori information m'(H), we might ask ourselves whether it

is possible to limit the range of acceptable A values. Such A values

can be used for the construction of "pure" confirmation functions

c(H,-) where no prior information is available. The corresponding prior

distributions f(p) could be called non-informative priors.

1
.Carnap favours the confirmation function c* that gives a priori weigbt.
to all so-called "structure-descriptions" of samples .with .a fixed
number of trials. A structure-description is defined by the relative
frequency•with which H occurs independent of the individual outcomes.
The function c* is characterized by the corresponding function m.* with

,.m.*(H
2
H ) = 111*(H

2
T
1 
or T

2
H
1
) = m*(T

2 T1 
1 

) =
• 3

m*(H
3
H
2
H
1
) = m*(H

3 
H
2 
T or H3

L2 
H
1 
or T

3 
H
2 
H
1 
)

= m*(H3 T2 
T or T

3 
H
2 
T
I 
or T3T

2
H
1
) =

= m*(T
3
T
2
TO = 4 etc.

If r
n denotes the relative frequency in a sample of n trials, we have

111*(r = 0) = m*(r =
1
-) = ... = m* (r = ]a) = 21-

n n n n n n
nrd for n tending to infinity, we obtain the rectangular prior. If
there are only two possible outcomes for each trial, the function
is characterized by X* = 2.
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Carnap believes that all positive values of X are acceptable.

Subjectivists often use a rectangular distribution for the non-

informative prior, and this corresponds to A = 2.
1 
We believe that

A = 0 is the only acceptable choice.

Let us first consider the case that X = 2 is chosen for the non-

informative prior. The reason for this choice is the principle of

insufficient reasoning, applied to the set of possible p-values. It is

oftern argued that the principle cannot be used for a case like this:

instead of p, we could use some non-linear transformation of p as parameter

in the binomial distribution, and if the principle of insufficient reasoning

is applied to this new parameter, a different result will be obtained. On

the other hand, one might argue that p is not just a parameter, but a

"natural" quantity that can be interpreted as a relative frequency in a

very long (infinite) sequence of observations.

One might well apply the principle of insufficient reasoning to

some interpretable quantity, where uninterpretable non-linear

transformations are thought to be irrelevant. We consider this defense to

be rather doubtful: what is "interpretable"? Taking the learning process into

consideration, it is hardly necessary to discuss this point. There is no

apparent reason for preferring X = 2 above any other value of X close to

it. This leaves us with only two possibilities: Either all values of A

are acceptable, or one of the extreme values of X should be chosen.

The "pure" confirmation function can be written as c(H, =  
n + X

For X = co, the degree of confirmation is independent of any observations.,

This indeed would be a very unfortunate learning function. For X = 0, the

degree of confirmation is completely determined by the observed relative

frequency. In the latter case, we are completely open-minded as to new

data. For any 0 < X < co, we take into consideration the observed relative

frequency, but at the same time we adhere to the value to a certain extent.

In a non-informative situation, the value is derived from the logical

symmetry between the two possible outcomes. It reflects our lack of knowledge

and it gives no factual information. But then, it does not make sense to

define the degree of confirmation after the observation of as a convex

combination of the factual information -rTand the reflection of ignorance

Ignorance should have no weight in comparison with some well-defined amount

of knowledge. This line of reasoning suggests that X = 0 should be chosen.
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The same kind of argument can also be expressed as follows: in

a non-informative situation there is no knowledge available.But

then, evidently, we should be as maximum open-minded as possible 

as to data, this being the only kind of information that is

available. The choice A > 0 is feasible, but not plausible in a

context of a non-informative situation.

The choice A = 0 corresponds to a prior distribution with half

of its mass on the point p = 0 and half of its mass on p = 1. This

is why Raiffa and Schlaifer reject the choice A = 0; they argue as

follows (9, page 65):

“ /k...) we find that the beta distribution does not approach
a proper limiting distribution: namely a two-point distribution
with a mass of m' on p = 1 and a mass (1 - m') on p = O. Now
this limiting distribution cannot in any sense be considered
"vague". On the contrary, it is completely prejudicial in the
sense that no amount of sample information can alter it to
place any probability whatever on the entire open interval
[0, 1]. A single sample success will annhilate the mass at
p = 0, and a single failure will annihilate the mass at p = 1;
but a sample containing both successes and failures will give
the meaningless result 0/0 as the posterior density at all p
in [0, 1] and also at the extreme values 0 and 1 themselves."

The argument is proceeded by the consideration of a beta

distribution with A close to O. Such a distribution concentrates

nearly all the probability mass close to the points p = 0 and p = 1,

and

"it requires a very great deal of information in the ordinary
sense of the word to persuade a reasonable man to act in
accordance with such a distribution even if the probability
assigned to the interval is not strictly O. Long experience
with a particular production process or with very similar
processes may persuade such a man to bet at long odds that
the fraction defective on the next run will be very close to
0 or very close to 1, but he is not likely to be willing to
place such bets if he is completely unfamiliar with the process."

1
In our case, m' =
quotations.

The underlinings are part of the
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The first argument is inappropriate: if we define the posterior

distribution with the aid of a prior distribution then the undefined

expression 0/0 could be given a meaning by taking the limit A Q

in the prior distribution as well as in the posterior distribution.

If the learning process is defined explicitly as in the Carnap

situation there will be no problems at all!

The second remark deserves more attention. The example chosen by

Raiffa and Schlaifer is not a very fortunate one. Nearly all production

processes will generate good products and defective ones, so it is known

beforehand that one is dealing with some stochastic phenomenon. The

situation cannot be called non-informative. A real non-informative

situation is the one for which no analogous situations exist. This

implies that we do not know whether a deterministic model or a

stochastic model is appropriate. It is not at all unrealistic to start

with the idea that the observed phenomenon is deterministic. Such an

attitude implies a prior distribution with its probability mass on its

point p = 0 and p = 1. The stochastic model seems appropriate only after
the observations H and T; the probability mass of the posterior

distribution will be spread over the complete interval 0 < p < 1. The
argument made by Raiffa and Schlaifer, that one should be very convinced,

before one puts all probability mass on the points p = 0 and p = 1, is

misleading.

It is not necessary to have much information pointing to a value of
p close to either 0 or 1, in order to use a prior distribution with

A close to O. On the other hand, if such information is available, it is
a sufficient reason to use this prior distribution. If this prior

distribution is objectively determined, the pair of observations (H, T)
will be (almost) impossible to obtain. The posterior distribution after
this pair of observations is then irrelevant.

Raiffa and Schlaifer are right, when they state that long experience
with a particular production process may persuade a man to bet on "p is
either 0 or 1"; it is not true, however, that the man is not likely to
bet in this same way if he is completely unfamiliar with the phenomenon
(better than: production process) in question.

It appears that there is an essential difference between the situation

where the prior distribution is objectively determined, and the situation
where the prior distribution is derived from the learning process. In the

next section we shall discuss this matter in more detail.
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6. THE INTERPRETATION OF PRIOR DISTRIBUTIONS

Up till now, we have carefully avoided drawing conclusions as

to the interpretation of prior distributions. On the one hand, if

the learning process is defined by means of a confirmation function,

the prior distribution can be considered as a direct consequence of

this learning process; f(p) describes betting odds for compounded bets

on relative frequencies for large numbers of (future) observations; the

bets are called compounded, because the hypothetical outcomes of the

first trials influence the confirmation about later outcomes in a way

that is described by the learning process. On the other hand, there

could be some collective or random devices analogous with the particular

device that is used for the (future) sequence of trials; f(p) can then

be interpreted as a distribution on "true" p-values; it describes betting

odds on relative frequencies for large numbers of future observations;

such an objective prior generates a learning process. If no a priori 

information is available, then we know nothing of collectives and we

are forced to define a learning process. If some a priori knowledge

is available, it could influence the learning process directly, but

it could also be related to some collective and we might then choose

the determination of a prior distribution as the best way of

incorporating this kind of information in the learning model.

In the following examples, we describe the way in which we

personally would like to express the a priori knowledge so as to let

it fit into the model.

(1) Assume that some newly developed chemical liquid is put into

a goldfish bowl. The question is whether or not the goldfish will survive.

In this example it is assumed that no experience is available with

analogous chemical liquids, and that the reactions of fish to this

liquid cannot be derived from other properties of the liquid that

have been studied before. Under such circumstances, it is impossible

to define a relevant collective to which this liquid belongs. We are

in a typical non-infoxmative learning situation. Take A = 0, and the

corresponding prior distribution is the one with half its probability

on p = 0 and half of its mass on p = 1, in other words, it is assumed

that all fish will either survive or die.
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(2) In a psychological institute, a person is asked to determine

degrees of belief on outcomes H2 after observation of a sequence of

outcomes. He is told that the outcomes are generated by a binomial

random process. The "true" value of p is not known to him. Evidently,

this person has no idea about a collective of p-values, part of which

is the specific "true" p-value. He therefore has to construct a learning

function. He will not take X = 0, because he has the information that

the real process is a random one. To be open-minded in regard to data

(the only kind of knowledge that he will get), he will choose a low

value of X, for instance X = 1. The choice X = 2 is equally possible

but by no means necessary. As a matter of fact, people seem to be

inclined to choose very low values of X, even negative ones. As soon

as X < 22 is chosen, one calls the person "conservative". The behaviour

of people is compared with the behaviour that would correspond to a

rectangular prior distribution. If people are more open-minded to data

than that, it is thought that they are conservative as to the information

they have. This phenomenon of conservatism is often Observed, even in

situations where objective prior distributions are given to the subjects.

In the example given here, there is no objective prior, and people are

fully justified in being more open-minded to data than the rectangular

prior would admit. The phenomenon of conservatism should be measured

against the non-informative prior corresponding to X = 0, instead of

the wrongly defined so-called "non-informative prior", corresponding

to A = 2. The results of Edwards [3] seem to point at conservatism

even when compared to X = 0, although less dramatically than described

by Edwards, who has teken the rectangular prior as the non-informative

one.

(3) A symmetric disk, the surface of which is 2/3 red and 1/3

green, is spun around. It will come to rest on one point of its edge.

If the outcomes red and green are notated by R and G respectively,

it seems to be sensible to assert m(R) = 2/3 and m(G) = 1/3. It seems

to be very artificial to assume a collective of disks with different

"true" p-values, to which the specific disk belongs. Instead, we shall

the learning process. The rather strong evidence in the mechanical sense
will lead us to a rather high value of X. The confirmation function
has to be tested for the influence of several hypothetically observed

relative frequencies, for instance c(C, G).2 c(G, c(G3. , 5)2 • • X
should be chosen such that these values are acceptable to us.

If the disk is not symmetric, we could still believe



that 111(G) = 1/3. The mechanics of the experiment are less clear,

and a lower value of A will be chosen.

(4) The experiment consists of coin tosses, without previous

experience with the specific coin involved. Evidently, one may

choose m(H) = 3. Now it is possible to continue in the same way
as described under (3). Symmetry reasons could lead to the choice of

a (high) value of A. In this case, however, it also seems possible to re-

present our a priori knowledge about coins in general in the form of a

prior distribution on the collective of ooins with different "true"

p-values. A man who hap much experience with coin-tossing experiments,

with a great number of different coins, will know the proportion of

coins of which the relative frequency has stabilized on p = r

for different values of r. In other words, he knows the distribution

f(P), When he uses this distribution as the prior distribution

he is forced into a learning process that is not necessarily the

same learning process as the one that he has derived from the

mechanical properties of the specific coin in question.

Which one of the two learning processes should be preferred?

First, the person should check as to whether in his opinion the

coins in the total set are comparable with the specific coin that is

used for the coming sequence of trials. If Ls, fs(p), Lc and fc(p)

denote the learning process and prior distribution based upon the

single coin and based upon the collective of coins respectively,

then he might check as to whether he would choose Ls for all coins

in the collective. If the answer is in the negative due to the fact

that he feels that there is a difference between a quarter and a dime

for instance, then the collective should be restricted to comparable

coins. Under the assumption that the collective consists of comparable

coins, it remains possible that L and L are different. Now if L

is used to determine betting quotients on relative frequencies in very

long sequences of observations for all coins in the collective, then

these betting quotients would be obtained from fs(p), and experience

has taught that f (p) gives better results. Now that we know

it is better to adapt the learning process to this kind of knowledge.

Therefore, Lc seems to be a better choice than Ls. The objectively

determined prior is preferred to the subjective evaluation of the

mechanics of the experiment with a single coin.
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It is quite possible that the prior distribution fc(p) violates

some of the requirements for learning processes, as developed in

Section 5. In the case that fc(p) is objectively determined, this

appears to be quite acceptable. Let us compare the two learning

processes L
s 

and L. For L8, we had a priori

m(H) = i if H and T are symmetric. After the

frequency --, there is reason to deviate from

knowledge m(11)

observation of

m(11); there is

no reason to deviate further than this value --. For L , we have a

, where

a relative

, however,

ipriori knowledge of fc(p); the specific coin s considered as one of

the many coins with different "true" p-values. The observation of 1

successes makes us reconsider the probability that the specific coin

has a "true" probability p, i.e., we may calculate fc(ptiT). This

might result in a probability (rather than a degree of confirmation)

c(H, 1) that is not in the interval [, 1], or [1, 11].The first

requirement can be violated, as has been shown in Section 4, and,

the same way, other requirements can also be violated.

(5) Now take the same example as under (4). In this case the

person has no objective knowledge about the collective of coins. He

might still construct the collective as a hypothetical device. Very

vague knowledge about other coins might lead him to the construction

of a prior distribution fc(p). On the other hand, the learning process

L
s 
generates a prior distribution f5 (p). Formally, both prior

distributions are treated in the same way. The conflict between those

two prior distributions can be solved only by trying to find a prior

distribution that fits both purposes. If, for instance, one prefers

a learning process Ls where one is completely open-minded as to new

data, so A = 0, then one is forced to bet upon relative frequencies

in large sequences of observations by giving equal chances to the

outcomes "always H" and "always T". Other possibilities are excluded.

Now this is a kind of a bet that is unacceptable in view of our

experience with coins in general. On the other hand, the knowledge

about the collective is so vague, that we shall not use a prior

distribution f
c
(p) that violates the requirements of a learning process.

Under these vague circumstances both Ls 
and f (p) can easily be

changed: our intuition lacks precise to such a degree that changes to

a rather wide extent are acceptable.

in
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We now summarize _our findings.

- Both Carnap's confirmation function and the subjective approach

based upon some prior distribution f(p) describe the way in which

we learn from experience. They must not be compared with the

frequentistic probability theory, but with the inference rules

used in the application of the frequentistic theory to finite

problems.

- Formally, Carnap's theory can easily be extended such that

subjective a priori knowledge can be incorporated in the model.

As a mathematical extension, a prior distribution f5(p) can then

be introduced, where p denotes the relative frequency of successes

in large (future) sequences of observations, and where lAfs(p)

denotes degrees of confirmation for intervals A of possible p-values.

These degrees of confirmation can be considered as compounded betting

stakes, where the (future) first n outcomes will give a learning

effect for later outcomes. This makes sense even in the situation

where no collective of analogous experiments with different "true"

p-values can be imagined.

- If a collective with different "true" p-values exists, one may

construct a prior distribution f (p), and use this distribution for

bettings on relative frequencies in long runs of trials with a

device with some specific p-value. In that case, a learning process

is forced upon us, and the requirements for a learning process as

derived for the extended Carnap model can be violated.

- The non-informative prior cannot be derived from such a collective,

because, by definition, we have no information about the collective.

Therefore, the non-informative prior is defined on the basis of the

learning process, and we argue that maximum open-mindedness as to

data is the best choice to be made. The rectangular prior distribution

is not non-informative, and the introduction of it is due to the

(wrong) interpretation of fc(p), instead of the correct interpretation

of f (p).
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- The assumption that we can learn from observed relative frequencies,

independent of the order of the observations, implies that we believe

in something like stabilizing relative frequencies. It would not make

sense to use the observed relative frequency in the first 100 observations

for a degree of belief for the 10,000st outcome if we did not think that

the relative frequencies would stabilize. It is not relevant, however,

whether or not the relative frequencies stabilize in reality. We act in

accordance with our best judgment, but nevertheless, in reality, our

judgment may be wrong. It is impossible to find out what happens in

infinite long sequences of trials, so we can never prove that our judgment

is wrong. We could, however, find some indications for it in a long

though finite sequence. Such indications, however, would involve ordering

numbers of the trials. Our a priori assumption that the sequence of events

is symmetric excludes the possibility of reacting upon indications of

this kind. In some way or other, the subjective probability model should

be extended with testing procedures that permit us to discard the model

if the underlying assumptions appear to be unrealistic.

- The pure logical approach of Carnap gives rise to some problems. First,

we must define our experiment carefully. If H denotes "having a tail",

the relative frequency will decrease according as the objects being

tested move from animals to animals including human beings, or to any

object whatever. Furthermore, we must define the attribute that is

tested. These two definitions require at least some a priori knowledge.

But then, it is open to question as to whether the concept of a non-

informative situation makes sense. We have already seen that the example

of a non-informative situation as given in Section 6, was very artificial.

This objection favours the extension of Carnapts model to a similar

learning model into which subjective ideas can be fitted. The non-

informative situation should be considered as a mathematical idealization,

that does not exist in reality, but that is approximated quite closely

for some experiments. In the same way, one could consider stabilizing

relative frequencies in infinitely long sequences of observations as a

mathematical idealization that does not exist in reality, but that can

be approximated. The non-informative situation and the "true" value of

p are limiting points on a scale of observed relative frequencies,

where only the intermediate points are relevant for realistic problems.
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