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1. INTRODUCTION AND SUMMARY

General theories or methods cannot often be used

in real-life problems, because the assumptions made

for obtaining elegant results are unrealistic in specific

problems. General theories and methods are not as

generally applicable as the word suggests.

This paper deals with a number of problems

encountered in the application of the general linear model

(1.1) y = xp + u

to special cases. In (1.1) y denotes a vector of n values

assumed by the dependent variable, X is a matrix of order-

n x k of non-stochastic values assumed by the explanatory

variables, p is a vector of k unknown parameters, and u
is a vector of unknown random variables (the disturbances)

1
The author wishes to thank Prof.Dr. W.H.Somermeyer and Prof.
Dr. A.P.J. Abrahamse for their valuable help in preparing
this paper. The. DaDer is presented at the European Meeting
of the Econometric Society, Budapest, September 1972.



The first 7)rbblem reads as f0J..1pws. The vector

usually supposed to be normally .distributed. This

assu'mption implies that the. vector y in (1,1) is also.

normally distributed. Sometimes, however, there are

prio±.i reasons to suppose that y is not normally

distributed : for example, if y can assume inteer

only. If .the normality assumption is dropped, many

properties, derived for the cape Where u is normally

distributed, are no longer valid

Second, assuming that the dependent variable is.

Poisson-distributed the small number of classes becomes

an acute pro.blem. For instance, if the Poisson parameter

is 0.1, the probability .of 2 or more "successes" is only.

0.0047, hence, in practice, the values of yi will be

confined to 0 or 1. Even if X = 3.0, the probability of

6 or more "'successes" is. only 0.0119; this means that,

in fact, yi is restricted to the values 0,1, .,., 7.

Statistical studies have shown that the relative number

of motorists involved in 2 or more, accidents in a year .is

generally very small. In such cases the number of classes

to be distinguished issmall; consequently 'it is difficult

to decide whether a hypothesis about the linear dependence

of some variables should be accepted or. rejected,

111.4ral one generally assumes that the observed values.

of yi relate to the same reference set. This assumption

does not always hold good in specific problems. For

example, some observed values relate to an entire year,

while others relate to a part of. a year only. If one

wishes to make use of all available information,

including data related to only a part of a year, the

ques7tion arises as to how. it should be incorporated into•

the analysis of the prcblem.

The t)rololems considered in this paper presented theM-

PeTves durin the examination of the number of accident's.
in ihich motorist is involved in a given time period.

and .the resulting amount of .damage, the efebts of crain

fnctors. on number of accidents and on the amount of

arc studied simultaneously. One often asFumes that

the nurnber of accidents in which a motorist is involvfld

in• nom,- time period is Poisson-distributed, with the
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•parameter X very small,

viz. between 0.1 to 0.5. The hypothesis is confirmed

by a sizeable amount of information concerning

car accidents. The usual regression procedure applied to

such a number of observations is rather time-consuming,

in particular, if an iterative estimation procedure is

used.

Therefore, we try to apply a method of grouping

observations. Prais and Aitchison (1954) "give a rigorous

treatment of certain problems that arise in applying

regression techniques to grouped observations" (cf. p. 1).

Because of the different structure of our specific

problem, our approach deviates somewhat from the procedure

adopted by Prais and Aitchison. In Section 2 we construct

a linear model, based on grouped observations, in which

the dependent variable is Poisson-distributed. In Section

3 we apply this model to observations related to number

of accidents and amount of damage. In Section 4 we
present empirical applications of the models set out in

Section 3. Finally, we give some concluding remarks in
Section 5.

2. THE MODEL

Consider a sample of n observations on variables

(Yi'xi2, with theith observation of a 

random variable Y
i' denoting the number of events

occurring in an interval (O,N) and x. x.
l the12' "" k

corresponding values of the (assumedly) non-stochastic ex-
planatory variables. The interval (0,N1) may be specified as a
time Period, a linear measure, an area, a volume, etcetera;
for the sake of simplicity, however, we assume in thissectionthattheirrtervalisatimeperio

dofNirnonths'
all of which are supposed to be of eclual length. In Section
3 we also consider the interval as a distance.

We define the random variable 2; as the number of
events occurring in an interval of one month, with Z



Poisson-distributed with parameter Xi. The variable Yi
may then be considered as being the sum of N

i 
Z-variables.

If we assume that the variables Z1, 1=1, ..., Ni. are
independently distributed, Yi is Poisson-distributed
with parameter NiXi.

We assume that . is some function of the variables
X2, ..., X. In general, this will.be a non-linear function,
but it can often be approximated by a linear one within
a set Q of values of x2, ..., X. If Xi is a linear

function (or an approximation thereof) of the variables
X2, xk for (x2' '"' 

x
k 
)62 one gets

( 2 . 1
• + 

p,x.,a.K 
for (x12, 

**" xi )62

(i = 1, see, n)

Consequently, the following regression model is obtained:

(2.2) yi = N1(31 + p2xi2 + + pkxik) + ui

for (x12 • • • 91 xik cg2 (i = 1, 001,

in which y1 relates to a time period of Ni months, and
ui is the disturbance term with expectation equal to
zero and variance equal to Ni(pi + E 

1
p.x. um.). We assume

0
that the disturbances are stochastically independent.

Let

=

( 2 . 3

N

411110 OMNI

.0111

•

1

sm.

,U=

r

•

,and A=

On. 111,

=

Pk

Pl+
j2
2 Pjxl
=

0 •
f3

• • •

•

WM,

war,

= diagIXO



Using 2.3) we can write 2.2) as

(2.4) y = Nxp + u

with E(u) = 0 and E(uu') = NA.

The generalized least-squares (G.L.S.) estimator
of p is:

-1 -1 -1(2.5) = (X NA X) X'A y

According to the well-known Gauss-Markov theorem, the
G.L.S. estimator is a "best" estimator, in the sense
that it minimizes the mathematical expectation of any

positive semi-definite quadratic form in the sampling
errors, within the class of linear unbiased estimators.
The variance-covariance matrix NA is unknown, however,
as it depends on the vector of unknown parameters p.
Hence, the Gauss-Markov theorem cannot be applied here.
Since p cannot be determined directly, we have to apply
an iterative estimation procedure.

Defining 11 = y N4, we can estimate the i
th

2 diagonal element of NA, d., in the nth cycle of the
.2iteration by means of u. obtained in the (n-1)

th
 cycle.

Independent of each other, C.R. Rao (1970) and V. Chew
(1970) derived similar estimators for a diagonal variance-
covariance matrix, named Minimum Norm Quadratic Unbiase6 Esti-
mation (MINQUE) by Rao. This method does not, however, preclude
negative variance estimates. In such cases Chew suggests
that "negative estimates are replaced by zeroes or else
quadratic procedures are used in the least-squares
solution to constrain the estimates to be non-negative"
(p. 175). Chew does not discuss the consequences of
these two solutions of the problem of possibly negatve
estimates. Moreover, he does not show in which cases his
estimation procedure leads to negative estimates.
Applying this method to six sets of values of y, N, and
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2
X, we got negative estimates of one or more di in four

cases. Therefore, this method seems to be unsuitable

for solving our problems.

We prefer to apply the estimation procedure described

by Prais and Aitchison (1954 p. 18) in order to estimate

p and the variance-covariance matrix. For the special
case where y is Poisson-distributed, A and p can well be
estimated iteratively by means of a method described

by Prais (1953). Adopting the unit matrix as- the estimate

of A in the first cycle of the iteration, the estimators
•

of A and p in the rth cycle are specified by

A

(2.6) AA = diag 043(1,1)1(r)

and

--1
(2.7) (r)f3 = ( 

(X'NX-1
) 
X)-1 X'A(r)y 

r 

respectively. The estimation (2.7) is not unbiased, and

it variRncP-covariance matrix is unknown (cf., e.g.

Weber (1971)). Jorgenson states p(r) is best asymptotically

normal, and proves that the iterative procedure converges,A
provided that A(r) and OPNA-1X)-1 are positive definite

per all r.

Some remarks must be made with respect to the above-

mentioned estimation procedure.

First, the Poisson variable can assume non-negative

(integer) values only. If we estimate p according to
(2.7), the possibility of negative values of the elements

A

of Nxp is not ruled out. In order to exclude negative
values we must estimate p subject to the constraint
NX0 > 0 for all (x2, ..., xk)62. The linear regression
problem then becomes a quadratic programming problem.

This implies an increase in computation time.

Second, if X is small, y will assume a few values only.

In such a case, the G.L.S. estimation procedure is of

little or no use. Instead we could adopt another esti-



mation method, a method, for instance, such as Wald's
device of fitting straight lines to sub-sets of variables

ranked according to the value of one or more of the

explanatory variables. However, Wald's method too does not
prevent the possibility of elements of Nxp_ assuming

negative values. Alternatively, we could apply estimation

methods based on discriminant analysis, probit analysis

or logit analysis. An objection against the application

of these models is that the dependent variable is measured

on a nominal scale, while the dependent variable in

model (2.4) is measured on the ratio scale. Therefore,
applying such methods would mean wasting information. Moreover,

Wald's method and the methods based on discriminant

analysis, probit analysis or logit analysis do not take

into account that the observed values of yi may relate

to different reference sets.

Third, if the number of observations is large, an .

iterative estimation procedure is time-consuming.

In this paper we tackle the above-mentioned difficulties
by grouping the observations in a number of groups; this
approach can be seen as an extension of model (2.4).
Methods of grouping are described, for instance, by Prais and
Aitchison (1954), and Cramer (1964). We classify the sample
elements on the basis of the values of the explanatory
variables. For the sake of simplicity of presentation
we assume a single explanatory variable only. Hence the
regression model (2.2) is reduced to:

(2.8) yi =Ni(pi + p2xi) + ui (i = 1, •••,

for xi in some interval (x',x").
Suppose that the sample of observations can be divided
into G homogeneous groups S (g . 1, G) according

to the values of xi. Summation of (2.8) over all icS
yields:

ui(2.9) E Yi = E Ni(P P2x1 E
icS icS icS



Let N* = E N.
• iES 

1

Y • = E yi
Sg

51 L.
• N* iES

g g

and u* = E
• ieSul

As a result,

= the total number of months

corresponding to group S •

= the total number of events

occurring within group Sg.
= the weighted mean of the values

of the explanatory variable in

group Sg,

hence E(u)

and var(u*) = N*0 413 )g 1 2 g

(2.9) can be rewritten as

(2.10) y*g = N*g(pi + p2Rg) + u (g . 1, ..., G).

Writing:

I
y*

MIND

(2.11) ./

N*

U =

N*1, 0

0 • NG

u*

Mai

IMO

IMO

, and X =

(2.10) reads in matrix notation as

(2.12) y* = N*xp + u*

1
•

1

•

xG
imon snip

P1 1327c1

P-1 4-P2RG_

with E(u*) = 0 and E(u = N*X. The G.L.S. estimator
of p equals

( 2. 13 ) if; = (X ,N*A71 -1 *

which can be approximated iteratively, similar to (2.7).
The possibility of negative values of the elementsA

of N*Rp is not ruled out, but it will be less probable
than the occurrence of negative values of Nxp in model



.(2.4): while in model (2.4), yi assumes the values 0, 1,
or 2 only, we now have y*, which can assume many more
different values. This makes possible the application of
the a.L.s. estimation method. Since G is much smaller
than n, the iterative procedure for estimating (2.13)
takes much less time than the one required for estimating
(2.5). On the other hand, applying this approach means,
of course, a loss of information. By choosing G sufficient-
ly large, however, the latter disadvantage will be compen-
sated for the above-mentioned advantages.

The method of grouping of the observations can be
generalized to more than one explanatory variables in
a simple manner. The qualitative and quantitative criteria
for grouping depend on the number of observations, the
number of classes per explanatory variable and the number
of explanatory variables.

3. THEORETICAL APPLICATIONS IN THE FIELD OF ITTOR CAR ACCIDENTS

3.1. Number of Accidents

Let the number of accidents in which a motorist is
involved in one month be Poisson-distributed with parameter
X, while X is assumed to be a linear function of k-1 risk

factors x2, ..., xk:

(3.1) X = 131 P2x2 Pkxk

In general, however, the observations do not relate to

time intervals of equal length. Still, observation

related to N . months, can be assumed to be Poisson-

distributed with parameter NiXi. If this assumption is

satisfied, we get the model (2.2), or - in matrix
notation - (2.4).

If we group the observations according to a single

explanatory variable, we get model (2.10), with y*

denoting the total number of accidents in which motorists

in group S, were involved, and IT denoting the total
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number of months these motorists drove.

A motorist, involved in a number of accidents in

a given time period, has driven a number of kilometres

in that period. It is only reasonable to assume that the

more kilometres a motorist drives, the greater probability

of his becoming involved in one or more accidents. One

of the explanatory factors in (3.1) will therefore be the

number of kilometres driven during one month. We can,

however, consider the problem in another way. A motorist

i, who drives Ni kilometres, can be assumed to perform Ni

random experiments with a number of accidentS as outcomes.

Let yi denote this number of accidents. As has been shown

b 1 is  
Poisson-distributed with

parameter NiXi, with a: constant, given a number of

assumptions. If
i depends linearly 

dh t - 1 explanatory

factors

(3.2) xi = pi P2xi2+ + pkxik-

we get the following regression model

(3,3) yi = Ni(pi p2xi2+ • • • Pkxik) ui (i = 1,

In this case too, we can group the observations.

As a result we get a regression model as described in

(2.10), with y* denoting the total number of accidents in

which the motorists in group S were involved, as before,

while N* now represents the total number of kilometres

these motorists drive.

3.2. Amount of Damage

n)

In this subsection we apply the method of grouping

outlined in Section 2 to a model for the amount of damage

incurred. In the literature on accident statistics the

assumption is often made that the amount of damage caused

by motorists is lognormally distributed. Van der Lean and

Boermans (1970 also assumed a lognormal distribution before

elimination of systematic effects on the basis of
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empirical evidence. Accepting such a di6tribution, the

use of a multiplicative model seems indicated. Therefore,

we posit the following relationship 
2

132xi
(3.4) z = Be v. (i = 1, • • • 9 n)

where n is the number of accidents in a given

time period with amount of damage exceeding zero; zi

denotes the amount of damage implied by the i
th
 accident;

xi is a non-stochastic value of the explanatory variable,

B and P2 are constants; and is a disturbance term
2which is lognormally (1,a.) distributed. Furthermore,

we assume that the disturbances are stochastically

independent. Taking the natural logarithm on both sides

of the equality sign in (3.4), we get

(3.5) ln zi = ln B + p . + ln vi (i = 1, ...,

Putting yi = in zi, P1 = in B and ui = in vi, (3.5) can
be written as

(3.6) yi = 131 132
+ . • • 9

with. u . NU,a2) distributed.l

According to the method of grouping presented in

Section 2, we classify the set of observations in G groups
S Summation of (3.6) over all ieS yields:
g

0

(3.7) = N;01
MEM

+u (g = 1 • • • , G)

with N* = the total number of accidents in group Sg /

1R, = -- E X., y = E y4, while u; = .E U.
6 N* ieS 1 ieS ' leS

g g 

, 

g g

is normally distributed with zero mean and variance
2

equal to d
2 
= E 

a. 
. Defining

g ieS 1
g

2
For the sake of simplicity we again consider the case of
one explanatory variable only.
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(3.8) D=
•

and using the definitions of 2.11 (3.7) reads in

matrix notation:

(3.9) y* = N*743 + u*

with u* N(0,D) distributed. This model is similar to the

one presented in Section 2, except for the assumption

concerning the distribution of u* The G.L.S. estimator

of p is expressed by

(3.10) = (RT*D-1N* )— R'N*p -1y*

Since the variance-covariance matrix D is unknown,

we can estimate p and D by means of an iterative procedure.
2If we assume homoskedasticity, implying a. = 

2
a for all

i, we get D = a
2 N* 

Hence, the estimators of p and a2 are
simply:

A

(3.11) p

and

(3.12) s2 =

(RT*R RTy*

respectively.

4. EMPIRICAL APPLICATIONS

The approach adopted in this paper is applied to the
models of Section 3, with the age of the car as the only ex-
planatory variable, and applying the number of accidents per
kilometer, the number of accidents per month, and the amount
of damage as the successive dependent variables, respectively.
Of course the age of the car is not the only factor which
possibly
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influences the number of accidents a motorist is involved

or the amounts of the damages. Other factors may be,

for example, the age and sex of the motorist, the area

where he usually drives, his driving experience, etc.

We distinguish between two types of insurances,

viz.: a) third-party insurance, which is an insurance

against the risk of causing damage to others, and

b) casco insurance (or insurance on hull and appurtenances)

which insures one's own car against damage or loss. The

data is confined to accidents reported to the company

and for which indemnification has been paid.
3 The age

of the car is defined as the difference between the year

in question and the year in which the car was manufactured.

We use data from a sample of Dutch insurance policies

of cars and station-cars relating to the years 1963, 1964

and 1965. The sample elements are grouped according to

the age of the car. The definition of the age gives rise

to errors of measurement. The ensueing distortions will

be partly cancelled out, however, by the grouping. The

average numbers of kilometres which the motorists drive

per year was not incorporated in the sample of the

insurance policies, but have been added later on. They

have been taken from tables drawn up by the Netherlands

Central Bureau of Statistics (cf. C.B.S. (1965) and

(1967)). An extra advantage of the grouping procedure

is that for grouped observations we may use data about

the average number of kilometers driven per year by

groups of motorists which are known, instead of indi-

vidual data, which are in general unknown to insurance

companies. Table 1 presents the grouped data used. These

imperfections in the data must be taken into account in

interpreting the results. The applications in this section

only serve as examples.

First, we assume that the number of accidents per

kilometre is linearly dependent on the age of the car.

3 We have to distinguish between the number of accidents
made in a given time-period and the number of accidents
reported in the same time-period. The second number of
accidents is smaller than the first, for not all acci-
dents are reported to the company (cf. Van der Laan (1971).



Table 1. Distribution of the absolute and relative

numbers of accidents and the average amount of

damage, per age group of the car.

Type

of

in-

surance

Age

of the
car

Average

number

of kilo

metres

driven

Total

number

of.

car

years

Total[

number

of

acci-

dents

Average

number

of

accidents

per 18,000

Average

number

of

acci-

dents

Average

amount of

damage

in Dfl.

per km/year per

year* car year

1 2 3 4 5 6 7

Third- 0 23000 627 84 0.1048 0.1340 390

party 1 21400 1168 131 0.0942 0.1122 452

2 18800 870 91 0.1001 0.1046 427

3 17300 663 73 0.1146 0.1102 367

4 16000 574 62 0.1214 0.1080 401

5 14400 503 46 0.1146 0.0915 350

6 13300 433 52 0.1628 0.1201 551

7 12500 369 42 0.1634 0.1137 404
8 11900 382 40 0.1589 0.1047 341

9 11400 326 38 0.1838 0.1164 239

10 10900 265 38 0.2372 0.1434 212

11 9700 211 25 0.2208 0.1187 603

12 8600 167 16 0.2008 0.0959 681

13 7600 118 12 0.2422 0.1016 534
> 14 6800 150 19 0.3367 0.1270 692

 -
casco 0 23000 548 197 0.2814 0.3598 379

1 21500 970 387 0.3342 0.3989 496
2 18900 632 211 0.3186 0.3339 499 .
3 17300 338 93 0.2858 0.2750 388

4 16200 187 64 0.3814 0.3424 482

5 14400 107 33 0.3858 0.3096 347
6 13.300 57 22 0.5231 0.3877 607

7 12000 43 10 0.3517 0.2339 350

C.B.S. (1965) and (1967).



We use the regression model

(4.1) y* = N*7 + u*

with E(u*) = 0 and E(u*u*') = N*1. y* denotes the vector
of numbers of accidents in which the different groups of

motorists were involved in a year (cf. column 4 of Table 1):
N* is a diagonal matrix with on the main diagonal the total
numbers of kilometres driven per year per group of

motorists (equal to the products of the corresponding

elements in columns 2 and 3 of Table 1); 2 is a matrix
of order 15 x 2 (third-party insurance) or 8 x 2 (casco

insurance) whose elements in the first column are all

equal to 1, and whose elements in the second column equal

the number 0,1, ..., 14 (third-party) or 0,1, ..., 7 (casco),
which are the ages of the car distinguished;

pf = (pl,p2); and is defined in (2.11).

Second, we assume that the number of accidents per 

(standard) month is linearly dependent on the age of the

car. We use the regression model

(4.2) y* = M*Ra + v*

with E(v*) = 0 and E(u*u*') = M*Z..

y* and X are defined as in the preceding paragraph, the
diagonal elements of the diagonal matrix M* are the numbers

of months during which the motorists have driven, hence

they are 12 times the elements of column 3 of Table 1;
finally a' = (a1,a2), and Z. is the matrix as defined in

(2.11).

Third, we analyse the relationship between the

amounts of damage and the age of the car. Let the

logarithm of the amount of damage depend linearly on the. .

age of the car. After grouping of the observation we get

the following regression model:

(4.3) z* = P*71, + w*

with u* N(G,D) distributed, where D has been defined in



< 0.0001 for i . 1,2
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(3.8), z* denotes the vector of sums of the logarithms

of the amounts of damage within each group; P* is a

diagonal matrix whose diagonal elements denote the numbers

of accidents of the groups of motorists distinguished

according to the age of the Car (cf. column 4 of Table 1);

the matrix R is defined above; and it = (11'12).

The vectors p and a of models (4.1) and (4.2),
respectively, are estimated by means of the iterative

method described in Section 2. The iterative procedure

for estimating p is stopped when

A

V(r) P2(r -
(4.4) 1

1)

Pi(r)

where pi( r) stands for the estimate of pi in the rth cycle.
A similar action is performed concerning the estimating of a.

In applying the least-squares estimation method, one

generally computes the values of the correlation coefficient

and the values of the standard errors of the point estimates

of the parameters. In regard to the models presented in

Section 2 these values have little meaning for testing.

purposes. Cramer (1964) shows that the correlation coef-

ficient based on grouped observations will systematically

exceed the one based on the individual observations. Koerts

and Abrahamse (1970) studied problems arising from attempts
to draw inferences by using the correlation coefficient in

the general linear model. Moreover, our regression models

do not include a constant term, this entails additional

problems. For an analysis of the correlation coefficient

in models with zero intercept we refer to Aigner (1971),

Section 3.8.

If disturbances in a regression model are normally
distributed, the values of the standard errors can be

used in order to construct 95% confidence intervals

for the parameters. In our models, in which the dependent
A

variable is Poisson-distributed, the distribution of p
cannot be derived easily. Moreover, if we use grouped
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Table 2. Results of the regression to the number of

accidents and the amount of damage of the age

of the car (cf. equations (4.1), (4.2) and

(4.3) successively).*

model (4.1)

Average

number of

accidents

per 18,000

km/year

.

P1
x 18,000

.

P2
x 18,000

Number

of

iterations R
2

Third-party 0.1251 .0.0865 0.0108. 5 0.96

(0.0061) (0.0015)

Casco 0.3209 0.2962 0.0156 4 0.99

(0.0148) (0.0073)

II Average

model (4.2)

number of

accidents

per motor

car year

a2 Number

of "

iterations

R
2

Third-party 0.1127 0.1127 0.0000 00 0.97

(0.0065) (0.0011)
Casco 0.3530 0.3813 -0.0158 4 0.99

(0.0170) (0.0067)

III Average -

model (4.3)

amount of

damage in

R
2

Dfl

---J
Third-party 417 . 5.2954 0.0017 1.9217 0.99

(0.0831) (0.0130)

Casco 459 5.2058 0.0336 2.8552 0.99

(0.0931) (0.0351)

The figures between brackets are the standard errors of
the preceding point estimates of the •arameters
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observations as in model (2.12), we must take into account

that the variances of the estimates are larger after

grouping (cf. Prais and Aitchison (1954)).

The results of the regression analysis are presented

in Table 2. The squared correlation coefficient is then

defined as

(4.5) R
2 1 - 11*. til*

y* 1y*

with e= y* - N*Xp and E = I 
1 
1-I'LL 

2
s in model III is

the estimate of the 'variance of the normally distributed

disturbances. The number of cycles in the iteration pro-

cedure is generally small, namely 4 or 5 cycles, except

for the third-party case of model 11, for which we stopped

the iterative procedure after 228 cycles. We believe that

in this case the value of the explanatory variable has no

effect on the value of the dependent variable, i.e. there

is no relation between the number of accidents per month

and the age of the car.

We observe that the impact of the age of the car

on the casco damage is small, and negligible with respect

to third-party damage. The standard errors corresponding

to 12 are large, relative to the values of the point

estimates. In spite of the high values of R2 we conclude

that the relation between the age of the car and

the amount of damage is not significant.

Table 2 shows that the application of models (4.1)

and (4.2) yield quite different results. For third-party

insurance p2 in (4.1) is 0.0108, while a2 in (4.2) is
zero. The coefficients p2 and 6L2 for casco are about equal

in absolute value, but opposite in sign.

The coefficient 62 in model (4.2) for casco is nega--

tive. This means that if the car is older than 24 years,

the estimated numbers of casco accidents per month would

become negative. This anomalous result is partly due to

the fact that observations on casco-insured cars,
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aged 8 years or more, are not available. For higher

ages of the car a linear approximation of the relationship

may no longer be justified. On the other hand, if a car

insurance company wishes to use these estimates, in

order to determine the premium, the result

is not at all detrimental, however, since it will hardly

ever happen that a motorist wishes to insure a 24-year-

old car.

CONCLUDING REMARKS

In this paper we deal with problems connected with

the estimation of the unknown parameters in a linear

model in which the dependent variable

a) is Poisson-distributed,

b) assumes only a small number of different values

and

c) may belong to different reference sets and in

which

) the number of observations is large.

We constructed a linear model which' tackles these problems.

The model has been successfully applied to observations

on car accidents.

The analyses presented in this paper can be summarized

as follows.

First. Basing the estimations on grouped observations

has computational advantages. However, the price that has
to be paid for these advantages is that decision-making

becomes more difficult due to the loss of information.

Second. In the examples of Section 4 the iteration

Procedure reouired 4 or 5 cycles only; it need, however,

not converge.
Thira. The estimation procedure does not prevent

the computed dependent variable from assuming negative
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values. For each separate application one should
consider whether this is a real problem. In many cases
the probability that the explanatory variable exceeds
some relatively high value is small enough to be disre-
garded. The method of grouping reduce the possibility of
negative values of the computed dependent variable.
Fourth. The method of grouping the observations, although
derived for a single explanatory variable, can also be
applied in the case of two or more explanatory variables.
The criteria for grouping depend on the number of obser-
vations, the possibilities of classification per explana-
tory variable, and the number of explanatory variables.
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