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In ]we wrote down some explicit power series over Q T_ • , • •
1

which turned out to be the logarithms of a p-typically universal

formal group and a formal group universal over Z 
)
-algebras. Both

(P 
formal groups are defined over Z[ T ...I. In this .note we show

how to fit together these formal groups for different p to get a universal

formal group (over Z [T2, T3, ...D. If f(X) is the logarithm of this
co

universal group f(X) = EaiXi, then its p-typical part, X + E a .XP is
i=1 pi

precisely the logarithm of the p-typically universal formal group

constructed in [1]. •

It turns out that there many ways of fitting together the p-typical
formal groups. Most of them do not give nice formulas for the T. in

terms of the a.. One special choice gives inverse formulas comparable
to formulas (8) of (1]. In (1] we used these formulas to get generators

in dimensions 
2(n1) 

of e(pt), the complex cobordism ring modulo

torsion. Using the universal formal group constructed in section 4
of this note we get a complete set of free generators of c2' Pt ) over Z.



Section 2 contains some preliminaries; section three gives the
general construction of a universal formal group. In section 4 we
discuss a special case with nice properties of the construction of

section 3. Section 5 contains the application to complex cdbordism
theory alluded to above. In section 6 we discuss the more dimensional
case which is completely analogi.cat, In section 7 we discuss isomorphisms.

Section 8, finally, is independant of [1] and the rest of this
paper. It is elementary (given the existence of universal formal

groups and some more results of Lazard) and it would surprise me if

it were not already known.

2. PRELIMINARIES.

Let F(X,Y) be a power series wet Z[T2, T3, ...] or Z
(p)

[T
2' 

T
3'

in X,Y. We denote (cf. also [1]) with F(Pk)(X,Y) the power series

obtained from F(X,Y) by replacing the parameters T2, T
3' 

with
k ,k

TP T'
2 ' 3 '

2.1. Lemma. Let F(X,Y) E Z(p)(T2, ...]([X,Yn. Then we have

1
)n Til(F(Pk)(

k k
,YP ))n mod p

The proof is completely elementary. For n = p it is contained in
the proof of theorem (1.2) of [1].

Let fT(X) be a power series in 5C over 
QIT2' 

T
3
, ...). The power

series ftp '(x) is obtained by raising the parameters Ti to the
p
k
-th power.

2.2. Theorem. Let f
T
(X) be a power series in X over Qpr2,

(2.2.1)

FT(X,Y) =

in Z[T].

such that

• • •

T

Tf(13 )(XPp ) E Z(p)(11[(X1] for all primes p

T
(X) 4. fT(Y)). Then all coefficients of FiT(x

'
Y) are
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Proof. Fix a prime p for the moment. Then we have

T . 
f i

f(X) = g(X) r 1(xl) )
p T

for some power series g(x) E Z(p)(11[(Xn. Now repeat the proof

of theorem (1.2) of [1] , using lemma (2.1) instead of formula (11)

of [1], to show that

F(X,Y) E Z(p)[T]UX,Y11

This must hold for all P, which concludes the proof.

2.3. Remark. Let f(X) be a power series over (1[T] such that

T. .

f(X) E -24(131)(X131' - -(2.3.1) TH(X)1
) Z(P)

and let u(X) = X + u2X2 + Z 
p) 

1([X]]; let g(X) = f(u(X)).

Then g(X) also satisfies

(2.3.2)
iii

g(X) E -2-g(P (XP ) E Z p)TIM]

This follows immediately from lemma (3.1) of [1]. Now let G(X Y)

be a universal formal group law over Z[T] and let g(X) be its

logarithm. Consider G and g over Z(p)(T]. Over Z(r)[T11 G(X,Y) must

be isomorphic to the universal formal group law constructed in (1.3)

of [1]. Combining this with (2.3.2) we see that a universal formal

group must have a logarithm which Satisfies (2.2.1) for all p.

In view of (2.2) it therefore only remains to construct

reasonable power series fT which satisfy (2.2.1) for all p. This

is the subject matter of the next section.

2.4. Remark. If f 
T 

*(X) is a power series over Q[T,S], where the S,S
•are additional variables, such that (2.2.1) holds for

all p, then also

where F,
T,

FT (X,Y) E Z(T,S][(X,Y]]

X,Y) = f-1
S (fT S 

(X (Y)). Same proof.T,, ,S



3. CONSTRUCTION OF A UNIVERSAL FORMAL GROUP.

3.1. The Induction Step.

• Suppose we have constructed a power series up to and

including degree s-1 such that (2.2.1) holds for all primes p

mod degree s.

Let p be a prime dividing s, and let q be a power of p which

divides s. Then according to (2.2.1) there must be a term

(3.1.1)
a(q)

p d
a
d 

de coefficient of X

-1in the coefficient of:K . The coefficient a
d 
looks like

E Z[T] which can be written as a sum

(3.1.2)

c
dot'

a = E
gi ld q'

d a power of a prime.

Substituting this in (3.1.1) we find a contribution

(3.1.3)
T c(q)

E

gild P q'

to a8. We get such a contribution for every prime power q dividing

s. We find therefore that a
n 

must contain

T c(q)
---9- --1122--- 

-1(3.1.4 E Z ) q n, q, qi prime powers.
qin gild P q' ' 

If we use (3.1.4) to define as,(2.2.1) is in general not satisfied.
This--1 can be repaired by adding to each summand p f N- .T .cI1

1. ' q d(q),q i
a term of the form 111(q,q') P (q 

-1 
Tq cd,q„ where m(q qi) E

is such that

11 mod p
(3.1.5) 1 + m q,q'

10 mod q'

(3.1.6) 1 + m(q,q') 1 mod pq i if

Let n(q = 1 + m(q,q'), and define

if (q,q')•= 1

qle) = p



(3.1.7)
T c(q)

a = E E _slat_
S (19e)

gin q'id P q' s s

5

where a
s 
= 1 if s is not a power of a prime anda

's 
= 0 otherwise.

We maintain that fT(X) = X .01. a2X
2 
+ + a

s
X
s 
then satisfies

(2.2.1) for all p mod. degree s + 1.

Indeed, fixe a prime pc), then we must show that

(3.1.8) a - E a(q) (T
(1)

• Polq ls Po q-ls

The sum (3.1.F) is equal to

z z n(QA ) T c E n(Q t9-9-1 T c(q)

Polq Pole 
p
o
q' q d,q' 

p q,pd 
p q' q dq 

(3.1.9)

n(q,e) T ++ E c(q) 
pq' q d,q'

Poliq'Pole Potcl-Polq

n q,q'
p q

T c(q) + a T
q d,q 1 n n

(where d = q-ls; q a power of p in the third and fourth terns).

The first term of (3.1.9) is in Z(po)[T] because of (3.1.6); the

-1second term of (3.1.9) is in Z [T] because (q') E Z and
(11, ) 

(Po)
(3.1.5); the third term because p

-1
 E Z and (3.1.5) and the

(Po)
• -1fourth term because p'1, (V) t Z ; finally: a

n
T
n 
E Z[T].

(Po)
Note that we can choose for the n(q,q9 any numbers in Z which

have properties (3.1.5), (3.1.6); in particular we can, if we wish,
let n(q,e) depend not only on q,q' but also on s and on the way
in which the term cd,q, arose.

3.2. Ordered Factorizations.

An ordered factorization of s E N is a sequence of numbers

ql, q2, qt,d) where the qi are powers of primes and d E N is
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not a power of a prime (but d = 1 is possible). Example: the

different ordered factorizations of s = 12 are

(2, 2, 3, 1), (4, 3, 1), (2, 3, 2, 1), (3, 2, 2, 1),

(2, 6), (12).

3.3. Lemma. If we use the procedure of (3.1) to construct fT, then

the monomials in T occurring in as are of the form

T
q1q2mcli-1

T
q1q2—eqt

q q q

T T 
1
T 

1 2

1 q2 q3 q
t

where Ti = 1 and (c11, (12

of s.

• • • ,

3, 4, 1),

d) is an ordered factorization

Proof. By induction; elementary.

3.4. A Formula for As
k
1 k

tFor every ordered factorization (p
1 
, pt' d) d) of s let

ki k
t

p
t 

di be a number 6 Z such that

ki
(3.14.1 n(131' • • • ,

k
t

Pt

We define as by the formula

(3.4.2) a =  
ki

(131
,• • •

1 mod pi if P1 0 p2

f 

(t > 2)

E 0 mod p; if pi0p2= 
r+

...=D OD(t > 2)
'1--r+2-

r ,1 mod p ii f P1=P2 ..=PrOPr+1

(t > 1)

n( d n ,ql qt ,...,qt,d)

k
t

k. ki
where qi = 

pt', 
and (pi ,

P1 P2

n q 4)
t' (11 qi.

T T ... T
P q q2,

1 2 clt

• • •qt

kk
t

Pt di runs through all ordered

factorizations of siias above we set Ti = 1.

3.5. Theorem.

Define'r
T(X) 

as



(3.5.1) a
s

s=1

where a
s 
is given by formula (3.4,2). Then f

T
(X) satisfies (2.2.1)

for all p. Let FT(X,Y) = 4-1(fT(X) + fT(Y)), then FT(X,Y) is a

universal formal group.

Proof. The product

t 
n a„. 'see, n(qt,

P2 Pt

where qi is a power of pi is of the form

with c
if P1

P1

• •• =p0p . 
r 

This follows immediately fromr+1

(3.4.1) by induction. It follows from this and (3.3) that the as are

related to each other in the manner discussed in (3.1). The power series

fT(X) therefore satisfies (2.2.1). Theorem (2.2) then shows that all

coefficients of FT(X,Y) are in Z[T]. Finally writing FT(s) for

F,(Ti,T2,...,Ts,0,0,...)we have

(3.5.2) X,Y FT (X,Y) + B(s+1)T
s+1

mod degree s + 2

where $( + 1) = 1 if s + 1 is not a power of a prime and a(s = if

s + 1 is a power of p. This follows immediately from (3.4.1). The

relation (3.5.2) implies that FT is a universal formal group, (2].

3.6. Examples.

The different ordered factorizations of 12 are

(2,2,3,1), (4,3,1), (3,2,2,1), (2,3,2,1), (3,14,1), (2,6), (12)

Let n(2, q
1' q2' 

q
t
,d) = n(q •••, q ), t > 2, n(q,d) = 1t

n(2,2,3) = 1, n(2,3) = 3, n(4,3) 3, n(3,2,2) = 4, n(2,2) = 1,
n(2,3,2) = 3, n(3,2) = 401(3,4) = 4. Then we find for 8.12



2 4 4. lr T T2T6 4. 2T T3
a
12 

= 4 i,14 .7.:T
2 2 3 3 2 2 2 3 2 3 3 4

The ordered factorizations of 6 are

(2,3,1), (3,2,1), (6)

Using the same n's we find for a
6

2
+ -T T
3 3 2

4, INVERSE FORMULAE.

2
6 
+ T

12

8

formula (3.4.2) permits us of course to write T in terns of

, dis and the T,, s'Is, s' < s. In anology with formula (8)

of p I however, we would like to find a formula for T
s 
in terns of the

a and the Tsf, where d and s' divide s.

Note that this is not possible with the choices for the

n(qi , q2, qt,d) which we used in (3.6).(A redefinition of

n(3,2,2) as n(3,2,2) = 16 remedies this).

4.1. Some Special 
(c11' q qt.d)

We define inductively

ki 
b(p 

kt 
, 

Pt
d) = b(pi

I 
. ,

b(p1) b(d) = 1

b(pi, )Ti c(p,p ) b
pJ ' Pt-0'

where = awl

c(p,p') = 1 if p = p'

(4. 1.2) c(P pi) H1 mod p if p p'

c(P,P') E 0 mod p' if p p'



(One can e.g. take c(p,p') = (013-/ if

Note that the factor c(p,p
t
) occurs precisely once in H c(p,pt if p E J.

'kJ

Now define n(qi, qt,d) by the formula

b(qi, qt,d)
(4.1.3) n(qi, qt, ) = b(q2, qt,d)

4.2. Lemma.

The n(q

(3.4.1).

•••,

n(d) = 1

,d as defined by (14.1.3)satisfy the conditions

t
1

ti t2
Proof. One checks directly that n(pi ,d) = 1, n(pi, 2 ) = n(p ,p2) =

(4.2.1

further n(q
1 2 ' qt'd) = n(P1' "" Pt) if qi

is a power of pi. By induction we get from (4.1.1) that

b(p
1'' 

p
t
) = n c(P,Pt) It c(P,P2),

PlEjt PEj2

Let It = {P2, ..., , = {1)2, p.}

It c(p,pi) and II

TEJ• rEI.

. n
, 1 - C, •••,

• III {p1, 
O•e, i}

The }ltAkvii-)eis

are either equal or differ by a factor c(p1,p1) depending on whether

p1 is 
in I. or not. It follows that

(4.2.2) n(pi, ..., H

Pllii

The first congruence of (3.4.1) follows immediately from this.

Moreover if pl = p2 then pl E Ii for all i = 2, •.., t so that

(4.2.3) n(pl,p

Finally, suppose that pl p = P3

if p1 =

Then for
= Pr+1.

i = 2, .., r+1 we have pi = p2 and Ii = {p2} , pl Ii, so that

n(p1,p2, p
t) 

contains r factors 
c(p1 ' 

p
2 
) which proves the

second congruence of (3.4.1).
q.e. a.



Remark. The formula (4.2.2) can be rephrased as

(4.2.4) n(p

1 2'

1

n(pi,p2,

c(p

n(pi,

(

000 C(T)

• • • ,

p1

0 if pi 91 P1'

10

. • • , r,

Pr+1 = P1

,
Let a' be the element of (1[T] obtained(hy setting T

d 
= 0 for all

d01 which are notapower ofaprime. Let NP = NI n

n not a power of a prime }. We have

(4.2.5) a; =

4.3. Proposition.

Let the n(q

1
T T T
q1

(1
2 

qt

n(qt,

Pt

qt ,d) be defined by (14 .1.3). Then we have

• • •

ms/d(4.3.1) a = E 
m(s,d) 

as/d -d
dis
d01

where m(s,d) = 1 if d E NP, m(s,pt) c(p',p), where 4 is the set
P

of primes occurring in s; and lid.) =1 ir d E NP, u(p1) = p.

Further we have

(14.)3.2) a' , Tsid
S s sid ddIS ,dENP

Proof. Both these formulas are proved by looking at the formula 3.4.2)

for a
s
. Take a fixed d, and consider all ordered factorizations

(P1 
kt

. • • , p,d) of s. First suppose that d is not a power of a prime,

d 51 1. The part of as consisting of terms involving Td is then



(4.3.3) 'q2 ' At 9d

1

n(q
t'
d) q

1 q1-qt-1 T T ...T
Pt q1 q2 qt

• •qt

where the sum is over all ordered factorizations of s/d ending in 1.

Combining this with (4.1.3) and (4.1.1) proves formula (4.3.2).

Cf. (4.2.5). Now let d = q be a power of a prime, and consider the
sqcoefficient of T / - in as' This is equal to

n(q ,...,qt,q,1)
( 14 . 3 . 14)

1
• •••

T

•
Pt

q )

q ...qt
T

where the sum is over all factorizations ending in (...,q,1), and

these correspond bijectively to all factorizations ending in 1 of

S.

According to (4.1.3) and the first two formulas of (4.1.1

we have

(4.3•5) n(qi, qt,q0 • n(qt,q, ,n(q,1) = b(pi,

and using the third formula of (4.1.1) and again (4.1.3) and the

first two formulas of (4.1.1) we see that

(4.3.6) n(qi,

1

•• qt,(1.0)• •••

= m(s,q) n(qi, •••,

qt,q,1).n(q,1) =

qt'l) n(qt

This in combination with (4.3.4) and the argument used to establish

(4.3.2) proves (4.3.1).

4.4. Remark. The formulae (4.3.1) and (4.3.2) permit one to write

T
s 

as an expression in the Td' d < s, dIS and the ad'
O. This is the reason why this section is headed

"inverse formulae".
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GENERATORS FOR THE COMPLEX COBORDISM RING.

ev
Let Q, tpt) denote the complex cobordism ring modulo torsion.

It is freely generated by countably many generators over Z. There is

also a canonically defined formal group over it. Cf. [3]. The logarithm

of this formal group law is equal to

(5.1)
co p

- n n+1
L(X) E n+

no

where E S/
-2n

(pt) is the cobordism class of CP
n
. Cf [3]. Quillen [2]

has shown that this formal group law is universal. It is therefore

isomorphic to the formal group law constructed above, in particular

to the one which uses the n(qi, qt,d) defined and used in section 4.
We can therefore use proposition (4.3) to find a set of generators for

the complex cobordism ring

5 . 2 . Theorem.

The following inductively defined elements, s 2, 3 • • •

constitute a set of free generators over Z of the complex cobordism ring

fiev(pt).

+ u

S... m s,d P
d-1

dd
1
=sd 01,s

)
m(s,d.1 Pd-1

dd
2 d1 ' 

=s d
2 
ENP 

u(d
1
)

d1 1 ,s

dd....d
2 
d
1 
=s

d1,...,dENP,d101,s

u(d

dd
2

d
1

m(s,di) d_

--17a75- d

dd1 dd.

d.
i 1-1

\-)

(We take po = 1)

Proof. This follows immediately from proposition (4.3). Use formula (4.3.1)

and then eleminate the a' /d inductively by means of (4. 3.2).s 



(If d is a prime power ad. = a Note that s u d s ,d is

always an integer.

5.3. Some Examples.

We take c(3,2) = 4, 2,3) = 3. Using (5.2) one then easily

calculates

t2

t
3

t= P -
4 3

p 
'a! 

p 
1
p?

6 6 3 2

P8 P2
311 3. 3.3

P17 2P P9 pi P6 p p p3 p p2 35 2 _24_1_  z 1 I 2
18 - - &3‘ 3 2

lrç 

3

P
3

13

6. MORE DIMENSIONAL UNIVERSAL FORMAL GROUPS.
In this section we study higher dimensional formal groups. All formal

groups considered will be commutative. To get a universal n-dimensional

formal group, we work over the ring Q[...,Tq(i,j) 9* 0 0 ; • • • 9 ,Sd( ) • • • ]

where the T (i,j) and S
d
(i) are indeterminates, one for each prime power

q and 1<1,j < n; and one for each 1 < i < n and multiindex
IMMO MIMI& 111•11•11

d = (d
1' ' 

d )
9 
d. > 0, d (0,0,..., 0) which is not of the formn 

p
r
e where e = (0, ...9 0, 19 0, .414, 0), the 1 in the j-th place,

j 7 1, .4,4,, n; p prime; r 0, 1, 2, ...,Let T denote the n x n matrix

(Tq(I)) and S
d 
the column vector

iSd(1)

S
d 
=

d
1 

d
nIf d is a multiindex d = (d1, dn) then Xd denotes X

d 
= 

1 •

Our first result is completely analogeous to theorem (2.2).



6.1. Theorem.

Let f(X) be an n-dimensional column vector of power series in the

n-variables X oils, X over Co.., T (i,j), ..,; n

such that

(6. . ) f(X) -

T. .

- E (XP ) E [T,S]
i=1 P

X is the column vector of the X
19

X is short for the column vector of the X
1 ' 

*es, X
:xi

denotes (as usual) the power series obtained from f by raising all the

parameters T (i,j), S
d
(i) to the power pi). Let F(X,Y) = f-/(f(X) 

then all the coefficients of F(X,Y) are in Z(...,

for all primes p. (Here

P

Proof. Same proof as of theorem (2.2).

•••, and

f.CPi)

S
d
(i)
'
...]]

As in the one dimensional case it remains to construct power series such

that (6.1.1) holds for all primes p. We also know that there .exist

such power series.. This is exactly the same problem as we encountered

in sections 3,4. We recall and introduce some notation.

6.2. Ordered Factorizations, etc.

Let s be a multiindex s = 
(s, 

s 
n
). We write NPM for the set of

1 
allmultiindiceswhicharenotoftheformpre.,j = 1, n; p prime;

r = 1, 2, ..., (Note that we start with r = 1 here).

An ordered factorization of s = (s
1
, s

n
) isia sequence

(q19 
qt,d)

where qi is a prime power and d = (d1, dn) is a multiindex which is

in NPM such that ql, qtdi = 
Si'

We also introduce the symbols Se (i) as S (i) =ej

is the Kronecker index; S is the column vector of the S(i).e. e.

For every ordered factorization (q1, q ,d) of a multiindex s

we define n(qi, qt,d) = n($1, qt) = n(pi,

where
1,1

• • • ,Pt)= the number

defined in section 4. Now let the column vector a
s
, s a multiindex,

be defined by



(6.2.1) as 
d)

• • • •

1 Pt

0T T
(q1) (q.—q)(qsaq1 q2 qt

15

a

• • •

where 
1“(1, 

..., qt,d) runs through all ordered factorizations of 8;

T(n) is the matrix (Tn(i,j)) and S(n) is the column vector consisting
q q d

n ,
of the S

d
(i).

6.3. Theorem.

Let f(X) be the n-dimensional vector of power series defined by

si
f(X) = E a X '...X 

Si 
nn

S

where s runs through all multiindices s = (
's1 n 

), s. > 0,
-

s (0, 0, ..., 0). Let

-1,
F(X,Y) = f kf(X) + f(Y))

Then we have

(I) f(X) satisfies (6.1.1) for all primes p.

(ii) The coefficients of F(X,Y) are in Z(..., T (i,j)
'; 

S
d
(1)
' 

I

(iii) F(X,Y) is a universal commutative n-dimensional formal group.

Proof. (i) follows directly from the definition of as and the

properties of n(qi, qt,d), cf. section 3. (ii) follows
from (i) in virtue of theorem 1.1. As to (iii), this follows

from (ii) because we have enough free parameters. More precisely

one uses the result of Lazard cited as proposiLion (4.1) in [fl.
q4e,d.

6.4. Remark. As in the one dimensional case one has formulae like
those of proposition (4.3.) which can be used to write

the T (i,j) and S
d
(i) inductively in terns of the a

s'

7. ISOMORPHISMS.

In sections 3, 14 we constructed certain power series fT(X)



over Q [T
2' 
T..] such that

T. . if 11 p

p T
f (X) -E —P—f P̀ 1(X )e z

(p)ETiffic.11

for all primes p. In a certain sense the construction used there is the

only one 'possible.

7.1. Lemma. Let 
fT,S(X)E g[T2

series such that

(7.1.1) f(13
,s 
(x)

p T

3,000; ...]((X]] be a power

z(p)(T,S)RX11

for all p. Then if a denotes the coefficient of Xn we have

T d,q'
.  . n(q,e) bn(S T)(7.1.2) an = E E _IL

q'la P 
q.

-
where d = q

1 
n , ad = E(q'r dA„ cd,q E ZIT SMX)1,

b
n 
E Z[T,SHEX)] and n(q,q1) any numbers such that n(q,q') n 1 mod p,

n(q,e) m 0 mod q' if (q,q') = 1 and n(q,e) n 1 mod pq' if
(q,q,) = pS.

Proof. It follows immediately from (7.1.1) that an must be of the

form given by (7.1.2). Assume for the moment that there are

no monomials in S,T which occur both in b
n
(S,T) and in the

double sum part of an. It then immediately follows from(7.1.1) that

b (S,T) E Z[T,SH[X]]. Necessary and sufficient for (7.1.1) to hold

is then that the expression (3.1.9) be in Z( [ST} for every Po
''o'

(with a
n
T
n 
left out). First let (q,q') = p . The necessary and

• sufficient condition on n(q,q9 is that

(per/{n(q,q9-1}cd,g, E Z(p)(S,T]. Any n(q,e) 1 mod pq' works.

It may of course happen that cd,q, contains a few factors p so that a

n 1 modulo a smaller power of p than the exponent of pq also

works. The difference {n(q,e) ii(q,c191(peric is then in

Z[S,Ti and can be absorbed in bn(S,T). Now let (q,q') = 1. The

necessary and sufficient conditions on n(q,e) are (cf. (3.1.9)).



)

17

pq t 1)c(q) 
E( '

Is Ili
p) 

(Pe)
i(n(g. e)c(q) E Z

(p9
[S
'
T]

Any n(qsq') such that n(q,e) a 1 mod p and n(q,q') a 0 mod q' works.
(q) a ,bIt may of course happen that 
cd,q' 

is divisible by say p p , which

case we must have ii(q,q9 a 1 mod pl-a,

The difference (peri{n(q,(19

be absorbed into b (S,T).

7.2. Corollary.

0 mod p'-bq'.

is in Z[S,T] and can

cioe.d

Let fT(X) be the power series fT(X) = E a XS
' 

where a
s 
i given

s 

by (3.4.2). Substitute X + S2X2 + ... for X in fT(X) and let the

resulting series be g(X) = Ed
s
XS.

Then we have

d
s 
=

l'•

n(qi,...,qt,d) n(qt,d)
T T

q 1 
T
ql...qt-1

p
1 Pt q1 q2 qt

• • •

(11 —qt 
+ b

d 
(S,T)).(T

d 

11(.1 ,1) n(qt,1)
q1.—qt-2  T ...T 

pt.P1 Pt cit-11

b
(qi"••'qt-1)

(S,T)
qt

Proof. This follows from (7.1) because g(X) satisfies (7.1.1) if

f
T
(X) sati$fies (7.1.1). Cf. [1] (3.1) and (3.2).

7.3. Corollary.

Let b
d
(S T) be any polynomial in S,T; d = 2, 3, .... Let

gT,s(X) = E dse be the paver series given by (7.2.1). The formal groups

FT(X,Y) and GT,S(X,Y) are then isomorphic over Z[T,S].

Proof. Suppose we have proved this already mod degree n for all series

of polynomials b (S,T). Let y be the power series over Z[T,S]
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establishing the isomorphism mod n. The power series f(4)(X)) and g(X) both

have coefficients of the form (7.2.1) and they coincide mod degree n.

It follows that their polynomials (b;1(S,T) and bd(S,T) resp.) coincide

for d < n. It follows that we can find a u(S,T) E ZES T] i such that

f(CX) + u(S,T)Xn) and g(X) coincide mod degree n + 1.

q.e.d.

Now let h
ST 

(X) be the power series h
ST 

(X) = E b
s
Xs, b given

by (7.2.1) with bd(S,T) = Sd. Let t = (t2, tn,...) s = (s2, 33,...)

be two sequences of elements from a characteristic zero ring A. Let

ht,s(X) 
and ft(X) be the power series obtained from 11,T,s(X) and

f
T( 2. 

by substituting t. and s. for T. and S. Let H
t,s 

(X,Y)and
2. 

F
t
(X,Y) be the formal groups belonging to ht,s(X) and ft(X).

7.4. Corollary. ti A v a citau1li:271- 6ic ew-001

The formal groups Ht,s(X,Y) and Ft(X,Y) are isomorphic. InverselyN'

aniH(X,Y) is isomorphic over A to Ft(X Y) then there exist (s s3, ...)

such that the logarithm of H(X,Y) is equal to ht,s(X).

Proof. The first part follows from (7.3). As to the second part, suppose

we have already found s
2
, s

n-1 
such that

h(X) ht,s(X) mod degree n

The formal groups H(X,Y) and Ht,s(X,Y) are isomorphic and congruent

mod degree n. It follows that there exists an s
n 
such that

ht,s(X) 
mod degree n + 1

7.5. Remarks.

1. Corollary (7.4) can of course be used as a criterium for testing

whether two formal groups over a characteristic zero ring are

isomorphic.

2. Similar results can be obtained for more dimensional formal

groups.
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8. A LOCAL GLOBAL RESULT.

<Let be an algebraic number field, A denotes its ring of integers.

If 1$. is a prime ideal, A, ) is the localization of A at , and Ap is
the completion of A(1,). We shall view A as a subring of K; V

is the valuation on At and IC belonging to the prime ideal 'is .

8.1. Lemma.

1
Let the prime p decompose as p = 1) ... ,rin in A. For every

rame la dividing p let there be given a number atp€ Al,. Then there

exists an a E A such that a - a/3 E pAp for all the primes -p dividing p.

Proof. First we show that for every 13i. there is a E AI,. such that
ri '1

a,p4 ploy, E n ). We can in any case assume that al,. E A i)
'A. 1=1 ` r ri

for i = 1, ..., n. Let Titi . 7„ be elements of A such that

V

ap

.
13

1, n. Then we can write

n

t. t. 9 cti, E B = n A
C )1-1 1+1 

t
n I i . i = 1

../11.-1 7iAl **716

Let bv,. be of the form b,p. =
ri

d €B.

t +e
, 1 1

-.1 ni+ • • • TT:1

The problem is then to choose d, such that
Ii

ti+1"i4-1 
t
nn)

-1

e. ti+e.
. 1

131 
dcpi a 0 mod n n.J Jc, i. n.. 1 

jOi 3

whichcanbedonebecausethemare prime to each other. We can therefore
1

assume that the a., are all in B. Now for each i let e be of the form
-e; i e.

e = n n. df .Then a + pe_ is of the form a + n. 1 f
Di jOi J Pi ' II T.1 

. 1 p .l'i 1

And the next problem is therefore to find an a' E B such that a' a a..)
1
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e.
mod 11%1 which can be done by the Chinese remainder theorem.

We have now found an a' EB which satisfies the requirements of the

lemma. It now suffices to show that there is an b E B such that

a = a' + pb is in A. Let be the prime ideals of A such

that v (a') < 0. Choose elements pi of A such that v (p.). j

v (p,) = 0. Then we can write
ql

a' =
r
A 1, p ra

4[11 ci e A.
-r -r

let b' be of the form b' m p i 1... pm 
m, ddI E A. The problem is then

to find a de € A such that c' + pd' F. 0 mod p 1
1 

p
m

r
m
 
which can

r.
be done because p and TI p.1 are prime to each other.i

8.2. Proposition.

Let F and G be two formal groups over A. Then F and G are

isomorphic over A if and only if they are isomorphic over all A.
r.

Proof. The isomorphism between F and G, if it exists, is equal to

g
-1
(f(X)), where f,g are the logarithms of F and G. The

coefficients .of g
-1
(f(X)) are in A iitthey are in A1 for all

8.3. Proposition.

Suppose we have a formal group F over A for all prime divisors

1r, of A. Then there exists a formal group F over A such that F is
isomorphic to F, for all 'J COA

Proof. Suppose we have already constructed F up to and including

degree n . If n + 1 is not a prime power F and Fr are also

isomorphic mod degree n + 2, for allp , and we can extend F to

degree n + 1 arbitrarily. Now suppose that n + 1 is a power of the

piime p. For each prime lo dividing p, let Op be a power series

over Ai, establishing the isomorphism between F and Fr mod degree n + 1
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-1
and let Fl!,(X,Y) = 01, F(Or(X), Op(Y)) and let f(X) be the logarithm

of F. Let f (X) be the power series over Z[T] given by (3.4.2)
t 

and t = (t2, tn), be such that ft(X) f(X) mod degree n + 1

where f is the logarithm of F. For each 73 dividing p let t(p) =

besuchthatft(,)00=500thenti()=t.for i = 2, ..., n

Now choose t E A such that
n+1

tn+ (13) E PAT,tn+1
or .

(t
2
(p)'..).

EveryformalgroupFs(X,Y)withsi=tifori<n+1,s.arbitrary Jo

i > n + 1 is then isomorphic to 5,(X,Y) modulo degree n + 2, for all

primes l) dividing p. AS to the primes j, not dividing p, Fs(X,Y) and

F (X,Y) are isomorphic mod degree n + 2 if they are isomorphic mod

degree n + 1 because 9, is prime to n + 1.
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