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1. INTRODUCTION

The first purpose of this note is to argue that the usual notions
of stability for dynamic economic processes as found in e.g.r21, ro,
1121, 1131, 1171, suffer from serious drawbacks. On two counts: they
offer no guarantee that the behaviour of the process, disturbed by a
whole sequence of small disturbances at times t1 < t2 < ..., is even
approximately the same as the behaviour of the original system, and
they offer no guarantee that a process governed by almost the same
function has approximately the same behaviour. Thus it ith possible
to have a process with, in the terminology of 121, 161, 1121, 1131, 1171,
a globally stable equilibrium point (the strongest notion of stability
in 121, 161, 1121, 1131, 1171) such that the process has no chance
at all of remaining near equilibrium for any appreciable amount of

time when disturbed by a sequence of (random) disturbances at a

sequence of (random) moments t1 < t2 < ... in time. And it is possible

to have e process with a globally stable equilibrium point such that
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there are processes arbitrarily near to it with no equilibrium

points at all, or only one nonstable equilibrium point.

These are (in my opinion) rather serious drawbacks, if one reflects

that all processes in reality are subject to disturbances all the time,

and that the precise functions governing the evolution of the system

are rarely, if ever, precisely known.

In nr.2 we give and discuss various notions of stability; nr 3

contains some examples and nr. 4 a discussion of these examples.

The remainder of this paper (nr.5 nr.9) is devoted to properties

of dynamical systems which are stable with respect to suitable

perturbations, In nr. 5 we examine the number of equilibrium points

of a given system, show that "most" systems have only finitely many

equilibria and that a suitable refinement of this notion (having a finite

set of equilibria) is stable under small enough perturbations. In nr.

we discuss (modified) Liapunov functions and their relation to stability.

It turns out that e.g. in rrri more is proved than is actually stated

in the theorems; i.e. the processes examined are much more stable than

is indicated by the theorems. This is the subject matter of nr.7, which

also gives some complements for these processes. In nr. 8 we analyse

stability under sequences of disturbances; nr. 9, finally, gives an

existence theorem for positive equilibrium points.

2. VARIOUS CONCEPTS OF STABILITY.

We study dynamic economic processes. In particular we study the

problem whether certain quantities, prices or values ,which evolve subject

to certain economic laws approach equilibrium values. Generally speaking

the processes according to which these quantities evolve are subject

to sudden (small) disturbances; moreover the laws governing changes in

these quantities are often not exactly known. This makes the study of

the stability of the processes involved important. Typically, we shall

have in mind a tatonnement price adjustment proces.

(T) p. = f.(p •••,
1 1 1

i= 1, .• • n

where D. is the Price of commodity i, and f.(p
' 

D
n 

is a function
l 

of the prices D, ...5 pn, which has the same sign as hi 1,.. • D1)
1



the excess demand for commodity i, if the prices of commodity 1, n

are D
1 

..., p. Thus (1) reflects: "prices rise if excess demand is
. n

rositive", and nothing more. In this process no exchange of commodities

is allowed at nonequilibrium prices. (r is an equilibrium price

vector if f.(p) = 0, i = 1, ... n). Cf. 1121, 1141 and 117] for a

discussion of this rroces). More generally we also consider non

tgtonnement processes (cf 1121):

(NT) D. = f.(n;s)
-

A.. =

where . is the price of commodity i, and s. is the amount of the
Di ij

j-th commodity held by the i,th individual. Both the pi and the sij

in (T) and (NT) are usually supposed to be nonnegative and sometimes

supposed to be positive.

One asks oneself whether prices according to (T) and (NT) approach

equilibrium values, and whether these equilibrium values are ,stable.

More generally one could also ask whether a given movement of prices is

stable; this is, however, essentially the same problem, cf. 2.7.

Both (T) and (NT) are particular cases of a system of autonomous

differential equations on a set 4te (usually M is a differentiable

manifold and the inclusion is a differentiable embedding 
1
))

(Ds) = f(x)

x E M, f a continuous n-vector valued function on M.

We shall always assume that there exist unique solutions to the

dynamical system (DS); i.e. we shall assume
••

1) For a definition of a differentiable manifold cf [11]. IfMCIRn is
a k-dimensional differentiable manifold embedded in Rn, then for each
x 6 M there exist n differentiable functions g g

n 
defined in

an open neighbourhood of x in E
n
, Ruch that g(x) = 0, dv(x) is

nonsingular, and M is defined by gk+1(y) =
0 

= g (y) = 0 in a
2

neighbourhood of x. Thus Sn-/ = {x e Rn 1 xci + + xn = 1/ is

an (n-1)-dimensional differentiable manifold, differentiably embedded
nin E.
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,For every x° E M, there exists a unique solution x(t;x
o 
),

of (DS), x(t;x°)E M for all t > 0, such that x(0;x°) =

For a fixed t > 0, x(t;x0) is a continuous function of x°.

A solution x(t,x°) is sometimes called a motion of the dynamical

system (DS). Condition B is e.g. satisfied if M = Pn and f satisfies

a global Lipschitz condition 
2
).

A set fx(t;x°) t > 0} is called a (positive sem*rajectory of (DS).

Sometimes we shall also assume the somewhat stronger existence

condition

(BP) For every x
o 
E M, there exists a unique solution ic(t;x°)

of (DS) defined for all t E R, passing through x° at

t = 0; i.e. such that x(0;x
°) 

= x
o
. For a fixed t >

x(t;x
o
) is a continuous function of 2.

One then callsaset fx(t;x°)ItER atrajec:tory of (DS)

• 2.1. Definition of Equilibrium 

A point e E M is said to be an equilibrium of (DS) if f(e) = O.
The motion of (DS) starting in e is then x(t;e) = e for all t> O.

2.2. The Reason for Stability Analysis. (cf. r121 section 2.2)
114LProcesses like (T) and (NT) have the property
4
Yprices- rise for

those commodities whose demand exceeds supply, and fall for those
commodities where the reverse holds.Negishi 1121, 2.2 argues:

"We know from experience that under this process prtces usually
do not explode towards infinity or con tract to zero, but

2) The function f : Pn 4. gin satisfies a global Lipschitz condition, ifthere exists a constant K > 0 such that

lif(x) f(y)II < Kil

for all x, E

-Y11
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converge to an equilibrium such that the supply of and demand

for commodities are equal. Hence, the process which we choose

to represent reality must display the same stability".

and

"The equilibrium once established in this way is continuously

subject to changes and disturbances, such as of taste, technology

resources and weather. Suppose the system, which has been in

equilibrium is thrown out of it by some of those Changes or

disturbances. It is known empirically that the economy is in

fact fairly shock-proof. Dynamic market forces are generated

which bring the economy back to equilibrium when it is perturbed,

i.e. there exists a stable adjustment process when the economy

is out of equilibrium. Realistic economic models should contain

such a dynamic equilibrating process".

This suggests the following

2.3. Provisional Definitions.

(i) If for any x° E M, lim x(tpc°) = e for some equilibrium point
t4433

e E M, then we say that the system (DS) is stable.

(ii) A particular equilibrium position e is said to be globally stable

if for every x
o
, lim x(t;x

o
) = e, and

t-Ko

(iii)A particular equilibrium position e is said to be locally stable
.

if lim x(t,x
o
) = e for all x

o 
In a sufficiently small neighbourhood of e.

t-oco

These seem to be quite generally accepted notions of stability in economics.

Cf. 1131 D. 162, 121, 161, 1121, 1141, Dv.
Thus examples (2.1) and:(2.2) below have one globally stable equilibrium

rosition e, according to this terminology. Suppose, however, that in (2.2)

the system is disturbed slightly out of equilibrium along the trajectory

n1; then it might very well take a very long time before the system is

again in the neighbourhood of the equilibrium position. This is presumably

not the kind of behaviour expected of a "fairly shock proof" economy.

Also, as a matter of fact, definitions 1.3 .are not the ones usually

encountered in dynamical system theory. (Cf. [19 , [18]). We shall not

adopt the terminology of 1.3. Instead we use (cf. [7], [18]).



2.4. Definitions. (Attractors)

(i) An equilibrium point e E M is called globally attracting if

lim x(t;x
o
) = e for all x

o 
EM

t400

(ii) An equilibrium point e E M is called (locally) attracting if

lim x(t;x°) = e for all x° in a sufficiently small neighbourhood
t-Ko
01 e.

(iii) A closed set F 4= M is called globally attractine if

lim p(x(t;x°),F) = 0 for all x° E M
t-Ko

(Here p(y,F) = inflix - yll, is the distance of y to the closed
xEF

set Fc:M; Il g denotes the usual norm in En).

(iv) A closed set Fc:M is called attracting if. lim P(x(t;x0),F)
t400

for all x° in a sufficiently small 'neighbourhood of F.

Let E be the set of equilibrium points of (DS). The set E is closed

because f is continuous.

(v) (DS) is said to have a pointwise attracting equilibrium set j if

for every x° E M there is an e E E such that lim x(t;x°) = e
t480

This is what was called stability in 2.3. In [17] one also finds

a somewhat weaker notion than 2.4(v), called quasi-stability in

[171 and [12]. A dynamical system has Wtsproperty if all its

trajectories {x(t;x°)1 t > 0} are bounded and if E, the set of

equilibria, is attracting.

If either E or M is bounded, the condition on the boundedness of

the trajectories can be omitted. If E is finite or countaAle, then a

dynamical system with bounded trajectories and attracting equilibrium

set also has a pointwise attracting equilibrium set 1171.

A fairly shock proof equilibrium e one should have the property

that a (small) disturbance from e (or from a position in a sufficiently

small neighbourhood of e) should not have much effect (also in the

future). This leads to



2.5. Definition. (Stability)
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An equilibrium e is called stable if for every E > 0 there exists

a > 0 such that I‘x° - el, < implies Ilx(t;x°) - II < E for all

t > O.

An equilibrium such that both the "facts" cited in 2.2 are

represented in our model should be both stable and (globally) attracting.

2.6. Definitions (Asymptotic Stability)

An equilibrium point e€ M is called globally asymptotically 

stable if it is both globally attracting and stable; it is called

(locally) asymptotically stable if it is attracting and stable.

One can of course extend the notion of stability of 2.5 to

cover stability of closed sets, etc....

The economic examples of Scarf t 111 section 3, cf. 2.8 below,

show that even one stable equilibrium point in a tgtonnement process

might be too much to hope for. However the situation as a whole is

not too bad (from the stability point of view) both the motion m

and the trajectory m look stable (intuitively). The precise

definition is

2.7. Definition.(  stability ofACotion)

A motion x(t;x°) of (DS) is called stable, if for every .E > 0

there exists a > 0 such that 11x1 - x°11 < implies

Ilx(t;x°) - x(t,x1)11 < e for all t > O.

Let x(t;x°) be a motion of (DS) : x = f(x). Let z = x - x(t;x
o
).

Then z(t;0) = 0 for all t is a solution of the system

= - Etsx°) = f(x) f(x(t;x°)) = f(z + x(t;x°))- f(x(t; )) = g(z,t),

and the stability of the motion x(t;x°) is equivalenteto the stability

of the equilibrium point 0 of the nonautonomous system = g(z,t).

2.8. Reasons for lauiring Structural stability and Total Stability.

All of the definitions given up to now, relate to one fixed

dynamical system
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(DS) = f(x)

and to one possible disturbance at time t = 0.(One takes different

starting points). However, even in physics it is rarely the case that

the function f is exactly known. And this is even more so in economics,

biology and sociology and the like. Also for a given economic,

biological or physical system one will usually have disturbances,

not only of the initial position (i.e. at t = 0), but also at

many other moments in time. Thus it is intuitively clear (cf. also

3.2) that the systems (2.1) and 2.2 have no chance at all of remaining

near equilibrium after a sufficiently long time period has elapsed

if there occur small random disturbances not only at time t = 0,

butalsoothermomentsintimett Cf. 5.
1, 2' 1

And, in view of our usually imperfect knowledge of the

function f of (DS) it becomes important to examine whether a slight

perturbation of (DS):

(DS 
pert

) = g(x

where the function g is close to f in some suitable sense, behaves

more or less in the same way as (DS). (For instance with respect to

Lts equilibrium set). This leads to various concepts like structural

stability, total stability, a-stability, tolerance stability.

Cf. [7], [151, [18], (19).

In fact Thom [161 suggests that. every (DS) used in applied science

to describe a given set of phenomena should be structurally stable.

(The actual situation is a (possibly varying) (small) perturbation

of the theoretical model). Cf.also [19].

For structural stability one requires that ()S) and (DSpe
r
t
)

are "essentially" the same (Cr. 2.11 and 2.12);for total. stability

one only requires that solutions to (DS) and (DSpert 
) are close to

each other. The precise definition of the latter follows.
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An equilibrium point e of ( S) is called totally stable if for

every E >0 there exist two positive numbers 6 1 > 0, 62 > 0 such

that I I Y(t;a70) - el! < E provided only that ITt-ell < 8 1 and that

ff g(x) - f(X)t! < 2 
for all x E M such that ei I <

(Here Y(t;x4)) denotes the solution to (DS
pert

) starting in x°

at time t = 0). Note that total stability of e, implies stability of e.

It is easily seen that the requirement that f(x) and g(20

are close to each other for all 3cE M offers hardly any guarantee

that the systems -(DS) and (DS
pert

) are "the same"(especially in

the neighbourhood of equilibrium points). A good. not ion of

nearness in this respect is

2.10. Definition 0:-C1-Perturbations

A differentiable function g : M IRn is an e -Cl-perturbation

of the differentiable function f : M IRn if for all 35E M

f(x) - f(X)I1 < E and I f(X) - Dg(X), I < c.

Here Of(x) denotes the derivative of f at X. Thus the second condition

requires that all the first partial derivatives of f and g are close

to each other. For a tiltonnement process (T) this is practically the

same as requiring that the price elasticities be close to each other.

We still have to define what it means that two dynamical systems

are "the same". For this we assume that we are dealing with systems

for which condition (B') holds.

2.11. Definition (Equivalent Dynamical Systems)

Two dynamical systems (DS) and (DS.) on M are equivalent

if there exists a homeomorphism
3)

M-+ M (i.e. a one to one,

Onto map which is continuous in both directions) which maps

the trajectories of (DS) into those of (Ds
pert

) and vice versa.

3) A homomorphism is a 1-1 onto map which is continuous in both

directions. It need not be differentiable.



We can now define

2.12. Definition (Structural Stability)
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A dynamical system (DS), with differentiable f, is structurally

stable if there exists an cS > 0 such that every 6 -C1-perturbation

g of f gives an equivalent system.

Remark. One can refine this notion by requiring that for every .E >0

there be a S > 0 such that for every 6-C1-perturbation g of f there

exists an E-homeomorphism M, establishing the equivalence of the

perturbed system and the original one. (A homeomorphism : M

is an E-homeomorphism if Ily(x) - xl! < E for all x EM).

3. EXAMPLES

In most of the examples below we have drawn a socalled phase

portrait; that is for every xEM, the trajectory of the motion

starting in:r is depicted. One cannot see from these pictures how

fast a given motion is.

3.1. Example

M = S
2
, the 2-sphere;

2 
S 

x2.+1,24x2 . 
1). There = ax ,:r ,:r 031

1 2 3 1 2 3
is one equilibrium point e, which is

globally attracting, but not stable.



3.2. Fxample

3.3. Example

11

M = P2. There is one equilibrium point

e. Because P
2 
is diffeomorphic to

fx E P2ix
1 
> 0, x

2 
> 0} one can modif

this example to get one on

{x E 2fx1 > 0, x2 > 0} with the same

properties and with the equilibrium poiq

at (1 1) sav. The transformation u = e
1

9x 9 say. The

y = e 2 e.g. transforms the given example2

into the same one (a diffeomorri,ir, orP)

on Lx. Ex > 0, x > 0}.

equilibrium point e is attracting (globally)

but not stable.

•• 
 0 . 0 • 0 • • #

M =1R. There are non stable equilibrium points at all integers in E.
An equation 'which has this -phase portrait is e.g.

. _
x 1 - cos2nr

The system defined by this equation is not structurally stable and
none of the equilibrium points is totally stable.

3.4. Example

3.5. Example

= s = (x ,x2 E R21 =

There are two equilibrium points. Neither

is attracting, neither is stable. The

system is not structurally Stable and

not totally stable.

M = R
2
, there is one equilibrium points,

which is neither stable nor attracting. An

equation with thisnhase portrait is

X =x

= y



3. . Example

'e

3.7. Example 

3.8. Example

12

M :=1R2; there is one stable and globally

attracting equilibrium point, which is

therefore globally symptotically stable.

An equation with this phase portrait is

•
X - X

y = y

The system defined by these equations is

structurally stable.

• = . There is one equilibrium point

which is stable, but not attracting.

Scarf in filo, §2, gives an example Of
a tatonnement process for prices which

has this phasepicture. The system is not

structurally stable and not totally stable.

• = P
2
. There is one closed trajectory.

There is one equilibrium point which is

neither stable nor attracting. The more

complicated examples of Scarf filo, §3
are of this type. They are (arbitrarily

small) perturbations of 3.7. These

systems are structurally stable.

. DISCUSSION OF THE EXAMPLES.

Remark. Most of the examples given in nr.3 are not derived from
an economic dynamic process; it is not clear whether such "pathological"

systems occur in economics. In fact an assumption like

substitutability in a tgtonnement process rules out examples like (3.1),

(3.2) and (3.4)



4.1. Sequences of Disturbances.

Suppose we have a dynamical process
1 

disturbances of magnitudes u,u
2 
, .

If one starts in x° at time t = 0,

, % . %
0 < t < 

t1 
x
pert

(t ;x
o 
) = i( t ,x

o 
)

- 
%

x
pert

( t
1
;x
o 
)= - 

x1
t = t

1
1,

t < t < t2 xpert 
(t;x°) = x(t-t

1 
,x )

t = t
2 

x
pert

( t 
2 
;x
o
)-= x

2

13

(DS), and that there occur

.. at various times t 
t2'

then gets a disturbed trajectory

!I
where Ix x(t

1
o 
)11 = u

1

where 
ti2 

- /7( •t2 ,x
1

t < t < t
3 

x
'pert

(tp:°) = x(t-t 0:
2
)

2
• .

(We suppose of course that the disturbances are such that the motion

remains in M)..

For a natural process it seems reasonable that the u
1
, u

2
, •••

=u2

should be bounded, and that during a small time interval there can

only be a finite given total amount of disturbance. We shall therefore

consider sequences of disturbances (t1, t2, ...; ul, u2,...) such

that there exists a (time interval) T > 0, and a number K such that

for all t E

I11u11 <K
t<t.<t+T
- 1-

ST,K 
denotes the set of all such sequences of disturbances.

One could also consider sequences of disturbances of finite total

disturbance, i.e. such that

Co

1111.11 <
i=1 1

CO

denotes the set of all sequences of disturbances such that

F Ilu.11 < K.
--

i=

4.2. Stability under Sequences of Disturbances.

It is clear that for systems like 3.1 and 3.2

tx
pert 0
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does not tend to any limit for "almost all" sequences of disturbances

(t1 ,t2, . •' 
u
1' 

u2,...) E
T,IC 

This holds for all T > 0, K> O. Even

for disturbances (t1, t2,...; u1 ,u2,...) E SK the limit for t °3 of

x 
(t;.x ) will not exist for many disturbances.

pert o

On the other hand for a system like 3.6, the limit

lim 
x'pert

(t;xo)t+co

does exist (and is equal to the equilibrium point) for all disturbances

(t ,t . u u ...) E S • and for disturbances from ST,K 
one has

1 2' • ' 1' 2' al . K '
vat, n

a statement of the form. Cf. also §7.

For every T > 0 and 6 > 0 there exists a K such that

(*) !Ix
'pert

(t;x) - ell < 6 for all t sufficiently large

(depending on x()) and for all disturbances in ST,K, K < K .o

For systems like (3.1) and (3.2) such a statement does not hold. The

intuitive content of (*) is that xpert
(t;x) will be close to

equilibrium and remain close to equilibrium provided the disturbances

affecting the system are not too large.

4.3. Liapunov Functions (cf. [71, and also DV.

A continuous function Cx) on M is called a modified Liapunov

function if for every x() E M, the function

Y(t) = (D(x(t;x°))

is a strictly decreasing function of t for all t except when x(t;x°) is

an equilibrium point.

Systems 3ike 3.3 and 3.6 admit modified Liapunov funcions.

The systems 3.1, 3.3, 3.4 e.g. do not admit such a function.

If e is an equilibrium point of (DS), and there is a function

as defined on N, a neighbourhood of e, such that

0(x) > 0, x E 01(e) =

(x.(t;x°)) is strictly decreasing at t = 0 for all

x E N, x
p 

e then 0 is called a Liapunov function for e.

If is defined on all of M, we say that 40 is a global Liapunov

function (e is then the only equilibrium point of (o5)).



4.4. Total Stability and Structural Stability.

•
The perturbation (c > 0) : x = 1 4- c - cos2nx , which has no

equilibrium points at all, of example 3.3 shows that 3.3 is neither

totally stable and nor structurally stable. A very small perturbation

of 3.3 yields a system with widely different trajectories. However,

example 3.3 has a rointwise attracting equilibrium set (i.e. is

globally stable in the sense of [131, r171 and [61), and does admit

a modified Liapunov function. It follows that these notions are not

particularly relevant whenever the dynamical systems involved are not

exactly known (as is usually the case in physics, economics, biology,

etc..).

One can prove that the systems described by the equations of 3.5

and 3.6 are structurally stable and the equilibrium 'point: of 3.6 is

also totally stable. Quite generally one can prove that an asymptotically

/stable equilibrium point e of a system (DS) is totally stable, and

that a system (DS) is structurally stable in a neighbourhood of such

a point provided that x(t,x) for x close to e moves fast enough

towards e. Thus

Y = -Y

is structurally stable. But cf. 5.6)

3
Y =

(which has the same phase portrait)is not structurally stable. At

least in our sense cf. 1.11).

5. MOST PRICE ADJUSTMENT PROCESSES HAVE A FINITE SET OF EQUILIBRIA.

In this section we show as an application of transversality theory

that most price adjustment processes have a finite set of equilibria.

We first deal with tgtonnement processes (5.7 and 5.6) and then go on

to non tgtonnement processes. We need some standard results of

differential topology recalled in 5.3 and 5.4(transversality,partitions

of unity). First we recall some conditions commonly found in discussions



on price adjustment processes.

5.1. Walras-Law, Homogeneity, etc.

(w

We are dealing with processes (T) or (NT). Cf. 1.1.

First the Walras-law:

Prices and excess demand are related by Ep.h.
iii=1

Homogeneity of the demand functions reflects that if all prices

go up by the same factor, excess demand should be the same. This is

the condition:

(H) hi(XD) = hi(p) for all A > 0

= 0

We do not go deeply into the question of existence of equilibria

(cf. however, _§ 8) and shall therefore have occasion to assume

(E) There exists a positive equilibrium price vector
* * * *

P
n

The following two conditions for the s.. in (NT) follow from the
13

asumption that the total amount available of each commodity should

remain constant.

(c)

E s
i .(t) = c.. j

E g..(p,$) = 0

For background material on all these conditions, cf [121. In

this section we shall for simplicity assume that we are dealing with

a process given by

(Tt)

instead of

(T)

Ai = hi(p) = f1(p)

= f1(p)

Because we assume sign(f.(p)) = sign(h.(p)), this makes no difference

as far as the equilibria are concerned. However, in order to apply

arguments of this section to (T) instead of (T ),small (i.e. - C.



changes in the hi should correspond to small changes in the f..
F. 

1

If e.g. f. = 7.(h
1' 
. • • , h

n
) and Idet (--1)I > 6 for some fixedF. --

1

> 0 this is assured. One could for instance take

(Tr P. = r.h.(p)
a.

17

where the r. are positive rates of adjustment. For these processes (Tr
)

the arguments of this section go through unchanged.

Let g : U
n 
be a C1-map (= continuously differentiable map) where

U is an open subset of le, let A C U be compact subset of U.

An E-C -A-perturbation of g : IRn (resp. the system 15 = g(p)

on,U) is a C1-function g' : U R
n 
(resp. a system 15 = g'f(p) on U such

.g; ag!
'1 a I

that 11 g(x) - g (x) II < for all x EA and 
(x)

ax x < Ek 
k(__N 

for all i, k = 1, n, xE A.

5.2. Definition (Transversality in a Point)

Let x E A, y E Fin a fixed point. The map g is said to be transversal

to y in X if either

(i) y g(x) , or

(ii) .(/ = g(X) and Dg(x) has rank n.

The map g is tranversal in A to u, if it is transversal to y.

for all x E A.

Cf. e.g. [ii, where a far more general notion of transversality is
discussed.

Of transversality theory (cf. Ili, rum we need the fairly weak)
results:

5.3. Proposition. fi0 1 Weak Transversality Theorem P. 27, Lemma 1 p.45)

(i) Let g : be a C -map, Y ERn, A C U, A compact and let g

be transversal to yin A. Then there exists anc > 0 such that

every -C
1 
-A perturbation g' of g is also transversal toy in A.

(ii) Let g : U 9.Rn be any C1-map;y and A as before. Then for every
1c> 0 there exists an -C -A perturbation of g which is transversal

to u in A.
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(iii) Let g : TT+ R
n 
be a CI-map which is transversal to y = f(x) in x.

Then for every neighbourhood V of x in U, there exists an

E > 0 such that for every E- C
1
-perturbation g' : Rn

there is an x E V, with g'(x') = y and g' transversal to

y in x'. Moreover, if we take V and c small enough, there is

precisely one x' E V such that g'(r') =

Proof. For (1), (ii) and the first part of (iii) we refer to [10].

The second part of (iii) is then proved by a standard argument.
ni if II

Because of transversality of g to y inx, and because 01 E IR Iihil

is compact there is a positive number i. such that

(*) (x) >m

for all h, ilhil = 1. Take V small enough so that

a
g 
17 

a g.
i7 Cr) - (x') 1 < E

for all x' E V, h E Rn, 111111 = 1, i = 1, n. This can be done,

again, becauee the set of themth is compact. Now let g' be an

E-C
1 
-"Perturbation of g. And suppose that there are .two different

solutions z, z' E V of-g'(r) = y. Then for each i = 1, ..., n,

there is a 0%, O.: t5. i( 1, such that

gi

;h
+ = 0

where h = z. We then have for this particular h

g g
---3-- ) I < 1an —

ag. ;g.
ah + 1-51711<z + Oih) —57(

a gt
z + ) I

<c + E +0 = 2E

Thus 11 ( < for this particular h, which colibutolias
3h --

(*) if E is small enough. q.e.d.
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%
The C

1 
compact open topology on C (U,R

n 
), the set of

1
C -functions U +1R

n 
is defined by taking as open sets, the sets

VA C(f) 
AE‘f) = fg E cl(u,/in.1

)1 g is an c-C1-A perturbation of fifor all,(

E > 0, A C U,A compact. With this topology on Cl(U,IRn), (i) and (ii)

of the proposition above say that the maps transversal to If in A

1
are open and dense in

Suppose that x E U, g(x) = y, and g transversal to y in X. Then

because dim U = n = dim Rn, we have by the inverse function theorem

that there exist an open neighbourhood V of x and W of y such that

g induces an homeomorphism g : V -5- W.

It follows that there are finitely many solutions (or none)

of g(x) = y if g is transversal to y in A. (Because A. is compact).

In the following we shall often deal with functions f . iRn

defined on a subset U c S
n-1
, such that p

1
f
1
(p)+ + p f (p) = 0

n n

for all pE •U. By "abus de language" we shall call such a function

"transversal" in A to 0 E gin if for every a E A there is an

for which a. 0 and for which the function

. f.
2' •••' 

f11, 
1+1' •••'

is transversal to 0 E R
n-1 

in a E U.

A second tool we need is the existence of certain functions (Partitions

of unity). The proposition below is rather special and covers precisely

the case we need. Let 
5n 

= Ix E Rnix2 + + x2 = 11. If F1 
and F

21

are two disjoint closed subsets of S
n-1 

then their distance

inf !I
.xE F F

1 2

compact).

5.4. Proposition.

- yl I is positive (because F
1 
and F are

Let 5> 0, then there exists a constant K depending only on S ,

such that for every two closed subsets F
1' 

F
2 
c 5

n-1
 with 0 (F F

2 
>

1'  —

there exists a C
1
-function cf) :

n-1
4. ER with the properties.

a• ( E D,1] for all x E n-1

b.4)( = 1 If x€F1

c. cb (x) = 0 if x E F2
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;(1)
d. = 0 if x E F

l 
U F

2 
for all directions y E R

n 
tangent

to
n-1 41x

(x)1< K for all x E Se. and all directions v E Rn, Ilyll = 1
;0

tangent to S
n-1 

in X.

5.5. Boundary Conditions.

We now return to the tgtonnement process (T). Prices will in any

case be assumed to be non negative. Assume that the Walras law (W) holds.
n 2

Then the prices move along the spheres 7, p. = constant. Indeed,
i=1 1

F, D =
dt 1 a.

i=1 i=1
= 2 E p.h.(p) = 0 by (W). We can therefore

i=1 1 1

2
assume that we have E p4 = 1, and from now on in this section,

i=1

we shall do so.

We examine two types of boundary behaviour of the function f

when one or more of the Priees tend to zero.

(P) There exist (small) constants c > 0, d > 0 such that

f.(p) > d if 0 < p. < c, i = 1, n

This is a condition rather similar to the one used by Debreu

in [51, and it reflects that for each i there is someone who desires

the i-th commodity. Cf. also 1.81 for further details. This condition
implies that a solution to (T) starting in p° > 0, has p(t;p°) > 0

for all t > 0.

Another possibility is that nothing special happens to the fi

if one or more of the prices tend to zero; especially: fi does not

become infinite as pi goes to zero. For such a system it seems not

unreasonable to assume that f is continuously differentiable on the

compact subset A = {p E S
n-it

p > 0, i = 1, ..., nl of the sphere
n-1 ft) E D 

P
ni.„

1 
... , 2 2S 

i 
--
11. Here, as in (111, we interpret" I 

-
differentiability to mean that there exist an open subset Uc: 

5n1
 ,

containing A, such that there exists a C
1
-function f' on U which agrees

with f on A. Thus we get the condition:

(D) f is differentiable on A = {p E5n-1 >0, i = 1
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Let (T'): = f(p) be a tgtonnement process on

= {p E Sn-llpi > 0, i = 1, ..., n} . If (T') satisfies (p),

there are c, d > 0 such that f(p) > d if 0 < pi < c. We then

denote by A
f 
c U the subset of U, A

f 
= fp E Ulp. > c,

—
1, • • • ,

There are of course many subsets Af which can be obtained in this

way, but it generally does not matter which one we pick.

5.6. Theorem.

(i) Let (T) : = f(p) be a tgtonnement process on U satisfying

(13) and (d). Then for every E > 0 there exists a E-C/-perturbation

7') = g(p) of (T'), satisfying (P) and NO, such that g is transversal

to 0 E P
n 
in A

f. 
In particular, the perturbed process has only

finitely many equilibria.

(ii) Let (T'):T; = f(p) be a tatonnement process on U satisfying

(Pi and (d), such that f is transversal to 0 E fin in Af.

Then there exists an E > 0 such that any E-C
1
-perturbation,

= g(o), satisfying (d) also satisfies (P), and such that
g is transversal to 0 E R

n 
in Af. In particular all E-C

1
-

perturbations of (T') which satisfy (t4), also have only

finitely many equilibria.

(iii) Let (T) be as above in (ii). Then there exists an E > 0,
1such that every E-C -perturbation of (T') which satisfies (T')

has the same number of equilibrium points as (T').

1 nWe toPologize C
W 
(U,Rn) = If E 

C1 
(U,R )(p) and (h') areP

1satisfied} by means of the open sets V (f) = {g E C (U,R1111 g is
PW

an E-C
1 
-perturbation of f). Then 4.6 (i), (ii) say that there is

an open and dense set in C (U,R ) of processes with oAy finitely
1 nN

Ph/
many equilibrium points.

Proof. (i). Let Uf = {p E Uhnsi > c, I = 1, • • • , n} and let d > 0

be such that f.(r) > d if 0 < n. < c. Consider1 1

V =
1' •

0 • , D )

• n-
Rn-1 1102+

L ••
. 2

< 1; D. 1 Pn-1

There is a 1-1 .correspondence between V and U (which is a

homeomorphism) given by
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• • • 9 ) f÷ (Pi , •Pn-1

2where p
n 

is the unique positive number such that p
1
+ + p

2 
= 1.

Now let

be defined by

f' :

ff(D 9 .•.9 D 1-1) = (f (P r ),n
• • • f

where n
n 
is determined as above. Take in any case c < d. Now apply

5.3(ii) to find an d-C1-B-perturbation h' of f' which is transversal

to B = {(1D 
9 ***9 Pr11)1(P1 9 ***I p)E 

, where p
n 
is determined

as before.

Define,

by, h1 •• • , 
•• 

h
n- 

(D = (n-1 n-1
, •

n-1
1

h (D) = - E p•h• P).n p
n i=1 

1 1

Then for sufficiently small c ' , the function h is an c -C 1-fif-

perturbation of f (because pn.> ic and 131, ..., pn...1 < 1 on t-Jf),

n -and h is transversal to 0 E P in II
f 

and hence certainly in A
f•

sn-11_..Now let F = A
f 

and F2 
., 

- 
c D , 

i .9 such that D. < ;c 11 1--

Then v nr 
2 
= th and both are closed. We can therefore apply 5.41 

Not.'

to find a function 6: S
n-1 

+ R with the -properties listed

IJ 
Tin

by the formula

We then have

g = cf(n h(n) + (1 - 11)(P))f(P)

- f(o)H = (t)( P )44-- (I)( -P )ftp =

for all n ETJ. Indeed if p E
f 
we have 1h(p) - f( n) 11 < c and

H < C



(b( < 1 and if p E U Uf c = 0.

And for a tangent direction Y;to p E U, Ilyll = 1, we have

;g.
= Pi(P) hi(P

and hence

;g. f.

I 5,1( P ) 57-1( <.(

+ its(

23

;11i(lo ;f, af.

;!, y P )f444 (P )-.(/-1( p) --l(P ); 

f.
- l(P)1 CIL& I 11-(P) - fi(p)! <•

Indeed if p E Uf I (D) - fi(p)! < E, and I;6(p)! K and

;hi af.
— 5.-eq )! < E, and if p E U • Ur, = 0 and 4)(p) = 0.

Moreover K does not depend on E. (cf. 5.4). Thus if we had started with

instead of c, we would have found the desired E-perturbation. NoteK+1

that g satisfies 00 and (P), and that g is transversal to 0 in A ,

- E,because g(p) = h(p) and L (ip) = 112(p) for ID E A3y f'

(ii) This follows immediately from 5.3 (I)

(iii) To prove (iii), let el, ..., em be the equilibrium points of (T).

For each i = 1, m take Ei and Vi small enough so that 5.3

(iii) applies (with respect to the function f' : U R
n-1

).

Let a = mini 1 f(P), I , E A
f 

s, UV.. Take E = min{;(1,E
11 

• 
' 
.0 

m' 
.a}•

. 

(Note thAt a > n because A (p. is compact).f 1

Remarks. 1. If we take (T
r
) instead of (T') prices move along

n 2
ellipsoids E r. p. = constant, if (W) is satisfied. The

i=1

same proof works in this case.
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Remarks.2. If we take instead of (W) the weaker condition W'
n n, - 2< 0 then D(t;P

o 
) remains in E r

1
. p. < r, a

i=1 i=1 -

solid ellipsoid, if p is in this solid ellipsoid.

(We are dealing with (Tr), for (T') take ri = 1, i = 1, ...,

- 2Let 1U := fln 1E > i = 1, n; E r.
1 
O. < rl.

Assume that (p) is satisfied on U
r 
for some r > 0. Then

the analogue of theorem 5.6 holds with U replaced by Ur.

The proof is similar.

Now suppose that the second type of boundary behaviour occurs; i.e.

that condition (D) is satisfied. Let A = {p ES11p> 
_ •
1 = 1, , n

and U some open neighbourhood of A in S
n-1
, on which f is defined

(and differentiable).

5.7. Theorem.

(i) For every process (T') : = f(p) such that (W) and (C) are

satisfied and every E > 0 there exists an c-C1--perturbation

= g(p) satisfying (W) and (D), such that g is transversal
to 0 in A. In particular the perturbed system has only finitely

many equilibria.

(ii) Let (T') i = f(p) satisfy (W) and (D) and suppose that f is

transversal to 0 in A. Then there exists an E > 0 such that

every E-C 1--perturbation 75 = g(o)of (T'), satisfying (W) and

(D), has g transversal to 0 in A. Hence all c-C1-perturbations

of f also have only finitely many equilibrium points.

Note that there does not exist a Precise analogue of 5.6 (iii), because
a boundary equilibrium point (i.e. an equilibrium point with at least
one price zero) can disappear into the region where at least one
price is negative under a small perturbation. If all the equilibrium

points in A of a given process = f(p) are in the interior of
n-1A c- S and f is transversal to 0 in A then one ProveS , as in 5.6 (iii)

that a small perturbation of i = f(p) has the same number of equilibrium

Points.
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Proof. Let U. = {11 E U. > 01. Note that U U. is an open set1 - 1 . 1
1n-1 

in S which contains A. Thus by restricting U a bit if

necessarywecanassumethatUU.=U.Letf
n-1

i 1 i

- 
be the map f(i)(p) = (f

1 
(p)
' ...' fil(P)'

B looking at each of the f(i) in turn one now easily proves

(ii) as a consequence of 5.3 (i).

As to (i) : Let G. = fp E Aipi = 01.

Because the G. are compact, there is a cS > 0 such that1

V = fp S > - Sfor all 0'1

is contained in U. By taking a bit smaller if necessary we can

also see to it that V C U. Further let 6' < 37-1-, and let

A
i 
= ft E Atpi > 6'1

then U A. = A and the A. are compact.
i=1 1 1

r.0 FiriallyletV.ItfilEldpi>361).
1 "

The thin outer line is
the boundary of U; the

dotted line is the

boundary of V. The lines

P1 = °' P2 = °' P3 = °
form the boundary of A,

and the ///// part of A

is A1. The boldly ine

marks the boundary of

V
1 in V.

Choose E > 0. We now use the same arguments

as in the proof of Theorem 5.5 to construct
a - 1

-perturbation of f which is

transversal to 0 E R in A
1. 

In the

construction, U is replaced by U, Uf is

replaced by V
1' 

A
f 

is replaced by A
1. 

Let

> 0 be such that any (S2-C1-perturbation2
of g' is still transversal 0 in Al. Such

a 6
2 

exists by 5.6 (ii), which has already

been proved.

Let 5_ = min(, (S2) and using (g',U,V2,A2) instead of (f,U,V ,A1)

. 1construct a E2-C -perturbation g" of a' which is transversal to 0 in A2.



Because E < 6 we then have that g" is transversal to 0 in A U A2.

Let 

2' 1 2.
1

Let 6 > 0 be such that any d -C -perturbation of g" is still transversal
3 3

to 0 E R
n 
in A

1 
U A

2' 
etc. etc. The construction of 5.5 yields

functions which satisfy the Walras law. Therefore we finally

(after n steps) wind up with an E-perturbation g of f which is

transversal to 0 in U A. = A and which satisfies (W) and (D)

1=1

(by construction) q•e• •

5.8. Non Tgtonnement Processes.

For the process (NT) with conditions (W), (C) and either

(P) or (A) one can derive theorems similar to (5.6) and (5.7). (The

conditions (C) are easy to handle; far easier than (W)),.

5.9. Remark.

It may happen that for some prices boundary condition (3) applies,

while for other we have (Pf. This case can be dealt with in more or

less the same way.

6. LIAPUNOV FUNCTIONS

First we recall the definitions. As in nr.2 we consider a system

(DS) : 27= f(x) defined on a pet M c:Rn such that (B) is satisfied.

Let e be an equilibrium of (DS).

6.1. Definitions.

(1) A function 0 defined in a neighbouAood N of e such that (e) =

cD(x) > 0 for all x E N bfel and such that (1)(x(t;x°))< (I) (2)

for all xPE N, x0 e and t > 0 such that x(tp:P) Nis called

a local Liapunov function for ()S) near e.

(ii) If 4) is defined on all of M, it is called a global Liapunov

function.

(iii) A function (I) on M such that (1)(x(t;x°))< (I)(x°) for all t > 0

unless x
,o 

is an equilibrium point is called a modified Liapunov

function (cf. [171) for (DS).

The main theorem concerning Liapunov function is:
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6.2. Theorem.

Let the dynamical system (OS) satisfy (B); let e be an equilibrium

point of WS). Then e is (locally) asymptotically stable if and

only if (DS) admits a Liapunov function near e. The point e is

globally asymptotically stable if and only if (DS) admits a

global Liapunov function.

(cf. [41 Ch. V §2).

Concerning modified Liapunov functions Uzawa proved (cf. [171):

6.3. Proposition.

Let (DS) satisfy (B). And suppose that

(i) Every motion x(t,xP) is contained in some compact subset of n
(ii) (DS) admits a modified Liapunov function

(iii) The set E of equilibria of (DS) is countable.

Then (DS) has a pointwise attracting equilibrium set E.

Now suppose that the set E of equilibria of (DS) is finite,

and let conditions (i) and (ii) of 6.3 also be satisfied. Let

E = fel, ..., eml. Consider Ce/), Cern), where (I) is a modified

Liapunov function. Renumbering the el if necessary we can assume

that in e = el, < (ei) i = 1, n. Now let x:c? E M be a

nonequilibrium point. There is an index i such that lim (t ;:r°)
tic°

and we have ((x(t;r())) < ge).

Therefore gr°) > (gel) > Ce). It follows that the function

e

'(r) = c(r) — Ce)

is a Liapunov function for (DS) near e. We have proved using 6.3 and

6.2)

6,4. Proposition.

Let (DS) satisfy (B). And suppose that:

(i) Every motion x(t;x°) is contained in some compact subset of M.

(ii) (DS) admits a modified Liapunov function

(iii) The set E of equilibria is finite.

Then there is an asymptotically 'stable equilibrium point of OIDS

The property: (DS) has an asymptotically stable equilibrium pointu

is a good notion with respect to perturbations of (3S). In fact
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6.5. Proposition (cf.171 Ch. VII section 56)

An asymptotically stable equilibrium point of (DS) is totally

stable.

Systems (DS) satisfying conditions (i), (ii), (iii) of 6.4

also behave nicely under repeated disturbances. One can show that

for every E > 0 there are a K > 0, T > 0 such that for almost

all sequences of disturbances in S
T,K

x
'

!I
Pert

(t,x°) ell! < E

for some asymptotically stable equilibrium point el provided .t

is large enough;and
o) 
=e

i 
for almost all sequences

of disturbances in q 
. 

Cf. 191..
K

6.6. Asymptotic stability and structural stability.

Asymptotically stable equilibrium points do not behave as nicely

with respect to structural. Consider for example the system

X =

=

on R
2
. For every E > 0, here is an E-C

1
-perturbation of which

has a Phase portrait like



29

In fact, let 1!)(r) be a differentiable function IP : [0,00) -* [0,21

such that lb(M) = 0 , t& 3

IP(0) = 2, Ct) F (1,2) if 0 < t < E, 19(E) = 0, p(t) E (0,1) if

E < t < 2c, and 11411-1 < . (Such a function exists). Define
dt

(x,y) = ib(ix2+y
2
) . The system

x= -x3(1 - cb(x,y))

-

—

sfs(x,y)x3

3
is then a (66 + 2/6) - Cl-perturbation ofx= -x

3, u = -y-; and

this perturbed system has the phase portrait sketched above.

However, let

x = f(x)

be a (DS) defined on an open subset U c: Rn, which contains the origin O.

Let 0 be an equilibrium point of ( S). Consider the matrix

af.
A =

If all the eigenvalues of A have a nonzero real part, then 0 is a

structurally stable equilibrium point. Cf [151 11.2

One can further prove that if M is a smooth differentiable

manifold and (DS) a smooth dynamical system on M, with a globally

asymptotically stable equilibrium point e such that the matrix

df
(e) has no eigenvalues with zero real part, Where x= 

1' 
...,)

dx -

is a smooth coordinate system for a neighbourhood of e in M, then

(DS) is structurally stable Cf. [151.

7. GROSS SUBSTITUTABILITY AND REVEALED PREFERENCES.

We again consider a tgtonnement process (T) defined on

= f(pi, pn)lpi > 01. Almost the same arguments as in 5.4

give

7.1. Proposition.

Let (T) satisfY (B), and suppose that

(i) (T) admits a modified Liapunov function

(T) has a globally attracting equilibrium point.
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Then this equilibrium point is globally asymptotically stable.

Now suppose that (T) satisfies (H). The price vector p is

an equilibrium iffAp is an equilibrium, and f(Xp) = f(p). Therefore

we can and shall view the process as taking place on U,

= {(-
P1' -9 Pn)110i > 0, T4+ • • •

(If we are only interested in equilibrium points and their stability

this does not matter; if one is also interested in the time it takes

to get into the neighbourhood of an equilibrium point, this does

matter, however).

The commodities involved in.the process (T) are said to be

strongly gross substitutes if:

Eh vxcess olehiavid luAcbiovi

La dit4e Ich [-Abet

at all points p E P and

7.2. Theorem.

h(p).(k1(p),--.. h„ip))

ah.1 > 0 for all i japj

Let the process (T) satisfy

a globally asymptotically stable

Proof. Arrow, Block, Hurwicz [31
is precisely one (up to scalar m
*

(P1' Pn)' Pi > 0.

Uzawa 071, then proves that the

(B), (H), (E) and (S). Then (T) has

equilibrium point.

show that under this condition there

ultiples) equilibrium price vector

. p.
function /(p) = max n*

j=1,...,n 'j

is a modified Liapunov function for (T). It follows that

D.

/V (p) = may —44, 1 is a global Liapunov function, which proves 7.2. Itxt
3 12,5

(Ti)

We now examine, as in [7] a process

0 if D. = 0
' 

f1(p) < 0-1
1f1(p) otherwise

f.(p) = r.h.(P)

15i

where the r. are positive numbers (speeds of adjustment The weak
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axiom of revealed preference says

h(D) = I p.h.(p) >
j=o

for all equilibria p and nonequilibria p

7.3. Theorem.

(i) If the process (T*) satisfies (H), (E), (W), (13), (PR) then

(T*) has a pointwise attracting equilibrium set E.

(ii) Every e E E is stable.

(iii) If T* has only finitely many equilibrium points I, then it

has precisely one equilibrium point which is globally

asymptotically stable.

Proof. (i) is proved by Uzawa. He shows that the function
n 1 , *%2 / 40 *(p) = E (p. - p.) kpT a fixed equilibrium point) is ari=1 

.

modified Liapunov function for all p*. This implies (ii). The condition

of (iii) makes of course no sense if we consider (T*) as a process

, on Q. Because of (W) and (H), however, we can just as well examine

the behaviour of (T ) on A = fp E S'-1 p. > 0 (OPIU = fp 'E Sn-11P. > 0})

The space A is connected, i.e. it can not be written as the union of

two relatively open disjoint subsets of A. Let E be finite. For each

e E E, we define Ue = fp° E Al lim p(t;p°) = e} . Then Ue is open.
t400

1 , NWe proceed to prove this. The function d(p,p') = )1 E --(D. - P
2

!)
i..1ri 1

is a metric on U. It follows that if p
o 
E A, is such that

d(p°,e) < d(p°,e'),e' E E N.fe} then lim p(t;11°) = e. Thus every
t- oo

‘
e E E has a small open neighbourhood Ve such that lim p(t,p°) = e

if p° E Ve. (We have therefore shown that the points e E E' are all

asymptotically stable).

Now let D
o 
E U . There exists a t such that pt ;p°) E V

e

Because p(t ;p1°) is a continuous' function of p
o 
and V

e 
is open, there

exists a neighbourhood V of p° such that p(to,p1) E Ve for all pl E V,

but then lim p(t;p
1 
) = e. This proves that all the U

e 
are open. However,

t-K0

because of (i) we have U U = A, and of course U
e 

n U
e
,

eEE e
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if e A e'. This contradicts the fact that A is connected, unless
F = fel. q.e.d.

Remarks.l. Part (iii) of this theorem can also be formulated as:

if there are finitely many equilibrium raps of (T*)

then there is precisely one equilibrium rat, which is

globally asymptotically stable.

2. Without the requirement that E be finite one can show

that E must be connected.

8. STABILITY UNDER REPEATED DISTURBANCES.

Let (OS) be a dynamical system on Mc:Rn. As in 4.2 we consider

disturbed motions x 
rt(t'xP) 

under a sequence of disturbances of

magnitudes u
1' u2' 

occurring at times 0 < t < t
2 

<
1  •

Let -i be an asymptotically stable equilibrium point of ( S). Let

= fx° F Milim x(t;x(3) = 1.1. Then U is open in M. (If X is globally
asymptoticalty stable U = M). There is a Liapunov function 4) defined
on U.

A Liapunov function (I) is a kind of generalized energy function.
It is therefore not unreasonable (especially if (I) arises in a natural
way) to measure the boundedness of the disturbances in terms of (1).(1)
Given c > 0, we define S.- as the family of those disturbancesT,c

(t1, t2,...; ul, u2,...), such that

—t<t.<T
— 1—

The u. give the magnitude of the disturbance at time tin terms of 6.1 

Thus if 
xpert ( t ;x

9
) 
is the disturbed motion one has

0 < t < t1
Yriert(t;x9) = x(t;xP)

t = 
t1 xpert(t1;x9)= a71 where 0(x1) - (14.7c(t 1 ;xP))m

< t < t
2 3:pert( t ;x° ) = x( t -t 1 ;x1 )

t = t2 
Xpert(t;IP) = 

2
,where 0(x

2
)- (1)(x(t2-t1 ;x1)) = Un

< t < t
3 xpert(t;x9) = 1(t-t2;x2)

II to
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Let V c U. We define e- as

e-=SUP fdl XEM, - max' (1)(v) < d-sxE Ul
uEY

Note that there always exist -17 in U, such that e- > 0.

To prove theorems we need a slightly better situation then just

a Liapunov function on U. We need a differentiable Liapunov function.

Fortunately these always exist under very mild conditions. For instance

when f satisfies a global Lipschitz condition on M, there is a

differentiable Liapunov function on U. Cf. [Ti.

If f is differentiable in a neighbourhood W of :i, there is a

U c W such that 0 c:W and f satisfies a Lipschitz condition on U.

8.1. Theorem.

Let (DS) a dynamical system on M, x an asymptotically stable

equilibrium noint of M and (I) a differentiable Liapunov function

defined on an open neighbourhood U of I such that g is compact.

Then for every compact tsuch that e- > 0, every C > ()s and every

T > 0 there exist c',c" and t' > 0, t" > 0 such that

(1) 
Itc 

(t 
.xo)) < E

for t > t'pert y '

(ii) lx
pert

(t;x°) -I I < E for t > t n

for all x
o 
E V and all disturbances of Sin case (1)

and all disturbances of 
ST " 

in case (ii).,c 

Proof. Part(ii) follows from part (i) by choosing a6 >0 such
that 0(

xpert
(t;

x
P)) < 6 II

xpert 
(t;x()) IT, < C and then

applying part (i) with 6 instead of E. It remains to prove (i).
Let A = frE M10(x) = El. If Eis small enough A is ccintained
in 174- C TT where = {x E My E V,- t(x) < 4)(y)}. For each 0 < E l< C

let B = Mk(x) < cl} and = fx E M10(x) < E'}. Choose
e < e . Let = E m qy E Q, 1,(X) -0(y) < e/V e

For each )7° E
e UE'' 

--- (1)(x(t;X
o
))(0) < 0. Letdt

= max - (I)(x(t;x
0 
))(0), x

0 - 
W U

•xp dt e E'

Then A < 0, because f4.
e 

is compact.

Because e < e
ye 

c U. During each interval rE, t + Ti the loss



in 4) due to the undisturbed motions occurring is at least

-AT if x (t;x°) remains in q .
pert e E'

We take

Then x
pert

< min c', -AT, e} = c

) remains in any case in e'

(T;x°)) - (E
pert pert

unless 4)(x
'nert

(t;xP)) passes through UE, for some t* E [E, + Ti,

but then x (t;x°) E U for all t E rt*, t* TI. This proves
pert

the theorem.

x° E W. And

34

8.2. Corollary (of the proof).

‘N
+ T;x

o 
)) > c - c'

/ ox
If x

pert
(t;x ) E U for some t, then xcl pert

t';x°) E UE for

all t' > t.

Remarks.

1. If C in the proof goes to zero, A -+ 0 (monotonically). An

optimum c' is obtained by taking c' such that E - E t = -AT.

2. If U = m, then the restriction e > 0 in the theorem can

be removed.

If (T) is not a naturally arising function on M, it seems more

reasonable to nut the boundedness conditions on the disturbances

in terms of the distances a point is moved by a disturbance, as,in I.1.

As before let Uc:M be a neighbourhood. of X such that there is

a differentiable Liapunov function defined on U, and such that 1-5.

is compact. If 7 C711 we define d by
e

= sun fdlx E M and ly E "CT, - 11 <S x E U}

where as before fi,-1 = fI E Miq E V, CY) > (x)}. Note that there are

always i7 such that Wc:5 and d > 0.

8.3. Theorem.

Let (DS) be a dynamical system on M, x an asymptotically stable

equilibrium noint of M and 4) a differentiable Liapunov function

defined on a neighbourhood U of such that TJ is compact. Then

for every compact V such that Tic:5 and d > 0, every E > 0
V
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and every T > 0 there exist a K > 0 and a t > 0 such that

1 IX t(ti.r°) -H <
per '

for all t > t 
' 

all x° E V and all disturbances in STo ,K

Proof. Let A = x E MI !Ix -.ill = E}. The set A is compact, and

AE C 1-4 if E is small enough. Let cl = min 0(x), x E A.

Then cl > 0. Now for each 6 let c2((S) = max Cx), X E 136, where

B6 = E MI I lx - 111 < (Si. Let U(s= E MI I lx - < d}.

Choose d < d and let q
d 
= E E 177, ix- yll < al.

For all x E Ct.
d 
•TJ , and all tangent directions y to M in x,

lj H = 1,
a

<0

Let p = max !4(x)!, x E 171 • Urs 11 j = 1, y tangent to M in x.

Then p > 0. As + 0, c (8) + 0; choose some such that c2((S) < •1

As in the proof of 8.1 let X = max -21-4 U. 0(x(t;x9)), x° E P •U Then
dt d 6 

also A 0. We have 1 4)(x) - Cx')1 < !PI x411. Choose

K < min fd, p-/(ci - c2(8)), -p-lAT} = K'

Then for every disturbance in T,K' 
x
Pert

(t;x°) will remain in

fAl-
d' 

if x° E V. The loss in 0 during the undisturbed parts of motion

during interval It, t + Ti is at least -AT ifx (t;xP) remains
pert

in Rd •U(s. The gain due to disturbances is at most pK. Thus during

every interval rE, E + T 1, 4) will diminish along x t '
o
) by at least

per

- AT - pK > p(r - K)

%
unless x 

t 
(t;x

o 
) passes through U during It, Ti , but if

rer 
,

x
'pert

( *,0)x  E U6' 
then x (t;x9) E U for all t E [t*, t* Ti. q.e.d.

pert

8.4. Corollary (of the proof).

If x
pert

(t*,x9) E U then x
pert

t,x
o U for all t >
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Remarks.

1. As rS 4- 0, 2(6) 4- 0 (monotonically) and X-4- 0 (monotonically).

An optimal K' is found by taking S such that cl c2(6) = XT.

•2. If U = M. the condition d > 0 can be removed.

9. EXISTENCE OF POSITIVE EQUILIBRIUM VECTORS.

In theorems on stability, those of nr. 7 e.g., the condition

(E), that there be a positive equilibrium point repeatedly turns up.

In this section we prove the existence of such an equilibrium

Point provided (P) and (W) are satisfied. (In fact one only needs

to have a disk-like compact invariant region in . We need a

slightly stronger continuity condition on the solutions p(t,p°)

of the dynamical system. .(DS)-

(B") Condition (B) is satisfied and the function

p(t;p°) : M x trq› o)÷ m is continuous as a

function of (t,p°)

This condition is e.g. satisfied if the function f of 15 =

satisfies a global Lipschitz condition on M.

We define the n-dimensional ball D
n 
(n dimensional disk)

as D = x ERni.x2+ + x
2 
< 1}

1 n

9.1. Proposition.

(p)

Let (DS) be a dynamical system on M such that (B") is satisfied.

Suppose that M is homeomorphie to a disk. Then there is an

equilibrium point of (DS) in M.

Proof. For eachnE N, let fn : M-mbe the function fn(r) =

Because M is homeomorphic to a disk, the Brouwer fixed point

theorem can be applied to the maps f
n
. Let x

n 
be a fixed noint

of f
n' The topological space m is 

compact (being homeomorphic

to a disk), therefore there exists a subsequence fx.k
n 
1 of
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x
n 

which converges to a point 'SEE M. We show that is a fixed

point. Suppose not, then there exist a t
o 
> 0 and open neighbourhoods
-

V of I and V' of p(to; i) such that V n 17, . 0. The function p(-;-) :

M x IR( >0) M is continuous, thus there exist a neighbourhood

W c V of x and a >0 such that p(t;x) E V' if it - t
o
! < and

x E W.
1

Because Jim x = I , and Jim I7 = 0, there exists a k
no 

= j such
n9c0 n n-003 -n

that

10 x. E W
3

2
-n 
 there is a multiple t

1 
= of that It

1j
< 6.

We then have on the one hand that p(t
1 
;:r.) E V'. On the 'other hand
j

1
because x. is a fixed point of f.. A contradiction.

J

Row let n E > 01 and consider processes

(T')

or more generally

(Tr)

= hi(P) = f1(p)

15i = rihi(p) = i r. > 0

Suppose that (W) is satisfied. Then prices move along spheres
2

2 2 n pi
E p. = r ( resp. along ellipsoids E 37= r

2
).

i=1 1 i=1

q.ed.

2 • 2
PP . ..2.1 r2).Now suppose that ( .) is satisfied on Ur = {p E U 

1 
+ .. +,. 

rr
1  n

Let c, d > 0 be numbers such that p E Ul, pi < c'0 fi(p) > d.

Let A = 4, EU ip. > c, i = 1, ..., n}. Then A is homeomorphic tor 1 --

a(n-1)-disk provided c is small enough, and every solution starting

in A remains in A. We can therefore apply 9.1 .We have proved



9.2. Theorem.

Let (T), definedon P = fD E R pi > 0; i = 1, • • ., n

38

satisfy

(4). Then for every r such that (P) is satisfied on

U = fr E PI r
-
. p.
12

 = r2} there exists an equilibrium point on
a.

U (which therefore has all prices positive).

If (Tr) satisfie8 (H) and (P) there is an equilibrium mar, in P.

9.3. Corollary.

Let (Tr) defined on P = fp E Rn1r. > 0, i =

(W). Then for every r such that (P) is satisfied on U

satisfy

= fiDE PIE rtip4r2)

there exists an equilibrium point in U with all Prices positive.

Same Proof.



LIST OF (CONDITIONS ON) DYNAMICAL SYSTEMS.

pl
. is the price of commodity i (at a given moment in time); 

h.(D
- 1'

p) = hi(p) is the excess demand for .commodity i

39

at prices pp pn; fi(p) is a function such that

litrn(fi(p)) = sign(hi(p); sij is the amount of commodity j held

by the i-th individual. The systems considered are

()s) x = f(x) , x E M 4= Rn, f any continuous n-vectorvalued function

(NT) P. = f.(p;s)

s. = g.
i 
(p.$)

ij j

i = 1, ...?

(T)

p 
• =I hi(p) = fi(p), i 1,...
i

hi = fi(p) rihi(p), ri > 0, i 1, • • • ,

0 if pi = 0 fi(p) = rihi(p) < 0•

1
r.h.(p) = f1(p) otherwise

a.

The conditions on systems considered are

(B) For every x° E M, there exists a unique solution x(t;x°) of (Ps)

x(t;xP) E M for all t > 0 such that x(0;x°) = X°. For a fixed

t > 0 x(t;.x°) is a continuous function' of xP.

(B') For every x E M, there exists a unique solution x(t;:ct) of (3S),

defined for all t E R passing through x° at time t = 0. For a

fixed t E R, x(t ;x()) is a continuous function of x°

(B") Condition (B) is satisfied and the function p(-;-);

M x 0) M, (t;p°) p(t;p°) is continuous as a function

of (t,p°).

(c) s..(t) = c.ij
(this is a condition on (NT))

gi;(D;s) = 0
4
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(C) The function f is differentiable on A = fp E 
5
n-1 . > 01,

= 1, ..., nl (a condition on (T) or

Sn-1 = fp E REP = 11

(R) There exists a positive equilibrium price vector

P* = (11, D*), > 0 , i = 1, n
n

(H) hi(XP) = hi(p), for all X > 0,

(P) There exist (small) constants c > 0, d > 0 such that

f1(D) > d if 0 < . < c.-- Di

(RP) r*.h(p) = E Dth.(p) > 0 for all equilibria p* and nonequilibfia

P.

(S) The excess demand functions hi(p),

9h.
/differentiable at all points p E P and ;.....:kp)

p j

for all i j, p E P.

(10 E pihi(D) = o

(w) E pihi(p) < 0

n are

> 0
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