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1. INTRODUCTION

The first purpose of this note is to argue that the usual notions
of stability for dynamic economic processes as found in e.g.[21, [67,
r23, 1137, (171, suffer from serious drawbacks. On two counts: they
offer no guarantee that the behaviour of the process, disturbed by a
whole sequence of small disturbances at times t1 < t2 < ..., 1s even
approximately the same as the behaviour of the original system, and
they offer no guarantee that a process governed by almost the same
function has approximately the same behaviour. Thus 1t ié possible
to have a process with, in the terminology of [21, [61, f12], rsi, rirl,
a globally stable equilibrium point (the strongest notion of stability
in 27, 67, T12], 1137, T17]) such that the process has no chance
at all of remaining near equilibrium for ‘any appreciable amount of
time when disturbed by a sequence of (random) disturbances at a

sequence of (random) moments t1 < t2 < ... in time. And it is possible

to have e process with a globally stable equilibrium point such that




there are processes‘arbitrarily near to it with no equilibrium
points at all, or only one nonstable equilibrium voint.

These are (in my opinion) rather serious drawbacks, if one reflects
that all processes in reality are subject to disturbances all the time,
and that the precise functions governing the evolution of the system
are rarely, if ever, precisely known.

In nr.2 we give and discuss various notions of stability; nr 3
contains some examples and nr. 4 a discussion of these examples.

The remainder of this paper (nr.5 - nr.9) is devoted to properties

of dynamical systems which are stable with respect to suitable
perturbations, In nr. 5 we examine the number of equilibrium points

of a given system, show that "most" systems have only finitely many
equilibria and that a suitable refinement of this notion (having a finite
set of equilibria) is stable under small enough perturbations. In nr. 6
we discuss (modified) Liapunov functions and their relation to stability.
Tt turns out that e.g. in 17 1 more is proved than is actually stated

in the theorems; i.e. the processes examined are much more stable than

is indicated by the theorems. This is the subject matter of nr.7, which
also gives some complements for these processes. In nr. 8 we ‘analyse
stability under sequences of disturbances; nr. 9, finally, gives an

existence theorem for positive equilibrium points.

2. VARIOUS CONCEPTS OF STABILITY.

We study dynamic economic processes. In particular we study the
problem whether certain quantities, prices or values,which evolve subject

to certain economic laws approach equilibrium values. Generally speaking

the processes according to which these quantities evolv? are subject

to sudden (small) disturbances; moreqver the laws governing changes in
these quantities are often not exactly known. This makes the study of
the stability of the processes involved important. Typically, we shall

have in mind a tatonnement price adjustment proces.

(T) 6i=fi(p1’ -'-9.pn) i T, «eey

where . is the price of commodity i, and fi(p1, e Dn) is a function

of the prices D1, cees Do which has the same sign as hi(n1,..., nn),




the excess demand for commodity i, if the prices of commodity 1, ..., n

are o, ..., p . Thus (1) reflects: "prices rise if excess demand is

1°
nositive”, and nothing more. In this process no exchange of commodities
is allowed at nonequilibrium prices. (p is an equilibrium price
vector if fi(n) =0, i=1, ..., n). cf. [12], [147 and 17] for a
discussion of this proces). More generally we also consider non

tatonnement vprocesses (cf [12]):

(NT) ;= fi(n;s)

ii = gij(p;s)

where bi is the price of commodity i, and Sii is the amount of the

3

j-th commodity held by the ith individual. Both the Ps and the S 1

in (T) and (NT) are usually supposed to be nonnegative and sometimes
supposed to be positive.

One asks oneself whether prices according to (T) and (NT) approach
equilibrium values, and whether these equilibrium values are stable.
More generally one could also ask whether a given movement of nrices is
stable; this is, however, essentially the same problem, cf. 2.T.

Both (T) and (NT) are particular cases of a systeﬁ of autonomous
differential equations on a set “R" (usually M is a differentiable’

manifold and the inclusion is a differentiable embedding 1))
(Ds) x = f(x)

X € M, f a continuous n-vector valued function on M,
Ve shall always assume that there exist unique solutions to the

dvnamical system (DS); i.e. we shall assume \

1) For a definition of a differentiable manifold ef [11]. If M C R" is
a k-dimensional differentiable manifold embedded in R", then for each
X € M there exist n differentiable functions Bqs vovs B defined in

an open neighbourhood of x in R®, much that g(x) = 0, %%(x) is

nonsingular, and M is defined by gk+1(Y) = ,..=g(y) =01ina
neighbourhood of x. Thus 87 = {x e R"| xf b xo = 1} is

an (g-1)—dimensional differentiable manifold, differentiably embedded
in R™”. .




. . o
For every xo € M, there exists a unique solution x(t:x ),
' o o
of (DS), x(t3;x°)€ M for all t > 0, such that x(0:x") = x

. . o
For a fixed t > O, x(t:xo) 1s a continuous function of x .

A solution X(t,xo) is sometimes called a motion of the dynamical
. . . n . .
system (DS). Condition B is e.g. satisfied if M = R™ and f satisfies

. . .y . 2
a global Lipschitz condition ).
A set {x(t;x°) | t >0} is called a (positive semi-)trajectory of (DS).

Sometimes we shall also assume the somewhat stronger existence

condition

. . . . H (o]
(B") For every x° € M, there exists a unique solution x(t;x")
. )
of (DS) defined for all t € R, passing through x° at
t = 0; i.e. such that x(0;x°) = x°. For a fixed t > 0,

. )
x(t;xo) is a continuous function of x .
One then calls a set {x(t3;x°) | t € R} a trajectory of (DS)

2.1. Definition of Equilibrium

A point e € M is said to be an equilibrium of (DS) if f(e)

The motion of (DS) starting in e is then x(t;e) = e for all t>

2.2. The Peason for Stability Analysis. (ef. M12] section 2.2)

Processes like (T) and (NT) have the propert;egiices‘rise for
those commodities whose demand exceeds supply, and fall for those
commodities where the reverse holds, Negishi [12], 2.2 argues:

"We know from experience that under this process pr&ces usually

do not explode towards infinity or con tract to zero, but

e

2) The function f : R" » R" satisfies a global Lipschitz condition, if
there exists a constant K > 0 such that

20 - 2] < K] |x - v]|

for all x, y ¢ R™.




converge to an equilibrium such that the supply of and demand
for commodities are equal. Hence, the process which we choose
to represent reality must display the same stability".

and
"The equilibrium oncé established in this way is continuously
subject to changes and disturbances, such as of taste, techhology
resources and weather. Suppose the system, which has been in
equilibrium is thrown out of it by some of those changes or
disturbances. It is known empirically that the economy is in
fact fairly shock-proof. Dynamic market forces are generated
vhich bring the economy back to equilibrium when it is perturbed,
i.e. there exists a stable adjustment process when the economy
is out of equilibrium. Realistic economic models should contain
such & dynamic equilibrating process”.

This suggests the following

2.3. Provisional Definitions.

(i) If for any x° € M, 1lim x(t;x°) = e for some equilibrium point
£

e € M, then we say that the system (DS) is stable.

(ii) A particular equilibrium position e is said to be globally stable

if for every x°, lim x(t;x°) = e, and
S

(1ii)A particular equilibrium position e is said to be locally stable

if 1lim x(t,xo) = e for all x° in a éufficiently small neighbourhood of e.
1

These seem to be quite generally accepted notions of stability in economies.
cf. 1131 o. 162, 2], [6], [127, (147, [171. - {
Thus examples (2.1) and:(2.2) below have one globally stable equilibrium
vosition e, according to this terminology. Suppose, however, that in (2.2)
the system is disturbed slightly out of equilibrium along the trajectory
m; then it might very well take a very long time before the system is
again in the neighbourhood of the equilibrium position. This is presumably
not the kind of behaviour expected of a "fairly shock proof" economy.
Also, as a matter of fact, definitions 1.3 are not the ones usually
encountered in dynamical system theory. (Cf.[ 7], [18]). We shall not
adopt the terminology of 1.3. Instead we use (ef. [71, [18]),




2.4, Definitions. (Attractors)

(i) An equilibrium point e € M is called globally attracting if

1im x(t3x°) = e for all x° € M
1->00

An equilibrium point e € M is called (locally) attracting if

1lim x(t;xo) = e for all x° in a sufficiently small neighbourhood
40

of e.

(iii) A closed set F = M is called globally attracting if
1im p(x(t;x°),F) = 0 for all x° € M

10

(Here p(y,F) = infllx - yl', is the distance of y to the closed
x€F :

set F < M: ﬂ» | denotes the usual norm in R").

(iv) A closed set F © M is called attracting if lim p(x(t;x°),F)
\ P

for all x° in a sufficiently small neighbourhood of F.

Let E be the set of equilibrium points of (DS). The set E is closed

because f is continuous.

(v) (DS) is said to have a pointwise attracting equilibrium set , if

for every x° € M there is an e € E such that 1lim x(t3;x°) = e
£ :

This is what was called stability in 2.3. In [17] one also finds

a somewhat weaker notion than 2.4(v), called quasi-stability in

[17) and [12], A dynamical system has this property if all its

trajectories {x(t;x°)] ¢ > 0} are bounded and if E, the set of

equilibria, is attracting. |

If either E or M is bounded, the condition on the boundedness of
the trajectories can be omitted. If E is finité'or countaﬁle,‘then a
dynamical system with bounded trajectories and attractingpequilibrium

set also has a pointwise attracting equilibrium set [17].

A fairly shock proof equilibrium e one should have fhe property
that a (small) disturbance from e (or from a position in a sufficiently
small neighbourhood of e) should not have much effect (also in the -
future). This leads to |




2.5. Definition.(Stability)

An equilibrium e is called stable if for every € > O there exists
a 6 > 0 such that |]|x° - e|| < § implies ||x(t;x°) - e]| < € for all
t > 0. |

An equilibrium such that both the "facts" cited in 2.2 are
represented in our model should be both stable and (globally) attracting.

2.6. Definitions ( Asymptotic Stability)

An equilibrium point_ e € M is called globally asymptotically

stable if it is both globally attracting and stable; it is called
(locally) asymptotically stable if it is attracting and stable,

One can of course extend the notion of stability of 2.5 to

cover stability of closed sets, etc....

The economic examples of Scarf [ 14] section 3, cf. 2.8 below,
show that even one stable equilibrium point in a t&tonnement process
might be too much to hope for. However the situation as a whole is
not too bad (from the stability point of view) both the motion m
and the trajectory m look stable (intuitively). The precise

definition is

2.T7. Definition.(Stability of Motion)

A motion x(t3;x°) of (DS) is called stable, if for every € > 0
there exists a § > 0 such that l'x1 -x°|| <5 implies
x(t:x°) - x(t,x")]| < € for al1 t > 0.

Let x(t3;x°) be a motion of (DS) : x = f(x). Let z = x - x(t:x°).

Then z(t3;0) = 0 for all t is a solution of the system {
2= % - x(t,x°) = £(x) - £(x(£3x°)) = £(z + x(£3x°)) - £(x(t3x°)) = g(z,t),

and the stability of the motion x(t;x°) is equivalent®to the stability

of the equilibrium point O of the nonautonomous system 2 = g(z,t).

2.8. Reasons for Peguiring Structural stability and Total Stability.

All of the definitions gi?en up to now, relate to one fixed

dynamical system




(DS) | = f(x)

and to one possible disturbance at time t = 0.(One takes different
starting points). However, even in physics it is rarely the case that
the function f is exactly known. And this is even more so in economics,
biology and sociology and the like. Also for a given economic,
biological or physical system one will usually have disturbances,

not only of the initial position (i.e. at t = 0), but also at

many other moments in time. Thus it is intuitively clear (cf. also

3.2) that the systems (2.1) and 2.2 have no chance at all of remaining ,
near equilibrium after a sufficiently long time period has elapsed
if there occur small random disturbances not only at time t = 0,

but also other moments in time ti, ta, veey lim t. = o! Egf., 5.
. a0 1

And, in view of our usually imperfect knowledge of the
function f of (PS) it becomes important to examine whether a slight

perturbation of (DS):

(DS

pert) ' * = g(x)

where the function g is close to f in some suitable sense, behaves
more or less in the same way as (PS). (For instance withlrespect to

its equilibrium set). This leads to various concepts like structural -
stability, total stability, Q-stability, tolerance stability. v
ct. [71, [15], [18]1, [19]. ’

In fact Thom [ 16] suggests that every (pS) used in applied science

to describe a given set of phenomena should be structurally stable.
(The actual situation is a (possibly varying) (small) perturbation
of the theoretical model). Cf.also [19]. | {
For structural stability one requires that (DS) and*(nspért)
are "essentially? the same (Cf. 2.11 and 2.12); for total.stability
one only requires that solutions to (DS) and (Dspert) are close to

each other. The precise definition of the latter follows.




2.9. Definition(Total Stability)

An equilibrium point e of ( S) is called totally stable if for

every € >0 there exist two positive numbers 51 > 0, 62 > 0 such
that || ¥(£5x°) - €|| < € provided only that || x°-¢|| < 61 and that
'lg(x) - f(xﬂl < 52 for all Xx € M such that ||x - dl < 61

(Here ¥(t3;x°) denotes the solution to (Dspert) starting in ;p

at time t = 0). Note that total stability of e, implies stability of e.

It is easily seen that the requirement that f(x) and g(x)
are close to each other for all X € M offers hardly any guarantee
that the systems (pS) and (Dspert) are "the same''(especially in
the neighbourhood of equilibrium points). A good notion of

nearness in this respect is

2.10. Definition @2—01-Perturbations)

A differentiable function g : M+> R is an€:—C1—perturbation

‘of the differentiable function f : M= R" if for all x € M
Il £x) - 2@)|| < e ana||0r(x) - pg(x)]] < €.
Here Pf(x) denotes the derivative of f at x. Thus the second condition
requires that all the first partial derivatives of f and‘é are close
to each other. For a t@tonnement process (T) this is practically the
same as requiring that the price elasticities be close to each other.

We still have to define what it means that two dynamical systems
are "the same". For this we assume that we are deallng w1th systems

for which condition (B') holds.

2.11. Definition (Equivalent Dynamical Systems)

Two dynamical systems (DS) and (DS ) on M are eéulvalent

if there exists a homeomorphlsm3 M-* M (i.e. a one to one,
onto map which is continuous in both directions) which maps

the trajectories of (PS) into those of (Dspert) and vice versa.

3) A homomorvhism is a 1-1 onto map which is continuous in both

directions. It need not be differentiable.




We can now define

2.12. Definition (Structural sStability)

A dynamical system (DPS), with differentisble f, is structurally

-perturbation

stable if there exists an § > 0 such that every § -C1

g of f gives an equivalent system.
Remark. One can refine this notion by requiring that for every € >0
there be a 8§ > 0 such that for every 6-01-perturbation g of f there
exists an €-homeomorphism M, establishing the equivalence of the

perturbed system and the original one. (A homeomorphism Y : M- M

is an e-homeomorphism if ||g(x) -'x|| < € for all x €M).

3. EXAMPLES

In most of the examples below we have drawn a socalled phase
portrait; that is for every x €M, the trajectory of the motion
 starting inx is depicted. One cannot see from these pictures how

fast a given motion is.

3.1, Example

M= 82, the 2-sphere;

2 _ 3,.2,.2,.2 _
§° = {(x1,x2,x3)€R | xT+x +x

Pt = 1} . There
is one equilibrium point e, which is

globally attracting, but not stable.




3.2. Fxamnle = R, There is one equilibrium point
e. Because R2 is diffeomorphic to

{x € 82,11 >0, x,> 0} one can modify ,

this example to get one on

{x € B2,x1 >0, x, > 0} with the same

properties and with the equilibrium noiq;

at (1,}), say. The transformation u, =e !

y, = e 2 e.g. transforms the given example

into the same one (a diffeomormhic one)

on {x € Rzlx1 >0, x, > 0}. The

equilibrium point e is attracting (globally)
but not stable.

3.3. Example

o ——

..—_)__‘ }

M =R. There are non stable equilibrium points at all integers in R.

An equation which has this -phase portrait is e.g.

x = 1 - cos2nx
The system defined by this equation is not structurally stable and

none of the equilibrium points is totally stable.

3.4, Example
=g = 2l Pax® =
M-—S-—{(x1vrxg)€R‘1+x2-1}

]
There are two equilibrium points. Neither
is attracting, neither is stable. The
. \
system 1s not structurally stable and

not totally stable.

3.5. Fxample
M= R2, there is one equilibrium points,
which is neither stable nor attracting. An

equation with thisohase portrait is

.'1.'.‘=3C

b
v Y




3.6. Fxample

M= B2; there is one stable and globally
attracting equilibrium point, which is
therefore globally symptotically stable.

An equation with this phase portrait is

.

X - X

v=-y
The system defined by these equations is

structurally stable.
3.7. Example

M = 82. There is one equilibrium point

which is stable, but not attracting.
Scarf in [14], §2, gives an example §f
a tatonnement process for prices which
has this phasepicture. The system is not

structurally stable and not totally stable.

3.8. Example

M = R2. There is one closed trajectory.
There is one equilibrium point which is
neither stable nor attracting. The more
complicated examples of Scarf [14], §3
are of this type. They are (arbitrarily
small) perturbations of 3.7. These

systems are structurally stable.

L. DISCUSSION OF THE EXAMPLES.

Remark. Most of the examples given in nr.3 are not derived from
an economic dynamic process; it is not clear whether such "pathoiogicél"
systems occur in economics. In fact an assumptioﬁ like
substitutability in a t&tonnement process rules out examples like (3.1),
(3.2) and (3.4) |




L.1. Sequences of Disturbances.

Suppose we have a dynamical process (pS), and that there occur

. . 1.2
disturbances of magnitudes u,u , ... at various times t 2,...

If one starts in x° at time t = 0, then gets a - disturbed trajectory

t <t (t3x°) = x(t,x°)

1 nert

(t1,x )=" x! where le1 - x(t1;19)|I

nert

X

. o = - 1
Dert(t’x ) = x(t-t, ,x )

1

©)= £ 2 R
Dert(t ) x where ||x° - x(tz,x )
. o = - . 2
t, <t < t3 xnert(t,x ) = x(t-t.:x°)

e 2 8 6 o

2

(We suppose of course that the disturbances are such that the motion
remains in M).

For a natural process it seems reasonable that the u1, u2, e

should be bounded, and that during a small time interval there can
only be a finite given total amount of disturbance. We shall therefore

) such

consider sequences of disturbances (t cee3 Ug, U

1 t2, LA
that there exists a (time interval) T > O, and a number K such that
for all t € R. .

gl <x
t<t, <t+T

ST x denotes the set of all such sequences of disturbances.
One could also consider sequences of disturbances of finite total

disturbance, i.e. such that

= ] <
i=1 |
\

denotes the set of all sequences of disturbances such that

HuH<K

L.2. Stability under Sequences of Disturbances.

It is clear that for systems like 3.1 and 3.2

x .
pert(t’ro)




does not tend to any limit for "almost all" sequences of disturbances
3 . . 1 ' > . )

(t1,t2, ceed Uy u2,...) € qT,K This holds for all T > 0, K > 0. Even

for disturbances (t1, thaenes u1,u2,...) € 8, the linit for t + « of

x

-Dert(t;xo) will not exist for many disturbances.

On the other hand for a system like 3.6, the limit
lim X (tsx )
00 pert o]
does exist (and is equal to the equilibrium point) for all disturbances

(t,,t T U, sU.,...) €S
1, 2,00., 19 b K

g,lvdom'ua) .
a statement of thevform. Cf. also 87.

: and for disturbances from ST K one has
N 9

For everv T > 0 and € > 0 there exists a Ko such that

*) Il

(depending on.xJ and for all disturbances in S_ ,, K < K_ .
T,K -0

x ) - <e ..
Ipert(t’ o) el for all t sufficiently large

For systems like (3.1) and (3.2) such a statement does not hold. The

. - - * -
intuitive content of (*) is that Ibert

equilibrium and remain close to equilibrium provided the disturbances

(t;xb) will be close to

affecting the system are not too large.

4.3. Liapunov Functions (cf. [7], and also [17].

A continuous function ®(x) on M is called a modified Liapunov

function if for every x° € M, the function
u(t) = &(x(t3;x°))

_ is a strictly decreasing function of t for all t except when x(t;xo) is
an equilibrium point.
Systems Jike 3.3 and 3.6 admit modified Liapunov fungtions.
The systems 3.1, 3.3, 3.4 e.g. do not admit such a function.
If e is an equilibrium point of (DS), and there is a function

® defined on N, a neighbburhood of e, such that
o(x) > 0, x € \N{e}, ®le) = 0

Q(x(t;xp)) is strictly decreasing at t = 0 for all

o) o . . .
x €N, x # e then @ is called a Liapunov function for e.

If @ is defined on all of M, we say that ® is a global Liapunov

function (e is then the only equilibrium point of (DS)).




4.4, Total Stability and Structural Stability.

.

The perturbation (€ > 0) : x = 1 + € - cos2nx , Wwhich has no
equilibrium points at all, of example 3.3 shows that 3.3 is neither
totally stable and nor structurally stable. A very small perturbation
of 3.3 yields a system with widely different trajectories. However,
example 3.3 has a pointwise attracting equilibrium set (i.e. is
globally stable in the sense of [13], [17] and [61), and does admit
a modified Liapunov function. It follows that these notions are not
particularly relevant whenever the dynamical systems involved are not
exactly known (as is usually the case in physics, economics, biology,
ete..).

One can prove that the systems described by the equations of 3.5
and 3.6 are structurally stable and the equilibrium point' of 3.6 is

also totally stable. Quite generally one can prdve that an asymptotically

.stable equilibrium point e of a system (DS) is totally stable, and

" that a system (DS) is structurally stable in a neighbourhood of such
a point provided that x(t,xb) for Io close to e moves fast enough

towards e. Thus

X

7]
is structurally stable.

x

y =
(which has the same phase portrait)is not'structurally stable. At

{

least in our sense (cf. 1.11).

5. MOST PRICE ADJUSTMENT PROCESSES HAVE A FINITE SET OF EQUILIBRIA.

In this section we show as an application of transversality theory
that most oprice adjustment processes have a finite set of equilibria.
We first deal with ta@tonnement processes (5.7 and 5.6) and then go on
to non tatonnement processes. We need some standard results of
differential topology recalled in 5.3 and Sgh(transversality,partitions

of unity). First we recall some conditions commonly found in discussions




on price adjustment processes,

5.1. Walras-Law, Homogeneity, etc.

We are dealing with processes (T) or (NT). Cf. 1.1.

First the Walras-law:
n
(W) Prices and excess demand are related by . Dihi =0
i=1

Homogeneity of the demand functions reflects that if all prices
go up by the same factor, excess demand should be the same. This is

the condition:

- (H) ‘ h,(Ap) = hi(p) for all A > O

We do not go deeply into the question of existence of equilibria

(cf. however, §8) and shall therefore have occasion to assume

(E) There exists a positive equilibrium price vector
* % * *
P = (p1, cees pn), p. > 0

The following two conditions for the 54 3 in (NT) follow from the

3

asumption that the total amount available of each commodity should

remain constant.

s..(t) = ¢c.
J( ) J
(c)
For background material on all these conditions, cf [12]. In

this section we shall for simplicity assume that we are dealing with

a process given by

(1) . =hy(p) = £,(5)
instead of

(T) ‘ ; = f.(p)

Because we assume sign(fi(p)) = sign(hi(n)), this makes no difference

as far as the equilibria are concerned. However, in order to apply

arguments of this section to (T) instead of (T'),small (i.e.e - CT)




changes in the h should correspond to small changes in the f
oF.

If e.g. f; = Fi(h1, cees hn) and |det (Bhi)l > § for some fixed

§ > 0 this is assured. One could for instance take

(Tr) ﬁi = rihi(p)
where the r. are positive rates of adjustment. For these processes (Tr)
the argumenis of this section go through unchanged.
Let g : U +R" be a C1-map (= continuously differentiable map), where
U is an open subset of Bn, let A C U be compact subset of U.

An e-CT—A-perturbation of g : U + R" (resp. the system p = g(p)

on U) is a ¢'-function g' : U~ R" (resp. a system p = g'(p) on U such

g 8:
that ||g(x) - g'(x)]] < € for all x €A and ]a (x) - ———- (x)] <€
k .

for alli, k=1, ..., n, X €A,

5.2. Definition (Transversality in a Point)

Let X € A, v € R" a fixed point. The map g is said to be transversal
to ¥y in x if either '

(1) v # g(x), or
(ii) v = g(x) and Dg(x) has rank n.

The map g 1s tranversal in A to v, if it is transversal to Y
for all x € A. | ' V
Cf. e.g. [1], where a far more general notion of transversality is
discussed.
Of transversality theory (cf. [1], [101) we need the @airiy weak)

results:
5.3. Proposition. ( 0 1 Weak Transversality Theorem p. 27, Lemma 1 p.L5)

(1) Let g : U +R" be a C1—map, v ER?, A Cuy, a compact and let g
be transversal to v in A. Then there exists an€ > 0 such that
every € -C —A perturbatlon g' of g is also transversal toy in A,
Ilet g : U + R be any C -man v and A as before. Then for every
€> 0 there exists an e-C -A perturbation of g which is transversal

to ¢ in A.




(iii) Let g : U~ R™ be a C1—map which is transversal to v = f(x) in x.
Then for every neighbourhood V of x in U, there exists an
€ > 0 such that for every €- C1-perturbation g' : U»> R
there 1s an x' € V, with g'(x') = y and g' transversal to
v in x'. Moreover, if we take V and € small enough, there is

precisely one x' € V such that g'(x') =

Proof. For (i), (ii) and the first part of (iii) we refer to [10].
The second part of (iii) is then proved by a standard argument.
Because of transversality of g to y in x, and because {h € Rnl |0l

is compact there is a positive number m such that
(*) 1] 28 (£)]] > m
oh e

for all h, ||h|| = 1. Take V small enough so that

Bgl

Ty —.6% (x")] < ¢

for all x' € ¥, h € R", [In]| = 1,1 =1, ..., n. This can be done,
again, because the set of thésth is compact. Now let g' be an
g-C1~perturbation of g. And suppose that there are two different
solutions z, z' € V of g'(x) = y. Then for each i = 1, ..., n,
there is a &i’ 0< '}i < 1, such that |

g, n
am ot

where h = z' - z. We then have for this particular h

o
z +¥.n) =z +4.n)| +

(x)l < l—-—( ) - ~----(z +i"h)| + ‘ah

ag'
5z + 9.n)]

< e+ e +0 = 2¢

Thus H%ﬁ (x)]| < 2./n.e for this particular h, which conbradicks

(*) if ¢ is small enough, g.e.d.




The C compact open topology on C1(U,Rn), the set of
C1-func’cions U -+ iRr: is defined by taking as open sets, the sets

Va e(f) = {g € C1(U,Rn)1 g is an e-C'-A perturbation of f}for all
bl

€ >0, ACU,A compact. With this topology on C1(U,1Rn), (i) and (ii)
of the proposition sbove say that the maps transversal to v in A
are open and dense in C1(U,Rn).
Suppose that x € U, g(x) = y, and g transversal to ¥ in X. Then
because dim U = n = dim Rn, we have by the inverse fﬁnction theorem
that there exist an open neighbourhood V of x and W of ¥ such that
g induces an homeomorphism g : V =+ W.

It follows that there are finitely many solutions (or none)
of g(x) = v if g is transversal to Y in A. (Becaﬁse A is compact).
In the following we shall often deal with functions f { U+ R"

n-

defined on a subset U =S ', such that p1f1(p)+ ee. + pnfn(p) =0

' we shall call such a function

for all pe U. By "abus de language'
"transvergal” in A to 0 € R™ if for every a € A there is an i
for which a: # 0 and for which the function

£ n-1

(f1,f2,,..., £

51> Ti4q0 +oe» Ty) 1 UPR

n-1 in a € U. )

is transversal to 0 € R
A second tool we need is the existence of certain functions (Partitions
of unity). The proposition below is rather sneéial and covers precisely
the case we need. Let S° ' = {x € R‘?]xf + .. +:)':r2l = 1}. If F, and F,

are two disjoint closed subsets of Sn_1, then their distance

p(F_ JF.)-= inf I'lx -¢|| is positive (because F, and F, are
172 . 1 2
x€p1,q€F2 . . (

compact ).

5.4. Proposition.

Let 6> G0, then there exists a constant K depending only on§ ,
such that for every two closed subsets F., F,c Sn_1 with p (F1, F.)s§ ,

n-1, R with the proverties.

there exists a C1-fﬁnction d:S
8.6(n € P, forallyxe§®
b.d(x0 =1if x €F,

c.d (x) =0if x €F,




d. 3U(JC) =0 1f x € F U F, for all directions v € R" tangent

2
to 571 na |
l—Q- ) < K for all x € 5" and all directions v € R®, [el] =

tanpent to s™ -1 in x.

5.5. Boundary Conditions.

We now return to the t&tonnement process (T). Prices will in any
case be assumed to be non negative. Assume that the Walras law (W) holds.

Then the prices move along the spheres X i = constant. Indeed,
i=1

n

2Ip ihi(p) = 0 by (W). We can therefore

n - n
d 2y _ .
dt(.x p1) =2 L p.p. 1

1=1 i=1 7

assume that we have p; = 1, and from now on in this section,

i
-2
i=1 1
we shall do so.

We examine two types of boundary behaviour of the function f

when one or more of the prices tend to zero.

(P) There exist (small) constants ¢ > 0, d > 0 such that
fi(p)z_dif0<pi<c,i=1,...,n

This is a condition rather similar to the one used by Debreu
in [51, and it reflects that for each i there is someone who desires
the i-th commodity. Cf. also [8] for further details. This condition
implies that a solution to (T) startlng in p° > 0, has p(t,n Yy >0
for all t > O.

Another possibility is that nothing special happens to the fi
if one or more of the prices tend to‘zero; especially: fi does not
become infinite as D, goes to zero. For such a system it'seems not
unreasonable to assume that f is continuously differentiable on the
compact subset A = {p € s 1!p >0,1i=1, ..., n} of the sphere
i~ =‘{p € Rnlp? + ...+ p = 1}. Here, as in [11], we interpret

dlfferentlablllty to mean that there ex1st an open subset U C s"” 1

containing A, such that there exists a C —functlon ' on U which agrees

with f on A. Thus we get the condition:

(D) f is differentiable on A = fp ESn_q!pi >0,1i=1, ..., n}

.




Let (T'):» = f(p) be a tdAtonnement process on
={p€ Sn—1'ni >0,i=1, ..., n} . If (T') satisfies (p),

there are ¢, d > 0 such that fi(p)_z d if 0 < p; < c. We then

.

denote by A_ < U the subset of U, A_ = {p € U[pili c,i=1, ..., n}.

f f
There are of course many subsets Af which can be obtained in this

way, but it generally does not matter which one we pick.

5.6. Theorem.

(i) Let (T) : p = f(p) be a t&tonnement process on U satlsfylng
" (P) and (MO. Then for every € > 0O there exists a £-C -perturbatfbn
= g(p) of (T'), satisfying (P) and (W), such that g is transversal
to 0 € R" in Af. In particular, the perturbed process has only

finitely many equilibria.

Let (T'):p = f(p) be a tdtonnement process on U satisfying
(Ps and (W), such that f is transversal to 0 € R" in Ap.
Then there exists an € > 0 such that any €-C1—perturbation,‘
= g(v), satisfying (W) also satisfies (P), and such that
g is transversal to 0 € R" in Ape In particular all e-C -
verturbations of (T') which satisfy (W), also have only

finitely many equilibria.

Let (T) be as above 1n (ii). Then there exists an € > 0,
such that every €-C —perturbatlon of (T') which satisfies (T')

has the same number of equilibrium points as (T').

We tovologize C (U RY) = {r€ Cl(U Rn)I(P) and (W) are
satlsfled} by means of the open sets Ve (f) = {g € C;w(U,Rn}l g is
an £-C -perturbation of f}. Then L.6 (1) (i1) say that there is

an oven and dense set in CNN(U’R ) of processes with on&y finitely

many equilibrium points.

Proof. (i). TLet Uf

be such that fi(n) >d if 0 < o, < c¢. Consider

={pe U!pi >3c,i=1, ...,n} and let 4 > 0

n—1l 2 2

= {(D1, ey Dn—1),€ R p1f cee * P4 <13, > 0}

There is a 1-1'correspondence between V and U (which is a

homeomorphism) given by




(p1, seey pn_1)*“‘* (p19 cee Dn)

v . . e s 2
where Dn 1s the unique pnositive number such that p1+ ses + pi

Now let
: V>R

bhe defined by

f'(p1, LRI IS Dn_1)=(f1(n1, DRI Dn), ey fn(p1’ s ey pn))

where v is determined as above. Take in any case ¢ < d. Now apply

5.3(ii) to find an ~é-C1—B-perturbation h' of f' which is transversal

to B = {(D1, ceey nn_1)'(p1, cees pn)s [&J, where p, 1s determined

as before.

Define,

by, h,(p) =h;(n1, vees D 1), eee » h_ _(p) =hr'1__1(p1, cees pn_1),

n- n-1

1 n-1

Pn i=1

b (o) = pih; (p).

Then for sufficiently smalle ', the function h is ang;—C1—ﬁf

perturbation of f (because Pp > ic and Pis eves P4 <

1< ton ),

and h is transversal to 0 € R" in ﬁf and hence certainly in Af.
- = n"1 v 1
Now let F1 = Af and F2 {pes 'Bl such that Dif- sc }

Then ¥, n F, = ¢ and both are closed. We can therefore apply 5.k

to find a function ¢: Sn-1 * R with the properties listed

Mo e £ iU R OV lmsa S
by the formula
g(n) = don(p) + (1 - o(n))£(p)

We then have

Han>-fhnl|=11apm+¢u»ﬂp)u==ap>nupn|iuny|<€

for all o €U. Indeéd if p€ T_ we have |Ih(p) - f(p)]|| < € and

f




0<dlp) <1andifpeu~T cF,, é() = 0.

And for a tangent direction y¥;to p € U, lly[l = 1, we have

28 <n) 3 .
3(,_1(13) = 5(’0) h. (p) + d)(n) g_gl(.p)ﬁ‘”_(b(p)gu_l_(p) N 5;_1_<p)

and hence

af. of
lg,, (p) = 20| < ¢<o>| i P -—<p>| 13—3@)[ hi(p) - £;(p)] <

{ eK+re.

~

Indeed if p € ﬁf, lhi(p) - fi(p)l < g, and 'g%{p)! < K and

Bf
| (n) v)[ <eg,and if p€E U~ U %s(p) =0 and ¢(p) =

Moreover X does not depend on e€. (ef. 5.4). Thus if we had started with

E%ﬁ-instead of €, we would have found the desired €-perturbation. Note

that g satisfies (W) and (P), and that g is transversal to O in Ag,
- 9g(y = oh
because g(p) = h(p) and ay(p) = 8y(p) for p € Ag.

(ii) This follows immediately from 5.3 (i)
(iii) To orove (iii), let e1, eevs € be the equilibrium points of (T).
For each 1 = 1, ..., m take € and Vi small enough so that 5.3
n-1
)

(iii) applies (with respect to the function f' : U + R
Let a = min”f‘(n)” s PE Af. ~ UVi. Take € = minf3d,€
' i

(Note that a > N because Af ~ qv. is compact).
1 .

1’

\
Remarks.1. If we take (Tr) instead of (T') prices move along

n
ellipsoids ¥ rE‘p? = constant, if (W) is satisfied. The
i=1

same proof works in this case.




Remarks.2. If we take instead of (W) the weaker condition (W'):
iy o n -1.2
% p:h. <0 then p(t;p ) remains in I r. p; < r, a
. it = . ifi=
1=1 1=1
solid ellivsoid, if »° is in this solid ellipsoid.

(We are dealing with (Tr)’ for (T') take r, =
Let U = {p € Rnlpi >0,i=1, ..., n;
Assume that (P) is satisfied on Ur for some r > 0. Then

the analogue of theorem 5.6 holds with U replaced by Ur'

The proof is ‘similar.

Now suppose that the second type of boundary behaviour occurs: i.e.

.l . . e -1 .
that condition (D) is satisfied. Let A = {p eS" [pi_i 0i=1, ..., n}

and U some open neighbourhood of A in Sn—1, on which f is defined

(and differentiable).

5.T7. Theorem.

(i) For every process (T') : = f(p) such that (W) and (D) are
satisfied and every ¢ > 0 there exists an e—C1-perturbation
b = g(p) satisfying (W) and (D), such that g is transversal
to 0 in A. In particular the perturbed system has only finitely

many equilibria.

Let (T') ® = f(p) satisfy (W) and (D) and suppose that f is
transversal to O in A. Then there exists an ¢ > 0 such that
every g—C1—perturbation B = g(p) of (T'), satisfying (W) and
(D), has g transversal to O in A. Hence all e-C1—perturbations
of f also have only finitely many equilibrium points.
Note that there does not exist a precise analogue of 5.6 %iii), because
8 boundary equilibrium point (i.e. an equilibrium point with at least
one price zero) can disappear into the region where at least one
price is negative under a small perturbation. If all the equilibrium

voints in A of a given process p = f(p) are in the interior of

A Sn—1

and f is transversal to 0 in A then one proves , as in 5.6 (iii),
that a small verturbation of % = f(p) has the same number of equilibrium .

points.
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Proof. Let U, = {p € Ulpi > 0}. Note that U U. is an open set
i

in Sn-'1 which contains A. Thus by restricting U a bit if

necessary we can assume that U Ui = U, Let f(i) : u; -+ gh-1

1 .
be the map f(i)(v) = (f1(p), cees fi_1(p), fi+1(P)’ cees fn(p)).

B looking at each of the f(i) in turn one now easily proves

(ii) as a consequence of 5.3 (i).

As to (i) : Let G, = {p € Al_pi = 0}.

Because the Gi are compact, there is a § > 0 such that

V={p€ s“"1|pi > - 8for all i}

is contained in U. By taking § a bit smaller if necessary we can

also see to it that V C U. Further let &' < };, and let
- '
A, {g € Alpi > 6§}

then U Ai = A and the Ai are compact.,

1=1

Finally let Vi = {p € V|pi> 361},

Choose € > 0. We now use the same arguments
as in the proof of Theorem 5.5 to construct

a % - C1fperturbation of f which is

transversal to 0 € R in A1. In the
construction, U is replaced by U, Uf is
replaced by V1, Af is replaced by A1. Let

The thin outer line is
the boundary of U; the

dotted line is the

62 > 0 be such that any 52—01—per‘turbation
of g' is still transversal O in A1.'Such

boundary of V. The lines a 62 exists by 5.6 (ii), which ?as already

P, =0, P, = 0, Py = 0 been proved. ?

form the boundary of A,
and the ///// part of A
is A1. The boldlyo ine
marks the boundary of
V1 in V.

Let 5) = min(%, 62) and using (g"U’V?_,AQ) instead of (f,U,V1 ’A1)

construct a €é-C1—perturbation g" of g' which is transversal to O'in A2.




Because €, 5_52, we then have that g" is @ransversal to 0 in A1 U A,.

Let 63 > 0 be such that any 63-01-perturbation of g" is still trensversal
to 0 € R" in A U A2, ete. etc. The construction of 5.5 yields
functions whlch satisfy the Walras law. Therefore we finally
(after n steps) wind up with an €-perturbation g of f which is.
transversal to 0 in 2 A; = A and which satisfies (W) and (D),

i

(by construction) q.e.d.

5.8. Non Tatonnement Processes.

For the process (NT) with conditions (W), (C) and either
(P) or (D) one can derive theorems similar to (5.6) and (5.7). (The
conditions (C) are easy to handle; far easier than (W))v

5.9. Remark.

It may happen that for some prices boundary condition (D) epplies,
while for other we have (F. This case can be dealt with in more or

less the same way.

. 6. LIAPUNOV FUNCTIONS

First we recall the definitions. As in nr.2 we consider a system

(DS) : x = f(x) defined on a set M — R® such that (B) is satisfied.
Let e be an equilibrium of (PS).

6.1. Definitions.

(i) A function ¢ defined in a neighbourhood N of e such thatd (e) =
®(x) >0 for all x € N ~{e} and such that &(x(t;x°))< & (x°)
for all x°€ N, x° # e and t > O such that x(t;x°) é N,is called
a local Liapunov function for (DS) . near e.

If & is deflned on all of M, it is called a global Liapunov
function.

<

A function ¢ on M such that &(x(t;x ))< o(x°) for all t > 0

unless x° is an equilibrium point is called a modified Llapunov
function (ef. [17]) for (DS).

The main theorem concerning Liapunov function is:




6.2. Theorem.

Let the dynamical system (DS) satisfy (B); let e be an equilibrium
point of [DS. Then e is (locally) asymptotically stable if and
only if (DS) admits a Liapunov function near e. The point e is
globally asymptotically stable if and only if (DS) admits a
global Liapunov function.

(cf. [4] ch. V §2).
Concerning modified Liapunov functions Uzawa prdved (ef. [171):

6.3. Proposition.
Let (DS) satisfy (B). And suppose that

(i)  Every motion x(t3x°) is contained in some compact subset of 9!

C:. {16 Rn‘ , u; )0, .‘31"_'/"

(ii) (DS) admits a modified Liapunov function )

(iii) The set E of equilibria of (DS) is countable.

Then (DS) has a pointwise attracting equilibrium set E.
Now suppose that the set E of equilibria of (DS) is finite,
and let conditions (i) and (ii) of 6.3 also be satisfied. Let
= {e1, ..., €7}. Consider Q(e1), cees o(e™), where & is a modified
Liapunov functlon. Renumberlng the el if necesssry we can assume
that in e = e1, d(e) < Q(el) i=1, ..., n. Now let x2 € M be a

nonequlllbrlum point. There is an index i such that llmﬂr(t;t ) = e
t+o

i

and we have 6(x(t;x°)) < Q(xo)-
Therefore &(x°) > &(el) > &(e). It follows that the function

¥(x) = o(x) - @(é)'

is a Liapunov function for (DS) near e. We have proved (using 6.3 and
6.2) |
6.4. Proposition. ?
Let (DS) satiéfy (B). And suppose that:
(i) Every motion x(t;x°) is contained in some compact subset of M.
(ii) (pS) admits a modified Liapunov function
(iii) The set E of equilibria is finite.
Then there is an asymptotically stable equilibrium point of (DS).
The propgrty:(DS) has an asymptoticall& stable equilibrium point”

is a good notion with respect to perturbations of (DS). In fact




6.5. Proposition (ef.[7] Ch. VII section 56)

An asymptotiéally stable equilibrium point of (DS) is totally
stable.
Systems (PS) satisfying conditions (i), (ii), (iii) of 6.4

also behave nicely under repeated disturbances. One can show that
for every € > 0 there are a K > 0, T > 0 such that for almost
o i
- <
! !xnert(t $x ) e ' | €

all sequences of disturbances in ST K
b

for some asymptotically stable equilibrium point e’ provided t

is large enough;and lim x __ (t; ©) = ¢! for almost all sequences

{0 pert.

of disturbances in Sg» Cf. fo9l.

6.6. Asymptotic stability and structural stability.

Asymptotically stable equilibrium points do not behave as nicely

with respect to structural. Consider for example the system

(*) v y _x3

v -y

on R°. For every € > 0, here is an €—C1—perturbation of (*) which

has a phase portrait like




In fact, let W(r) be a differentiable function ¢ : [0,») » [0,2]
such that W(x) =0 , #2 &€&,

w(0) = 2, P(t) € (1,2) if 0 <t < e, W(e) =0, W(t) € (0,1) if

! . . .
€ <t < 2e, and ‘%%J f.% . (Such a function exists). Define

2).

¢d(x,v) = w(fr2+y The system

x = -x3(1 - d(x,v)) - cb(x,.u).u3

v = 301 = 6lx,0)) - ¢(x,u)r3

is then a (6e + 2/&) ¢'_perturbation of x = —x>, v = -y°; and

this perturbed system has the phase portrait sketched above.
However, let »

i = f(x)

be a (DS) defined on an open subset U c R", which contains the origin 0.

Let O be an equilibrium point of ( S). Consider the matrix

af.
A= (55%(0))
J

If all the eigenvalues of A have a nonzero real part, then 0 is a
structurally stable equilibrium voint. Cf [15] 11.2

One can further prove that if M is a smooth differentiable
mani fold and (DS) a smooth dynamical system on M, with a globally
asymptotically stable equilibrium point e such that the matrix

%ﬁ (e) has no eigenvalues with zero real part, Where X = (x1, cons Ih)

is a smooth coordinate system for a neighbourhood of e in M, then

(DS) is structurally stable Cf. [15].

T. GROSS SUBSTITUTABILITY AND REVEALED PREFERENCES.

We again consider a t&tonnement process (T) defined on

Q= {(p1, ceey pn)lni > 0}. Almost the same arguments as in 5.l
give
T.1. Provnosition.

Let (T) satisfy (B), and suppose that

(i) (T) admits a modified Liapunov function

(ii) (T) has a globally attracting equilibrium voint.




Then this equilibrium point is globally asymptotically stable.

Now suppose that (T) satisfies (H). The orice vector p is
an equilibrium iffAp is an equilibrium, and £(Ap) = f(p). Therefore
we can and shall view the process as taking place on U,
2 2
1}.

U={(py, «eesp)lp, >0, p7+ ..o +p” =

(If we are only interested in equilibrium points and their stability
this does not matter; if one is also interested :in the time it takes
to get into the neighbourhood of an equilibrium point, this does
matter, however).

The commodities involved in the process (T) are said to be

strongly gross substitutes if:

the excess oemand Junckion  h(p) = (halp)y ---» halp)) :
o diffetenbiahfe

(s) at all points p € Q and

oh.

—% >0 for all i # j
Bpj

T.2. Theorem.

Let the process (T) satisfy (B), (H), (E) and (S). Then (T) has
a globally asymptotically stable equilibrium point.
Proof. Arrow, Block, Hurwicz [3] show that under this condition there
is precisely one (up to scalaf multiples) equilibrium price vector

* % %*
(p1a ceey ’,On), Di > 0.

Uzawa [T], then proves that the function Ap) = max

is a modified Liapunov function for (T). It follows that{

P.
A (p) = mar EJ;- 1 is a global Liapunov function, which proves T.2. its[
SIS A

We now examine;vas in [IT] a process
X : =0
) 3. ={0 if p; =0, f;(p) <0
fi(p) otherwise
f. .h.
1(1r>) rlhl(p)

where the r, are positive numbers (speeds of adjustment). The weak




axiom of revealed preference says

* n oy
(RP) p h(p) = ¥ p:h (o) >0
j=o *

*
for all equilibria p and nonequilibria p

T.3. Theorem.

(i)  If the process (T*) satisfies (#), (E), (W), (B), (PR) then

(T*) has a pointwise attracting equilibrium set E.

(ii) Every e € E is stable.

(iii) If T* has only finitely many equilibrium points I, then it
has precisely one equilibriumApoint vhich is globally

asymptotically stable.

Proof. (i) is proved by Uzawa. He shows that the function

*x
¢ ,(p) = ¥ il (pi - pi)e (p* a fixed equilibrium point) is a
i=1 i

-~

modified Liapunov function for all p*. This implies (ii). The condition
of (iii) makes of course no sense if we consider (T*) as a process

on . Because of (W) and (H), however, we can just as well examine
" the behaviour of (T )onA={pe€s™ 1lp >0 (éﬁ“% {p € s 1|p > 0})

The space A is connected, i.e. it can not be written as the union of

two relatively open disjoint subsets of A. Let E be finite. For each

e € E, we define U, = p° € A] %ig p(t3p°) = e} . Then U is open.

We proceed to prove this. The function d(p,p') = v Z ——(p - ,{)2
i=1% i

is a metric on U. Tt follows that if po € A, is such that

a(p°,e) < a(p°,e ');e' € E e} then 1im p(t;p°) = e. Thus every
oo ‘

e € E has a small open neighbourhood VP such that 1lim p@f;po) =
irp® € Ve. (We have therefore shown tﬁat the poin%;mé € E are all
asymntotically stable).

Now let p° € U,. There exists a t, such that n(t sp°) € A

Because p(t 0°) is a continuous function of p and V is open, there

exists a nelghbourhood V of n such that v(t sP ) € V for all p €V,

but then lim n(t;p ) = e. This oroves that all the U, are open. However,
t->0

because of (i) we have U U = A, and of course U N U , = ¢
e€E © € ©




if e # e'. This contradicts the fact that A is connected, unlesg
E = {e}. q.e.d.

Remarks.1. Part (iii) of this theorem can also be formulated as:
if there are finitely many equilibrium rays of (T*)
then there is precisely one equilibrium ray, which is
globally asymptotically stable.

Without the requirement that E be finite one can show

that E must be connected.

8. STABILITY UNDER REPEATED DISTURBANCES.

Let (DS) be a dynamical system on M < R". As in 4.2 we consider

disturbed motions xnert(t;xo) under a sequence of disturbances of
magnitudes Uy Upy wes occurring at times 0 < t1 < t2 < veus

Let X be an asymptotically stable equilibrium point of ( S). Let

U= {x° € M|1in x(t;x°) = X}. Then U is open in M. (If % is globally

asymntoticali;wstable U = M). There is a Liapunov function ® defined

on U,

| A Liapunov function ¢ is a kind of generalized emergy function.

It is therefore not unreasonable (especially if ¢ arises in a natural

way) to measure the boundedness of the disturbances in terms of &.

. . 0] . .
Given ¢ > 0, we define SP o 88 the family of those disturbances
b N

(t1, t2,...; Uy, u2,...), such that

3 u, < ¢
t<t. <7 YT

—-1—_

The u. give the magnitude of the disturbance at time ti §n terms of 9.

) o\ . . .
Thus if xbert(t;x ) is the disturbed motion one has

0 <t <t (t5x°) = x(t;2°)

Ibert

t = (t1;xp)= 1; , where ¢(x1) - @(x(t1;xp)) = U,

xbert
. o - . 1
< gmﬂfhx) ﬂt41d)
.0y _ 2 2 R _
%ert(t')x ) X » Where Q(I ) - Q(x(tz‘t1~x )) - LL2

X opt (£32°) x(t-tgzxz)




Let ¥V <« U. We define e; as

e- = sup {d| x €M, &(x) - max ®(¢y) < 4 = x € U}
v ' VEY

Note that there always exist V in U, such that e; > 0.

To prove theorems we need a slightly better situation then just
a Liapunov function on U. We need a differentiable Liapunov function.
Fortunately these always exist under very mild conditions. For instance
when f satisfies a global Lipschitz condition on M, there is a
differentiable Liapunov function on U. Cf. [T].

If £ is differentiable in a neighbourhood W of X, there is a

U c W such that 0 « W and f satisfies a Lipschitz condition on U.

8.1. Theorem.

Let (DS) a dynamical system on M, ¥ an asymptotically stable
equilibrium noint of M and ® a differentiable Liapunov function
defined on an open neighbourhood U of X such that T is compact.

Then for every compact ¥ such that e? > 0, every € > 0,and every
T > O there exist c¢',c" and t' > 0, t" > 0 such that

(i) % (£:x°)) < e for t >

nert —_
(ii) | (£52°) - %] <e  for t > "

for all x° € ¥ and all disturbances of éz o! in case (i)
9

ba
pert

. D . ..
and all disturbances of ST o in case (ii).
b

Proof. Part(ii) follows from part (i) by choosing a 8 >0 such
. o . O b
that o(x . (t:x°)) < & =» prert(t.x ) - x|| < € and then
applying part (i) with § instead of €. Tt remains to prove (i).
Let Ae = {x € Mlo(x) = €}. Tf ¢ is small enough A_ is cdntained
in W € 17 where W = {x € M3y € T, &(x) < ®(y)}. For each 0 < g'< ¢ ,
let B_, = {x € M|6(x) < '} and Uor = {x € M|o(x) < €'}, Choose
e < ey Let We = {x € M3y € &, o(x) -0(y) < e} .

o = d (o]
P € - = .
or each x € we Ue." It d(x(t:x))(0) < 0. Let

- a .0 0 -
A= ?ié 3¢ ®lx(t5x7))(0), x° € WS U,

Then X < 0, because ﬁe N U, is comvact.

Recause e < e, We c U. During each interval [£, € + T] the loss




in ® due to the undisturbed motions occurring is at least -

SAT i ;x° ins in ®#_SNU_,.
AT if Inert(t’x ) remains in . .

We take

¢' < min {e - €', -AT, e} =c

Then X (t:x°) remains in any case in W_, if x° € ¥. And
pert e

T.y° - g .0 _ ot
@(xnert(t,x )) Q(xpert(t +T;x)) >c-c

unless <D(:cn (£:x°)) passes through U_, for some t* € [E, t + 7],

ert

but then x. (t:x°) € U_ for all t € [t*, t* + T]. This proves
pert €

the theoren.

8.2. Corollary (of the proof).

.° t.40
If xnert(t’ ) € UE' for some t, then xbert(t 3 X°) € U_ for

all t"i t.
Remarks.

1. If €' in the proof goes to zero, A > 0 (monotonically). An
optimum ¢' is obtained by taking €' such that € - €' = -AT,
2, If U =M, then the restriction ev > 0 in the theorem can

be removed.

If & is not a naturally arising function on M, it seems more
reasonable to put the bhoundedness conditions on the disturbances
in terms of the distances a point is moved bv a disturbance, as in L.1.
As before let U € M be a neighhourhood of X such that there is

a differentiable Liapunov function defined on U, and such that U

is compact. If V < U we define dv by

\
d, = sup falx € M and w € W, ||x - v]! <8= xE€ U}

where as before W = {

" always V such that W

8.3. Theorem.

Let (PS) be a dynamical system on M, X an asymptotically stable
equilibrium point of M and & a differentiable Liapunov function

defined on a neighbourhood U of % such that U is compact. Then

for every compact ¥V such that W < U and dV > 0, every € > 0




and every T > 0 there exist a K > 0 and a to > 0 such that

|x (£3x°) - X|| <€

pert

oIt

for all t > t _, all x° € V and all disturbances in Sp ¢

Proof. Let A_ = {x € M| ||x - x|| = €}. The set A_ is compact, and
A< W if € is small enough. Let ¢, = min 0(1) x €A

Then c, > 0. Now for each § let c (6) = max ®(x), x € BG’ where

= {x €M |]x -X|| <8} Let U(,; {xEMI llx - %|| < 8}.

Choose a< dv, and let W e mlay € W, ||x-v]|| <al}.

a-

For all x € W_ ~ Us » and all tangent directions v to M in x,

) d
Il vll =1,

9
5§¢(x) <0

Let U = max |5$¢(x)!, x € Wd N U, [ly]] = 1, v tengent to M in x.

Then 4 > 0. As § -+ 0,c2(6) + 03 choose some § such that c2(6) < ey

As in the proof of 8.1 let A = max %€(¢(x(t;xo)), x°% € Wd ~ Use Then

also A <0. We have |&(x) - &(x")| < |u] ||x- x'||. Choose

K < min {4, u-1(c - c2(6)), —u“1XT} =

1

. . oy . ..
Then for every disturbance in ST,K’ xbert(t’x ) will remain in

Wd’ if x° € V. The loss in & during the undisturbed parts of motion

during interval [t, t + T] is at least -AT if X per (t;xo) remains
in Wd ~ U6 The gain due to dlsturbances is at most pK. Thus during
. N |
every interval [t, t + ™ ], & will diminish along x ( tsx 0y by at least
- AT - uK > u(K' - K)

unless Ibert(tzro) passes through Ug during [, £ + T1 , but if

X

* 0 .40 x 4%
10ert(t , X ) € Ug, then xpert(t,x ) € U, for all t € [t*, t* + T]. g.e.d.

8.4, Corollary (of the proof).

0 %
Ifx nert(t ,x”) € Ug then X L (£,2°) €U for all t > ¢




Remarks.

1. As 8§ + 0, c2(5) + 0 (monotonically) and A - 0 (monotonically).

An optimal K' is found by taking & such that c, - c?(ﬁ) = \T.

2., If U =M, the condition dY > 0 can be removed.

9. FXTSTENCE OF POSITIVE EQUILIBRIUM VECTORS.

In theorems on stebility, those of nr. T e.g., the condition
(E), that there be a positive equilibrium point repeatedly turns uv.
In this section we prove the existence of such an equilibrium
voint provided (P) and (W) are satisfied. (In fact one only needs
to have a disk-like compact invariant regim in Q). We need a
slightly stronger continuity condition on the solutions p(t3;p°)

of the dynamical system (DS):

(B") Condition (B) is satisfied and the function
p(t:p®) : M x R(> 0) + M is continuous as a

function of (t,p°)

This condition is e.g. satisfied if the function f of D
satisfies a global Lipschitz condition on M.
We define the n-dimensional ball D" (n dimensional

as D = { x €Rn]x?+ +x§< 1

9.1. Proposition.

Let (DS) be a dynamical system on M such that (B") is satisfied.

Suppose that M is homeomorphic to a disk. Then there is an

A
\

equilibrium point of (DS) in M. \

Proof. For each n € N, let fn : M > M be the function fn(I) = D(%#f)

Because M is homeomorphic to a disk, the Brouwer fixed vpoint

theorem can be appnlied to the maps £, Let X be a fixed point

of fn' The topological space M is compact (beihg homeomorphic

to a disk), therefore there exists a subsequence {Ik } of
n




x, which converges to a point X € M. We show that X is a fixed
point. Suppose not, then there exist a to > 0 and open neighbourhoods
V of X and V' of p(to; X) such that VN V' = @, The function p(-3;-) :

M x R( >0) + M is continuous, thus there exist a neighbourhood
Wc Vofxandad >0 such that p(t;x) € V' if |t - tol < § and
x €W,

Because lim X, = X , and lim %- = 0, there exists a kn ~= 3 such
nse® T n n*® n o

that
17 x. €W
J n

2° there is a multiple t, = —% of % such that ]t1 —»to| < 6§,

o

'We then have on the one hand that p(t1;xj) € V'. On the other hand
n

p(glng) = rj € W because xj is a fixed point of fj. A contradiction.
q.ed.

Now let @ = {p € Rn|pi > 0} and consider processes

(T') . . = h.(p) = £,(p)

or more generally

(T,.) B, = rh.(p) = £;(p), ¥, >0

Suppose that (W) is satisfied. Then prices move along. spheres

n p2
"1 2
).

2 . .
= r? ( resp. along ellipsoids I ;i =r

i

n
Ip
i=1 i=1"1

Now suppose that ( .) is satisfied on u.

Let ¢, 4 > 0 be numbers such that p € Uys 3 <cm= fi(p)‘z d.

Let A =\'&> €Ur bi >c¢,i=1, ..., n}. Then A is homeomorphic to

a(n-1)-disk provided ¢ is small ehough, and every solution starting

in A remains in A. We can therefore apply 9.1.We have proved




9.2. Theorem.

Let (Tr),defined on Q = {p € Rn|pi >0:i=1, ..., n},satisfy
(W). Then for every r such that (P) is satisfied on
u. = {n € Ol r .1n? re} there exists an equilibrium point on

Ur (which therefore has all prices positive).

If (Tr) satisfie8 (H) and (P) there is an equilibrium rag in Q.

9.3. Corollary.

Let (rn ) defined on © = {p € R |n‘ >0,1= 1,..., n} satisfy
~(W'). Then for every r such that (P) is satisfied on U = {p€ Q|2 ri1p§ér2]

" there exists an equilibrium voint in Ur with all prices positive.

Same Proof.




LIST OF (CONDITIONS ON) DYNAMICAL SYSTEMS.

P, is the price of commodity i (at a given moment in time);
hi(p1, cees pn) = hi(p) is the excess demand for commodity i
at prices Pys +oes Po3 fi(p) is a function such that
sien(fi(p)) = sign(hi(p); Sis is the emount of commodity j held
by the i-th individual. The systems congidered are
(ps) é = f(x) , x € Mc R?, f any continuous n-vectorvalued function
(vr)  p, = £;(p3s)

gij(p;s)
(T) ;=f(p), i=1,..,n

hi(p) =f(p),i=1,...,m

'fi(p) = rihi(p), r, >0, i=1, ..., n

0if p; =0 fi(P) = rihi(p) <0 o

s, . 20,1 =1, ..o,
rihi(p) fi(p) otherwise .
The conditions on systems considered are

For every x° € M, there exists a unique solution x(t;xp) of (PS)
x(t;x") € M for all t > 0 such that x(03x°) = x°. For a fixed

t > 0 x(t;x°) is a continuous function' of x°.
For every Io € M, there exists a unique solution.x(t;x') of (pS)
defined for all t € R passing through x° at time t = 0. For a

fixed t € R, x(t; ©) is a continuous function of x°

i

Condition (B) is satisfied and the function p(-3-); °
Mx R(2 0) + M, (t3p°) » p(t3;p°®) is continuous as a function
of (t,p°). '

? sij(t) =c

(] . ’ . - £
(this is a condition on (NT))




The function f is differentiable on A = {p € Sn—1lpi > 0},

i=1, ..., n} (a condition on (T) or (T'); .
"' = {p € R"|5pf = 1)

There exists a positive equilibrium price vector

p* = (D?, cees p;), p? >0 ,1i=1, ..ipn
hi(lp) = hi(ﬁ), for all A > 0,

There exist (small) constants ¢ > 0, 4 > 0 such that
. i < p. < ec.
fl(n) :_d if0<p, <ec
r*.h(p) = p?hi(p) > 0 for all equilibria . p* and nonequilibfia
hI

p.
The excess demand functions hi(p), i=1, ..., n are

dh

differentiable at all points p € Q and 551w(p) >0
J

for all i # j, p € Q.

? pihi(p) =0

? pihi(p) <
1
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