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1. INTRODUCTION

During the past ten years a great deal of research has been

focused on the development of optimal policies for stochastic control

systems. Nevertheless, econometricians have as yet paid relatively

little attention to using these methods for purposes of planning with

macro-economic models. Econometric research in this area has primarily

been concerned with planning by means of completely deterministic

models or models with known multipliers and stochastic disturbances.

Research which is directed towards models with incompletely known

multipliers is very scarce and, as far as it exists, almost exclusively

concerned with one-period decision problems.
1 
To the present authors'

knowledge the work by Aoki (1967) constitutes the only exception to this

rule.

The purpose of the present paper is to investigate whether optimal

control policies can be derived for multi-period macro-economic planning

problems when the multipliers of the underlying econometric model are not

known with certainty. For reasons of notational convenience we confine

ourselves to a two-period decision problem but generalization to any

finite number of periods is straightforward. Unfortunately our problem

1
See, e.g. W.D. Fisher 1962)3Zellner and Chetty (1965), and Harkema
and Kloek (1969).
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will prove to be insoluble unless one is willing to make an approximation.

This approximation implies that in calculating the first-period decision

of a multi-period decision problem we neglect the fact that in each

period additional information will be obtained about the true values of

the multipliers of the model. Of course, this does not mean that we

completely neglect the fact that information will become available in later

periods. We still take into account that decisions in later periods will be

influenced by the realized values of the variables in the preceding

periods.

The order of discussion is as follows. In Subsection 2.1 we present

the problem and give a summary review of the basic elements of a two-

period decision problem under uncertainty. In Subsection 2.2 we derive

an optimal strategy by application of the well-known principle of backwards

induction while Subsection 2.3 exemplifies the difficulties involved

in the numerical computation of the optimal first-period decision. In

Section 3 we present an approximate solution to our problem and indicate

how the approach may be generalized to a larger number of periods.

Finally, in Section 4 we summarize our findings and present some suggestions

for future research in this area.

2. STATEMENT OF THE PROBLEM AND ITS SOLUTION

2.1. Basic Elements of the Decision Problem

In this paper we shall be concerned with a macro-economic decision

maker who wants to optimize the values of a number of target variables

yti 
(i = 1, ..., m) in each of two successive periods t (t = 1, 2). The

values of the target variables in each period t are supposed to be

generated by the following system of linear equations

( 2 . ) y
t 
= Hu

t 
+ Et t = 1,

where yt denotes an m-dimensional vector of endogenous variables, ut an

n-dimensional vector of predetermined variables, Et an m-dimensional vector
of disturbances, and II a real-valued matrix of reduced-form coefficients

of order m x n. After partitioning the vector of predetermined variables

u
t' 

the system (2.1) may also be written as
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(2.2) Yt = nlYt-1 n2zt n3zt-1 nitwt n5wt-1 116x

where z denotes a p-dimensional vector of instrument variables,

w
t 
a q-dimensional vector of non-controlled exogenous variables,

x
t 

an r-dimensional vector of known exogenous variables and

(2.3) u = [y' z' w' w'
t-1 t t-1 t t-1

n = [111 112 113 n 115 116]

The vectors of disturbances (t = 1, 2) are supposed to satisfy the

following assumptions:

(i) the distribution of &t is independent of t and ut; its

distribution is normal with zero mean and positive-definite variance-

covariance matrix Q

(ii) the random variables &1 and &2 are independently distributed.

Moreover, we shall assume that the decision maker's preferences

with respect to the values of the target variables and the instrument

variables in each period t (t = 1, 2) can be represented by a quadratic

loss function of the following type
2

(2.4)

with

ay(2) b,z(2) ii(y(2)

• (y(2)),cz(2) • (z(2)),c,y(2) (y(2) ,(2)

▪ (w(2)),D,y(2) (z(2)),Ew(2) tw(2) z(2)1

Cy
(2) 

[Y'Y'] = [Y111mY21 Y2m]1 2

(z(2)), = [z'1z'] [7.11 z z z
2p
]2 1p 21

(2)
= Ewlw2] = [1711 w1q 

w 
21 

. w
2q

2
Note that since the variables w

(2)
and x

(2) 
camot be influenced by

a specific choice of the instrument variables z , no linear and qua-
dratic terms. in these variables are included in the loss function.
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and where a and b denote real-valued vectors of orders 2m and 2p,

while A, B, C, D, and E are real-valued matrices of orders 2m x 2m,

2p x 2p, 2m x 2p, 2m x 2q, and 2p x 2q, respectively.
2a

Our problem now consists of devising an optimal strategy, i.e.,

a pair of decision functions z1, 
z
2 
- where z° (t = 1, 2) is a function

0 0

of all information available at the beginning of period t - such that

the mathematical expectation of the loss function (2.4) is minimized.

Before proceeding to the solution procedure it may, however, be

worthwhile to give a more formal statement of the basic elements of

our decision problem. These basic elements are:

(i) a pair of act spaces At (t = 1, 2) where At contains all

admissible values of the instrument variables z
t 

in period t (t = 1,

(ii) a parameter space P containing all possible values of the

parameters of the econometric model (2.1), i.e., all possible values

of the matrix of reduced-form coefficients II and all admissible values

-1
of Q , the covariance matrix of the disturbances;

(iii) a pair of future event spaces Ft = 1, 2) where Ft contains

all conceivable values of the non-controlled exogenous variables wt and

disturbances
t 

in period t;

(iv) a pair of complete state spaces Ct (t = 1, 2) where each Ct

is defined as the Cartesian product space P x Ft. The decision maker

believes that the consequence of adopting a particular strategy (i.e. a

particular set of values for the instrument variables zt (t = 1, 2))

depends on the "states of the world" P x Ft 
which he can not predict

2);

with certainty;

(v) a pair of reduced state spaces R
t 
(t = 1, 2) where Rt 

contains

the potential values of all observable variables in period t which are

unknown at the beginning of that period. In the present case Rt consists

of all potential values of the endogenous variables yt and the non-

controlled exogenous variables wt in period t. The reason for defining

a pair of reduced state spaces Rt in addition to the pair of complete

state spaces C. is that most loss functions in planning problems contain

observable variables only;

2fligithout loss of generality A and B will be assumed to be symmetric.



(vi) a loss function (see (2.4)) defined on the Cartesian product

space Al x A2 x R1 x R2. The decision maker assigns a loss to choosing

a particular strategy and then finding that particular elements of the

reduced state spaces Rt (t = 1, 2) obtain;

(vii) an initial probability distribution fo (H, 0 on the

parameter space P. For reasons of mathematical tractability we shall

take as our initial probability distribution a so-called matrix

Normal-Wishart distribution with parameters 110, Se,. 
N, and X0.

3 
The

density function corresponding with this distribution is given by

(2.5)

f0(11 S N A0) .=
0' 0" 

linI N013m

(21r)h1

1S01 1A° IQI

exp {-i tr P[H - Ho]No[H -

i(A0—m-1)
exp {-3 tr 00}

2ixoni„4m( ) mm r[i(x
o 

1 -
i=1

Multiplying this initial probability distribution with the likelihood
-

function of the vector y, it can be proved that the distribution

f1(fl, 0 I y1' w1' z1) 
which expresses the information about ( H, 0)

at the beginning of the second period is again a matrix Normal-Wishart
-

distribution with parameters H
(1)
, 

(1) 
s
(1), 

N
(I) 

and X , where

(2.6)

3

(1) 
= , (1) -1

Yiui][N

N
(1) 

= N + u ut
0 1 1

X
(I) 

= 
Xo 

+ 1

S
(1) 

= + n n' + y Yt0 0 0 1 1

In this paper we shall take it for granted that the information about
the parameters of the econometric model (2.1) can be expressed by a
matrix Normal-Wishart distribution. A detailed discussion about the
question as to how prior and sample information about structures
of econometric equations systems may .be combined in order to yield
a matrix Normal-Wishart distribution on the parameter. space P may be
found in Harkema (1971).

See, e.g., Harkema (1971), Chapter 2.



and

y' = [y
11 • 

y
1m
]1

u = [11
11 

u
1n
]1

(viii) a probability distribution on the Cartesian product space

F
1 

x F
2 

which expresses the ideas of the decision maker about the

growth patterns of the non-controlled exogenous variables and about

the disturbances in the periods 1 and 2. It will be assumed that the

vector of non-controlled exogenous variables [w
(2)
] = [v'v'] and the1 2

vector of disturbances
(2) 

= [CC] are statistically independent.1 2
From the normality assumption about the disturbances it then follows

that the distribution on F
1 

x F
2 
is most conveniently expressed as

(2)the product of the distribution of [w times a normal distribution
-1of [C

(2)
P, conditional upon the unknown covariance matrix 0 . For

the time being we shall not be specific about the shape of the

distribution of [w(2)], but only suppose it to have first and second

moments.

2.2. A Solution la Backwards Induction

An optimal strategy can now be calculated by application of the

well-known principle of backwards induction.5 The first step of this
solution procedure consists of minimizing the conditional expectation

of the loss function (2.4), given each possible set of values of the

vectors yl, wl and zl. In order to compute this conditional

expectation we first derive the conditional distribution 1'1(11,2 I w1
w
2'
given v

1' 
from the joint density of If

1 
and w

2 
specified under

(viii). Next, we assign a conditional probability distribution to

the complete state space C,, given the values of yi, wi, and zi,

by means of the formula
6 `

C2' 
W2 

II,fl 1 5r1, w1
( 2.7 )

I 5r1 w1 z1

5 See Raiffa and Schlaifer (1961), pp. 7-11.
6

Note that wo is assumed to be independently distributed of II, 0, yl
and z1 ' whtle E 2 is assumed to be independently distributed ofw
1' y1' 

and z1.
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Having calculated this distribution we can derive the conditional

distribution f1(y2, w2 I yl, wl, z1) on the reduced state space R2

by means of the relations (2.2). The conditional expectation of

L2,given yl, Nil, and zl, is thenfound by integrating (2.4) with respect

to the conditional distribution f1( y
2' w21 

I yl, 141, z1). Minimizing

the conditional expectation of Lvgiven yl, wl, and zl, with respect
0to z

2' 
we obtain the optimal value z

2 
of the vector of instrument

variables in period 2, given each possible set of values of yl, w and
0zl. Substitution of the expression for z2 into the conditional

expectation of I given yl, wl, and zl, yields

(2.8) A
1
= min {E(L I Y

z
2

1, 
z
1)}

where A
1 
represents the minimum expected loss at the beginning of the

seCond period for each possible set of values of yl, w1, and zl.
0

Evidently z
2 

as well as A
I 
are functions of y w

l' 
and z

1 
and since

0yi and wl are random variables3z2 and A I are random variables as well.

In the second step of the solution procedure we have to derive the
0optimal value z
1 of the vector of instrument variables in the first

period. Applying the same procedure as in the first step we now have

to minimize the mathematical expectation of A
l' 

given the information

available at the beginning of the first period. So now we start with

computing the marginal distribution of wl from the joint density specified

under (viii). Next, we assign a probability distribution to the complete

state space C1 by means of the formula

(2.9)
ci

= 
f( 

)1IU I Of0(11 9 Q I no, N X
0 
)

0 0' 

From this distribution we then derive the distribution f
0
(y w

1
) on the

reduced state space R1 by means of the relations (2.2). Integrating Al

with respect to the distribution of yl and wl we obtain the mathematical
expectation of Al. After minimizing this mathematical expectation with

0respect to zl, we find the optimal value zi of the vector of instrument
0variables in the first period. Substitution of the expression for zi

into the mathematical expectation of Al yields

••••



(2.10) A = min {E(A )}
0 

z 
1

1

which represents the minimum expected loss for our decision problem,

given the information available at the beginning of the first period.

2.3. An Illustration of Some Computational Difficulties

It will be clear that the solution procedure outlined above may

be generalized so as to include any finite number of periods.

Unfortunately, however, practical application of this solution procedure

runs up against serious difficulties. These difficulties may be

illustrated by means of the following simple example. Suppose a

decision maker wants to optimize the values of a (scalar) target

variable yt in each of two successive periods t *(t = 1, 2). The values

of his target variable in each period t are supposed to be generated

by the following single-equation model

(2.11) y
t 
= n

l
y
t-1 

+ z = n'u
t + t

where yt denotes a scalar target variable, zt a scalar instrument

variable and Et a disturbance term. The disturbances El and E2 are

supposed to be independently and normally distributed, each with zero

mean and variance w
-1
. Moreover we shall assume that the decision maker's

initial probability distribution of Or, 0 is Normal-gamma7 with

parameters no, so, No, and A
0

(2.12) f (n w I s N
0 0' 0'

w exp {-1w(IT wo)
w0)1(43A(ri 

exp {-icoX
0 
s
0 
}

The distributionf1(n,wly 
1' z1

) which expresses the decision maker's

knowledge about IT and w at the beginning of the second period is then

al s N
(1)so Normal-gamma with parameters w

(1) (1)
, and A

(1) 
where

7 See Raiffa and Schlaifer (1961) pp. 318-319 and note that the Normal-
gamma distribution is just a specific case of the matrix Normal-
Wishart distribution defined in (2.5).



(2.13)

and

n(1) = [11(1)]-1{N0 0 71. + u1 y1 }

N(1) = N + u u1

x(1 +1

s(1) = {X0 s0 + n'N0 n0 + y
2 - En(1)PN(1) 

(1)} A 1)
0  1

u = Cy
1 0

Finally we shall suppose that the decision maker's preferences can be

represented by a quadratic loss function of the following shape

(2.14)

where

(2) (2) i , (2)% (2)
+ b'z + 2{ky PAy +

+ (z(2))'Bz(2)}

(5r
(2) 

= Cy (z(2) = [z 11 

In order to calculate an optimal strategy we start with assigning

a joint probability distribution to E2, w, and w, given all information

available at the beginning of the second period, i.e., the values of yl

and zl. Analogous to (2.7) we now define

(2.15)

f(C2
3

w
2 
exp

I w)fl(n, yl, z

1
2 1 1)

exp {-i X
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which is again a Normal-gamma distribution. Next, we have to calculate

the conditional distribution of y2, given yl and zl. A convenient

procedure to derive this distribution runs as follows. We start with

computing the conditional distribution of E2 and it, given w, yl, and z1.

From (2.15) it is easily seen that this distribution is normal with

(2.16)

E[E29

V[&29

it,

it,

w' Y1' z1] = [0
1) t

-1[1 01_iw, y
1' 

z
1
] = w

0 N
(1)

From the model as specified in (2.11) we then obtain that the

conditional distribution of y
2' 

given w, y
l' 

and zl, is also normal
with

•

(2.17)
E[Y2 z =a),

1 2

VEy2 I w, z
1 

w
-1
[1 + i'(11(2

Multiplying the conditional distribution of y2, given w, yl, and
with the marginal distribution of w, given yl and zl, - which may
be found in the last line of (2.15) we find that the conditional

distribution of y and w, given y, and z., is Normal-gamma with2
parameters 1247r ,s [1 + u2(N ) u2 ] , and A . On
integrating this distribution with respeot to w we finally obtain

that the conditional distribution of y given y and z is1
Student

8 
with parameters uL7r

to
, 1/{s

(3;[1 4. u20 Y u2]1, and A(1)
The conditional expectation9 of L2,given yl and zr, then follows from
integrating (2.14) with respect to the distribution of y2, given y

l
and z

1' 
This yields

8
See Raiffa and Schlaifer (1961) pp. 318.-32a,

9 We assume that the distribution of y
2' 

given y
1 
and z1, possesses

sufficient degrees of freedom to ensure the existence of first and.second moments.
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(2.18)

where

and

11

EU I 
2 

y z = (1) 

1 1 a2u2iir b
2 
z
2 
+

A(1)s(1)
+ ;A r (1)( (1)) u   f + u'(N(1))-1u 1] +- 22-11 2w 'w ', -2 A(1) 2 -1 2 2

A y u'
(1)

+ z2 + B z z + L11 2 22 2 12 1 2 1

= L =ay +bz + iA y2 + /B 21 1 1 1 1 11 1 2 11z1

On differentiating this expression with respect to z
2 
the optimal

0
value z

2 of z
2 
is found to be equal to

(2.19)

(1) 2
A
22 

A
(1)

s
(1)

DI
(1
) 
22

-1

= {A22 1: Z2

0 r 

72 j 

, j.
A(1) + x1322}

( [A n(1)7(1)
x {a2w2

1)  b2 22 1 2

+ B
12
z
1
1

(1) 12 (1) (1)
] A 0

A w(1)
12 2 ]y1

After inserting the expression for 2(2) into (2.18) and applying some

algebraic rearrangements, the minimum of the conditional expectation

of 12, given

(2.20

yl and 2
1' 

may be written as

= min {E(1121 yi, w
1' 

2
1)} =

22 (1) (1) (1) 12 0
n( 4. 

(1)(1) o 
4.22 1 2 z2 A22 

s [N ] Z2
iA WW= (al + a2

1) 
1 

+ iA 12w(1) 0
z2)Y1 + (b1 41 Es12z(2:1)z1 +2

+ + 

22

A x(1) 
s 
(1)

x(1) [N
(1)
]II + 2A10(11)Dr.21i[A

11 

A or(1))2 
4. 

22 
1 

- 
iA X(1)s(1) 

2
(1)

22  1 - 0 i 0

;1311z1 + x 
+ 2a2 

1,,
2 2 +(1) 

- 

2  -1)2z2
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In the second step of the solution procedure we have to calculate

the mathematical expectation of Ai, given all information available at

the beginning of the first period. Proceeding along the same lines

as before we now assign a joint probability distribution to El, IT,

and w by means of the formula

(2.21) f0(E 'Tr' f(C1 I w)f0(w' LU 
 I ni s

0' 
N
0' A0)

where fo(n, w I no, so, No, X0) has been defined in (2.12). Applying the

same procedure as in the first step of the solution procedure it then

follows that the marginal distribution of yl is again a Student
-distribution with parameters ulw 0o, 150[1 + ulN 1o ul]}, and Ao. In

order to calculate the mathematical expectation of Al, we now have

to integrate (2.20) with respect to the distribution of yl. At this

point, however, we are faced with serious difficulties. Since 7T
(1)

,
1)

s( and 
z2 
o 

(compare (2.13) and (2.19)) depend upon y
1' 

(2.20)

represents a rather complicated function of yl. To make this clear
it will be worthwhile to have a closer look at its last term b2

 
z. In
2 

terms of yl this last term may be written as

2 1 f0 t f1Y1 f 
Y2 

4' f3Y1 (2.22 b 

. 2
f4 f5Y1 j'6Y1

where the coefficients f. (i m 0, ..., 6) do not depend on yl but
represent rather intricate functions of the instrument variable zl.
For the time being integration of an expression like (2.22) with respect
to a Student distribution seems to go beyond our technical possibilities.
Thus at this point the solution procedure breaks down.

It may be interesting to note that a less negative result is obtained
when the loss function is assumed to be linear in the target variables.

0In that case we have A m 0 so that the expressions for z2 and A l reduce
to

(2.19*) 1 (1) • • 
,

.. w
2 

+ b
2 
+ B

12z1
z2 . 

B
22



*,

(2.2o)

(1) 0A
1 
= (a1 4' a2Tr1 )3r1+ (b1 21312z2/z1

z (1) 0 0

11 1 2a21T2 z2 ib2z2

13

As the elements of w
(1) 

(compare (2.13)) are linear functions of yl,

(2.20*) represents a quadratic function of yl and zl. So we may now

compute an optimal first-period decision along the same lines as in

the first step of the solution procedure for the more general problem

treated before. It must be stressed that even when the loss function is

linear in the target variables an optimal first-period decision can be

computed for a two-period decision problem only. Since (2.20k) is

quadratic in y
l' 

attempts to extend the analysis. to a larger number of

periods are bound to run into the same difficulties as met before.

From the preceding discussions it will be clear that the difficulties

arise• because of our inability to handle the fact that in each period

additional information will be obtained about the true values of the

reduced-form coefficients of the model. In the next section we shall present
therefore an approach which neglects this type of information. More

specifically, we shall assume that the uncertainty about the reduced-form
parameters is the same in each period and is expressed by means of

the initial probability distribution of the reduced-form parameters at the
beginning of the first period. Especially when the planning period

is not too long it may be hoped that the various probability distri-

butions which express our knowledge about the reduced-,form parameters

at the beginning of each period will not be very different. In such

cases the initial probability distribution of the reduced-form para-

meters may provide a reasonable substitute for the probability

distributions of the reduced-form parameters in later periods. Of course,
this does not mean that we completely neglect the fact that information
will become available in later periods. We still take into account the
fact that decisions in later periods may be influenced by the realized
values of the variables in the preceding periods.



3. AN APPROXIMATE SOLUTION

In the present section the solution procedure, as outlined

in the last paragraph of Section 2.3 will be carried out analytically.

Formally, the decision problem can be stated as
10

subject to

or equivalently

{min E
(y w ly w z )(ymin E

1'w1) z 2' 2 l' 1' 121 2

y
t 
= Hu

t 
+ Et (t = 1, 2)

y
t 
= lyt- + n

2
z
t 
+ilz +Hw+llw +nx+t-1 t 5 t.-1 6 t t

where L
2
is defined by (2.4).

Our first task will be to calculate the conditional density •

f1(Y2, 172 I Y1, 171, 21) on the reduced state space R2. As stated before

we are unable to handle the element of learning about the true values of

the reduced-form parameters (11, 0. Therefore, we assume that in each

period the uncertainty about the reduced-form parameters (H, Q) may be

approximated by means of the initial probability distribution defined

in (2.5), i.e.,

(3.2) z1) = f 0o

Adhering to the procedure described in Section 2.2, we then assign a
11probabilitYdistributiontothecom.pletestatespace C2 by defining

10

11

Note that we use the symbol Etaibl[c] to indicate the mathematical
expectation of c with respect` ' 'to the conditional distribution of
a, given b. So 

E(a/b) 
.[c] = fcf(a/b)da.

Later on it will turn out that we only need the first and second
moments of the conditional distribution f(w21 w1

) of w
2' 

given w
1' 

There-
fore we shall not explicitly specify this distribution.
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2' W2' w1, 1 
f1(ri, 12,w

2 
& 
2 
lw

1
) cc f(w

2
lw

1
) x

' 

(3.3) 101
3(n+1) 

exp {-i tr 0[11 -
0' 2

I I RAO-m-1) exp

N
o 

0

0 1

enw

In order to derive the conditional distribution of y2 and w2, given

yi, wi and zl, from (3.3) it appears to be convenient to switchto the

conditional distribution of II and &2, given 0, w2 and wi. It is easily

seen that the conditional distribution of the vector

h' =In
11 nmi Trimn&2m], given 0 w and w is normal with• 7r 1n&21' ' 2 1

0.10
EDI' I12, w2,

v[h 12, w2'

w 
n E ' 

011 ITO1n°' 
710m1. 0] h
Om1 

•

Omn 0

N0
E 

0 1 Haj

Rewriting the reduced-form equations (3.1) in the second period as
12

(3.5)

where

y = [I 0 (u*)1] h2 m 2

sz' z ' x'
2 1 

w w
2 1 2 

1]

it follows that the conditional distribution of y2, given 0, w2, yl, wl and

is again normal with

E[Y2 I 0, w2, Y1, v1,

1/[5r2 I 12, w2, yl, wl,

110 = 110u2

0 (14),]H0EIm 0 (12*)']'2

= [1 .4 .11,N-0111 2] 14-1 := 212 
-1

2 " -13

12
Arithmetic rules for Kronecker matrix products may be found in
Dhrymes (1970).



Multiplication of the above conditional distribution of y2 with the
marginal distribution of Q, the kernel of which may be found in the
last line of (3.3), yields

I w
2 

y , w , z1
1 1

cc

(3.T) (3.7) I 1 2 exp tr Q[y Rou2][y

Ii(X0-m-1) exp tr OS
0
}

n u xQ 2 2

By integrating this expression over all admissible values of Q, the
conditional distribution of y2, given w2, yl, wl and zl, can be
proved to be multivariate Student with parameters 110u2,

-1(A
0

 in + 1)S /
2
B and A - in + 1. The conditional distribution0  0

of y2 and w2, given yi, wl, and zl ,theafollows from multiplying the
conditional distribution of y

2' 
given w

2' 
y
1' w1' 

and z
1, 

with the
conditional distribution f(w21w1) of w2,given

13 
.
1A convenient way of calculating the conditional expectation

of the loss function L2,given yl, wl, and zl, is provided by the
well-known formula

(3.8) [1,1E =(y
2' 

w
2
lyw z

1
) (w

2
lw

1
) (y

2
lw
2'
y
1
,w ) Cr

As the first and second moments of the distribution of y2, given w2,
yl, wl and zl, are given by

14

(3.9)
E[Y2 1 w2'

w
1 ' 

z
1
] = u

02

a
1 411 u u'IT' 
w •y w z2' 1' 1 

1]=  
- 1 0 2 2 0

13 
It is assumed that the conditional distribution of w

2' 
given wis independent of yl and zl.

14
See Raiffa and Schlaifer (1961), pp, 256-257.



it is easily seen that

E(y

(3.10

'w1'z1) 
= a2r10u2 + qz2 -q-{aupo u2

uPIA22110u2

2y1A12110u2 zp22z2 + 2z1B12z2 +

+ 2y

with

and where

y'C z + 2u 1 11 1 C z + z1 12 2 0 21 2 0 22 2

D
122 

2u1 11 1D w
1 
+ 2u1 11 1D

22 
w
2 
+ 2z 1E

12 
w + 2z1E w2 0 21 2 0 1 2 21 1

w } + L
1 
+ k2 2 

L = a1y + b 1z + 3{y'A y + 1B z + y 1 C z1 1 1 1 1 11 1 11 1 11 1

+ z'C' y + y'D w + w 1D 1 + z1E w + v'E' z1 11 1 1 11 1 1 11 1 11 1 1 11 1

tr(A22S0)
a -

A - m - 1
0

and k denotes a known but irrelevant constant.

In order to determine the conditional expectation of the loss

function 1,2,given yl, 171 and zi, we only need to know the first and

second moments of the conditional distribution of 1/2, given w. We

will assume that the decision maker's ideas about the growth patterns

of the non-controlled exogenous variables can be represented by

(3.11)

E[i2 I 1,71] = rv1 a ia2

E[w w' v1] = W AW2 21 1

where W1, r, and A denote real-valued diagonal matrices of orders q x q. The
diagonal elements of W1 are the values v1 (i = 1, ..., q) of the non-

controlled exogenous variables in the first period; the diagonal elements

of r and A represent the means and second moments of the probability
distributions which represent the decision maker's ideas about the growth
rates of the non-controlled exogenous variables.
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The conditional expectation of the loss function L2 given yl, wi and

then equals

E(Y 'w IY1'w1,z2 2 1

-1-N
= 

02 
+ biz

2 
+ ;-{a tr (N

2
)

o 
U

2 2 

(3.12) + tr (nA2211002) 
2 

_
",y 1 C

+ 231Al2/1 u 
+ zB 

1 12
z 
2 
+ 2

22
z 
2 
+ 2zB 

1 12
z 
2

+ 211C
21 
z
1 
+ ll'C

22 
z
2 
+ 

gy'D12 2 
W + 2ll'D21 

w1 
+ 2 tr (1I'D

22 
;2 )

2 0 2 0 1 2 0 0  4.

+ 
2 1 2z1E12 2 

ir + 2z'E
21 
w
1 
+ 2z'E

2 
sitr } + L

1 
+ k 

2 

where

= E

(3.13)

xt]
11170

[u
2
] = [y' z' V'

1 2 1 2,

1w 1P2

62U

_
-2 

- , -,
. • •• •. • y y' Y w Y w' x'

11 
• 

• 16 1 1 1 2 1 2 1 1 1 2

• z
21 
y' z

2 
z' z

2
z! z W' z w' z

2 
x'

. . 2 2 2 2 1  2

. . 1= ziyi z z' z
1 

z lir' z w' z x'
1 2 1 2 1 1 1 2. .

w z w
2
z
1 
EN w' ] 177 ' 

2 2 2
w 
1 

W 2X 
2

• 
.

14. y' , w z' w 1771 w w' w x'
1 1 1 2 1 1 1 2 1 1 1 2

-2 -2 
U61

x2y1 x , ,z' x z' x W' x w' I • • • • 
• • • U66 2 2 2 1 2 2 2 1 2 2- - _

and

= -2
• "41 * • * • U46]

The next step in our solution procedure consists of minimizing (3.12)

with respect to the vector z2. In order to find this minimum we will

differentiate (3.12) with respect to z2, where it must be noted that

z
2 
is also a subvector of a

2
. This yields the following first-order

conditions



02a2 + + (a21 + H' A H + C' + IP A + C' H0 02 22 01 12 02 21 22 01)y 1

2
a + + 8

2 
+ H + C' )z + (aN

23 
+ II' A H0 2 2 22 02 2 0  02 22 03

(3.14) + B + 11 1 C + C' n )z + (aN24 +
02 22

+ E
22 

+ H' D + C'12 02 21 
2031 
  0 22 22

+ (aNg 'AR +E+ nip+ ci0 2 05 21 02 21 22 0

+ (aN
26
o 

+ 11
02
' 

A22 
+ C

22 6
)x
2 
= 0

where the N2
0j ..., 6) denote the appropriate submatrices of

N
-1 

=
0

1 I
NO 

• • • •

•

16-

• •

61 '66N
0 N

o

Thus the second-period optimal values of the decision variables z2 are given
by

(3.15)

where

0
z
2 
= + P

2
y
1 
+ Q

2
z
1 
+ R
i
w
l

2 
= -F-/ [II'

2 
a
2 
+ b

2 
+ (K2 + C 

06
_iLIff )x2 0 26 22-

[41 4. C12 + 1102A21 C2i101]

[K2 + B' + C + C' n23 12 21 22 03

R = -F
-1 1..„2

L + K
2 

r + E
21 

+ E
2 D r +2 2 25 e4 nO2D21 2 22

C2211615 c21101-vr]
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F
- 
= K

2 
+ B + R' C + C' n2 22 22 02 22 22 02

K.. = aN
ij 

+ H'.A n .2.0 02. 22 00 (i, j = 1, ..., 6)

provided that the matrix of second-order derivatives is positive definite.

This matrix can be written as

[I

aN
22
0 

+ B
22 

C
22

C
22 

A
22 . 02

0Evidently, a sufficient but not necessary condition condition for z
2 

to be

optimal is that the matrix of the quadratic part of the loss function

is positive definite.
0 Substitution of the expression (3.15) for z2 into the conditional

expectation of L2,given yl, 1.11 and z1 yields

(3.16) A
1 
= min E

(y w ly w z
z
2 

2' 2 l' l' 1
[Lj

where 4
1 
represents the minimum expected loss at the beginning of the

second period for each possible set of values of y1,w1 and zl. Evidently

A l is a function of yl, wi and zl, and can be written in the following

Tom

(3.17)

* + (1I) z 1+3 {y ;AI iyi + z pei z + CI' Z

1+ z,(c*
1 )!y + w1i(Dfc 1 z

E* 

w1 111 1 + wt(Efc
1 
)'z

1 
} + k1 1 

where

(a* = a + a'(R
01 

+ R02P2) + b'P
2 
+ £

2
((2

21 +F2P2 
+n A

21 
+ ' + C

2 1
)1 1 2  1

+ x(41 + IC 2P2 + n A
1 
+ I

06
P 

C22 
P
2 
)

5 In fact, the present approach only requires the loss function to be
quadratic in at least one of the second-period target variables.



21

(b*P = b' + a'(1 +Q ) + + 2,'(K2 + F+ 11 1 C + B' + C' )
1 1 2 03 

11022 
2 2 2 23 

2Q2 
02 21 12 22 03

+11',c +11'
Ob 21 06

A* = A + K2 + P'F P + P'K2 + K2 P + P'C' +C P11 11 11 2 
22 

2 21 12 2 2 12 12 2

+ (11' + PH' )A + A' (II + H P ) + P'C' + H' C P
01 2 02 21 21 01 

02p + 
2 22 01 01 22 2

B* = B + K2 + Q'F Q + Q'K2 + K2 Q + Q'B' + B
11 11 33 2 2 2 2 23 32 2 2 12 

B12
 
Q2

+ (11' + WIP )c + c, (n + n ) + Q'C' n + c Q
03 20221 21 03 02 2 2 22 03 03 22 2

C* = C + K2 + P'F Q + P'K2 + K2 Q + P'B' + C Q
11 11 13 2 2 2 2 2 12 2 2 12 12 2

+ (11, + +
01 2 02 21 - 21

(11 
03 

+ 1102Q2) + PC
2 22

H 
03 

+ 1T 1C22Q2

D* =D
11 +D12 

r+ K2 + Kr + P'FR
2 
+K2

5 
p, + K2 r) + K2 R11 15 14 2 2 2 2 24 12 2

+ 1),(E
21 

+ E
22 
r) + c

12
R
2 
+ 

01 
(11 1 + P'H02' 

)(D21 
+ D

22 
r2 2 

+ A' (n + H r + HR) + P'C' (n + H ,r) + c R1(n + 
0 0224 2 22 05 04 01 22 2

E* = E + E r + K35 + K f2, r + Q'F R + ,, ie I. v2 r\ .4 K2 R
11 11 12 35 34 2 2 2 `'''2` 25 "24 32 2

(12(E21 E22r) B12R2 (nO3 Q2nt )(D21 D22r)

+ c, (n + n , 
02

T +-nR
2
) + Q'C' n H+ ,r) + ' C R21 05 04 222 05 014 03 22 2
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In the second step of the solution procedure we have to derive
0

the optimal value z
1 
of the vector of instrument variables in the

first period. Applying the same procedure as in the first step we

now have to minimize the mathematical expectation of A
l' 

given the

information at the beginning of the first period. Analogous to

(3.9) and (3.11) we now have

(3.18)

where

and

(3.19)

with

E[yiy; I wi, Yo' 1701

a = 1 + 'N
-1
u

1 0 1

W0 =

w
01

0

= w Aw
0- 0

0

w
0q-

E[yi Iw, yo, wo, zo] = Houi

f3 1SO
m 1 

+ H
0 
u
1 
u'H'

--  1 0

and where F and A are specified in (3.11). So the first-period optimal

decision is directlry given by

(3.20)

where

0
z =t 

+P1y0 
+Q

1
z +Rw1 1  0 1 0

t = -F-111 1 a* + b* + 
K11to 
, + ( 

1 
) o6n )x1 1 02 1 1 2 1 

1 f N13,
1 
= _F

1 
LK
21 

+ kC*
11 01



and

- 1
= -F

1
1 
[K
23 

+ (C*
103

]1 1 

R
1

23

-1= -F1 [(K24 + (10'1104 ill D* + E*1 
)F + K

25 
l +

02 11 1 

1F = K + B* + Et C* + (c 1)'n0222 11 02 11 11 02

1 ij= aN
o 

+ .ij 01 11 Oj
(i, j = 1, ..., 6)

(c*11 05

Generalization of this procedure to decision problems which involve more

than two periods is immediate, provided that the matrices in the quadratic

part of the loss function are band matrices. Suppose that our loss function

for T periods is given by

(3.21)

(T) (T) (T) (T).L
T 
= a'y + b' 

(T) 
+ 2{(y )'Ay (z

(T)
)'Bz

T

(T). (T) (T) (T) (T) (T)4. or )'Cz + (z Pc'y + (y )1Ew

6j(T)PD'y(T + (z(T))

where the matrices A, B, C, D, and E are

(3.22) A =

A
11 A

12

A
21

0 .

A
22 A

23 
0

0 A
32 

A
33

•

•
•

• • • • • •

,74T(T) + (.4(

• •

0

band matrices of the following form

AT-2,T-2 AT-2,T-1

AT_ 
1,T-2 AT-1 ,T-1

• 00 • • • • •
AT,T -1

while analogous specifications hold for B, C, D, and E.

Then our loss function can also be written as

•

•

AT-1,T

ATT
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LT =aTYT bTzT -“7TATTYT 
2y

-1AT-1,1YT

(3.23) + z'B z + 2z1 B
T TT T T-1 T-1,TzT 

24_ 1ET_,I,TwT +

+ 2z1,
TET,T-1wT-1 

+ 2z
T4,12T

w
T
1 + L

T-1

On calculating the mathematical expectation of (3.23) with respect to

the conditional distribution of yT, given w
T' 7T-1T-1' 

and zT..1, we

obtain an expression which is quite analogous to (3.10). So the

optimal value z
o 
of the instrument variables at the beginning of the

T-th period is found by replacing all appropriate superscripts and

subscripts 2 and 1 in formula (3.15) by T and T-1, respectively.

In the same way the minimum expected loss AT1 at the beginning of the.. 

T-th period may be derived by appropriate adjustment of formula (3.17).

Continuing in this way we can next derive the optimal value z° of the
T-1

instrument variables in periodT 1 and the corresponding minimum

expected loss AT..2. This procedure, which can be carried out on any

computer of sufficient size, finally yields the vectors and matrices

which determine the minimum expected loss A l at the beginning of the

second period. The optimal first-period decision is then given by (3.20).

When the matrices of the quadratic part of the loss function are not

of the form (3.22) we may of course apply the same procedure as outlined

before. In addition to 7
T-1' 

w
T-1' 

and 
zT-1' 

the optimal value z
o 
of

the instrument variables in the T-th period then turns out to depend

also on the values 
1
T_2 through yo, wT..2 through wo, and zT...2 through zo.

This implies that our formulas (3.15), (3.17), and (3.20) cannot simply be

generalized so as to include this case as well. Development of formulas

which cover this case is a straightforward, although rather tedious

affair which is outside the scope of the present paper.

4. CONCLUDING REMARKS

In this paper we have investigated whether optimal control policies

can be derived for multi-period macro-economic planning problems when

the multipliers of the underlying model are not known with certainty.

In this section we draw some conclusions and indicate possible directions

for future research.
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To start with, we found that one runs into insoluble computational

problems if one tries to handle the fact that in each period additional

information will be obtained about the true values of the reduced-form

parameters. It turned out that these problems can only be solved for

a two-period decision problem with a loss function which is linear

in the target variables.

We therefore followed an approach that neglects this type of

information. More specifically, we assumed that the uncertainty about

the reduced-form parameters is the same in each period and is expressed

by their initial probability distribution at the beginning of the first

period. Using this approximation we found that application of the

principle of backwards induction leads to a simple linear decision rule

for the first period decision.

Unfortunately we cannot be sure whether the initial probability

distribution of the reduced-form parameters provides a reasonable

substitute for the probability distributions in later periods. At any

rate, it may be hoped that, if the horizon of our planning problem

is short, the various probability distributions which express our

knowledge about the reduced-form parameters will not be very

different.

It might be worthwhile to do some research in this area with a

numerically specified model. In a two-period decision problem with

a loss function which is linear in the target variables, our approximate

solution can be compared numerically with the optimal solution as

described in Section 2.3.

For a general multi-period decision problem a simulation study

can be performed, in which decisions are derived by means of our

approximate solution procedure as well as Theil's certainty

equivalence approach. 
16 

First-period decisions can be calculated

numerically and then substituted into the model underlying our

decision problem. Subsequently first-period values for the endogenous

and non-controlled exogenous variables can be generated on a computer.

16
See Theil (1964).
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Second-period decisions can then be calculated by simple substitution

of the first-period values of the relevant variables into the second-

period decision rules. Continuing in this fashion one can calculate

decisions and generate values for the endogenous and non-controlled

exogenous variables in all periods. Substitution of these values

into the loss function yields a final loss for both our approximate

solution procedure and the certainty equivalence approach, which enables
one to compare these two methods.
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