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1. INTRODUCTION

During the past ten years a great deal of research has been
focused on the development of optimal policies for stochastic control
systems. Nevertheless, econometricians have as yet paid relatively
little attention to using these methods for purposes of planning with
macro-economic models. Econometric research in this area has primarily
been concerned with planning by means of completely deterministic |
models or models with known multipliers and stochastic disturbances.
Research which is directed towards models with incompletely known

multipliers is very scarce and, as far as it exists, almost exclusively

concerned with one-period decision problems.1 To the present authors'

knowledge the work by Aoki (196T) constitutes the only exception to this
rule.

The purpose of the present paper is to investigate whether optimal '
control policies can be derived for multi-period macro-economic planning
problems when the multipliers of the underlying econometric model are not
known with certainty. For reasons of notational convenienée we confine
ourselves to a two-period decision problem but generalization to any

finite number of periods is straightforward. Unfortunately our problem

! See, e.g. W.D. Fisher (1962), Zellner and Chetty (1965), and Harkema
and Kloek (1969).




will prove to be insoluble unless one is willing to make an approximation.
This approximation implies that in calculating the first-period decision

of a multi-period decision problem we neglect the fact that in each

period additional information will be obtained about the true values of
the multipliers of the model. Of course, this does not mean that we
completely neglect the fact that information will become available in later
periods. We still take into account that decisions in later periods will be
influenced by the realized values of the variables in the preceding
periods.

The order of discussion is as follows. In Subsection 2.1 we present
the problem and give a summary review of the basic elements of a two-
‘period decision problem under uncertainty. ..In Subsection 2.2 we derive ‘
an optimal strategy by application of the well-known principle of backwards
induction Wwhile Subsection 2.3 exemplifies the difficulties involved
in the numerical computation of the optimal first-period decision. In
Section 3 we present an apprdximate solution to our problem and indicate
how the approach may be generalized to a largér number of periods.

Finally, in Section I we summarize our findings and present some suggestions

for future research in this area.

2. STATEMENT OF THE PROBLEM AND ITS SOLUTION

2.1. Basic Elements of the Decision Problem

In this paper we shall be concerned with a macro-economic decision
maker who wants to optimize the values of a number of target variables
Yii (i =1, ..., m) in each of two successive periods t (t = 1, 2). The
values of the target variables in each period t are supposed to be

generated by the following system of linear equations

(2.1) yt=nu,c+gt , (t =1, 2)

where Ve denotes an m-dimensional vector of endogenous variables, u, an

n-dimensional vector of predetermined variables, Et'an m-dimensional vector

of disturbances, and I a real-valued matrix of reduced-form coefficients
of order m X n. After partitioning the vector of predetermined variables

u,, the system (2.1) may also be written as




(2:2) oy = Mgy g * Mpzy * Mgz g+ MWy + Ngwy g 4 Tgxg + 8

where z, denotes a p-dimensional vector of instrument variables,
v, & g-dimensional vector of non-controlled exogenous variables,

X, an r-dimensional vector of known exogenous variables and

t

' = '

The vectors of disturbances‘gt (t = 1, 2) are supposed to satisfy the
following assumptions: '

(1) the distribution of £y is independent of t and w3 its
distribution is normal with zero mean and positive-definite variance-
covariance matrix 0-1;

(ii) the random variables g, and £, are independently distributed.

Moreover, we shall assume that the decision maker's preferences
with respect to the values of the target variables and the instrument
variables in each period t (t = 1, 2) can be represented by a quadratic

loss function of the following type2
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Note that since the variables w(2) and x ca?egot be influenced by
a sp§c1f1c choice of the instrument variables z'“’, no linear and qua-
dratic terms in these variables are included in the loss function.




and where a and b denote real-valued vectors of orders 2m and 2p,

while A, B, C, D, and E are real-valued matrices of orders 2m x 2m,
— . 2a

2p x 2p, 2m x 2p, 2m x 2q, and 2p X 2q, respectively.

Our problem now consists of devising an optimal strategy, i.e.,

- where zg (t =1, 2) is a function

a pair of decision functions z?, zg

of all information available at the beginning of period t - such that

the mathematical expectation of the loss function (2.4) is minimized.
Before proceeding to the solution procedure it may, however, be

worthwhile to give a more formal statement of the basic elements of

our decision problem. These basic elements are:

(i) a pair of act spaces A (t = 1, 2) vwhere A contains all
admissible values of the instrument variables z, in period t (t = 1, 2);
(ii) a parameter space P containing all possible values of the

parameters of the econometric model (2.1), i.e., all possible values

of the matrix of reduced-form coefficients II and all admissible values

of 9-1, the covariance matrix of the disturbances;

(t = 1, 2) where F, contains

t t
all conceivable values of the non-controlled exogenous variables w£ and

(iii) a pair of future event spaces F

disturbances &t in period t;

(iv) a pair of complete state spaces Cy (t = 1, 2) where each Cy
is defined as the Cartesian product space P x Ft' The decision maker
believes that the consequence of adopting a particular strategy (i.e. a
& (t =1, 2))

depends on the "states of the yorld" P x F, which he can not predict

particular set of values for the instrument variables z

with certainty;

(v) a pair of reduced state spaces Ry (t = 1, 2) where R, contains
the potential values of all observable variables in period t which are
unknown at the beginning of that period. In the present case Rt consists
of all potential values of the endogenous variables Yy and the non-
controlled exogenous variables vy in period t. The reason for defining
a pair of reduced state spaces Rt in addition to the pair of complete
state spaces Ct is that most loss functions in planning problems contain

observable variables only;

28 . ' . . ‘
aw:.thout loss of generality A and B will be assumed to be symmetric.




(vi) a loss function (see (2.4)) defined on the Cartesian product
space A1 x A2 x R1 x R2. The decision meker assigns a loss to choosing
a particular strategy and then finding that particular elements of the
g (B=1, 2) obtein;

(vii) an initial probability distribution £ (n, @) on the

parameter space P. For reasons of mathematical tractability we shall

reduced state spaces R

take as our initial probability distribution a so-called matrix

. . . 3
Normal-Wishart distribution with parameters HO’ SO"NO’ and AO. The

density function corresponding with this distribution is given by

Aq) =

fo(H, Q | s Sg» Ng» Ag
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Multiplying this initial probability distribution with the likelihood
function of the vector y, it can be prr.i'\red’4 that the distribution
f1(H, Q | Yis Vqs z1) vhich expresses the information about ( I, Q)

at the beginning of the second period is again a matrix Normel-Wishart

n( (1) () g 2 ()

distribution with parameters , where

(1) (1)4-1

1
1 [nON0 +_y1u1][N

(1) N. + u,u'

N 0 171
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3 In this paper we shall take it for granted that the information about

the parameters of the econometric model (2.1) can be expressed by a
matrix Normal-Wishart distribution. A detailed discussion about the’
question as to how prior and sample information about structures

of econometric equations systems may be combined in order to yield
a matrix Normal-Wishart distribution on the parameter space P may be
found in Harkema (1971).

4 See, e.g., Harkema (1971), Chapter 2.
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(viii) a probability distribution on the Cartesian product space
F1 x F2 whiéh expresses the ideas of the decision maker about the
growth patterns of the non-controlled exogenous variasbles and about
the disturbances in the periods 1 and 2. It will be assumed that the
vector of non-controlled exogenous variables [w(a)]' = [w w ] and the
vector of disturbances [g( )]' = [g! 22] are statlstlcally 1ndependent.
From the normality assumptlon about the disturbances it then follows
that the distribution on F1 x F2 is most conveniently expressed as
the product of the dlstrlbutlon of [w(2)]' times a normal distribution
of [E( 1', conditional upon the unknown covariance matrix o '. For
the time being we shall not be specific about the shape of the
distribution of [w(2)]' but only suppose it to have first and second

moments.

2.2. A Solution by Backwards Induction

An optimal strategy can now be calculated by application of the
> The first step of this

solution procedure consists of minimizing the conditional expectation

well-known principle of backwards induction.

of the loss function (2.4), given each possible set of values of the
vectors y,, w, and z,. In order to compute this conditional “
expectation we first derlve the conditional distribution f (w [ w1 of
wg,glven Vs from the JOlnt density of v, and L speclfled under
(viii). Next, we asslgn a condltlonal probability distribution to

~ the complete state space 02, given the values of Yq» w1, and z

1?
by means of the formula

f1(£2’ Vas n, Q l y«‘a V1, 21) =

£0uy | wEe, | )0 (0 |y, vy, 2)

> See Raiffa and Schlaifer (1961), pp. T-11.

Note that w, is assumed to be 1ndependently distributed of 0N, Q, Y4
and z ’ whgle 52 is assumed to be independently distributed of

13 a y1: and 29




Having calculated this distribution we can derive the conditional
distribution f1(y2, v, |y1, LIT z1) on the reduced state space R2

by means of the relations (2.2). The conditional expectation of
L,sgiven Yys Wy, &nd z, is thenfound by inﬁegrating (2.4) with respect
to the conditional distribution f1( Yor Vo | ¥qs Wes z1). Minimizing
the conditional expectation of Lysgiven Yqis ¥qs and z,, with respect

to z,, We obtain the optimal value z, of the vector of instrument

2
variables in period 2, given each possible set of values of Yis ¥y and

Zy. Substitution of the expression for zg into the conditional

expectation of E! given Yis Wis and z,, yields

(2.8) | Ay = min {E(L2| Y15 ¥q> z1)}
%2

vhere A1 represents the minimum expected loss at the beginning of the

second period for each possible set of values of Yis ¥qo and Z,.

Evidently zg as well as A1 are fgnctions of Vi Vq» and z, and since

¥, and w, are random variables,zz and A1 are random variables as well.

In the second step of the solution procedure we have to derive the
optimal value z? of the vector of instrument variables in the first
period. Applying the same procedure as in the first step we now have
to minimize the mathematical expectation of A1, given the information
avallable at the beginning of the first period. So now we start with
computing the marginal distribution of w1 from the joint density specified
under (viii). Next, we assign a probability distribution to the complete
state space C1 by means of the formula

£ol £45 wys T, Q) =
(2.9)

= fo(v1)f(€1 | )£, (1, o | Mys Sgs Nys Ag)
From this distribution we then derive the distribution fo(y1, w1) on the
reduced state space R, by means of the relations (2.2). Integrating A,
with respect to the distribution of ¥, and v, we obtain the mathematical
expectation of A1. After minimizing this mathematical expectation with
respect to z,, we find the optimal value z? of the vector of instrument
variables in the first period. Substitution of the expression for zo

1
into the mathematical expectation of A1 yields




(2.10) o = min {E(A,)}
z
1
which represents the minimum expected loss for our decision problem,

given the information available at the beginning of the first period.

~2.3. An Illustration of Some Computational Difficulties

It will be clear that the solution procedure outlined above may
be generalized so as to include any finite number of periods.
Unfortunately, however, practical application of this solution procedure
’runs up against serious difficulties. These difficulties may be
illustrated by means of the following simple example. Suppose &
decision maker wants to optimize the values of a (scalar) target
variable Yy in each of two successive periods t (t = 1, 2). The values
of his target variable in each period t are supposed to be generated

by the following single-equation model
= !
(2.11) Yy = T¥e_q *ompzy * E, = m'u + gy (t =_1, 2)

where Yy denotes a scalar target variable, z, a scalar instrument

t
variable and £, 8 disturbance term. The disturbances £, and g, are

supposed to be independently and normally distributed, each with zero
mean and variance w-1. Moreover we shall assume that the decision maker's
T

initial probability distribution of (7, w) is Normal-gamma' with

parameters Tys Sg» N , and X

o’ ¢}
(2.12) fo(ﬂ, w l Tos So» NO’ ko) «

%X0-1

w exp {-3w(w - no)'No(n - no)}m

exp {-5wkoso}

A

The distribution f1(ﬂ, w | Yy z1) which expresses the decision maker's

knowledge about m and w at the beginning of the second period is then

also Normal-gamma with parameters w(1), 5(1), N(1) and A(1) where

T See Raiffa and Schlaifer (1961) pp. 318-319 and note that the Normal-

gamma distribution is just a specific case of the matrix Normal-
Wishart distribution defined in (2.5).




{loso + néNOno + y? . [n(1)]'N(1)ﬂ(1)}/k(1)

[y, 2] vy = ly,]

Finally we shall suppose that the decision maker's preferences can be

represented by a quadratic loss function of the following shape
Ly = ary® 4122 4 32y (®) 4

v (2(2))15,(2),

]

] (2(2))' = [21 z

(y(2))' = [Y1 ya 5

~ In order to calculate an optimal strategy we start with’assigning
a joint probability distribution to Eps T and w, given all information
available at the beginning of th§ second period, i.e., the values of ¥,
and z,. Analogous to (2.7) we now define
|

f1(€2’ T, W l y13 51) =
(2.15)

£(g, | W (n, 0 | ¥ys 24) «

3 40

w2 exp {-3wl(n - ﬂ(1))'52]
0

%1(1)_1

w exp {-%mk(1)s(1)}




vwhich is again a Nérmal—gamma distribution. Next, we have to calculate
the conditional distribution of Yo given Y, and z,. A convenient
procedure to derive this distribution runs as follows. We start with
computing the conditional distribution of 62 and 7™, given w, Yqs and z,.

From (2.15) it is easily seen that this distribution is normal with

E[€2’ LA I w, y1a 21] Lo ('"(1))':'
(2.16) ol -
Vigy, vt | w, vy, 2,0 = o™ (1)
0 N

From the model as specified in (2.11) we then obtain that the
conditional distribution of.yz, given w, y,> and z., is also normal
with

-

(1)
2

E[y2 | w, Vs z1] =q

(2.17)
V[y2 | w, N 21] = o [ +\xé(N(1))-1u2]

Multiplying the conditional distribution of Yo» given w, ¥q» and Zs
with the marginal distribution of w, given ¥y and 245 - vhich may
be found in the last line of (2.15) - we find that the conditional
distribution of Yo end w, given y. and z_, is Normal-gamma with

parameters u'n(128(1)[1 + u'(N“))“1 77! » and 1(1). On
integrating %his distribution with respeét to w we finally obtain
that the conditional distribution of y,_, given y, and z. is

8 . (1) (%) H(1)y=1] (1)
Student  with parameters wr 0, /(s L1+ ué(N ) u2]}, and A"/,
The conditional expectation9 of La,given Y, and Z. then follows from
integrating (2.14) with respect to the distribution of Yoo given ¥4

and z,. This yields

8 See Raiffa and Schlaifer (1961), pp. 318-32q;

We assume that the distribution of y,, given Y, and z_, possesses
sufficient degrees of freedom to ensfire the existence of first and.
second moments.




(1)
= 1
E[L2| Yo z1]- a,usm + bz, +

LAl

+ agplag NED
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(1) 532222

Aoy qup + Bipzgzy + L

- 1 2 1 2
Ly = ayy *bgzy *+ 2A ¥ + 2Bz

1]
uy, = by z,1

On differentiating this expression with respect to Z, the optimal

v

,value zg of Z5 is found to be equal to
(1) (1) n(1) 22
0 (1)2 . Bop? B

2y = ~lAylmy 117+ N * Byo)

A [N(1)]121(1)3(1)
AU

1 1
(2.19) X {aaﬂé1) 2 + [Aezvs )ﬂé‘? +
* B2z}

After inserting the expression for zg into (2.18) and applying some
algebraic rearrangements, the minimum of the conditional expectation

of I,,given Y and Z,» may be written as

A min‘{E(IQI Tis Wes zl)} =

1
"2 1 (1) (1) (1) 120
A_A
(a, + &, "(1) ’A22n$1) él)zg » 122 A?1) fNe ] 22. +

(1) 0

§A12 2

)Y1 + (b, + 3B12 2)2 +

,
2[Ag, + A




In the second step of the solution procedure we have to»calculate»
the mathematical expectation of Ays given all information available at
the beginning of the first period. Proceeding along the same lines
as before we now assign a joint probability distribution to 1> >

and w by means of the formula
(2.21) folErs ™ w) = £(g; | Wfy(m, w | m55 545 Nos 2g)

where fo(w, w | Tos Bgs Ng» AO) has been defined in (2.12). Applying the
same procedure as in the first step of the solution procedure it then
follows that the marginal distribution of ¥, is again a Student
distribution with parameters u;no, l/{80[1 + u;N51u1]}, and Ay In

order to calculate the mathematical expectation of Ays we now have

to integrate (2.20) with respect to the distribution of ¥,- At this
(1)
)

point, however, we are faced with serious difficulties. Since m
5(1) and-zg (compare (2.13) and (2.19)) depend upon Yqs (2.20)

represents a rather compliéated function of Yqe To make this clear

0. In

it will be worthwhile to have a closer look at its last term %beza

terms of ¥, this last term may be written as
2 3
o _To* Ty + Ly + £3y]

(2.22) , ~ %b?_z2 =

' 2
fh + f5y1 + f6y1

where the coefficients £, (i =0, ..., 6) do not depend on ¥, but

represent rather intricate functions of the instrument variable 21.

For the time being integration of an expression like (2.22) with respect

to a Student distribution seems to go beyond our technical possibilities.

Thus at this point the solution procedure breaks down.

It may be interesting to note that a less negative result is obtained

~ when the loss function is agsumed to be linear in the target variables.

In that case we have A = 0 so0 that the'expressions for zg and A1 reduce

to

(1) ;

, * : o _ 1 ;o '

and




(1) 1
Ay = (ay +aym )t (o) + 38,2 2)z

&
(2.20 ) ; o ;
+ ;sB”z1 + + 3b

0
2%2

As the elements of ﬂ(1) (compare (2.13)) are linear functions of Yqs
(2.20%) represents a quadratic function of ¥, and z,. So ve may now
compute an optimal first-period decision along the same lines as in

the flrst step of the solutlon procedure for the more general problem
treated before. It must be stressed that even when the loss function is
linear in the target variables an optimal first-period decision can be
computed for a two-period decision problem only. Since (2.20%) is
‘quadratic in Yqs attempts to extend the analysis to a larger number of
periods are bound to run into the same difficulties as met before.

From the precedlng discussions it will be clear that the difficulties
arise because of our inability to handle the fact that in each period
additional information will be obtained about the true values of the
reduced-form coefficients of the model. In the next section we ghall present
therefore an approach which neglects this type of information. More
specifically, we shall assume that the uncertainty about the reduced-form
_parameters is the same in each period and is expressed by means of
the initial probability distribution of the reduced-form parameters at the
beginning of the first period. Especially when the planning period
is not too long it may be hoped that the various probability distri-
butions which express our knowledge about the reduced-form parameters
at the beginning of each period will not be very different. In such
cases the initial probability distribution of the reduced-form para-
meters may provide a reasonable substitute for the brobability
dlstrlbutlons of the reduced-form parameters in later periods. Of course,
this does not mean that we completely neglect the fact that information
will become available in later periods. We still take into account the
fact that decisions in later periods may be 1nfluenced by the reallzed
values of the variables in the preced;ng periods.




3. AN APPROXIMATE SOLUTION

In the present section the solution procedure, as outlined
in the last paragraph of Section 2.3 will be carried out analytically.

Formally, the decision problem can be stated as10

(3.1) , min E(

{min E
2 )
1

(L]}
AR (povplyyoynz,y) 2

subject to

= nut f‘gt (t =1, 2)

or equivalently

= + L.+
Vo = Mygoq * Moz + Mgz o+ Mwp + Togwy. o+ Mex, + &
where L2is defined by (2.4).
Our first task will be to calculate the conditional density
o As stated before

we are unable to handle the element of learning asbout the true values of

f1(y2, w2 I y1, w1, 21) on the reduced state space R

the reduced-form parameters (m, Q). Therefore, we assume that in each
period the uncertainty about the reduced-form parameters (I, Q) may be
approximated by means of the initial probability distribution defined

in (2.5), i.e.,
(3.2) £(0, @ |y, vy, 20) = £(1, 9)

Adhering to the procedure described in Section 2.2, we then assign a

probability distribution to the complete state space C

o by defining11

10

Note tha? we use the symbol E(a/b)[c] to indicate the mathematical
expectation of c with respect'™’ “‘to the conditional distribution of
a, given b. So E(a/b)[c] = fcf(a/b)da. '

11 r s '
Later on it will turn out that we only need the first and second

moments of the conditional distribution f(w,|w,) of V5, given w,. There-
fore we shall not explicitly specify this dfstributiofi.




£,(n, q, Vs &y | Yi» Wqs 2q) = (1, @, w,, &, l wy) = £(w, l v,) x

NO 0

0 1

n-n Jv x

;
(3.3) |Q|’(“+1) exp {-3 tr aln - Ty 52] o &o

,
1212301 exp (-3 tr as,)

In order to derive the conditional distribution of Y, and Voo given
¥q» ¥, and z,, from (3.3) it appears to be convenient to switchto the
conditional distribution of I and P given Q, Vo and LI It is easily
seen that the conditional distribution of the vector
1 = . . .
h [n” ee MiEogs eees Mo ees "mnEZm]’ given @, v, and w, is normal with
o, 0]

' =
Eln' | @, Vs w1] [v011 cee W

Oln seey Tl'om.l e e Tfomn

(3.4)

: -1
Vih | @, vy, w20 8

Rewriting the reduced-form equations (3.1) in the second period a.s12

(3.5) Y, = [Im_e (ug)'] h
where

(ug)' = [ué L w) xé 1]

it follows that the conditional distribution of Yoo given Q, Vs ¥q, W, end z.,

is again normal with
‘ ‘ = k) =
Ely, | @, wps ¥ys wys 291 = [T @ (ug) Ing = ngu,

V = ) . )1 ]
vy, | 2, w2,‘y1, v,z =11 & (uf)'JE [T @ (uf)']

-1 o | -
= 1 =
L1+ usly u2]a' e

1

12 . . ]
Arithmetic rules for Kronecker matrix products may be found in

Dhrymes (1970).




Multiplication of the above conditional distribution of Yo with the
marginal distribution of 1, the kernel of which may be found in the

last line of (3.3), yields

f(y29 Q | w23 y1’ w13 21) «

: 1
(3.7) |2]2 exp {-1 tr aly, - ﬂoue][y2 - Houzjyég} x

,
IQIQ(AO‘m") exp {-3 tr 05}

By integrating this expression over all admissible values of 2, the
conditional distribution of Yos given Vo Vs vy and z,, can be

proved to be multivariate Student with parameters Houg’

(AO -m + 1)851/62 and AO - m + 1. The conditional distribution
of‘y2 and w2,
conditional distribution of Yos given Voo Vs L and Zq5 with the

conditional distribution f(w2[w1) of wz,given13 w

given Yys ¥y, and z,,thenfollows from multiplying the

1.
A convenient way of calculating the conditional expectation

of the loss function Le,given Yq> Wys and Zs is provided by the

well-known formula

(3.8) E(y2’ w2Iy1,w1, 21)[%] = E(w2|w1)[E(y2lw2,y1 aW1aZ1)[IQ-"]

As the first and second moments of the distribution of Yoo given Voo

¥qs> v, and z,, are given by1

Byp | ¥gs ¥ys wps 201 = Mo,

(3.9)
B5,
o~ B - 1

| . - 1
Elyovy | vipsivys wys 2,1 = < & Mousuln

2°0

1 - . ey . . . . .
3 It is assumed that the conditional distribution of V5, 8lven w

is independent of Y, and Z,.

L .
See Raiffa and Schlaifer (1961), pp. 256-257.
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it is easily seen that

]l = ! 1 1 3V + u'n!?
E(yn|w2,y1,w1,z1)[%g aollguy + byzy *alaupliyu, + ujllpA oMo,
<

(3.10) + 2yjA lau, + 2B + 2z'B

! + ! +2ou'n!
12°0%2 7 Z2%22% 1BypZy + 271C 02, + 2uANAC, z +2ulN!C, 2

1272 27072171 2072272

| 171 17 | B Al + 1
* 2y Dygvp * 2ugligDy o+ 2upllaDoow, + 221K 0w, + 225E, W

1
+ 2z2E22w2} + L1 + k

- ' ] ] ] ' []
i T egyy F Bzt 2lyghyyy t 2Bz ¢ 0y,

1Tt ] mt v + Tt !
* 20y F Dy DYy 2B vy wiEL Z)

and where
_ tr(Azzso)
AO -m - 1

and k denotes a known but irrelevant constant.

a =

In order to determine the conditional expectation of the loss
function Le,given Yqs> ¥, and 21, we only need to know the first and
second moments of the conditional distribution of LY given LT We
will assume that the decision maker's ideas about the growth patterns

of the non-controlled exogenous variables can be represented by

E[w2 | w1] =Tw, = v,

(3.11)

! =
E[w2w2 | w1] W, AW,

where W1, 'y and A denote real-valued diagonal matrices of orders qa x q. The

‘diagonal elements of W, are the values w,. (i =1, ..., q) of the non-
controlled exogenous variables in the first period; the diagonal elements
of T and A represent the means and second moments of the probability

distributions which represent the decision maker's ideas about the growth

rates of the non-controlled exogenous variables.




The conditional expectation of the loss function L2 given Yis ¥4 and Zy»

then equals

. T o o ' .
E(y2,w2 y1,w1,z1)[59 a5llgu, + boz, + 2{a tr (NO U°)

+ tr (M'A

2 ' ' ' '
oPonTpU ) + 2y A + 2)B o2, + 221B oz, + 2y1C1p25

12flgup + 2585522

- - - - 52
mt t! 1 It 1
+ 2uplChyzy + 2ulNNCooz, + 27 DoW, + 2uslpD, Wy + 2 tr (H0D22Uh.)

2z'E. . w. + 22'E_.w, + 2z'E

1%12% 250 1¥1 slinpgWol + Ly + k

- E(w2|w1)[u2] =Ly z

) E(“2|W1)[g2ué] i
¥y,
2591
Z4¥4
VoY |

B 1
Vi9q

!
| *2¥1

A2 _ -~
Uh. = [Uhl . .

The next step in our solution procedure consists of minimizing (3.12)
with respect to the vector Z o In order to find this minimum we will
differentiate (3.12) with respect to 22,\where it must be noted that
Z, is also a subvector of 32; This yields the following first-order

conditions




] 21 L 1] 1 1
Moo * Py * (aiy’ + Mo Aoollo, + Chy + MioA,, + CAT L)Y,

22

23
1 1 ] ?
(aNO + H02A22H02 B22 + n02 oo * 022"02)22 + (aH + ' A I

0222703

2l | L -
+ I + C22n0h)“b

\
Jzq + (alg” + Ni AT, + 02220

1
Bio * TpoCoy * Coollgs

25 ] 1
(aN + H02A22H05 + n02 by * Caznos) +

6
(aNy™ + MooAnoTog + CooTl %

where the NgJ (j =1, ..., 6) denote the appropriate submatrices of

' N16

.

66
Yo

-

Thus the second-period optimal values of the decision variables z, are given

by
(3.15) £2 + sz1 + sz1 + sz1
where

[Mopa, + by + (K26 * Codlog )%l

? 1 1
[€1+C1*“b¥m * Codlpqd

1) |
iy + Bia ¥ IgpCpy * C22“03 ]

[K°

1 1
25 ¥ g eul * Byy ¥ Eppl + mpoDoy + i Do,r

* CoollgyT]




L L
* MgpCop + Coollg,

' s o
HOiAZZHOj (i, g=1, ..., 6)
provided that the matrix of second-order derivatives is positive definite.

This matrix can be written as

Evidently, a sufficient but not necessary15 condition for zg to be
optimal is that the matrix of the quadratic part of the loss function
is positive definite.

Substitution of the expression (3.15) for zg into the conditional

expectation of Lg,given Yis ¥4 and z, yields

(3.16) A, = min E L

"oy (¥, [¥15¥y524) yg
where A1 represents the minimum expected loss at the beginning of the
second period for each possible set of values of Yqo¥, and Zq. Evidently
A1 is a function of Yqis ¥y and Z,s and can be written in the following

-form
= %) + %Yo 4l v tAS . 1 R% 'O%
A= (af)lyy + (%) 2 83 {y A%y, + 2B 2, + yiCh,2,
(3.17)
4+ v (0% ) + v !'D% (D% )t 1E& Y(ES )
23(C5 )1y + yiD vy + Wi (DE) 'y, + alER w4 wl(EE ) 'z} + k

where

L + ] 1 ]
2(K§1 FoPp + Ngphy + Cop + Chollgy)

Y1 = ot ' 1
(a)' = aj + ap(ny, + M ,P)) + bIP, + 2

1 ]
* xe(K§1 + KézPe * Moghsq * MeCooPy)

o In fact, the present approach only requires the loss function to be
quadratic in at least one of the second-period target variables.




Ty o= Rt (X @it 1 1 ' ' '
(27)" = by + aj(Mys + M;,Q,) + byQ, + 22(K§3 *FyQ, + MpoCoy + Biy + Cholgs)

1 72 ] 1
*+ x5(Kgs KézQe * Moot * MhgCon8y)

2
= C ' ! 1A
Ay, + yf1 + PIF P, + P2K‘§1 + KBy + PICI + C 0P,

) + Prc* n_ . + 0'.C..P

1 1 1 1
(Mg + BRlgo Ay + Ag (Mg + TooP, 2Coollgr * Mo1Ca0®2

2 027721

B, + Ko + QIF_Q +Q'K2 K§2Q2+Q'B' + B.,Q

1" 33 2272 223 2712 1272

+ Q' )C.., + Cé

[(eX)
(M3 *+ Q5M40)C,, Qp) + QLo T53C20%

1Moz + s 2boolloz *

| \ 2 ] 1
Cip * K?3 + PoF,Q, + PoK5s K?eQz * PoBis * 00l

1 1" ] i\ N el |
(no1 + P!I'_)C +_A21(H03 n..Q,) + PlCL. I _ + my

2027%21 02% 2%22"03 1%22%

| 2 , 2
D+ DT +Ko_ + KiuI + PRF,R, +Pé(K§5 + thr) + KR

1 12 15 22 2°2

|
P2(E21 + E22F) + C R, + (né1 + P _)(D

2B og2) (Dyy + DyoT)

‘(M + 0. T +1 e '
AL (Mys + Moy, 02R) * PpCho(llgg + M T) + NG C R,

2 2 2 2
= r + + I+ Q! !
Ejp + Eppl * K55 th QF Ry + Q(Kyg + Ky T) + Ko R,

1 \ ] ] L
Qu(Eyy + Eppl) + ByoRy + (M5 + QNG5 ) (D, + Dy, T)

Cl i . nt 1
21 05 * TouT *'TMgpRp) + chez(nos * I+ IIQ3C22R2




In the second step of the solution procedure we have to derive
the optimal value z? of the vector of instrument variables in the
first period. Applying the same procedure as in the first step we
now have tb ninimize the mathematical expectation of Ays given the
information at the beginning of the first period. Analogous to

(3.9) and (3.11) we now have

Elyy | wqs ¥gs ¥g» 291 = Tou,
8.5
__B45

D ee—————— 1 ]
Ely v | vys v ¥, %0 Ao - M- IR Lt L

-1
= '
By = 1 ruylg
E[w, | wol = Twy = w,

' ' = 7
E[w1w1 | wo] WOAMO

0 qu

and where T and A are specified in (3.11). So the first-period optimal

decision 1is directly given by

1Yo

(3.20) 2, + ?1y0 *+Qzy +R

where

= - ! £ & 1 3 '
F11‘1102&1 * o5+ (Kyg + (k) 'mpg)x, ]

=lr % )
-Fy LKy, + (C5,) g, ]




= -F_ [k

17723 ]

b3 [}
+ (CF)) g5

-1 1 ) 1 Dt ot 1
Fy LK), + (CF,) gy, + MpoDF + BT + Kos

K|+ BY_ + m i

& '
22 11 02711 )'n

+ (cf)m,

A id v op . s
hij al @ + HOiA11HOj (i, =1, ..., 6)

Generalization of this procedure to decision problems which involve more

than two periods is immediate, provided that the matrices in the quadratic

part of the loss function are band matrices. Suppose that our loss function

for T periods is given by

(T)

Lo D) ()

o = a'y +b'z (T))

+ 3 {(y 'Ay + (2T

BRTNC DD C. BN C D ISP G IR ¢ I C DI
s ™oy @y @y (@, (D), (1),

where the matrices A, B, C, D, and E are band matrices of the following form

(3.22)

hpo poo Ao moq
Ap_1,1o0 Ap 1,11
. .0 Ap o

while analogous specifications hold for B, C, D, and E.

Then our loss function can also be written as




= ! ' 1 ' '
Ly = aqyp *+ bpzp + 2{yqphpqyp * 2¥q_1Ap_q Vo

' ' ' N
(3.23) | + ZTBTTZT + 2ZT-1BT—1,TZT + ...+ EZT-1ET—1,TWT +

"W ]
*+ 22k o qVp_y * 22pEpqipd + L,

On calculating the mathematical expectation of (3.23) with respect to

the conditional distribution of Yoo given _1° and z 10 Ve

Vs Yo o¥p T-
obtain an expression which is quite analogous to (3.10). So the

optimal value zo of the instrument variables at the beginning of the

T
T-th period is found by replacing all appropriate superscripts and

subscripts 2 and 1 in formula (3.15) by T and T-1, respectively.

In the same way the minimum expected loss A at the beginning of the

T-1
T-th period may be derived by appropriate adjustment of formula (3.1T).
Continuing in this way we can next derive the optimal value zg_1 of the
instrument variables in period T - 1 and the corresponding minimum

expected loss A This procedure, which can be carried out on any

computer of sufgiiient size, finally yields the vectors and matrices

which determine the minimum expected loss A1 at the beginning of the

second period. The optimal first-period decision is then given by (3.20).
When the matrices of the quadratic part of the loss function are not

of the form (3.22) we may of course apply the same procedure as outlined

Vo q RE the optimal value zg of

the instrument variables in the T-th period then turns out to depend

before. In addition to Yop_q» , and 2

also on the values yT_2 through yo, wT_2 0° and ZT-2 through zo.

This implies that our formulas (3.15), (3.17), and (3.20) cannot simply be

through w

generalized so as to include this case as well. Development of formulas
which cover this case is a straightforward, although rather tedious

affeir which is outside the scope of the present paper.

4. CONCLUDING REMARKS

In this paper we have investigated whether optimal control policies
can be derived for multi-period macro-economic planning problems when
the multipliers of the underlying model are not known with certainty.
In this section we draw some conclusions and indicate possible directions

for future research.




To start with, we found that one runs into insoluble computational
problems if one tries to handle the fact that in each period additional
information will be obtained about the true values of the reduced-form
parameters. It turned out that these problems can only be solved for
a two-period decision problem with a loss function which is linear
in the target variables.

We therefore followed an approach that neglects this type of
information. More specifically, we assumed that the uncertainty about
the reduced-form parameters is the same in each period and is expressed
by their initial probability distribution at the beginning of the first
period. Using this approximation we found that application of the
principle of backwards induction leads to a simple linear decision rule
for the first period decision.

Unfortunately we cannot be sure whether the initial probability
distribution of the reduced-form parameters provides a reasonable
substitute for the probability distributions in later periods. At any
rate, it may be hoped that, if the horizon of our planning problem
is short, the various probability distributions which express our
knowledge about the reduced-form parameters will not be very
different.

It might be worthwhile to do some research in this area with a
numerically specified model. In a two-period decigion problem with
a loss function which is linear in the target varisbles, our approximate
solution can be compared numerically with the optimal solution as
described in Section 2.3.

For a general multi-period decision problem a simulation study
can be performed, in which decisions are derived by means of our

approximate solution procedure as well as Theil's certainty

. .16 . . ..
equivalence approach. First-period decisions can be calculated

numerically and then substituted into the model underlying our
decision problem. Subsequently first-period values for the endogenous

and non-controlled exogenous variables can be generated on a computer.

16
See Theil (196L4).




Second-period decisions can then be calculated by simple substitution
of the\first-period values of the relevant variables into the second-
period decision rules. Cohtinuing in this fashion one can calculate
decisions and generate values for the endogenous and non-controlled
exogenous variables in all periods. Substitution of these values

into the loss function yields a final loss for both our apprbximate
solution procedure and the certainty equivalence approach, which enables

one to compare these two methods.
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